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Abstract

The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this

OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geologic

timescales. Analysis of sediment cores has previously shown that fjords are hotspots for OC burial. Fjords can contain complex

networks of submarine channels formed by seafloor sediment flows, called turbidity currents. However, the burial efficiency

and distribution of OC by turbidity currents in river-fed fjords had not been investigated previously. Here, we determine OC

distribution and burial efficiency across a turbidity current system within a fjord, in Bute Inlet (Canada). We show that 60

± 10 % of the OC supplied by the two river sources, is buried across the fjord surficial (2 m) sediment. The sand-dominated

submarine channel and its terminal lobe contain 63 ± 14 % of the annual terrestrial OC burial in the fjord. In contrast,

the muddy overbank and distal flat basin settings contain the remaining 37 ± 14 %. OC in the channel, lobe and overbank

exclusively comprises terrestrial OC sourced from rivers. When normalized by the fjord’s surface area, at least three times more

terrestrial OC is buried in Bute Inlet, compared to the muddy parts of other fjords previously studied. Although the long-term

(>100 year) preservation of this OC is still to be fully understood, turbidity currents in fjords appear to be efficient in storing
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OC supplied by rivers in their near-surface deposits.
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