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Abstract

The discipline of land change science has been evolving rapidly in the past decades. Remote sensing played a major role in

one of the essential components of land change science, which includes observation, monitoring, and characterization of land

change. In this paper, we proposed a new framework of the multifaceted view of land change through the lens of remote sensing

and recommended five facets of land change including change location, time, target, metric, and agent. We also evaluated

the impacts of spatial, spectral, temporal, angular, and data-integration domains of the remotely sensed data on observing,

monitoring, and characterization of different facets of land change, as well as discussed some of the current land change products.

We recommend clarifying the specific land change facet being studied in remote sensing of land change, reporting multiple or all

facets of land change in remote sensing products, shifting the focus from land cover change to specific change metric and agent,

integrating social science data and multi-sensor datasets for a deeper and fuller understanding of land change, and recognizing

limitations and weaknesses of remote sensing in land change studies.
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A B S T R A C T   

The discipline of land change science has been evolving rapidly in the past decades. Remote sensing played a 
major role in one of the essential components of land change science, which includes observation, monitoring, 
and characterization of land change. In this paper, we proposed a new framework of the multifaceted view of 
land change through the lens of remote sensing and recommended five facets of land change including change 
location, time, target, metric, and agent. We also evaluated the impacts of spatial, spectral, temporal, angular, 
and data-integration domains of the remotely sensed data on observing, monitoring, and characterization of 
different facets of land change, as well as discussed some of the current land change products. We recommend 
clarifying the specific land change facet being studied in remote sensing of land change, reporting multiple or all 
facets of land change in remote sensing products, shifting the focus from land cover change to specific change 
metric and agent, integrating social science data and multi-sensor datasets for a deeper and fuller understanding 
of land change, and recognizing limitations and weaknesses of remote sensing in land change studies.   

1. Introduction 

With the increasing contemporary concerns on climate change, 
global environmental change, and sustainability, land change science 
has emerged as a unique science direction for addressing these chal
lenging issues (Gutman et al., 2004; Rindfuss et al., 2004; Turner et al., 
2007). Land change science, defined as “the interdisciplinary field [that] 
seeks to understand the dynamics of land cover and land use as a 
coupled human-environment system to address theory, concepts, 
models, and applications relevant to environmental and societal prob
lems, including the intersection of the two” (Turner et al., 2007), has 
many components, in which one of the most fundamental and critical 
components is the observation, monitoring, and characterization of land 
change. 

The terrestrial surface of the Earth has been changing at an un
precedented rate. More than half of the Earth’s ice-free land surface has 
been modified by humans (Ellis et al., 2010), and almost all land sur
faces have been influenced by climate change and various kinds of land 
disturbances (Dale, 1997; Potter et al., 2003). Remote sensing, partic
ularly satellite remote sensing, that can provide synoptic and repeated 
measurements of the global land surface at different spectral, spatial, 
and temporal resolutions, is of great importance for studying global land 
change (Justice et al., 1998; Roy et al., 2014; Sellers et al., 1995). In the 

past decades, big advancements have been made in large-scale mapping 
of land change based on remote sensing data, due to the rapidly growing 
amounts of earth observation satellites (Belward and Skøien, 2015; Ustin 
and Middleton, 2021), the free and open data policy (Woodcock et al., 
2008; Wulder et al., 2012; Zhu et al., 2019), the analysis-ready data 
format (Dwyer et al., 2018; Frantz, 2019), the state-of-art cloud 
computing platform that not only provides massive parallel computing 
capability but also a huge amount of online datasets (Gorelick et al., 
2017), and the improved capability of new algorithms for land change 
detection (Banskota et al., 2014; Kennedy et al., 2014; Zhu, 2017). 
Recently, a paradigm shift from change detection of two points in time 
to monitoring and tracking change continuously in time is observed in 
the remote sensing community, where the use of dense time-series ob
servations gain more popularity with a capability of retrieving new land 
change information, such as subtle changes in ecosystem health and 
condition, and long-term trend of the vegetation productivity (Wood
cock et al., 2020). Moreover, land change information can now be 
monitored in near real-time (Shang et al., 2022; Tang et al., 2020; 
Verbesselt et al., 2012; Xin et al., 2013; Ye et al., 2021a), which greatly 
improves its value to resource managers and policymakers. We have also 
witnessed a proliferation of land change characterization algorithms 
(Zhu, 2017), mostly focusing on the “from-to” information, that is, land 
cover and/or land use information before and after the change (Hansen 
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and Loveland, 2012; Pricope et al., 2019). It should be noted that though 
“land cover” (the physical properties at the Earth’s surface) and “land 
use” (the social, economic, and cultural utility of land) are quite distinct 
(Turner, 1997), they are often grouped together in remote sensing 
products, and “land cover” is usually used as a surrogate for under
standing “land use”, such as including cropland and developed land in 
the categories of land cover (Anderson et al., 1976). Considering remote 
sensing data provide information on land cover, rather than on land use, 
we will mainly focus on land cover change hereafter. 

In this paper, we propose the framework of a multifaceted perspec
tive in remote sensing of land change, in which the change in land cover 
is only one of the components viewed from one of the five facets of land 
change - the target of change or what is changing. Basically, if we detect 
change in satellite spectral bands, we can extract the land change in
formation to answer five different questions, that are, when (change 
time), where (change location), what (change target), how (change 
metric), and why (change agent) the change happened. Each of the 
questions will occupy one facet of the change cube that contains the 
spectral change information derived from remotely sensed data (Fig. 1). 
The facet on the top of the change cube is left empty on purpose, as there 
may be other facets of land change that are not discussed in this paper. 
The two facets of “Time” and “Location” provide information on the 
detection and monitoring of land change, and the other three facets of 
“Target”, “Metric”, and “Agent” are related to the characterization of 
land change. Indeed, the topic of land change has been extensively 
reviewed in the remote sensing community, but most focused on change 
detection techniques (i.e., when and where) (Coppin et al., 2004; Hus
sain et al., 2013; Lu et al., 2004; Singh, 1989; Zhu, 2017). Only very few 
reviews mentioned other facets such as change target (Hansen and 
Loveland, 2012; Warner et al., 2009; Wulder et al., 2018), change metric 
(Gómez et al., 2016; Kennedy et al., 2009; Vogelmann et al., 2016), and 
change agent (Kennedy et al., 2015; Sebald et al., 2021; Shimizu et al., 

2019). Pouliot and Latifovic (2016) mapped the multifaceted nature of 
land change, however, it was only a case study in the Athabasca oil sands 
region of Canada and has not reviewed the multifaceted land change in a 
systematic way. According to our knowledge, this paper is the first work 
for synopsizing the detection and characterization of land change as a 
five-facet task in a systematic manner, paving the way for operational
izing a holistic examination of land change as well as accomplishing 
efficient communication on related concepts - rather than a synthesis of 
sensor or methodological comparison which has been widely touched in 
previous works. 

We will first discuss all five facets of land change as well as their 
relationship through the lens of remote sensing. Next, we will discuss the 
remote sensing issues in spectral, spatial, temporal, angular, and data- 
integration domains in observing, monitoring, and characterization of 
different facets of land change. Finally, we will discuss some of the 
current land change products derived from remote sensing data and 
conclude with a few recommendations. While most examples of this 
paper were illustrated using time-series datasets given by our expertise 
on this topic, we do appreciate the spatial and spectral merits of other 
data types (e.g., LiDAR, Hyperspectral, and Unmanned Aerial Vehicle 
(UAV)), which are equally important for characterizing land change. It 
has been our recognition that the integration of multiple data sources 
can provide a unique opportunity for the success of monitoring multi
faced land change (will be discussed in Section 4.5). 

2. The five facets of land change 

If the remote sensing system is well designed for capturing the spe
cific land change type, it is possible to extract land change information 
for five different facets based on the remotely sensed observations 
collected before, during, and/or after the land change (Fig. 2). 

Fig. 1. The five facets proposed for observation, monitoring, and characterization of land change using remotely sensed data. It is worth noting that not all land 
change agents will lead to a change in change target or land cover in this case, and some of the change patches displayed in the other four facets are not shown (e.g., 
stress, flooding, and agriculture activity) or only partially shown (e.g., wind, construction, and regrowth) in the facet of change target. 
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2.1. Where - change location 

The first facet of land change is to answer the question of where the 
change has occurred or determine the change location. Theoretically, by 
differencing two georeferenced remotely sensed images collected at a 
different time from the same spectral band and same location, any kind 
of land surface change that occurred between the two dates would have 
larger difference values than places that have not changed. By using a 
simple threshold, the location of change could be identified. The land 
change detected in this way is sometimes called “spectral change” 
(Brown et al., 2020; Healey et al., 2018; Xian et al., 2022), as clearly 
there is a spectral value change between the two dates of the remotely 
sensed images, but this does not always correspond to the changes on the 
land surface. Other factors, such as image registration, atmospheric 
condition, natural soil wetness fluctuation, vegetation phenology, 
sensor-solar-geometry, and topography illumination, may also 
contribute to the spectral change (Kennedy et al., 2014; Zhu, 2017). 
Therefore, one of the most foundational steps before the remotely sensed 
images are used for detecting land change is removing or at least 
reducing changes in spectral values that are not caused by land surface 
change. Advanced algorithms have been developed to provide more 
accurate image registration results (Gao et al., 2009; Yan et al., 2016), 
perform atmospheric correction and cloud/cloud shadow detection 
(Masek et al., 2006; Qiu et al., 2019b; Zhu and Woodcock, 2012), 
include precipitation information (Tollerud et al., 2020), model and 
exclude seasonality (Verbesselt et al., 2010; Zhu et al., 2020; Zhu and 
Woodcock, 2014), apply Bidirectional Reflectance Distribution Function 
(BRDF) to correct sensor-solar-geometry (Roy et al., 2016; Schaaf et al., 
2002), remove bandpass difference (Claverie et al., 2018; Shang and 
Zhu, 2019), and perform topographic correction (Buchner et al., 2020; 
Tan et al., 2013). It is worth noting that though these algorithms have 
the potential to reduce spectral changes that are not related to changes 
on land surfaces, they may also introduce artifacts, and it is not always 
necessary to apply all these algorithms before conducting change 
detection (Qiu et al., 2019a; Song et al., 2001). 

2.2. When - change time 

The second facet of land change is to answer the question of when the 
change occurred or determine the change time. Basically, the closer the 
two images are selected for detecting change, the more accurate the 
change time can be determined. Compared to detecting change based on 
real images, there are also new change detection methods that difference 
the model predicted values with actual remote sensing observations to 
identify land change (Verbesselt et al., 2012; Zhu and Woodcock, 2014) 
and the detected change time is determined based on how soon the new 
clear observations are collected for each pixel location. These time- 
series-based approaches do not need to wait for two clear remote 
sensing images and can provide more rapid change detection results. 
The remote sensing community has shifted from using images collected 
decades apart (Homer et al., 2007; Masek et al., 2008), to annual (Huang 
et al., 2010; Kennedy et al., 2010), and is currently shifting all the way to 
near-real-time change detection (Shang et al., 2022; Tang et al., 2019; 
Verbesselt et al., 2012; Woodcock et al., 2020; Ye et al., 2021a). This is 
particularly true with the successful launch of Sentinel-2 A/B (Drusch 
et al., 2012), Landsat 9 (Masek et al., 2020), and the hundreds of 
orbiting CubeSats (Huang and Roy, 2021), that could provide subweekly 
or even daily land surface observations at medium to high spatial res
olutions (Li and Roy, 2017; Roy et al., 2021). 

2.3. What - change target 

The third and probably the most studied facet of land change is to 
answer the question of what is changing or determining the change 
target. The change target is sometimes defined as changes in categorical 
classes such as land cover type (e.g., forest, urban, water, grass, shrub, 
snow/ice, agriculture, etc.), or defined as changes in continuous variables 
of biophysical/biochemical parameters, such as Impervious Surface 
Area (ISA), land surface temperature, Leaf Area Index (LAI), vegetation 
height, biomass, leaf moisture content, leaf chlorophyll content, etc. 
Remotely sensed data contain rich information on the characteristics of 
the land surface. A feature space of more than a few dozens to even 
hundreds of dimensions could be created from the electromagnetic ra
diation (EMR) that is recorded at different wavelengths, the texture of 

Fig. 2. Hierarchical classification system for the five facets of land change.  
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the spectral bands, and the intra-annual/inter-annual temporal trajec
tory from the time series observations, which could be further used to 
determine the land cover based on image classification (Gómez et al., 
2016; Pouliot and Latifovic, 2016) or to estimate the biophysical/ 
biochemical parameters based on machine learning or regression from 
empirical models (Garbulsky et al., 2011; Lin et al., 2020; Verrelst et al., 
2015). Recently, the deep-learning-based approaches, particularly 
Convolutional Neural Network (CNN), have shown better performance 
in land cover classification compared to the traditional machine- 
learning-based methods (Kussul et al., 2017; Liu et al., 2021b; Pouliot 
et al., 2021), and are capable of incorporating the spatial domain of the 
remote sensing data by automatically extracting a suitable representa
tion of the remote sensing data through a hierarchy of spatial filters at 
different sizes, which avoids the feature creation and selection processes 
that most traditional machine learning methods require in advance for 
preparation of the classification predictors (Molinier et al., 2021). 

Theoretically, if we can create land cover or biophysical/biochem
ical parameter maps accurately at different time points, we can compare 
their maps to identify changes in different land cover or a specific bio
physical/biochemical parameter. However, as land changes are usually 
very small in size (e.g., 1–5% of the land surface) (Hansen et al., 2013; 
Song et al., 2018), and all image classification and biophysical/ 
biochemical parameter retrieval algorithms contain errors, comparing 
maps of land cover or biophysical/biochemical parameters at different 
time points to detect land change may lead to compounded errors in the 
final change map at a magnitude way larger than the total change area 
(Olofsson et al., 2013). Therefore, land change is usually better detected 
based on the magnitude of spectral change and if a spectral change is 
detected, we can then estimate land cover or biophysical/biochemical 
parameters before and after the spectral change (Deng and Zhu, 2020; 
Jin et al., 2019; Latifovic and Pouliot, 2005; Xian et al., 2009; Zhu and 
Woodcock, 2014). It is worth noting that even if there is a spectral 
change detected, the classified categorical land cover type may still be 
the same (Hermosilla et al., 2018), as the land change that occurred on 
this land cover may not be dramatic enough to change the land cover 
type, and we usually call this land cover modification or land cover 
condition change (Comber and Wulder, 2019; Rogan et al., 2008). For 
example, if forest cover is defined as trees covering >10% of the pixel 
following the U.S. Forest Service definition (Riemann et al., 2010), and if 
selective logging is reducing forest cover from 90% to 30%, we are very 
likely to detect a spectral change, but based on the definition, the land 
cover is still forest before and after the spectral change. However, if the 
forest harvest is reducing forest cover from 90% to 5%, then the land 
cover will be likely changed from forest to barren or grass, and we 
usually call this land cover conversion, which is corresponding to more 
substantial land changes that cause land cover transitions from one to 
another. In the remote sensing community, huge efforts have been given 
to land cover conversions (Chowdhury et al., 2021; Colditz et al., 2014; 
Homer et al., 2015, 2020; Pouliot et al., 2021, Pouliot et al., 2014), but 
fewer studies were targeted on the land cover modification, which often 
occur at a spatial scale similar to or even larger than land cover con
version (Asner et al., 2005; Qin et al., 2021; Rigge et al., 2019). 
Detecting land cover modification is inherently difficult in remote 
sensing, as the subtle spectral change signal may be at a change 
magnitude similar to other background noise. Subpixel analyzing 
methods, such as spectral mixture analysis (Asner et al., 2009), contin
uous fields (Hansen and DeFries, 2004), fuzzy (or soft) classification 
(Foody and Doan, 2007), and the continuous subpixel monitoring 
approach (Deng and Zhu, 2020), have shown their capability in the 
detection of land cover modification at subpixel scales. 

2.4. How - change metric 

The fourth facet of land change is to answer the question of how it is 
changing by a number of change metrics, such as change magnitude, 
change duration, and change direction (Gómez et al., 2016; Kennedy 

et al., 2014; Petit et al., 2001). As remotely sensed data measure land 
surface reflected or emitted EMR, any state transition can be reflected as 
surface reflectance changes from the spectral bands, making remote 
sensing data particularly useful for tracking the change trajectories and 
characterizing the specific change process based on different change 
metrics (Comber and Wulder, 2019; Kennedy et al., 2014). The most 
important remote sensing observations for calculating different change 
metrics are the ones that are collected during the land change events. 

According to the change duration metric (how long the change event 
last), land change can be divided into abrupt change and gradual 
change. Most remote sensing change detection algorithms were devel
oped to detect abrupt changes that occur within a short time in response 
to a punctuated event, as these changes can be detected directly by 
comparing two remotely sensed images collected at different time points 
before and after the change event (Coppin and Bauer, 1996; Woodcock 
et al., 2020). On the other hand, gradual changes usually last for a much 
longer time as a result of a variety of causes such as damage to vege
tation from disease and insects, ecological succession, and climate 
change (Lawrence, 2005; Vogelmann et al., 2012, 2016). There are also 
remote sensing methods developed to quantify gradual changes based 
on long-term time series observations (e.g., > 10 years) with the capa
bility of separating co-existing gradual and abrupt changes (De Jong 
et al., 2012; Vogelmann et al., 2016; Zhu et al., 2016a), enabling more 
accurate estimation of gradual changes. 

Based on the change magnitude metric (spectral distance between 
the changed and unchanged observations), land change can be divided 
into subtle change and dramatic change. Subtle change modifies the 
land cover, and the impact could be either short-lived, which is some
times called ephemeral change (e.g., gypsy moth infestation and flood
ing), or persistent at a much longer time (e.g., > 1 year), which is also 
called gradual change. Dramatic change is mainly caused by severe 
disturbance events, which may lead to land cover conversion. Dramatic 
change is relatively easy to identify as large differences will be observed 
in remotely sensed imagery, but subtle change detection is much more 
difficult and requires change agent- or land cover-specific algorithms 
with a careful model parameter calibration (Ye et al., 2021b). The 
change direction, measured by the angularity of the spectral change 
vector, indicates the nature of the change process (Lambin and Strahler, 
1994) and has the potential of providing more accurate detection of land 
change when used simultaneously with change magnitude (Zhu et al., 
2020). It is worth noting that other change metrics could also provide 
valuable information for characterizing how the land surface is chang
ing, such as time since last change, spectral stability period, and 
occurrence change intensity (Brown et al., 2020; Pekel et al., 2016). 

2.5. Why - change agent 

The fifth facet of land change is to answer the question of why it is 
changing or determine the change agent. Climate, land disturbance, and 
succession are the three major change agents that occur at quite 
different timescales (Fig. 3). Though the three change agents are quite 
different conceptually, they interplay with various kinds of positive and 
negative feedbacks (Dale et al., 2001; Guo et al., 2018; Johnson and 
Miyanishi, 2021; Laflower et al., 2016; Seidl et al., 2017). 

Land disturbance has been defined in various ways (Clements, 1916; 
Grime, 1977; Sousa, 1984; Turner, 2010; White and Pickett, 1985), and 
one of the most commonly used definitions by ecologists is “any rela
tively discrete event in time that disrupts ecosystems, community or 
population structure and changes resources, substrate availability, or 
the physical environment” (White and Pickett, 1985). Most of the time, 
land disturbance occurs in a very short time ranging from hours to years 
and can be anthropogenic or natural. Anthropogenic disturbance, 
sometimes called mechanical change or land use change, refers to 
human activity-related land change, such as forest management, agricul
ture activity, construction, and prescribed fire. Natural disturbance can be 
further divided into abiotic disturbance, such as wildfire, flooding, 
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tornado, hurricane, drought, geological hazard, and biotic disturbance, 
such as insect infestation, pathogens, and invasive species. It is worth noting 
that there is a long debate on whether drought should be included as one 
type of land disturbance, and it has only started to be considered as a 
disturbance type over the past decade (Peters et al., 2011). Fire can be 
both natural (wildfire) and anthropogenic (prescribed fire) (Bowman 
et al., 2011), and remote sensing can detect both burning fires and fire 
burned areas (Justice et al., 2002; Lentile et al., 2006). Most remote 
sensing algorithms developed for detecting disturbance are only limited 
to a single change target, such as forest disturbance (Healey et al., 2018; 
Huang et al., 2010; Jin and Sader, 2005; Kennedy et al., 2007; Zhu et al., 
2012a), and only a few algorithms can provide more general disturbance 
results, such as the MODIS Global Disturbance Index (MGDI) algorithm 
(Mildrexler et al., 2009), the Landsat-based detection of Trends in 
Disturbance and Recovery (LandTrendr) algorithm (Kennedy et al., 
2015), and the COntinuous monitoring of Land Disturbance (COLD) 
algorithm (Zhu et al., 2020). As disturbance will create a spectral change 
signal that deviates from the normal data fluctuation, it can be better 
captured after the normal data fluctuation is well defined and modeled. 
However, for certain disturbance types, such as selective logging and in
sect infestation, they may only change a small fraction of the pixel or 
slightly change the health condition of the ecosystem, which makes 
these kinds of disturbance agents extremely difficult to detect and 
distinguish in remote sensing data (Asner et al., 2005; Senf et al., 2017; 
Ye et al., 2021b). 

Unlike weather that describes “snapshot-like” atmospheric condition 
(e.g., rainstorms and tropical cyclones) that changes every hour, day, 
and maybe months, the term “climate” depicts the mean and variability 
of temperature, precipitation, or wind for a much longer time, ranging 
from months to centuries. Climate variability refers to the short-term (e. 
g., months, seasons, or years) variation in climate patterns such as El- 
Niño Southern Oscillation, and climate change refers to the long-term 
changes (e.g., decades or centuries) in climates such as global warm
ing and sea-level rise. Climate variability can be detected using remotely 
sensed vegetation indices by comparing a certain year with a baseline 
computed from a longer satellite time series (Saleska et al., 2007; 
Samanta et al., 2010), and climate change can be also evaluated based 
on the long-term trend of remotely sensed vegetation indices (Myneni 
et al., 1997; Zhu et al., 2016b). As both climate variability and distur
bance will cause remote sensing observations to deviate abruptly from 
their past trajectories with a change magnitude larger than a pre-defined 
threshold, climate variability is sometimes identified as one kind of 
disturbance type in remote sensing (Huete, 2016), and will be particu
larly noticeable in semiarid areas where the amount of precipitation will 
have a large impact on the local ecosystems. 

Climate change and land disturbance initiate succession (e.g., pri
mary succession and secondary succession), which is defined as the 
process that the structure of a biological community changes over time 
(Huston and Smith, 1987). The process of succession is often accom
panied with a sequence of biotic community replacement, such as the 

well-known four-stage Oliver and Larson Model (Oliver and Larson, 
1996). Primary succession is the process that plants and animals colo
nize a barren habitat for the first time, which could take hundreds of 
years, while secondary succession begins after a major disturbance that 
transformed the original landscape. As remote sensing has a relatively 
short history, and the longest earth observation satellite, such as Land
sat, only has a half-century record (Wulder et al., 2022), it is not ideal to 
quantify primary succession, and there are only limited studies on this 
topic (e.g., Knoflach et al., 2021; Lawrence, 2005). However, remote 
sensing data have been frequently used for quantifying secondary suc
cession after disturbance with regards to its recovery rate or succession 
stages. The post-disturbance recovery rate was often estimated via 
spectral recovery rate as the proxy from the temporal trend analysis of 
satellite time series (Bartels et al., 2016; Kennedy et al., 2010; Pérez- 
Cabello et al., 2021; Senf et al., 2015; White et al., 2022; Zhao et al., 
2018). Combined with ground measurements (Huang et al., 2019; White 
et al., 2019) and laser scanning data (Chirici et al., 2020; White et al., 
2018), the use of dense satellite time series has enabled a better evalu
ation for re-establishment of forests over large areas (Chu et al., 2016; 
White et al., 2017), offering new insights on forests resilience (Forzieri 
et al., 2022; Senf and Seidl, 2022), recovery characterization (Bartels 
et al., 2016), and climate effects (Sulla-Menashe et al., 2018). Differ
ently, the succession stages were often characterized through a single- 
date species mapping based on optical or LiDAR datasets (Osińska- 
Skotak et al., 2019; Raitsos et al., 2013; Rittenhouse et al., 2022), and 
sometimes required to be linked to field observations (e.g., Hall et al., 
1991). 

Observing and monitoring places where disturbance, climate, and 
succession occurred is important, but what is more critical is to identify 
the specific change agent, and this effort is sometimes called change 
agent characterization (or attribution) in remote sensing. Among the 
variety of possible land change agents, we can divide them into direct or 
proximate causes (e.g., agriculture activity, construction, fire, forest 
management, etc.) and distal or underlying driving forces (e.g., human 
population dynamics, human attitudes and behavior, economic trans
formation, climate change, etc.) (Geist and Lambin, 2002; Lambin et al., 
2001). A majority of the remote sensing studies are only focusing on 
creating change agent maps of the proximate causes, in which some of 
them are more focused on anthropogenic agents (Kennedy et al., 2015; 
Shimizu et al., 2019) and others are more of a natural agent focus (Oeser 
et al., 2017; Schroeder et al., 2017). Most of the remotely sensed change 
agent types are quite broad, and some of the typical categories include 
agriculture activity, forest management, construction, insect, windstorm, fire, 
flooding, and vegetation stress. Satellite time series observation collected 
before, during, and/or after the disturbance events and supervised ma
chine learning classifiers are usually used together for change agent 
classification (Shimizu et al., 2019), and the inclusion of spatial domain 
of remote sensing data is frequently found helpful in improving sepa
ration of different change agents (Kennedy et al., 2015; Sebald et al., 
2021; Shimizu et al., 2019). It should be noted that remote sensing of 

Fig. 3. Timescales applicable to weather, climate variability, climate change, land disturbance, and succession.  
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change agent is never an easy task. Changes of different agents can 
happen simultaneously or in close proximity to each other, which makes 
untangling these agents extremely hard sometimes (e.g., harvest 
following by a pest infestation in forests). Moreover, different distur
bance agents may result in the same or similar change consequences (for 
example, windstorms, wildfire, insect infestation, and drought will all 
lead to defoliation), which makes the spectral change signature very 
similar among the different agents. Additionally, it is extremely chal
lenging to collect high-quality change agent training data consistently 
across a large geographic region at a national or global scale. Synthe
sizing all the land change agent related open data, such as the Land 
Change Monitoring, Assessment, and Projection (LCMAP) reference 
sample (Pengra et al., 2020), LANDFIRE reference data (Rollins, 2009), 
USGS Land Cover Trends data (Loveland et al., 2002), USFA National 
Insect and Disease Survey database (Johnson and Wittwer, 2008), NASA 
Cooperative Open Online Landslide Repository (COOLR) Landslide data 
(Kirschbaum et al., 2010), NOAA Severe Weather Data Inventory 
(SWDI) (NOAA, 2022), and Monitoring Trends in Burn Severity (MTBS) 
data (Eidenshink et al., 2007), and refining training data based on prior 
knowledge of change agent characteristics could be a potential solution. 
Remote sensing can also help better understand the underlying driving 
forces behind global land change based on qualifying and quantifying 
human-environment interaction at a multitude of spatial and temporal 
scales (Pricope et al., 2019). By integrating social science data and sta
tistical methods such as fixed-effects models (Firebaugh et al., 2013), it 
is possible to provide deeper understanding of the complex land change 
transitions and teleconnection/telecoupling (Friis et al., 2016; Lambin 
et al., 2001; NRC, 1998, 1999; Pricope et al., 2019; Seto et al., 2012). 

3. Relationship of various kinds of change terminologies 

A variety of change terminologies have been introduced and used for 
remote sensing of land change. Though they are all related to land 
change, their relationship is rather complicated and confusing. Fig. 4 
illustrates the relationship of some widely used land change terminol
ogies, including spectral change, land surface change, land cover 
change, land cover modification, land cover conversion, land distur
bance, climate variability, climate change, succession, and biophysical/ 
biochemical parameter change. Spectral change (the grey rectangle in 
Fig. 4), defined as the temporal change in remote sensing spectral value, 
has been widely used in many remote sensing change detection studies 
(Cohen and Goward, 2004; Coppin and Bauer, 1996; Verstraete and 
Pinty, 1996). Spectral change is the broadest of all land change termi
nologies that could include all kinds of land changes (e.g., changes 

caused by vegetation phenology and abrupt/gradual land surface 
changes), as well as the spectral changes that have nothing to do with 
land change on the ground, such as atmospheric influences and data 
noise. On the other hand, land surface change (the region within red 
dashed line in Fig. 4), which shared the same area as land cover change, 
has also gained a lot of visibility in remote sensing studies of land change 
(Brown et al., 2020; de Beurs et al., 2015; Sohl et al., 2004; Woodcock 
et al., 2020; Zhu and Woodcock, 2014). Land surface change or land 
cover change includes all land change (e.g., all kinds of land cover 
conversions and modifications) that occurs on the Earth’s surface, 
except for cyclic changes that are often caused by vegetation phenology 
and snow/ice seasonality. Biophysical/biochemical parameter change 
(the purple rectangle in Fig. 4) includes land surface change (or land 
cover change), that will inevitably lead to changes in certain biophysi
cal/biochemical parameters, as well as cyclic changes that cause 
changes in LAI and leaf chlorophyll contents. Land disturbances (the 
light red rectangle in Fig. 4) are discrete events that disrupts ecosystems, 
and if they are severe enough, they can lead to land cover conversion, 
and are sometimes overlapped with climate variability (e.g., drought). 
Climate variability (the light yellow rectangle in Fig. 4) and climate 
change (the dark yellow rectangle in Fig. 4) are driven by the mean and 
variability of temperature, precipitation, or wind, and climate vari
ability refers to the short-term variations in climate patterns (e.g., 
months, seasons, or years) while climate change refers to the long-term 
changes (e.g., decades or centuries). Both can lead to land cover con
version when it is persistent or have a significant impact on the land 
surface. Succession (the green rectangle in Fig. 4), defined as the process 
of the structure of a biological community changing over time can also 
change the land cover categories (e.g., transitioned from grass to shrub, 
and all the way to forest) with enough time and adequate recovery speed 
(Brown et al., 2020). Note that land disturbance, climate variability, 
climate change, and succession may all lead to categorical land cover 
change - land cover conversion (the rectangles filled with stripes in 
Fig. 4), but most of the time they will only lead to within-state modifi
cations or condition change - land cover modifications (the rectangles 
filled with dots in Fig. 4), such as changes in the value of a certain 
biophysical/biochemical parameter. 

4. The current issues for monitoring multifaceted land change 

It would be ideal that the remote sensor was designed to detect all 
land changes with the right spectral, spatial, temporal resolutions, and 
viewing angles. However, the practical issues from spectral, spatial, 
temporal, angular, and data-integration domains have hindered the 
remote sensing platform’s capability of detecting and characterizing 
land change. 

4.1. The spectral issues 

Visible, Near Infrared (NIR), Shortwave Infrared (SWIR), thermal, 
and microwave electromagnetic radiation is absorbed, reflected, and 
transmitted in different ways by terrestrial materials. Land changes, in 
essence, are partial or complete changes of the terrestrial materials, and 
hence a certain type of land changes can manifest distinct detection 
performance at different wavelengths. In practice, if the spectral ranges 
capable of separating the two different types of land surfaces are not 
included in the remote sensing bands, it is almost impossible to detect 
change location and time, not to mention accurate identification of 
change target, metric, and agent. For example, when forests are burned, 
the land-change signals are barely discernable from the visible Landsat 
bands, such as blue, green, and red, and certain microwave bands (e.g., 
C-Band). In contrast, much larger spectral differences could be observed 
between before- and after-change images as decreasing NIR and 
increasing SWIR1, SWIR2, and thermal bands (Fig. 5) due to post-fire 
char, reduced vegetation and water content, so these bands are critical 
to fire damage assessment. Some studies also reported that narrow 

Fig. 4. Relationship of some widely used land change terminologies, including 
spectral change, land surface change, land cover change, land cover conversion, 
land cover modification, land disturbance, climate variability, climate change, 
succession, and biophysical/biochemical parameter change. 
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spectral bands, such as red edge bands (680–730 nm), are particularly 
useful for discriminating subtle/gradual vegetation changes which are 
often unrecognizable from broadband remote sensing (Ortiz et al., 2013; 
Xie et al., 2018). Generally, the selection of involved bands/indices is of 
enormous importance to the effectiveness of such change detection 
tasks, which necessitates more studies on target-based approaches for 
determining optimal spectral inputs (Yang et al., 2022; Ye et al., 2021b). 

Besides change detection, the spectral selection is also critical to 
characterizing change target, agent, and metric. The band selection is 
known as the prerequisite for the success of a cover classification task to 
identify change targets such as before-change and after-change cover 
types (Guo et al., 2006). While given cover types may have similar and 
indistinguishable spectral responses at specific points in time, in most 
cases, the spectral behavior of different cover types varies over time, and 
the combined ability to look both multi-spectrally and multi-temporally 
may provide new insights for discriminating cover types (Fang et al., 
2020; Key et al., 2001; Pasquarella et al., 2018; Zhu et al., 2012b). The 
multispectral change, also known as spectral change vector, often pre
sents diagnostic attributes such as change direction (Lambin and 
Strahler, 1994) and has been employed as the key variable for catego
rizing change agents (Zhang et al., 2022). The change metrics, such as 
“subtle vs dramatic” in the change magnitude, are also spectrum 
dependent. Furthermore, change magnitudes based on different remote 

sensing bands/indices can help identify biological change phases: for 
example, Red-Green Index (RGI) was often used to indicate the red stage 
(i.e., the needles turn red) for a beetle-infestation process (Coops et al., 
2006), while a substantial drop of Normalized Difference Vegetation 
Index (NDVI) could be treated as a sign of the grey stage (i.e., all foliage 
drop) (Hart and Veblen, 2015). A successful change characterization 
requires careful investigation of the most relevant spectral inputs; more 
important might be recognizing change characterization as a multi
spectral problem for a thorough examination of a change process. 

4.2. The spatial issues 

The spatial resolution, defined as the dimension in meters of the 
ground-projected Instantaneous-Field-of-View (IFOV), determines the 
minimum mapping unit on the ground (e.g., a Landsat 8 pixel covers a 
30 m × 30 m land area). Remotely sensed images from various kinds of 
platforms can provide a wide range of spatial resolutions from sub- 
meters to tens of kilometers (Belward and Skøien, 2015). The choice 
of spatial resolution also has important implications for the downstream 
satellite-based product (Mascorro et al., 2015). Remote sensing data 
with a higher spatial resolution are generally preferred as the input for 
change detection, as the higher the spatial resolution, the better the 
capability in detecting small-scale land changes. However, when the 

Fig. 5. Spectral change at different band wavelengths induced by a fire disturbance. The spectral differences are subtle in visible bands and the microwave band but 
are substantial in NIR, SWIR, and thermal bands. Blue, green, red, NIR, SWIR1, SWIR2, and thermal bands were derived from Landsat 8 surface reflectance and 
brightness temperature data, and microwave C-Band was selected from Sentinel-1C-Band synthetic aperture radar data with dual-band cross-polarization (Vertical 
transmit/Horizontal receive) at descending orbit. All the remotely sensed images were acquired at central latitude/longitude (40.100 /− 120.607) in June 2019 and 
2020 and clipped to the same geographic extent (1001 pixels by 401 pixels) at 30 m spatial resolution. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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spatial resolution is too high (e.g., < 1 m), the image quality may be 
severely impacted by the shadow of land surface features (Bruzzone and 
Bovolo, 2012). On the other hand, if the spatial resolution is too coarse, 
small-sized land surface changes may not exhibit obvious spectral sig
nals (see the MODIS images in Fig. 6), and the large difference in 
point-spread-function and BRDF impacts will lead to new data noise and 
make change signals even more diluted (Xin et al., 2013). Therefore, 
medium resolution satellites with resolution between 10 and 100 m, 
such as SPOT, Sentinel-2, and Landsat, are often more preferable than 
the coarse resolution sensors for mapping cover type change (Martin and 
Howarth, 1989; Szostak et al., 2018; Zhu, 2017), and the coarse reso
lution data, such as MODIS and AVHRR, are mostly used to extract 
gradual change based on long time series data (Myneni et al., 1997; 
Pouliot et al., 2009; Zhu et al., 2016b). It is worth noting that the im
pacts of spatial resolution of the remotely sensed imagery may differ 
based on the specific image analyzing unit, such as pixel-based versus 
object-based approaches (Baker et al., 2013). 

When change units of interest are smaller than the resolution cells, 
land change may only occur on a small fraction of a pixel (the fraction is 
a continuous variable), which is also known as the L-resolution situation 
(Strahler et al., 1986). To facilitate response design for reference sample 
pixels, a thresholding strategy is often needed to determine whether a 
pixel is considered as a “change pixel” from a ground view. For example, 
in Hansen et al. (2013), forest change is defined as a pixel with >50% 
change in forest cover within a pixel. On the other hand, the definition of 

land cover also directly determines the scope of the change (mainly land 
cover conversion) under investigation. For example, if a forest class is 
defined as >10% of tree cover, and grassland is defined as a >10% of 
grass cover, the pixel will be considered to have undergone land cover 
conversion from the forest class to grass class only if >90% of the trees 
are removed from a fully forested pixel and replaced by grassland 
(Fig. 6). This is because the land cover definition is usually resource- 
driven, and when classes meet the definition of more than one cate
gory, classes with a higher priority are given preference in assigning 
labels (e.g., urban > forest > grass). Similarly, if some proportion of 
forest is converted to built-up lands, it will be labeled as urban even if 
the urban proportion of the pixel is small (but at least >10%) (Pengra 
et al., 2020). For example, if >10% of trees were removed from a forest 
pixel, and replaced by a new house, the pixel would still be considered to 
have undergone land cover conversion (from forest to urban), even 
though the remaining forest cover is just slightly <90% (Fig. 6). 

4.3. The temporal issues 

The temporal resolution of a remote sensing system refers to the 
revisiting period of a satellite sensor (e.g., Landsat 8 revisits the same 
location every 16 days). A variety of remote sensing systems collect 
observations every minute, hour, daily, weekly, monthly, or for a few 
years (Jensen, 2009). Essentially, more accurate detection of change 
time could be achieved based on observations of higher temporal 

Fig. 6. The impacts of spatial resolution on mapping change location and change target between 2014 and 2018. All the remotely sensed images were acquired at 
central latitude/longitude (41.781/− 72.234) in the summer of 2014 and 2018 and reprojected into the WGS84 UTM Zone 19 N. The MODIS, Landsat, and Plan
etScope images were collected at a coarse resolution (500 m), medium resolution (30 m), and high resolution (5 m), respectively. Two National Agriculture Imagery 
Program (NAIP) aerial images (0.6 m) were classified into forest, urban, and grass which were used as the reference maps. To generate change location and change 
target maps for each image type, we aggregated the reference maps at each resolution and labeled cover types and change pixels by investigating sub-pixel fraction: 
forest is defined as pixels with >10% coverage of trees, and urban is defined as pixels with >10% coverage of built areas; changes were labeled when cover types for 
>10% of the pixel changed. No change signals were present from MODIS images (500 m) under the definition but became detectable in the other remote sensing 
images at 0.6–30 m spatial resolutions. 
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resolutions, as change time can be contained within a narrower time 
interval, and this has been echoed by the fact that remote sensing change 
detection algorithms are using denser time series (Zhu, 2017). The 
choice of temporal resolution is particularly important when the short- 
lived phenomena need to be monitored or persistent clouds limit a 
clear view. For example, with two sensors working simultaneously, the 
Landsat time series can provide 8 days of revisit observations for the 
same location if we do not consider observations contaminated by cloud, 
cloud shadow, and snow/ice. For ephemeral change such as floods that 
only last a few days, it is less likely to be observed based on Landsat time 
series alone (Fig. 7a). In Fig. 7a, we serendipitously collected one clear 
Landsat image located during the flooding, but if it was blocked by 
clouds, it would be impossible for detecting this kind of ephemeral 
change as the system had recovered to the pre-change state before 
acquisition of the next available observation unless other active sensors 
such as radar were used. For grassland change (i.e., abrupt greenness 
change) caused by climatic variability and forest change caused by 
beetle infestation, they can last for a year or multiple years, respectively, 

and are usually detectable if annual Landsat observations are used 
(Fig. 7b-c). Another extreme is that land changes relating to urban 
expansion (Fig. 7d) that is often non-reversible and could be successfully 
captured even by two Landsat images collected at an interval of 5 to 10 
years. Therefore, the minimum temporal resolution required for 
different land change applications is usually quite different. Generally, 
the denser the time series observations used, the more accurate the 
detection of the time and location of change. 

Even if all clear observations have remained for analysis, the time 
series may have different temporal resolutions at different places and at 
different times due to the overlap of adjacent swaths, the presence of 
cloud or snow/ice, and the data acquisition strategies (Brown et al., 
2020; Zhu et al., 2018). For example, Gypsy Moth infestation usually 
only lasts for one or two months, and if all available Landsat data are 
used, we can have around four clear observations (without using ob
servations from the neighboring path) in two months for most places 
(assume cloud cover is 50%). In certain places where two Landsat paths 
overlap with each other (the overlap areas), we could have around eight 

Fig. 7. The impact of temporal resolution on land change detection. (a) A flood event that lasted for a few days at central latitude/longitude (41.103/− 95.906). Of 
all the available Landsat observations, only a single observation was observed during this ephemeral event. (b) Climatic variability over grassland that lasted almost a 
year at central latitude/longitude (34.838/− 117.460). (c) Beetle infestation related land change that lasted for several years at central latitude/longitude (40.226/ 
− 106.064). (d) Urbanization over forested areas located at latitude/longitude (41.70/− 71.57). In each figure, the time series plot in the upper panel was derived 
from all available Landsat observations at the center of the smaller red square of the false color composite images at the lower panel. The change period was 
highlighted by the red rectangles in the upper panel and the larger red rectangle surrounding the false color composite images in the lower panel. The false color 
composite images were shown in Landsat SWIR1, NIR, and red bands at the same color stretch setting. Some of the images have black stripes due to the Landsat 7 
Scan Line Corrector-off issue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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clear observations which increased the likelihood of detecting these 
short-lived changes if a fixed number of consecutive observations is used 
to analyze change anomaly (Fig. 8). The use of overlap-path observa
tions brings new science capability for Landsat data, but also result in 
inconsistency to the final land change maps (between the overlap and 
non-overlap areas). This is particularly problematic for large-scale 
remote sensing change products, as large differences in land change 
patterns will show up both spatially and temporally. Methods that select 
data from the same path or adjust the number of observations to confirm 
change based on data density could be possible solutions to alleviate this 
issue, but it is at the sacrifice of losing the temporal density for certain 
places, which may lead to omission errors (Fig. 8). 

Temporal resolution is of critical relevance to detecting day-sensitive 
changes such as vegetation phenology. The coarse resolution data, such 
as MODIS and VIIRS, are capable of providing daily repeated observa
tions and has been widely used for land surface phenology products 
(Ganguly et al., 2010; Zhang et al., 2018, 2020). Practically, owing to 
cloud and snow/ice contamination, multi-day compositing was often 
employed to produce clear observations at a temporal resolution lower 
than the daily frequency. A longer compositing interval will reduce 
computational and data storage demand and also ensure the observation 
inputs are of sufficient quality to be useful for model fitting, yet its low 
temporal resolution comes at the cost of hampering accuracies for 
characterizing phenometrics. Fig. 9 depicts an example of phenological 
transition date detection from daily (only clear observations remained), 

eight-day, and 32-day MODIS-based (500 m) composite time series on a 
cropland pixel (Indiana, USA). The daily and the eight-day composite 
time series have similar predictions on green-up and dormancy dates 
(the difference ≤ 2 days), while a significant discrepancy for the 
dormancy date (12 days later than that of the daily time series) was 
observed on the 32-day composite time series. This can be explained by 
that lower data density often results in a poorer model fit, especially for 
the phenological window where spectral reflectance often changes 
rapidly. A wide body of the literature supports that a moderately high 
temporal resolution (three- to 16-day interval) is often necessitated to 
accurately inform phenological dates (Cui et al., 2020; Henson et al., 
2018; Zhang et al., 2009). 

Additionally, the use of dense time series can create new information 
or more accurate change detection/characterization that the traditional 
two-date image difference method cannot provide. For example, we can 
get to know how the change is occurring based on the change magni
tude, the change direction, and the duration of the change. The infor
mation embedded in the time series data provides important spectral- 
temporal information about the pixel and we can extract this informa
tion based on estimated time series model coefficients and statistical 
metrics to provide a more accurate classification of the change target 
(Zhu, 2017). These derived spectral-temporal metrics could even revo
lutionize the current land cover classification system and bring in new 
land cover categories that are continuous in time and embedded with 
changing conditions, such as greening urban, young forest, mature forest, 

Fig. 7. (continued). 
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and declining forest (Zhu and Woodcock, 2014). Finally, the time series 
before, during, and after land change all contain rich spectral-temporal 
information on the change agent and could be used as major inputs for 
change agent classification. 

In addition to the repeat frequency, the time of day the remote 
sensing observations are collected is also helpful for better under
standing different facets of land change. For example, most of the time 
series we discussed are remotely sensed data collected during the day
time (e.g., around 10 am), which relies on the reflected electromagnetic 
radiation from the sun. There is also another type of satellite dataset for 
imaging land surface at nighttime, which provide versatile data sources 
for studying human activities, as most of the nighttime lights are arti
ficial lights (Levin et al., 2020; Li et al., 2017; Zhao et al., 2019). Time- 
series nighttime light data have been widely used to monitor 
anthropogenic-related land change and usually at a large scale. How
ever, as there are also other sources of light at night, such as moonlight, 
aurora, and lighting, the use of dense time series of nighttime light data 
is still very rare (Wang et al., 2021), and the densest time series data ever 
used is still the average monthly or yearly nighttime light observations 
(Elvidge et al., 2021; Levin, 2017). Recently, NASA has created a Black 
Marble product that has corrected most of these nonhuman-activity- 
related light sources and has provided the potential of using daily 
nighttime light observations for land change studies (Román et al., 
2018). 

4.4. The angular issues 

The energy acquired by the remote sensing systems contains very 
specific angular characteristics, which is a function of illumination 
source (e.g., Sun for a passive system or the sensor itself for active sys
tems) angles and the sensor viewing angles, known as the Bidirectional 
Reflectance Distribution Function (BRDF) (Schaaf et al., 2002). This bi- 
directional nature of remote sensing systems will cause inconsistency 
among the radiance by the same sensor, as well as impact current surface 
reflectance retrieval models, thereby limiting our capability for detect
ing real change signals (Xin et al., 2013). Even for some of the sensors 
that only collect near nadir observations, such as Landsat, the changes in 
the solar angles and view zenith angles (mostly for observations 
collected in overlap swaths) will still cause large reflectance differences 
(Qiu et al., 2019a; Zhang et al., 2018), and potentially lead to omission 
or commission errors in change detection (Fig. 10a). Fortunately, with 
enough remote sensing observations collected at the different view and 
solar angles within a short time, this BRDF function can be modeled, and 
local-noon nadir observation can be estimated for some coarse resolu
tion satellites, such as MODIS and VIIRS (Liu et al., 2017; Schaaf et al., 
2002), and these BRDF parameters can help reduce BRDF effect in me
dium resolution satellites, such as Landsat and Sentinel-2 (Claverie 
et al., 2018; Roy et al., 2016). Other solutions such as selecting obser
vations within the same swath and creating time series models that es
timate the solar angle difference along with vegetation phenology 

Fig. 8. A comparison of change detection results caused by Gypsy Moth damage using two Landsat paths (or swaths) data and a single path data. (a) Landsat NIR 
surface reflectance observations at the center of the red square of the false color composite images on the right (c) at central latitude/longitude (41.996/− 71.669). 
The blue dots are from Landsat path #12 and the green dots are from path #13. The red line is the estimated time series model, and the red circle is the land surface 
change captured by the COLD algorithm with six consecutive observations to confirm a change (Zhu et al., 2020). (b) A land disturbance map was created based on 
the COLD algorithm using Landsat observations from two paths and a single path (#12). The darker the color, the more recent the land disturbance was detected. (c) 
The false color composite Landsat images from path #12 (in blue outlines) and path #13 (in green outlines) were shown in SWIR1, NIR, and red bands, and they are 
directly comparable because of the same stretch display. This figure demonstrated that for places with two Landsat path coverage, Gypsy Moth damage is possible to 
detect by the COLD algorithm, but not possible for places with only a single Landsat path coverage. COLD: COntinuous monitoring of Land Disturbance. 
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changes can also remove or at least reduce the BRDF differences 
embedded in the satellite data, and in this way, the change pixel can be 
correctly identified (Fig. 10b) using a time-series based change detection 
algorithm (Zhu et al., 2020). It is worth noting that the angular infor
mation can be useful for identifying the target and location of land 
change, such as improving land cover classification (Jiao et al., 2011), 
detecting moving objects such as clouds (Frantz et al., 2018), aircraft 
(Liu et al., 2020b), and detection of newly built houses (Huang et al., 

2020), due to the inclusion of 3D information. 

4.5. Data-integration issues 

With the increased availability of Earth observation satellites, the 
integration of multi-sensor datasets could offer complementary views on 
spatial, temporal, and spectral dimensions, providing a unique oppor
tunity for approaching a multifaceted land change problem (Dong et al., 

Fig. 9. Cropland-based phenometrics predicted by different temporal resolutions at latitude/longitude (40.681/− 86.912). The daily MODIS Enhanced Vegetation 
Index (EVI) were generated from Nadir BRDF-Adjusted Reflectance (NBAR) daily dataset (MCD43A4) at 500-m resolution. The composite time series was further 
produced using the maximum index. The phenological curve was modeled using Beck’s double logistic regression (Beck et al., 2006), and green-up and dormancy 
dates were determined by using the rate of change in curvature (Zhang et al., 2003). The dormancy date for the 32-day composite time series (in the bold text) was 
unrealistically 12 days later than the other two due to its poor model fit brought by inadequate observations. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The impact of BRDF on land change detection. (a) Change detection using all observations collected in overlap paths. The BRDF effect, dominated by the 
different sensor view angles from two adjacent paths, results in an omission error. (b) Change detection using all observations in a single path with minimum view 
zenith angle. The land change can be successfully detected when the BRDF effect is reduced in time series observations collected from a single swath. (c) Landsat 
Path/Row tiles. The blue and green polygons indicate Landsat paths #41 and #42, respectively. The center of the red square indicates the location of the time series 
plots (a) and (b) at latitude/longitude (38.737/− 117.880). This change detection example was generated from all available Landsat time series and a time-series- 
based change detection method called COLD (Zhu et al., 2020). COLD: COntinuous monitoring of Land Disturbance. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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2009). Methods for integrating multi-sensor datasets for multifaceted 
land change studies can be generally categorized into observation 
fusion, decision fusion, and information fusion. Observation fusion re
fers to the strategy of combining multiple data sources into a consistent 
blending observation set to create a finer temporal, spatial or spectral 
resolution dataset as the algorithm’s inputs (Emelyanova et al., 2013; 
Gao et al., 2006; Shang et al., 2022). Decision fusion, also named 
“competitive integration” (Schmitt and Zhu, 2016), combines similar 
change facet information from different sensor-specific pipelines, aim
ing at producing more reliable results for one single change facet (Car
dille et al., 2022; Reiche et al., 2018). Information fusion, such as the 
“complementary integration” (Schmitt and Zhu, 2016), is the fusion of 
multi-sensor pipeline results targeted at different change facets, with a 
goal of providing complementary change information. While a 
comprehensive review of these integration techniques is beyond the 
scope of this article, it is important to recognize their conceptual dif
ference in the context of multifaceted change analysis. Observation and 
decision fusion have been widely applied to single-facet tasks such as 
change detection or land cover classification to answer “when”, 
“where”, and “what”, but much fewer were on change metrics or agents 
(Fernandez-Manso et al., 2019; Meng et al., 2018);comparatively, a 
paucity of information fusion studies on monitoring land change was 
reported, partly due to a lack of recognizing change as a multifaceted 
problem. Another challenge for information fusion is that different data 
sources may have different geographic coverage, for example, LiDAR 
and hyperspectral images are often unable to provide wall-to-wall land 
change information similar to medium or coarse-resolution images, 
which implies that data interpolation is often required. 

Beyond remote sensing observations, an increasing array of social 
science data have shown their great promise for unveiling social/eco
nomic processes that are not manifested on the landscape, pinpointing 
the question of “why” the land change happened. Social science data
sets, such as population density, capital investment, poverty gap index, 
were often manipulated as explanatory variables for establishing 
empirical models and used to infer causes or drivers of land changes 
observed from remote sensing images (NRC, 2013; Seto and Kaufmann, 
2003; Wyman and Stein, 2010). While such applications for integrating 
the remotely sensed (pixels) data with social science (people) data have 
been a major focus in land change science (Lambin, 2004), their 
fundamental differences in data format create lots of challenges. The 
national Academy of Science volume “People and Pixels” (NRC, 1998) 
and Rindfuss et al. (2012) have exemplified several data integration 
issues, such as different data presentations (e.g., “discrete” vs “contin
uous”), inconsistent temporal depth and data complexities, and 
traversing the languages and terminology from different disciplines. 
Conventionally, the social science data were collected based on field 
observations, interviews with local people, and surveys, which is time 
consuming, labor intensive, and usually out-of-date. The Volunteered 
Geographic Information (VGI) has been a paradigm shift that offers an 
alternative mechanism for collecting and compilating the georeferenced 
social science data (Goodchild, 2007). Through content retrieval, cate
gorization and meta-data analysis (Daume et al., 2014), and georefer
enced VGI data (such as from media reports or geotagged social media 
posts) can be integrated at decision or information levels, which im
proves insights not just on the disturbance agents from a “local view”, 
but also uniquely uncovers the socioeconomic drivers underlying land 
surface change, such as narcotrafficking (Sesnie et al., 2017; Tellman 
et al., 2020) and population increase (Minale, 2013). Another notable 
advantage of the VGI data is that their availability is usually more timely 
(e.g., social media data), and by combining with other near real-time 
satellite data sources, the social media datasets have showcased their 
capacity for advancing those time-sensitive change detection tasks such 
as rapid disaster mapping (Fohringer et al., 2015; Rosser et al., 2017; 
Schnebele et al., 2014). Despite its great potential, several factors pre
clude populating the VGI dataset of the present day for a wall-to-wall 
land change mapping. First and foremost, the data quality of VGI is 

questionable due to their geolocation inaccuracy, participants’ bias, or 
context ambiguity; trickier might be that data uncertainty accompa
nying VGI data, unlike remote sensing datasets, are mostly unmeasur
able and unmanageable (Goodchild and Li, 2012). The coverage of the 
VGI dataset is also limited and cannot be extended to the same level as 
remotely sensed images, causing a grave technical challenge for 
enabling a geographically consistent mapping. Lastly, VGI data may not 
uncover some change agents such as gradual stress-related changes. 
Generally, the blending of VGI and remote sensing datasets is in infancy, 
and its relevance to land change studies is still inconclusive. More 
foundational research on data processing protocols and well-verified, 
localized study cases are both anticipated for the future, allowing for a 
broader examination for incorporation of VGI datasets into the current 
production workflow. 

5. Current land change products 

Lots of remote sensing-based land change products have been 
created, and some of them have been widely used in a variety of fields, 
such as environmental sustainability, land management, biodiversity 
conservation, and ecosystem health assessment. However, most of these 
land change products only focus on three facets of land change – the 
location, time, and target of change (mostly land cover), and very few 
products are trying to provide some of the other facets of land change, 
such as change agent or change metric (Table 1). 

Most of the current large-scale land change products are only 
focusing on a single change target, such as changes in forest, urban, or 
water (Table 1). For instance, Hansen et al. (2013) created the 
2000–2019 global 30-m forest cover and forest cover change (i.e., forest 
loss and forest grain) products based on time series spectral metrics of 
Landsat data and a supervised classification approach. The North 
American Forest Dynamics (NAFD) project implemented the Vegetation 
Change Tracker (VCT) algorithm (Huang et al., 2010) to produce annual 
forest disturbance maps for the conterminous United States (CONUS) 
from 1986 to 2010 based on annual Landsat time series data (Zhao et al., 
2018). Liu et al. (2020a) created 30-m Global Annual Urban Dynamics 
(GAUD) dataset for providing information on urban expansion and 
green recovery from 1985 to 2015 based on existing global urban extent 
maps and Landsat time series data. European Space Agency (ESA) pro
duced the Global Human Settlement Layer (GHSL) for multiple years, 
which can provide new global spatial information, evidence-based an
alytics, and knowledge describing the human presence such as built-up 
area and population distribution on the Earth (Pesaresi et al., 2016). The 
ESA Global Surface Water (GSW) dataset provides different facets of the 
spatial and temporal distribution of surface water over long time periods 
at a 30-m resolution based on 30+ years of Landsat data, such as water 
occurrence for presenting overall water dynamics, water recurrence for 
describing how frequently water returned from one year to another, and 
water seasonality for capturing the intra-annual dynamics of water 
surfaces (Pekel et al., 2016). This dataset also includes water occurrence 
change intensity maps between two epochs (1984 to 1999, and 2000 to 
2020), which can provide information on where surface water occur
rence increased, decreased, or remained the same. In addition, products 
of single change agent are available as well, particularly for fire. For 
example, Giglio et al. (2018) applied dynamic thresholds of a burn- 
sensitive vegetation index composite data (derived from daily 500 m 
MODIS time series) to generate a global burned area product, in which 
the date of the burned area will be provided within each MODIS tile with 
10 degrees by 10 degrees. 

Only a few products can provide information on land change on 
different kinds of land surfaces. The National Land Cover Database 
(NLCD) provides multi-temporal land cover and land cover change 
products for CONUS, Hawaii, Alaska, and Puerto Rico between 2001 and 
2019 for every 2–3 year interval, based on decadal Landsat data as well 
as other ancillary datasets (Jin et al., 2019). Using daily seamless data 
cubes generated from multi-source remote sensing data, Liu et al. 
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(2021a) generated 30 m resolution global land cover map data for 36 
years by combining strategies of sample migration, machine learning, 
and spatio-temporal adjustment, which can be used to study global land 
change. Recently, Friedl et al. (2022) and Potapov et al. (2022) have also 
created annual global land cover change maps between 2000 and 2020 
based on the Landsat time series. Among all these products, Land 
Change Monitoring, Assessment, and Projection (LCMAP) (Brown et al., 
2020), LANDFIRE (Rollins, 2009), and National Terrestrial Ecosystem 
Monitoring System (NTEMS) (Hermosilla et al., 2022; White et al., 2017, 
2022) are some of the few land change products that not only can pro
vide change location and time, change target, but also land change 
metrics, or even land change agent information. 

6. Conclusion and recommendations 

Land change science has made big advancements with the develop
ment of remote sensing technology, and questions of where, when, what, 

why, and how this change takes place can be fully evaluated and map
ped. We proposed a new concept of the multifaceted view of land change 
through the lens of remote sensing and recommended five facets 
including change location, time, target, metric, and agent. We also 
discussed the relationship of various kinds of land change terminologies 
including spectral change, land surface change, biophysical/biochem
ical parameter change, land disturbance, climate change, climate vari
ability, succession, land cover change, land cover conversion, and land 
cover modifications, in which large differences were identified among 
these terminologies. The impacts of spatial, spectral, temporal, and 
angular domains of the remotely sensed data on observation, moni
toring, and characterization of land change were also evaluated. We 
emphasized the importance of selecting the “right” spectral bands and 
spatial resolution of remote sensing data for the specific land change 
problem. We discussed the benefits and challenges when dense time- 
series and multi-angle satellite observations are used for observing 
and characterizing land change. We also reviewed some of the current 

Table 1 
A select list of current global and North America land change products. Only the most recent literature is listed here.  

Product Name Coverage Change 
Location 

Change Time 
(Period) 

Change 
Target 

Change Metric Change Agent Satellite 
Data 

Citation 

Hansen forest 
change map 

Global 30-m Annual 
(2000–2019) 

Forest gain 
Forest loss 

N/A N/A Landsat (Hansen et al., 
2013) 

Global Surface 
Water 

Global 30-m Intra-annual 
Annual 
(1984–2020) 

Water 
seasonality 
Water 
transitions 
Annual water 
recurrence 

Water 
occurrence 
Change intensity 

N/A Landsat (Pekel et al., 2016) 

MODIS burned 
area 

Global 500-m Day of Year 
(2000-Present) 

Burned area N/A Fire MODIS (Giglio et al., 
2018) 

NAFD-NEX CONUS 30-m Annual 
(1986–2010) 

Forest 
disturbance 

N/A N/A Landsat (Zhao et al., 2018) 

GHSL Global 30-, 250-, 
and 1000- 
m 

Multiple years 
(1975, 1990, 2000, and 
2014) 

Built-up area N/A N/A Landsat (Pesaresi et al., 
2016) 

NLCD United 
States 

30-m 2–3 years 
(2001–2019) 

Land cover 
change 
Forest 
disturbance 

N/A N/A Landsat (Jin et al., 2019) 

LANDFIRE United 
States 

30-m Annual 
Day of Year 
(1999–2020) 

Vegetation 
transition 

Disturbance 
severity 
Time since 
disturbance 

Fire, Mechanical, 
Insect, Windthrow 

Landsat (Rollins, 2009) 

GAUD Global 30-m Annual 
(1985–2015) 

Urban 
expansion 
Green 
recovery 

N/A N/A Landsat (Liu et al., 2020a) 

LCMAP CONUS 30-m Annual 
Day of Year 
(1985–2019) 

Land cover 
change 
Land spectral 
change 

Change 
magnitude 
Spectral stability 
period 
Time since last 
change 

N/A Landsat (Brown et al., 
2020) 

iMap Global 30-m Annual 
Seasonal 
(1985–2010) 

Land cover 
change 

N/A N/A Landsat, 
MODIS, and 
AVHRR 

(Liu et al., 2021a) 

NALCMS North 
America 

30- and 
250-m 

5 years 
(2001–2015) 

Land cover 
change 

N/A N/A Landsat and 
MODIS 

(Latifovic et al., 
2016) 

NTEMS Canada 30-m Annual 
(1984–2019 for land cover; 
1985–2017 for recovery; 
1985–2015 for disturbance 
agent) 

Land cover 
change 

Post-disturbance 
recovery rate 

Fire, Harvest, Road, 
Non-stand replacing 
disturbance 

Landsat and 
LiDAR 

(Hermosilla et al., 
2022; White et al., 
2017, 2022) 

GLanCE Global 30-m Annual 
(2001− 2020) 

Land cover 
change 

N/A N/A Landsat (Friedl et al., 
2022) 

GLCLUC2020 Global 30-m Annual (2000− 2020) Land cover 
change 

N/A N/A Landsat (Potapov et al., 
2022) 

Notes: CONUS: COnterminous United States; NLCD: National Land Cover Database; LCMAP: Land Change Monitoring, Assessment, and Projection; GHSL: Global 
Human Settlement Layer; GAUD: Global Annual Urban Dynamics; NAFD-NEX: North American Forest Dynamics - NASA Earth Exchange; NALCMS: North American 
Land Cover Change Monitoring System; NTEMS: National Terrestrial Ecosystem Monitoring System; GLanCE: Global Land Cover Estimation; GLCLUC: Global Land 
Cover and Land Use Change. 
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land change products and observed the lack of products that provide 
multiple, or all land change facets, particularly for the facets of land 
change agent and metric. 

Therefore, we have a few recommendations on remote sensing of 
land change as follows. First, it is important to recognize the multifac
eted nature of land change, and when remote sensing data are used to 
study land change, specifying which land change facet is being studied, 
is usually the first step. Second, remote sensing-derived land change 
products reported with all five facets are highly recommended, as land 
change can only be fully understood if they are viewed from all different 
angles. Third, we think a major shift in the focus from change target to 
change metric and change agent is expected in future remote sensing 
studies, as these two facets are far less studied in the remote sensing 
community, and why and how global land is changing are some of the 
most difficult and important science questions. Fourth, land change 
science has transitioned into more complex systems such as land system 
science (Turner et al., 2021), which requires deeper and more compre
hensive land change information. For example, most of the current 
remote sensing change agent products are not detailed enough for social 
sciences to answer the question of “why”, and the combined use of social 
science data and multiple remote sensing data sources could provide 
new and deeper insights. Finally, we need to recognize that every remote 
sensing system has limitations and weaknesses in land change studies, 
and a thorough evaluation of all spectral, spatial, temporal, and angular 
issues is highly recommended. 
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Gómez, C., White, J.C., Wulder, M.A., 2016. Optical remotely sensed time series data for 
land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 116, 55–72. 
https://doi.org/10.1016/j.isprsjprs.2016.03.008. 

Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. 
GeoJournal 69, 211–221. https://doi.org/10.1007/s10708-007-9111-y. 

Goodchild, M.F., Li, L., 2012. Assuring the quality of volunteered geographic 
information. Spat Stat 1, 110–120. https://doi.org/10.1016/j.spasta.2012.03.002. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its 
relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194. 

Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.D.B., 2006. Band selection for hyperspectral 
image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3, 
522–526. 

Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., 
2018. Climate warming leads to divergent succession of grassland microbial 
communities. Nat. Clim. Chang. 8, 813–818. https://doi.org/10.1038/s41558-018- 
0254-2. 

Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., 
Skole, D., Turner II, B.L., Cochrane, M.A., 2004. Land change science: observing, 
monitoring and understanding trajectories of change on the earth’s surface. Springer 
Science & Business Media. 

Hall, F.G., Botkin, D.B., Strebel, D.E., Woods, K.D., Goetz, S.J., 1991. Large-scale patterns 
of forest succession as determined by remote sensing. Ecology 72, 628–640. 

Hansen, M.C., DeFries, R.S., 2004. Detecting long-term global forest change using 
continuous fields of tree-cover maps from 8-km advanced very high resolution 
radiometer (AVHRR) data for the years 1982–99. Ecosystems 7, 695–716, 10.1007% 
2Fs10021-004-0243.  

Hansen, M.C., Loveland, T.R., 2012. A review of large area monitoring of land cover 
change using Landsat data. Remote Sens. Environ. 122, 66–74. https://doi.org/ 
10.1016/j.rse.2011.08.024. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., 2013. High- 
resolution global maps of 21st-century forest cover change. Science 342, 850–853. 
https://doi.org/10.1126/science.1244693. 

Hart, S.J., Veblen, T.T., 2015. Detection of spruce beetle-induced tree mortality using 
high- and medium-resolution remotely sensed imagery. Remote Sens. Environ. 168, 
134–145. https://doi.org/10.1016/j.rse.2015.06.015. 

Healey, S.P., Cohen, W.B., Yang, Z., Kenneth Brewer, C., Brooks, E.B., Gorelick, N., 
Hernandez, A.J., Huang, C., Joseph Hughes, M., Kennedy, R.E., Loveland, T.R., 
Moisen, G.G., Schroeder, T.A., Stehman, S.V., Vogelmann, J.E., Woodcock, C.E., 
Yang, L., Zhu, Z., 2018. Mapping forest change using stacked generalization: An 
ensemble approach. Remote Sens. Environ. 204, 717–728. https://doi.org/10.1016/ 
j.rse.2017.09.029. 

Henson, S.A., Cole, H.S., Hopkins, J., Martin, A.P., Yool, A., 2018. Detection of climate 
change-driven trends in phytoplankton phenology. Glob. Chang. Biol. 24, 
e101–e111. 

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., 2022. Land cover classification in 
an era of big and open data: Optimizing localized implementation and training data 
selection to improve mapping outcomes. Remote Sens. Environ. 268, 112780. 

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2018. Disturbance- 
Informed Annual Land Cover Classification Maps of Canada’s Forested Ecosystems 
for a 29-Year Landsat Time Series. Can. J. Remote. Sens. 44, 67–87. https://doi.org/ 
10.1080/07038992.2018.1437719. 

Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., 
McKerrow, A., VanDriel, J.N., Wickham, J., 2007. Completion of the 2001 national 
land cover database for the counterminous United States. Photogramm. Eng. Remote 
Sens. 337–341. 

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., 
Wickham, J., Stehman, S., 2020. Conterminous United States land cover change 
patterns 2001–2016 from the 2016 national land cover database. ISPRS J. 
Photogramm. Remote Sens. 162, 184–199. 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., 
Wickham, J., Megown, K., 2015. Completion of the 2011 National Land Cover 
Database for the conterminous United States–representing a decade of land cover 
change information. Photogramm. Eng. Remote Sens. 81, 345–354. 

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., Vogelmann, J.E., 2010. An 
automated approach for reconstructing recent forest disturbance history using dense 
Landsat time series stacks. Remote Sens. Environ. 114, 183–198. https://doi.org/ 
10.1016/j.rse.2009.08.017. 

Huang, H., Roy, D.P., 2021. Characterization of Planetscope-0 Planetscope-1 surface 
reflectance and normalized difference vegetation index continuity. Sci. Remote Sens. 
3, 100014 https://doi.org/10.1016/j.srs.2021.100014. 

Huang, S., Ramirez, C., McElhaney, M., Clark, C., Yao, Z., 2019. Quantifying 
spatiotemporal post-disturbance recovery using field inventory, tree growth, and 
remote sensing. Earth Sp. Sci. 6, 489–504. 

Huang, X., Cao, Y., Li, J., 2020. An automatic change detection method for monitoring 
newly constructed building areas using time-series multi-view high-resolution 
optical satellite images. Remote Sens. Environ. 244, 111802 https://doi.org/ 
10.1016/j.rse.2020.111802. 

Huete, A., 2016. Vegetation’s responses to climate variability. Nature 531, 181–182. 
https://doi.org/10.1038/nature17301. 

Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D., 2013. Change detection from 
remotely sensed images: From pixel-based to object-based approaches. ISPRS J. 
Photogramm. Remote Sens. https://doi.org/10.1016/j.isprsjprs.2013.03.006. 

Huston, M., Smith, T., 1987. Plant succession: life history and competition. Am. Nat. 130, 
168–198. https://doi.org/10.1016/j.ecoleng.2021.106331. 

Z. Zhu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1111/j.1365-2486.2011.02578.x
https://doi.org/10.1111/j.1365-2486.2011.02578.x
https://doi.org/10.1016/j.rse.2018.10.011
https://doi.org/10.1016/j.rse.2018.10.011
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917502578
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917502578
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.3390/rs10091363
https://doi.org/10.4996/fireecology.0301003
https://doi.org/10.4996/fireecology.0301003
https://doi.org/10.1111/j.1466-8238.2010.00540.x
https://doi.org/10.3390/rs13050922
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581498
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581498
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581498
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581498
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920196154
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920196154
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920196154
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920270774
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920270774
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920270774
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120915573443
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120915573443
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120915573443
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581408
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581408
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120917581408
https://doi.org/10.14358/PERS.73.8.923
https://doi.org/10.14358/PERS.73.8.923
https://doi.org/10.1038/s41586-022-04959-9
https://doi.org/10.3390/rs11091124
https://doi.org/10.1016/j.rse.2018.04.046
https://doi.org/10.1016/j.rse.2018.04.046
https://doi.org/10.3389/frsen.2022.894571
https://doi.org/10.1080/1747423X.2015.1096423
https://doi.org/10.1080/1747423X.2015.1096423
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918017568
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918017568
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918017568
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120901536798
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120901536798
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120901536798
https://doi.org/10.1117/1.3104620
https://doi.org/10.1016/j.rse.2010.08.023
https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1016/j.isprsjprs.2016.03.008
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1016/j.spasta.2012.03.002
https://doi.org/10.1016/j.rse.2017.06.031
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920542165
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120920542165
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918121128
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918121128
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918121128
https://doi.org/10.1038/s41558-018-0254-2
https://doi.org/10.1038/s41558-018-0254-2
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902001519
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902001519
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902001519
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902001519
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918137128
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120918137128
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902578701
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902578701
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902578701
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120902578701
https://doi.org/10.1016/j.rse.2011.08.024
https://doi.org/10.1016/j.rse.2011.08.024
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.rse.2015.06.015
https://doi.org/10.1016/j.rse.2017.09.029
https://doi.org/10.1016/j.rse.2017.09.029
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120921540717
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120921540717
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120921540717
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120916131013
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120916131013
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120916131013
https://doi.org/10.1080/07038992.2018.1437719
https://doi.org/10.1080/07038992.2018.1437719
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843208423
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843208423
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843208423
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843208423
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843253323
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843253323
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843253323
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843253323
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843484444
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843484444
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843484444
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843484444
https://doi.org/10.1016/j.rse.2009.08.017
https://doi.org/10.1016/j.rse.2009.08.017
https://doi.org/10.1016/j.srs.2021.100014
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843526344
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843526344
http://refhub.elsevier.com/S0034-4257(22)00372-8/rf202209120843526344
https://doi.org/10.1016/j.rse.2020.111802
https://doi.org/10.1016/j.rse.2020.111802
https://doi.org/10.1038/nature17301
https://doi.org/10.1016/j.isprsjprs.2013.03.006
https://doi.org/10.1016/j.ecoleng.2021.106331


Remote Sensing of Environment 282 (2022) 113266

17

Jensen, J.R., 2009. Remote Sensing of the Environment: An Earth Resource Perspective 
2/e. Pearson Education India. 

Jiao, Z., Woodcock, C., Schaaf, C.B., Tan, B., Liu, J., Gao, F., Strahler, A., Li, X., Wang, J., 
2011. Improving MODIS land cover classification by combining MODIS spectral and 
angular signatures in a Canadian boreal forest. Can. J. Remote. Sens. 37, 184–203. 
https://doi.org/10.5589/m11-030. 

Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., Howard, D., 
2019. Overall methodology design for the United States national land cover database 
2016 products. Remote Sens. 11 https://doi.org/10.3390/rs11242971. 

Jin, S., Sader, S.A., 2005. MODIS time-series imagery for forest disturbance detection and 
quantification of patch size effects. Remote Sens. Environ. 99, 462–470. https://doi. 
org/10.1016/j.rse.2005.09.017. 

Johnson, E.A., Miyanishi, K., 2021. Disturbance and succession. In: Johnson, E.A., 
Miyanishi, K.B.T.-P.D.E. (Eds.), Plant Disturbance Ecology, Second edition. 
Academic Press, San Diego, pp. 1–15. https://doi.org/10.1016/B978-0-12-818813- 
2.00001-0. 

Johnson, E.W., Wittwer, D., 2008. Aerial detection surveys in the United States. Aust. 
For. 71, 212–215. https://doi.org/10.1080/00049158.2008.10675037. 

Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D., Descloitres, J., 
Alleaume, S., Petitcolin, F., Kaufman, Y., 2002. The MODIS fire products. Remote 
Sens. Environ. 83, 244–262. https://doi.org/10.1016/S0034-4257(02)00076-7. 

Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., 
Salomonson, V.V., Privette, J.L., Riggs, G., Strahler, A., 1998. The Moderate 
Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global 
change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249. 
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