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Abstract

A four-dimensional ensemble-variational (4DEnVar) data assimilation (DA) system was developed for global numerical weather

predictions (NWPs). Instead of using the adjoint technique, this system utilizes a dimension-reduced projection (DRP) technique

to minimize the cost function of the standard four-dimensional variational (4DVar) DA. It dynamically predicts ensemble

background error covariance (BEC) initialized from its previous inflated analyses and realizes the flow-dependence of BEC

in the variational configuration during the assimilation cycle. These inflated analyses, linear combinations of the ensemble

analyses increment and balanced random perturbations, aim to prevent the predicted BEC from underestimation as well as

to implicitly achieve the hybrid of the flow-dependent and static BEC matrices. A limited number of leading eigenvectors

of the localization correlation function are selected to filter out the spurious correlations in the BEC matrix (B-matrix). In

order to evaluate the new system, single-point observation experiments (SOEs) and observing system simulation experiments

(OSSEs) were conducted with sounding and cloud-derived wind data. The flow-dependent characteristic was verified in the

SOEs that utilized the localized ensemble covariance and compared with that of 4DVar. In the OSSEs, 4DEnVar reduced the

analysis errors compared with 4DVar. The deterministic forecast initialized from the 4DEnVar ensemble mean analysis has

better (worse) performance in the medium-range (long-range) forecasts in the Northern Extratropics and opposite performance

in the Southern Extratropics, and exhibits slightly worse effects in the Tropics. Moreover, the ensemble mean forecast initialized

from the 4DEnVar ensemble analyses has higher forecast skills than 4DVar.
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Key Points: 15 

• A DRP-4DVar-based 4DEnVar data assimilation system with the flow-dependent BEC 16 

was developed for global numerical weather predictions 17 

• The deterministic forecast initialized from the 4DEnVar ensemble mean analysis has 18 

comparable performance to the 4DVar system 19 

• Higher quality of analyses and ensemble forecasts can be produced by the 4DEnVar system 20 

relative to the 4DVar system 21 
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Abstract 22 

A four-dimensional ensemble-variational (4DEnVar) data assimilation (DA) system was 23 

developed for global numerical weather predictions (NWPs). Instead of using the adjoint 24 

technique, this system utilizes a dimension-reduced projection (DRP) technique to minimize the 25 

cost function of the standard four-dimensional variational (4DVar) DA. It dynamically predicts 26 

ensemble background error covariance (BEC) initialized from its previous inflated analyses and 27 

realizes the flow-dependence of BEC in the variational configuration during the assimilation cycle. 28 

These inflated analyses, linear combinations of the ensemble analyses increment and balanced 29 

random perturbations, aim to prevent the predicted BEC from underestimation as well as to 30 

implicitly achieve the hybrid of the flow-dependent and static BEC matrices. A limited number of 31 

leading eigenvectors of the localization correlation function are selected to filter out the spurious 32 

correlations in the BEC matrix (B-matrix). In order to evaluate the new system, single-point 33 

observation experiments (SOEs) and observing system simulation experiments (OSSEs) were 34 

conducted with sounding and cloud-derived wind data. The flow-dependent characteristic was 35 

verified in the SOEs that utilized the localized ensemble covariance and compared with that of 36 

4DVar. In the OSSEs, 4DEnVar reduced the analysis errors compared with 4DVar. The 37 

deterministic forecast initialized from the 4DEnVar ensemble mean analysis has better (worse) 38 

performance in the medium-range (long-range) forecasts in the Northern Extratropics and opposite 39 

performance in the Southern Extratropics, and exhibits slightly worse effects in the Tropics. 40 

Moreover, the ensemble mean forecast initialized from the 4DEnVar ensemble analyses has higher 41 

forecast skills than 4DVar. 42 

 

Plain Language Summary 43 

Medium-range numerical weather prediction (NWP) is of great significance to disaster 44 

mitigation and improvement of human living standards. It aims to predict weather states for future 45 

1-10 days from the current state by solving the initial value problem of a set of partial differential 46 

equations. Data assimilation (DA) is one of the key techniques to improve forecast skills, which 47 

attempts to provide an optimal estimation of the current state by combining observations and 48 

forecasts. This study developed a four-dimensional ensemble-variational (4DEnVar) DA system 49 

for global NWPs using the dimension-reduced projection (DRP) four-dimensional variational 50 
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(4DVar) approach. Compared with the standard 4DVar, which is generally recognized as one of 51 

the most advanced DA methods, this new system has three unique features. First, it dynamically 52 

estimates background error covariance (BEC) in the DA cycle instead of adopting a pre-estimated 53 

static BEC as 4DVar does. Second, it uses an ensemble covariance without the Gaussian error 54 

assumption as in 4DVar. Third, it can avoid using adjoint models and handle nonlinear problems 55 

well. It shows more obvious flow-dependence of the BEC, smaller analysis errors, and better 56 

ensemble mean forecast skills than 4DVar, and comparable skills of deterministic forecast 57 

initialized from the ensemble mean analysis to 4DVar. 58 
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1 Introduction 59 

Accurately predicting future weather and climate states is of great significance to disaster 60 

mitigation and to the improvement of human living standards. The accuracy of global numerical 61 

weather prediction (NWP) can be significantly improved through the use of new types of data such 62 

as from satellites (Simmons & Hollingsworth, 2002). Therefore, it is necessary to develop an 63 

effective data assimilation (DA) system to make good use of observations to provide more accurate 64 

initial conditions (ICs) for NWPs.  65 

The four-dimensional variational (4DVar) DA is recognized as one of the most advanced 66 

DA methods. This method produces the analysis field constrained dynamically and physically 67 

(Rabier et al., 2000; Wang et al., 2010a), and implicitly implements the flow-dependent 68 

background error covariance (BEC) matrix (B-matrix), which propagates information within the 69 

assimilation window by the tangent linear model (TLM) and the adjoint model (ADM; Lorenc, 70 

2003). The uses of the ADM (Lewis & Derber, 1985; Le Dimet & Talagrand, 1986) and the 71 

incremental 4DVar scheme (Courtier et al. 1994) make the operational application of 4DVar 72 

possible (Rabier et al., 2000; Gauthier & Thépaut, 2001; Koizumi et al., 2005; Rawlins et al., 2007; 73 

Gauthier et al., 2007; Zhang et al., 2019). However, this advanced DA method has not been applied 74 

in most NWP centers in the world, except for very few major advanced centers, e.g., the European 75 

Centre for Medium-range Weather Forecasts (ECMWF). In addition, the standard 4DVar approach 76 

fails to dynamically update the B-matrix during the assimilation cycle, given that it uses the 77 

modeled climatological covariance model that can only be implicitly developed within the 78 

assimilation window (Buehner et al., 2010a). 79 

Ensemble Kalman Filter (EnKF) is another commonly used ensemble DA method. It is 80 

based on the Monte Carlo method that uses a number of ensembles to estimate the B-matrix with 81 

the explicit flow-dependent characteristic spanning the assimilation windows (Evensen, 1994) 82 

without modeling the B-matrix nor using the ADM. Moreover, EnKF has the advantage of saving 83 

time, implicitly through concurrently generating the ensembles on a parallel computer system due 84 

to the mutual independence of ensemble members. Due to these advantages, EnKF has been 85 

applied to many models, e.g., the National Centers for Environmental Prediction (NCEP) Global 86 

Forecast System (GFS) Model (Whitaker et al., 2008, 2009), the Global Environmental Multiscale 87 

(GEM) Model (Buehner et al., 2010a, 2010b). There have been some studies comparing the 88 
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performance of the variational and EnKF systems. Whitaker et al. (2008) compared 3DVar and 89 

EnKF using low-resolution operational model and observations, except satellite radiation, and 90 

found that the ensemble system outperforms the 3DVar system, especially in data-sparse areas. 91 

Whitaker et al. (2009) further compared 3DVar, 4DVar and EnKF using sparse surface pressure 92 

observations, and discovered that 4DVar and EnKF have comparable performance. Buehner et al. 93 

(2010b) found slight degradations (improvements) in the short-range (medium-range) forecasts 94 

based on the EnKF ensemble mean analysis over the 4DVar-based forecasts in the Extratropics. 95 

There is not enough evidence to prove that the forecast provided by EnKF is better than that 96 

provided by 4DVar for the NWP models. Also, it is noted that the limited size of ensembles can 97 

result in sampling errors in the ensemble B-matrix. 98 

However, the ensemble method can provide the explicit flow-dependent information for 99 

the variational method (Houtekamer et al., 2005; Whitaker et al., 2008, 2009; Buehner et al., 100 

2010a, 2010b). Likewise, the variational method can supply the ensemble method with proven 101 

modules, e.g., quality control and minimization iteration modules (Courtier et al. 1994; Zhang et 102 

al., 2019). Therefore, several hybrid DA methods combining the variational and ensemble ideas 103 

have continuously been developed (Hamill & Snyder, 2000; Lorenc, 2003; Qiu et al., 2007; Liu et 104 

al., 2008, 2009; Tian et al., 2008, 2011; Wang et al., 2010a).  105 

Different methods of incorporating the ensemble covariance make the classification of 106 

hybrid methods different. The hybrid ensemble-4DVar methods are mainly divided into En4DVar 107 

methods that include the ADM and 4DEnVar methods that avoid the ADM. En4DVar methods 108 

typically incorporate the ensemble covariance into the variational framework by a weighted sum 109 

of the static and ensemble covariances (Hamill & Snyder, 2000) or extending the original control 110 

variables by the control variables preconditioned by the square root of the ensemble covariance 111 

(Lorenc, 2003). Also, En4DVar methods can use the ensemble information to estimate the 112 

parameters of the covariance model for variational systems (Lei et al., 2020). In addition, the 113 

effects of the hybrid BEC on forecast skills have been investigated in simple models (Hamill & 114 

Snyder, 2000), regional models (Wang et al., 2008a, 2008b; Zhang & Zhang, 2012) and global 115 

models (Raynaud et al., 2011; Bonavita et al., 2012; Buehner et al., 2010a, 2010b, 2013, 2015; 116 

Clayton et al., 2013; Lorenc, 2015; Wang et al., 2013; Wang & Lei, 2014; Kleist & Ide, 2015a, 117 

2015b). 118 
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4DEnVar method, which applies the variational framework and the idea of using ensembles 119 

valid at multiple time slots to avoid the ADM to obtain the optimal analysis, is an efficient DA 120 

method. Several ensemble-based methods, which can reduce the dimension from the model space 121 

to a subspace composed of a limited number of base vectors in optimization and avoid the use of 122 

the ADM, have been proposed in recent decade (Qiu et al., 2007; Tian et al., 2008; Wang et al., 123 

2010a). The dimension-reduced projection 4DVar (DRP-4DVar) is one of the 4DEnVar methods 124 

that has been successfully applied in regional meso-scale weather forecasts (Wang et al., 2010a; 125 

Zhao & Wang, 2010; Liu & Wang, 2011; Zhao et al., 2012) and global decadal climate predictions 126 

(He et al., 2017, 2020a, 2020b; Li et al., 2021a, 2021b; Shi et al., 2021). In global medium-range 127 

NWPs, this approach has not been widely applied and systematically evaluated, although a DRP-128 

4DVar system (Shen et al., 2015) was preliminarily established using an old version of the global 129 

forecast system of the Global/Regional Assimilation and Prediction System (GRAPES-GFS) 130 

based on the 3DVar system of this version (Chen et al., 2008; Xue et al., 2008). This method uses 131 

a limited number of base vectors composed of initial perturbations to project the incremental 132 

analysis in model space onto a low-dimensional subspace spanned by these base vectors, and 133 

directly obtains an optimal analysis solution to the minimization of the 4DVar cost function in the 134 

subspace. Furthermore, this method calculates the gradient of the cost function based on the 135 

statistical relationship between the model space and observation space, thereby avoiding the use 136 

of the ADM (Wang et al., 2010a). 137 

The limited ensemble size may result in introducing sampling errors, which can lead to 138 

spurious correlations in the B-matrix (Evensen, 2003), and localization techniques (Liu et al., 139 

2009; Hamill et al., 2001; Wang et al., 2010b, 2018) can effectively alleviate the aforementioned 140 

problem and ameliorate analyses and forecasts. Given that conducting localization in model space 141 

is quite inconvenient in implementation and computationally expensive for the non-sequential 142 

ensemble methods, adopting ensemble-sample-based subspace localization schemes is thought to 143 

be an economical choice (Wang et al, 2018). Localization is typically conducted as a Schür product 144 

between the ensemble-based B-matrix and the correlation matrix composed of the elements 145 

calculated by the correlation model related with their coordinates, so how to decompose the 146 

correlation matrix to avoid the expensive multiplication between high-dimensional matrices 147 

caused by the Schür product is the key to reduce computational costs. A limited number of leading 148 

eigenvectors expressed by orthogonal functions (e.g., empirical orthogonal function, sine function 149 
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and spherical harmonic function) were used to expand the correlation function so that the high-150 

dimensional correlation matrix is decomposed into the sum of a set of products between an 151 

eigenvector and its transpose (Liu et al., 2009; Buehner et al., 2010a, 2010b; Bishop et al., 2011; 152 

Kuhl et al., 2013; Wang et al., 2010b, 2018). This approach not only alleviates the spurious 153 

correlations and rank deficiency of the B-matrix, but also efficiently produces the extended 154 

ensemble samples, which converts a very costly Schür product between two high-dimension 155 

matrices to much more economical Schür products between ensemble samples and eigenvectors. 156 

Motivated by these studies, many research and operational centers have not only 157 

established their standalone variational systems, but also have been developing hybrid DA systems 158 

for their global NWPs. These centers realized the explicit flow-dependence of the B-matrix based 159 

on the original standard 4DVar framework, so that the forecast skills were further improved. The 160 

ECMWF (Bonavita et al., 2012) and Météo-France (Raynaud et al., 2011) have developed hybrid 161 

DA systems, which include ensemble information estimated by an ensemble of 4DVars. The Met 162 

Office incorporated the flow-dependent BEC estimated by EnKF into the 4DVar system to develop 163 

a hybrid system (Clayton et al., 2013). Unlike these systems relying on the ADM, some centers 164 

have developed 4DEnVar systems avoiding the use of the ADM. Environment Canada combined 165 

the static BEC with the 4D ensemble BEC obtained from EnKF to develop a 4DEnVar system, 166 

which is considered to be a potential alternative to 4DVar considering the simplicity, 167 

computational efficiency and forecast quality (Buehner et al., 2010a, 2010b, 2013, 2015). The Met 168 

Office developed a hybrid 4DEnVar system (Lorenc et al., 2015; Bowler et al., 2017a) and used 169 

an ensemble of 4DEnVars instead of the ETKF system to generate ensembles for the hybrid system 170 

(Bowler et al., 2017b). Wang et al. (2013) and Kleist & Ide (2015a) proved the benefits of 171 

including ensemble BECs into 3DVar. Then, perturbations valid at multiple time slots during the 172 

assimilation window were used to estimate the 4D ensemble BEC to develop a 4DEnVar system 173 

in NCEP (Wang et al., 2014; Kleist & Ide., 2015b).  174 

This study focuses on developing a 4DEnVar system for global NWPs based on the DRP-175 

4DVar approach, which not only can be an alternative to DA system to provide deterministic 176 

forecasts, but also to provide ensemble forecasts for hybrid systems. Compared with the theoretical 177 

DRP-4DVar proposed by Wang et al (2010a), the method used for the 4DEnVar system was 178 

improved in its inflation, localization and sampling. The successful applications of the 4DEnVar 179 

algorithm and economical localization technique provide a good foundation to develop the 180 
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4DEnVar system. As the first and necessary step to evaluate the impact of the 4DEnVar system 181 

on analyses and forecasts, single-point observation experiments (SOEs) and observing system 182 

simulation experiments (OSSEs) were conducted. SOEs are easy to study the flow-dependent 183 

characteristic of the BEC. OSSEs can help us evaluate the realistic analysis error because the 184 

“truth” state is known. The remainder of the paper is organized as follows. Section 2 introduces 185 

the formulation, localization and inflation techniques of the 4DEnVar system. Section 3 follows 186 

with the implementation of the 4DEnVar system and the experiment descriptions. Section 4 187 

evaluates the performance of the 4DEnVar system on analyses and forecasts relative to the 4DVar 188 

system. The summary and the prospect for future work are presented in the last section. 189 

2 Description of method 190 

2.1 Incremental 4DVar algorithm 191 

The variational system used in this paper (Zhang et al, 2019) adopts the incremental 4DVar 192 

scheme (Courtier et al., 1994), which usually obtains the optimal analysis of IC by minimizing a 193 

cost function on a low-resolution grid:  194 

 

𝐽[𝛿𝑥(𝑡0)] =
1

2
{𝛿𝑥(𝑡0) − [𝑥

𝑏(𝑡0) − 𝑥
𝑔(𝑡0)]}

𝑇𝐵0
−1{𝛿𝑥(𝑡0) − [𝑥

𝑏(𝑡0) −

𝑥𝑔(𝑡0)]} +
1

2
∑ [𝐇𝑖𝛿𝑥(𝑡𝑖) − 𝑑𝑖]

𝑇𝑅𝑖
−1[𝐇𝑖𝛿𝑥(𝑡𝑖) − 𝑑𝑖]

𝑛
𝑖=0 , 

(1) 

where 𝑥𝑏  is the background state vector, 𝑥𝑔  is the first guess vector, 𝛿𝑥 = 𝑥 − 𝑥𝑔  is the 195 

perturbation of the IC, 𝛿𝑥(𝑡𝑖) = 𝐌𝑖𝛿𝑥(𝑡0) is the perturbation at time 𝑡𝑖, 𝐵 is the static B-matrix, 196 

and 𝑅 is the observation error covariance matrix. 𝑑𝑖 = 𝑦𝑖
𝑜 − 𝐻𝑖[𝑥

𝑔(𝑡𝑖)] contains the observation 197 

innovations at time 𝑡𝑖, 𝑦𝑖
𝑜 contains the observations at time 𝑡𝑖, involving the observation operator 198 

𝐻𝑖 at time 𝑡𝑖 and the nonlinear forecast model integration 𝑀𝑖  from the analysis time to time 𝑡𝑖. 𝐇𝑖 199 

is the tangent linear observation operator corresponding to 𝐻𝑖, and 𝐌𝑖 is the TLM of 𝑀𝑖. 200 

The convergence rate of the gradient for the optimization problem is dependent on the 201 

condition number of the Hessian matrix (Zupanski, 1996). Operational DA systems generally 202 

reduce the condition number of the Hessian matrix of Eq. (1) through the preconditioning 203 

transformation, that is 𝛿𝑥 = 𝑈𝑣. Thus, the modeled climatological BEC can be estimated by 204 

 𝐵𝑐 = 𝑈𝑈
𝑇, (2) 
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where 𝑣  is the preconditioned state variable vector. 𝑈  contains the physical transformation 205 

operator that transforms independent variables to model variables, the diagonal matrix composed 206 

of the background error variance square root of the independent variables, and the background 207 

error correlation transformation matrix (Zhang et al., 2019). After the aforementioned 208 

preconditioning transformation, Eq. (1) becomes 209 

 
𝐽[𝑣(𝑡0)] =

1

2
[𝑣(𝑡0)]

𝑇[𝑣(𝑡0)] +
1

2
∑ [𝐇𝑖𝐌𝑖𝑈𝑣(𝑡0) −
𝑛
𝑖=0

𝑑𝑖]
𝑇𝑅𝑖

−1[𝐇𝑖𝐌𝑖𝑈𝑣(𝑡0) − 𝑑𝑖]. 
(3) 

In order to minimize Eq. (3), the corresponding gradient should equal to zero, and the ADM 210 

is required for calculating the gradient of the cost function. Moreover, the calculation of the ADM 211 

requires the backward model trajectories, which are typically provided by the nonlinear forecast 212 

model and expensive in calculation and storage. Thus, the adjoint-free DA method may be an 213 

efficient alternative to 4DVar for operational applications. 214 

2.2 4DEnVar 215 

2.2.1 Algorithm 216 

The 4DEnVar algorithm is based on the DRP-4DVar approach (Wang et al, 2010a) that 217 

projects the initial increment 𝛿𝑥 in model space onto the subspace expanded by a limited number 218 

of IC perturbation samples as its basis vectors, and obtains the optimal solution directly in the 219 

subspace. 220 

For the convenience of implementing 4DEnVar in the standard 4DVar framework, the IC 221 

perturbation samples are obtained by the “randomcv” method, which uses the variational variable 222 

transform 𝛿𝑥 = 𝑈𝑣  to produce an ensemble of balanced and reasonable perturbations (Baker, 223 

2005). 𝑋 = [𝛿𝑥1, 𝛿𝑥2, ⋯ , 𝛿𝑥𝐾] contains the IC perturbation samples, where 𝐾  is the ensemble 224 

size. The corresponding observational perturbation samples 𝑌 = [𝛿𝑦1, 𝛿𝑦2, ⋯ , 𝛿𝑦𝐾] are calculated 225 

using TLMs and tangent linear observation operators. Thus, an ensemble of IC perturbation 226 

samples and observational perturbation samples are chosen to define the following projection 227 

matrices: 228 
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 {
𝑝𝑥 =

1

√𝐾−1
[𝛿𝑥1 − 𝛿𝑥̅̅ ̅, 𝛿𝑥2 − 𝛿𝑥̅̅ ̅,⋯ , 𝛿𝑥𝐾 − 𝛿𝑥̅̅ ̅]

𝑝𝑦 =
1

√𝐾−1
[𝛿𝑦1 − 𝛿𝑦̅̅̅̅ , 𝛿𝑦2 − 𝛿𝑦̅̅̅̅ ,⋯ , 𝛿𝑦𝐾 − 𝛿𝑦̅̅̅̅ ]

, (4) 

where {
𝛿𝑥̅̅ ̅ =

1

𝐾
[𝛿𝑥1 + 𝛿𝑥2 +⋯+ 𝛿𝑥𝐾]

𝛿𝑦̅̅ ̅ =
1

𝐾
[𝛿𝑦1 + 𝛿𝑦2 +⋯+ 𝛿𝑦𝐾]

. Defining 𝛼 = (𝛼1, 𝛼2, ⋯ , 𝛼𝐾)
𝑇  as a 𝐾 -dimensional 229 

vector composed of the weight coefficients of the basis vectors, 𝛿𝑥 and 𝐇𝑖𝛿𝑥(𝑡𝑖) can be projected 230 

onto the subspace spanned by the ensemble samples via the following transformation:  231 

 {
𝛿𝑥 = 𝑝𝑥𝛼             

𝐇𝑖𝛿𝑥(𝑡𝑖) = 𝑝𝑦(𝑡𝑖)𝛼
, (5) 

where 𝑝𝑦(𝑡𝑖) is the observational projection matrix at time 𝑡𝑖. Thus, the ensemble BEC can be 232 

represented by 233 

 𝐵𝑒 = 𝑝𝑥𝑝𝑥
𝑇 (6) 

and the new cost function with respect to 𝛼 can be written as: 234 

 
𝐽[𝛼(𝑡0)] =

1

2
[𝛼(𝑡0)]

𝑇[𝛼(𝑡0)] +
1

2
∑ [𝑝𝑦(𝑡𝑖)𝛼(𝑡0) − 𝑑𝑖]

𝑇
𝑅𝑖
−1[𝑝𝑦(𝑡𝑖)𝛼(𝑡0) −

𝑛
𝑖=0

𝑑𝑖]. 
(7) 

To minimize Eq. (7), 𝛼 must satisfy [
𝜕𝐽

𝜕𝛼(𝑡0)
]
𝑇
= 0. Here, no ADM is needed. It is noted 235 

that a degraded analysis may result from the approximation in Eq. (5) due to the much smaller 236 

ensemble size than the dimension of the original IC perturbation, which can be alleviated by 237 

localization techniques.  238 

2.2.2 Localization 239 

The major drawback to the ensemble-based method is its spurious correlations and very 240 

small rank in the BEC due to the limited number of the IC perturbation samples, which excessively 241 

constrains the solving subspace of the optimal analysis increment. Localization is considered to be 242 

an effective technique to alleviate the aforementioned problems (Hamill et al., 2001). 243 

The localized B-matrix can be typically expressed as the Schür product between the 244 

ensemble BEC 𝐵𝑒 and the correlation matrix of the covariance localization 𝐶. Because the direct 245 

use of the localized B-matrix may lead to much computational cost according to Wang et al. 246 
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(2018), this matrix should be expressed in a form that can be used easily and economically. The 247 

correlation matrix can be approximately decomposed into a limited number of leading 248 

eigenvectors and extended IC perturbation samples can be obtained:  249 

 𝐸𝑝𝑥 = [(𝑝𝑥,1 ∘ 𝝆𝑥,1, ⋯ , 𝑝𝑥,1 ∘ 𝝆𝑥,𝐿),⋯ , (𝑝𝑥,𝐾 ∘ 𝝆𝑥,1, ⋯ , 𝑝𝑥,𝐾 ∘ 𝝆𝑥,𝐿)], (8) 

where 𝝆𝑥,𝑗  (𝑗 = 1, 2,⋯ , 𝐿) is a leading eigenvector in model space, and 𝐿 is the number of the 250 

selected leading eigenvectors according to the cumulative contribution of variance. In 251 

implementation, each leading eigenvector can be decomposed into zonal, meridional and vertical 252 

components: 𝝆𝑥,𝑗 = 𝝆𝑥,𝑗𝑧
𝑧 ∘ 𝝆𝑥,𝑗𝑚

𝑚 ∘ 𝝆𝑥,𝑗𝑣
𝑣 . The EOF decomposition method is used to obtain the 253 

zonal and vertical components:  254 

 {
𝝆𝑥,𝑗𝑧
𝑧 = 𝑬𝑥,𝑗𝑧

𝑧 (𝜆𝑥,𝑗𝑧
𝑧 )

1/2

𝝆𝑥,𝑗𝑣
𝑣 = 𝑬𝑥,𝑗𝑣

𝑣 (𝜆𝑥,𝑗𝑣
𝑣 )

1/2
 , (9) 

where 𝑬𝑥,𝑗𝑧
𝑧  and 𝑬𝑥,𝑗𝑣

𝑣  are eigenvectors for the zonal and vertical components, respectively, 255 

obtained using the empirical orthogonal decomposition. 𝜆𝑥,𝑗𝑧
𝑧  and 𝜆𝑥,𝑗𝑣

𝑣  are their corresponding 256 

eigenvalues. Then, the sine expansion method is utilized (Wang et al., 2018) to obtain the 257 

meridional component:  258 

 𝝆𝑥,𝑗𝑚
𝑚 = 𝑬𝑥,𝑗𝑚

𝑚 𝛽𝑥,𝑗𝑚
1 2⁄  . (10) 

Here, 𝑬𝑥,𝑗𝑚
𝑚  is the eigenvector for the meridional component, and 𝛽𝑥,𝑗𝑚 is its eigenvalue. When 259 

defining the correlation function model, we used the GC correlation function (Gaspari & Cohn, 260 

1999) for the horizontal components:  261 

 𝐶(𝑟) =

{
 
 

 
 −

1

4
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2
𝑟4 +
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𝑟3 −
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𝑟5 −

1

2
𝑟4 +
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8
𝑟3 +

5

3
𝑟2 − 5𝑟 + 4 −

2

3
𝑟−1, 1 < 𝑟 ≤ 2

0, 2 < 𝑟

 (11) 

Here, 𝑟 is defined as the dimensionless latitude and longitude distance. The following correlation 262 

function is used for the vertical component:  263 

 𝐶(𝑟) =
1

1.0+𝐾𝑝𝑟
2. (12) 
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where 𝑟 is defined as the dimensionless logarithmic pressure distance. 264 

According to Eq. (8) and ignoring the time-variation of the localization leading 265 

eigenvectors, the extended observational perturbation samples can be then represented as 266 

 𝐸𝑝𝑦 = [(𝑝𝑦,1 ∘ 𝝆𝑦,1, ⋯ , 𝑝𝑦,1 ∘ 𝝆𝑦,𝐿),⋯ , (𝑝𝑦,𝐾 ∘ 𝝆𝑦,1, ⋯ , 𝑝𝑦,𝐾 ∘ 𝝆𝑦,𝐿)]. (13) 

Redefining the control variables as an 𝐾 × 𝐿-dimensional vector 𝛽, the analysis increment and 267 

observational increment can be modified as  268 

 {
𝛿𝑥 = 𝐸𝑝𝑥𝛽

𝐇𝑖𝛿𝑥(𝑡𝑖) = 𝐸𝑝𝑦(𝑡𝑖)𝛽
. (14) 

Finally, the localized cost function is formulated on the extended sample space. In the generation 269 

of the extended observational perturbation samples, the TLM is called for only 𝐾 times. On one 270 

hand, the ensemble size can be greatly increased from the original samples to the extended samples 271 

without any additional computational cost for TLM calling, and the leading eigenvectors in both 272 

the model and observation space can be pre-calculated according to the coordinates of the model 273 

grid and observation locations. On the other hand, spurious correlations among the original 274 

samples can be significantly eliminated, and the calculation accuracy of the cost function and its 275 

gradient can be improved given that the extended samples have better independence from each 276 

other than the original samples.  277 

2.2.3 Inflation 278 

The 4DEnVar system uses an inflation technique similar to the Relaxation-to-prior-279 

perturbations (RTPP; Zhang et al., 2004) to mitigate the filter divergence problem during the 280 

assimilation cycle. Different from the RTPP, this inflation adopts random perturbations with 281 

balance constraints from the static BEC of the standard 4DVar system. 282 

60 random samples with balance constraints (𝛿𝑥𝑘)𝑟 (𝑘 = 1, 2,⋯ , 60) are obtained by the 283 

“randomcv” method introduced in Section 2.2.1 (Baker, 2005). They are linearly combined with 284 

the 60 analysis increment samples (𝛿𝑥𝑘)𝑎 (𝑘 = 1, 2,⋯ , 60) using the weights 𝛾1 = 0.2 for the 285 

former and 𝛾2 = 0.9 for the latter to achieve the inflation of the ensemble BEC for the next 286 

assimilation after a number of model integrations from the beginning to the end of the assimilation 287 

window initialized by the inflated analysis increments  (𝛿𝑥𝑘)𝑎
𝑖𝑛𝑓(𝑘 = 1, 2,⋯ , 60), where 288 
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 {
(𝛿𝑥𝑘)𝑎

𝑖𝑛𝑓
= 𝛾1(𝛿𝑥𝑘)𝑟 + 𝛾2(𝛿𝑥𝑘)𝑎

(𝛿𝑥𝑘)𝑓 = 𝑀[𝑥𝑏 + (𝛿𝑥𝑘)𝑎
𝑖𝑛𝑓
]      

     (𝑘 = 1, 2,⋯ , 60). (15) 

An obvious advantage of this inflation method is that it is convenient and easy to generate the 289 

random samples with balance constraints directly through the preconditioning process of the 290 

4DVar system. Moreover, the inflation technique implicitly incorporates the climatological BEC 291 

into the ensemble BEC to construct the hybrid B-matrix, which can be represented by 292 

 (𝐵𝑒)𝑖𝑛𝑓 = (𝑝𝑥)𝑓(𝑝𝑥)𝑓
𝑇. (16) 

Here, (𝑝𝑥)𝑓 = [(𝛿𝑥1)𝑓, (𝛿𝑥2)𝑓, ⋯ , (𝛿𝑥60)𝑓]  contains the updated inflated analysis increments. 293 

Thus, the inflation method not only alleviates the underestimation of the B-matrix, but also 294 

implicitly realizes the hybrid BEC for the 4DEnVar system.  295 

3 Experimental design 296 

3.1 Implementation of 4DEnVar system 297 

In this study, the model used in the 4DEnVar system is the GRAPES-GFS model version 298 

3.0 (Su et al., 2020) and contains 87 vertical levels. The horizontal resolution of the system is 299 

0.5° × 0.5° for the outer loop and 1.0° × 1.0° for the inner loop. The 4DEnVar system combines 300 

the ensemble BEC estimated by 60 samples and the original variational framework to solve the 301 

assimilation problem, and is evaluated in comparison to the available 4DVar system (Zhang et al, 302 

2019) with the same model and same resolutions. The schematic flowchart in Figure 1 describes 303 

the operational process of the 4DEnVar system. In order to mitigate the sampling errors and 304 

spurious correlations in the BEC due to the limited ensemble size (Hamill et al., 2001; Lorenc et 305 

al., 2003; Wang et al., 2010b, 2018), the localization scheme is designed according to the 306 

implementation introduced in Section 2.2.2, with 7°  for the filtering radius in the horizontal 307 

direction and 3 for the filtering parameter 𝐾𝑝 in the vertical direction. The minimization problem 308 

of the 4DEnVar system is solved in the subspace spanned by the extended samples derived from 309 

the Schür products between the ensemble members and the leading eigenvectors of the localization 310 

correlation function. The 4DEnVar system not only can realize the implicit flow-dependence of 311 

the BEC within the assimilation window like the standard 4DVar system, but also can achieve the 312 

explicit flow-dependent BEC from one assimilation window to the next. During the assimilation 313 
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cycle, the perturbed observations are continuously assimilated into the ensemble samples, and the 314 

flow-dependent ensemble samples are updated every 6 hours. 315 

To alleviate the underestimation of the BEC in the assimilation cycle, an inflation 316 

technique based on the random perturbations with balance constraints is applied. Collaborated with 317 

the localization and perturbing techniques of observation and SST, the inflation may alleviate the 318 

filtering divergence problem during the assimilation cycle. Observational perturbations are 319 

obtained by superimposing normal distribution random perturbations with zero as their 320 

expectations (or mean values) and the observation errors as their standard deviations onto the 321 

observations. SST perturbations are produced similarly except that the standard deviations of 322 

random perturbations adopts the SST analysis errors. 323 

3.2 Experiment design 324 

In order to evaluate the performance of the 4DEnVar system efficiently, the OSSE is 325 

considered as one of the best choices. Here, two OSSEs are designed using the 0.25° × 0.25° 326 

version of GRAPES-GFS for both the 4DEnVar and standard 4DVar systems. The OSSE for the 327 

latter is to provide a reference for comparisons. 328 

A previous study has demonstrated that the 4DVar system using the GRAPES-GFS model 329 

significantly outperforms the 3DVar system using the same model on both analyses and medium-330 

range forecasts, especially in the Southern Hemisphere (Zhang et al., 2019). OSSEs can be used 331 

to fairly evaluate the performance of the assimilation system (Wang et al., 2008a; Wang et al., 332 

2010a; Kleist et al., 2015a, 2015b). In order to further study the influence of the 4DEnVar system, 333 

comparisons between it and the 4DVar system are necessary. 334 

The time period of both experiments was about one month (0900 UTC 13 September 2016 335 

- 0900 UTC 11 October 2016) after a 2-day assimilation cycle covering the period from 0900 UTC 336 

11 September 2016 to 0900 UTC 13 September 2016 to alleviate the influence of the spin-up. Only 337 

the inflation coefficient tuning experiments were analyzed for about one weak (0900 UTC 13 338 

September 2016 - 0900 UTC 18 September 2016). The analysis time was taken at the beginning 339 

of the assimilation window. In the OSSEs, the results from an uninterrupted free run with the 340 

higher-resolution (0.25° × 0.25°) version of GRAPES-GFS were used as the “truth” state. To 341 

eliminate the impact of spin-up, the “truth” state was initiated from the time 24 hours prior to the 342 
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analysis time of the first assimilation window with the ERA-5 reanalysis field as the IC, which 343 

was verified to be consistent with the realistic atmospheric state in terms of geopotential height 344 

and precipitation in the first 8 days. For example, we investigated the rationality of the “truth” state 345 

in the Northern and Southern Extratropics based on a comparison of the 500hPa geopotential 346 

height between the ERA-Interim reanalysis and the “truth” state at 1200 UTC on 14, 16 and 18 347 

September 2016 (Figure 2). Figure 2a shows the 500hPa geopotential height from the ERA-Interim 348 

reanalysis in the Northern Extratropics at 1200 UTC on 14 September 2016, with a low-pressure 349 

system near the Arctic and 4 troughs extended from the low-pressure system near 60E, 180, 350 

120W and 30W. The low-pressure system extends along 180 and 30W, and the locations and 351 

intensities of other main systems change slightly as the integration time increases (Figures 2e and 352 

2i). The “truth” state captures these main features and their time-variations (Figures 2b, 2f and 2j). 353 

Similarly, Figure 2c shows the results from the ERA-Interim reanalysis in the Southern 354 

Extratropics. A low-pressure system exists near the Antarctic at 180 with 3 troughs near 0, 90W 355 

and 90E, and some troughs at low and middle latitudes. As the integration time increases, the 356 

intensity of the low-pressure system near the Antarctic weakens and a high value center appears 357 

near 60E, and the locations and intensities of the main systems at low and middle latitudes change 358 

slightly (Figures 2g and 2k). The “truth” state simulates these main systems well (Figures 2d, 2h 359 

and 2l). In general, the “truth” state reasonably captures the main features and the time-variations 360 

of the 500hPa geopotential height from the ERA-Interim reanalysis and gradually degrades 361 

following the increase of integration time. 362 

The “observations” were produced by interpolating the “truth” state to the positions at 363 

which sounding and cloud-derived wind observations are located, and then superimposing normal 364 

distribution random perturbations with zero as their expectations and the observation errors as their 365 

standard deviations onto them. Figure 3 shows the spatial distribution of these observations. 366 

Sounding observations are typically sampled in the continental areas of the Northern Extratropics 367 

and are valid at 1200 UTC 13 September 2016. Cloud-derived wind observations are sampled 368 

every 30 minutes, mainly in the central and eastern North Pacific, the eastern South Pacific, the 369 

northern Indian Ocean, the Atlantic Ocean, as well as some continents such as the America and 370 

Africa. The observation errors were taken the same as the 4DVar system. 371 
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For the first assimilation window of the 4DVar system, the background was obtained from 372 

a 15-h forecast by the 0.5° × 0.5° version of GRAPES-GFS initialized from the 6-h forecast of the 373 

ERA-Interim dataset, so that it is different from the “truth” state. Meanwhile, for the first 374 

assimilation window of the 4DEnVar system, 60 IC samples were generated by superimposing 60 375 

random perturbation samples onto this background. These perturbation samples were generated 376 

according to the “randomcv” method introduced in Section 2.2.1 (Baker, 2005). The background 377 

for each assimilation window of the 4DEnVar system is the ensemble mean of the IC samples of 378 

this window, which are derived from 60 6-h forecasts by the 0.5° × 0.5° version of GRAPES-GFS 379 

with 60 inflated analysis samples produced in the previous assimilation window as their ICs, 380 

respectively, except for the first assimilation window. The 4DEnVar system has the same 381 

background as the 4DVar system in the first assimilation window because the ensemble mean of 382 

60 superimposed random perturbation samples is zero. 383 

In addition, based on the OSSE for the 4DEnVar, two sets of SOEs were also conducted 384 

for both the 4DEnVar and 4DVar systems within a 6-h window covered the period from 0900 UTC 385 

13 September 2016 to 1500 UTC 13 September 2016 after a 2-day assimilation cycle to verify the 386 

flow-dependent characteristic of the BECs. Both sets of SOEs adopted the same filtering radius 387 

that is 15° in the horizontal direction and the same background that is the ensemble mean of the 388 

IC samples produced by the 4DEnVar system. In each set of SOE, the DA system assimilated the 389 

single-point observation valid at the beginning, middle and end of the assimilation window, 390 

respectively. The first single-point observation valid at 1200 UTC 13 September (i.e., at the middle 391 

of the window) was selected from the “observations” in the OSSEs, which is the single-point 392 

temperature observation located upstream at the top of the short-wave ridge in the middle 393 

troposphere, and the other two at the beginning and end of the window took the same location and 394 

observation innovation as the first. The observation error was set to 0.95, and the observation 395 

innovation was -1.53 K. 396 

4 Results 397 

4.1 Single-point observation experiments 398 

Figures 4a and 4d show the analysis increments from the 4DVar and 4DEnVar systems, 399 

respectively, which are produced by assimilating the same single-point temperature observation at 400 
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the beginning of the assimilation window in two SOEs. Both increments show the maximum 401 

negative values near the observation as a response to the low temperature observation. The 4DVar 402 

analysis increment of temperature appears a quasi-Gaussian distribution around the observation 403 

location (Figure 4a). Given that the analysis time the resultant analysis increment is obtained is the 404 

same as the time the single-point observation is located at, this distribution is reasonable. In 405 

contrast, the 4DEnVar analysis increment of temperature, obtained using the ensemble BEC, 406 

extends along the gradient of geopotential height, which is consistent with the northwestern 407 

background flow. This visually demonstrates the explicit flow-dependence of the BEC of the 408 

4DEnVar system. Furthermore, satisfactorily, no spurious correlations are sighted near the analysis 409 

increment produced by the 4DEnVar system when the signal of the observation is preserved in the 410 

analysis increment (Figure 4d). Both experiments also show cyclone wind responses around the 411 

temperature increments, which suggests that the BECs satisfy some balance constraints. These 412 

results are consistent with the SOEs introduced in Kleist et al. (2015b). 413 

We further investigated the implicit flow-dependence of the BECs of both systems within 414 

the assimilation window by visualizing the analysis increments obtained by assimilating single-415 

point observations valid at different time levels. Unlike those with the observation at the beginning 416 

of the assimilation window, the maximum negative values of the increments produced by both 417 

systems shift towards the northwest of the observation. Moreover, the further the observation is 418 

located from the analysis time, the more the increments from both systems extend along the 419 

gradient of geopotential height (Figures 4b, 4c, 4e and 4f). These suggest that 4DVar realized the 420 

evolution of BEC within the assimilation window using the TLM and the ADM, while 4DEnVar 421 

did through the statistical relationship between the model space and observation space. 422 

4.2 Observing system simulation experiments 423 

We divided the globe into four regions for the statistics and analysis of the following 424 

indicators, including the Northern Extratropics (20°N~90°N, 180°W~180°E; NH-X), Southern 425 

Extratropics (20°S~90°S, 180°W~180°E; SH-X), East Asia (15°N~65°N, 70°E~145°E; EA) and 426 

Tropics (20°S~20°N, 180°W~180°E; TR). Considering that the root mean square error (RMSE) 427 

mainly measures the random error that is not as correctable as the systematic bias, it is usually 428 

applied to statistically analyze the random errors of the background and analysis fields. To exclude 429 
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the systematic error from the RMSE, we use a metrics called anomaly RMSE (ARMSE) instead 430 

of RMSE (He et al. 2020a):  431 

 𝐴𝑅𝑀𝑆𝐸 = √
∑ 𝑤(𝑛)×(𝑀(𝑛)−𝑡𝑟𝑢𝑡ℎ(𝑛)−𝑏𝑖𝑎𝑠)

2𝑁
𝑛=1

∑ 𝑤(𝑛)
𝑁
𝑛=1

. (17) 

Here, 𝑀(𝑛) and 𝑡𝑟𝑢𝑡ℎ(𝑛) represent the analysis (or background) and the “truth” state at the 𝑛-th 432 

grid point, respectively. 𝑤(𝑛) denotes the weighted coefficients at the 𝑛-th grid point, and 𝑏𝑖𝑎𝑠 =433 

∑ 𝑤(𝑛)×(𝑀(𝑛)−𝑡𝑟𝑢𝑡ℎ(𝑛))
𝑁
𝑛=1

∑ 𝑤(𝑛)
𝑁
𝑛=1

 represents the systematic bias. 434 

4.2.1 Inflation impact 435 

 In order to study the impact of the inflation technique introduced in Section 2.2.3 on the 436 

4DEnVar system, we compared the forecast skills of the experiments initialized by the 4DEnVar 437 

system adopting different sets of inflation coefficients.  438 

The inflation coefficients in the 4DEnVar system were set to be larger for the ensemble 439 

analyses than for the random perturbations with balance constraints, so that a significant reduction 440 

of the flow-dependent characteristic of the ensemble covariance was avoided during the 441 

assimilation cycle. We tested several sets of inflation coefficients, including (0.1, 1.0), (0.2, 0.9), 442 

(0.3, 0.8) and (0.5, 0.6), where the first and second numbers in the parentheses are the coefficients 443 

for the random perturbations and ensemble analyses, respectively, and the results of the overall 444 

scores of the experiments were given in Figure 5. The scorecard shows that the 4DEnVar system 445 

using the inflation coefficient of (0.2, 0.9) has the best performance in reducing ARMSE of the 446 

forecast initialized from the ensemble mean analysis than those of tests using other sets of inflation 447 

coefficients. A proper inflation improve the ensemble spread, but too strong inflation may lead to 448 

excessive spread of some variables in the ensemble. These suggest that the inflation technique can 449 

help the 4DEnVar system reduce the forecast errors. 450 

4.2.2 Analysis error 451 

To facilitate comparisons with reanalysis data that are located at the middle of the 452 

assimilation window, all background and analysis fields from both DA systems are transformed 453 

from the beginning to the middle of the window through 3-h forecasts using the 0.5° × 0.5° 454 
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version of GRAPES-GFS, which is similar to Zhang et al. (2019). Figure 6 shows the vertical 455 

profiles of the ARMSEs of the background and analysis fields from the 4DVar and 4DEnVar 456 

systems relative to the “truth” state. On one hand, comparing with the background fields, the 457 

analysis fields from both assimilation approaches basically improve most variables at most vertical 458 

levels. These analyses significantly reduce the ARMSE of zonal wind at almost all vertical levels 459 

in the Northern Extratropics, Southern Extratropics, East Asia and Tropics (Figures 6a-6d). No 460 

significant differences of temperature between the backgrounds and analyses can be observed  461 

(Figures 6e-6h) except that the 4DEnVar system improves the temperature in the middle and 462 

higher troposphere in the Southern Extratropics (Figure 6f) and the temperatures from the analyses 463 

in the lower troposphere in the East Asia by both the 4DEnVar and 4DVar systems are obviously 464 

degraded (Figure 6g). As for the specific humidity, no distinct changes from the backgrounds to 465 

analyses can be found except the degradations near the surface by both assimilation approaches 466 

(Figures 6i-6l). On the other hand, 4DEnVar fully outperforms 4DVar on the backgrounds and 467 

analyses of zonal wind, temperature and specific humidity in the aforementioned four regions. 468 

4DEnVar makes the biggest improvement in zonal wind (temperature) in the stratosphere in the 469 

East Asian (Tropics) relative to 4DVar (Figures 6c and 6h). Significant improvements in specific 470 

humidity by 4DEnVar are mainly in the lower troposphere comparing with 4DVar. 471 

The analysis error structures of the 4DEnVar and 4DVar experiments are very similar 472 

(Figure 7 left and middle), which are also consistent with the analysis error structures of the 3DVar 473 

experiment and the corresponding 3D hybrid assimilation experiment in Kleist et al. (2015a). As 474 

shown in Figures 7a-7b, the zonal wind error maxima are distributed in the middle and upper 475 

troposphere at middle latitudes in the Southern Extratropics, and large zonal wind errors even 476 

extend to the lower troposphere near 60 °S. Compared with 4DVar, 4DEnVar reduces the analysis 477 

errors of zonal wind mainly at the latitudes between 60S and 60N, although it increases the 478 

analysis errors in the middle and higher troposphere at high latitudes in the Northern Extratropics 479 

and the analysis errors in the stratosphere at  middle and high latitudes in the Southern Extratropics 480 

(Figure 7c). Large temperature errors in the analyses of both assimilation approaches are 481 

concentrated in the lower troposphere, especially in the region from the Antarctica to 60S, which 482 

extend to the middle and upper troposphere near 60S (Figures 7d-7e). 4DEnVar has smaller 483 

ARMSEs of temperature than 4DVar over most latitudes except for lower troposphere at high 484 

latitudes and stratosphere at the latitudes around 60S in the Southern Extratropics (Figure 7f). 485 
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Specific humidity shows analysis error structures quite different from the zonal wind and 486 

temperature, which have semicircular shapes located between 60S and 60N in the lower and 487 

middle troposphere (Figures 7g-7h). In the regions large humidity errors locate at, 4DEnVar 488 

improves the accuracies of almost all humidity analyses (Figure 7i). In a word, 4DEnVar reduces 489 

most analysis errors of zonal wind, temperature and specific humidity in comparison to 4DVar.  490 

4.2.3 Forecast skill 491 

From the above discussions, it can be found that the analysis accuracy of the 4DEnVar 492 

system is basically higher than that of the 4DVar system. Based on these encouraging results, our 493 

attention is now drawn to the impact of these more realistic analysis ICs on the forecasts. We want 494 

to know whether the improved analysis IC can lead to improved forecasts. For this reason, the 495 

analysis fields at 0900 UTC covered the period from 0900 UTC 13 September 2016 to 0900 UTC 496 

11 October 2016 produced by the 4DEnVar and 4DVar systems were used as ICs to conduct a set 497 

of 10-day forecasts. Similar to the analyses that were extended to the middle of the assimilation 498 

window for evaluation, these forecasts with 3-hour extension for each lead forecast day were used 499 

for evaluation. Because the 4DEnVar is an ensemble-based assimilation approach that produced 500 

60 analysis ICs in the OSSE, 60 sets of 10-day forecasts were obtained using these analysis ICs. 501 

For convenience of comparing with the single set of 10-day forecast initialized from the 4DVar 502 

analysis, the ensemble mean 10-day forecast initialized from the 60 sets of 4DEnVar analyses was 503 

used. Also, for a more comprehensive comparison with 4DVar, the results of the deterministic 504 

forecast initialized from the 4DEnVar ensemble mean analysis were given. The forecasts were 505 

evaluated using the “truth” state as the reference and adopting the anomaly correlation coefficient 506 

(ACC) and ARMSE as the metrics. 507 

ACC is one of the important metrics to investigate the skill of a forecast, which is used to 508 

qualitatively measure the similarity between the anomalies of this forecast and the “truth” state. In 509 

terms of this metrics, the 4DEnVar-based 10-day deterministic and ensemble mean forecasts of 510 

500hPa geopotential height have comparable skills to and higher skills than the 4DVar-based 511 

forecast on most lead forecast days, respectively (Figure 8). In the Northern Extratropics, the 512 

4DEnVar-based deterministic and 4DVar-based forecasts have comparable skills on the lead days 513 

1-5, and the former has slightly higher skills on the lead days 6-8 and slightly lower skills on the 514 

lead days 9-10 (Figure 8a). In contrast, in the Southern Extratropics (Figure 8b), where 515 
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observations are much sparser than in the Northern Extratropics (Figure 3), the former has skills 516 

comparable to or even slightly lower than the latter on the first 6 lead days and slightly higher 517 

skills than the latter on the lead days 7-10. Similar to the Northern Extratropics, the 4DEnVar-518 

based deterministic forecast has comparable or even slightly higher skills on the lead days 1-7, but 519 

slightly lower skills on the lead days 8-10 in the East Asia (Figure 8c). In the Tropics, the 520 

4DEnVar-based deterministic forecast has lower skills on the first 5 lead days, and slightly higher 521 

skills on the lead days 6-10 than the 4DVar-based forecast (Figure 8d). In comparison, the 522 

4DEnVar-based ensemble mean forecast has significantly higher forecast skills on almost all lead 523 

forecast days than the 4DEnVar-based deterministic and 4DVar-based forecasts (Figures 8a-8d). 524 

In particular, the most significant improvements on the last few days in the Southern Extratropics 525 

can be easily sighted in the 4DEnVar-based ensemble mean forecast comparing with the 4DVar-526 

based forecast. In summary, more accurate ICs from 4DEnVar generally achieve to higher forecast 527 

skills in the ensemble mean forecast on almost all lead days than those from 4DVar in the single 528 

forecast. 529 

ARMSE is also an indispensable metrics to evaluate the skill of a forecast, which is used 530 

to quantitatively measure the difference between the anomalies of this forecast and the “truth” 531 

state. To facilitate the comparison between 4DEnVar and 4DVar on their contributions to forecast 532 

skill, the difference of ARMSE between 4DEnVar and 4DVar is used, on which the confidence 533 

test is conducted. The difference of ARMSE with a negative (positive) value indicates a further 534 

improvement (degradation) of the forecast by 4DEnVar comparing with that by 4DVar. Figure 9 535 

shows the differences of ARMSE of the 500hPa geopotential height forecasts between 4DEnVar 536 

and 4DVar. The skill of the 4DEnVar-based forecast under this metrics basically matches that 537 

under the metrics of ACC, i.e., the 4DEnVar-based deterministic and ensemble mean forecasts 538 

have comparable performance to and better performance than the 4DVar-based forecast on most 539 

lead days, respectively. This deterministic forecast has a performance comparable to or even better 540 

than the 4DVar-based forecast on the first 9 lead days (the first 7 lead days), while the errors are 541 

larger on the last 1 lead day (the last 3 lead days) in the Northern Extratropics (East Asia) as shown 542 

in Figures 9a and 9c. In contrast, the former has larger errors on the first 6 lead days (the first 4 543 

lead days) and smaller errors on the last few days than the latter in the Southern Extratropics 544 

(Tropics) from Figures 9b and 9d. In addition, the 4DEnVar-based ensemble mean forecast reduce 545 

errors significantly relative to the two abovementioned deterministic forecasts on almost all lead 546 
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days. In particular, the most significant improvements by the 4DEnVar-based ensemble mean 547 

forecast relative to the 4DVar-based forecast can be sighted on the last few lead days in the 548 

Southern Extratropics (Figure 9b), suggesting that the  analysis ICs from the 4DEnVar system may 549 

have much better capability to reduce the forecast errors of 500hPa geopotential height in the 550 

regions with sparse observations. Due to the maximum improvements by 4DEnVar in the 551 

ensemble mean forecast of the 500hPa geopotential height on the lead day 10 in both the Northern 552 

and Southern Extratropics comparing with the 4DVar-based forecast (Figures 8a-8b and 9a-9b), 553 

the horizontal distributions of the forecasts on this lead day were also analyzed and compared. 554 

Figure 10 shows the “truth” state and the 240-h forecasts of the 500hPa geopotential height 555 

respectively initialized from the 4DVar and 4DEnVar analyses on 1200 UTC 13 September 2016 556 

in the Northern Extratropics. In the “truth” state, a low-pressure system is distributed around the 557 

Arctic, with three troughs near 75°E, 160°W and 60°W, respectively. In addition, there is a high 558 

value center at middle and high latitudes near the longitude 0° (Figure 10a). The main circulation 559 

situations in the 4DVar-based (4DEnVar-based deterministic) forecast are basically similar to 560 

those in the “truth” state (Figures 10b-10c), although the low-pressure trough (high value center) 561 

near 160°W (the longitude 0°) is not correctly presented. Moreover, the main circulation situations 562 

in the 4DEnVar-based ensemble mean forecast is similar to the 4DEnVar-based deterministic 563 

forecast. As shown in Figure 10e, the 4DVar-based forecast has large errors with a “negative-564 

positive-negative” distribution between 90°W and 60°E at middle and high latitudes. It also 565 

presents significant positive errors near 160°W at middle latitudes. In comparison, the 4DEnVar-566 

based deterministic forecast mainly reduces the magnitude of the errors in the regions between 567 

90°E to 30°W at middle and high latitudes, especially the regions near 160°W and 40°W at middle 568 

and high latitudes, but increases the errors in the regions between 30°W and 60°E at middle and 569 

high latitudes, especially the regions near 30°E at high latitude (Figure 10f). In contrast, compared 570 

with the 4DVar-based and 4DEnVar-based deterministic forecasts, the 4DEnVar-based ensemble 571 

forecast significantly reduces errors in almost all regions, except the region between 30°E to 60°E. 572 

Similar to Figure 10, Figure 11 shows the results in the Southern Extratropics. There is a low-573 

pressure system near the Antarctica, which extends out three troughs near 90°W, 150°E and 60°E, 574 

respectively, in the “truth” state (Figure 11a). The 4DVar-based forecast and the 4DEnVar-based 575 

deterministic and ensemble mean forecasts basically represent the circulation situations in the 576 

“truth” state (Figures 11b-11d), but the first does not capture the troughs at 90°W very well. The 577 
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forecast errors of 4DVar in the Southern Extratropics are significantly larger than in the Northern 578 

Extratropics (Figure 11e), while the 4DEnVar-based deterministic forecast reduces almost all the 579 

significant forecast errors of 4DVar except the regions between 90°E and 0° (Figure 11f). In 580 

addition, the 4DEnVar-based ensemble mean forecast significantly reduces the errors compared 581 

with the 4DVar-based and 4DEnVar-based deterministic forecasts (Figure 11g). Overall, in terms 582 

of the 500hPa geopotential height forecast, the 4DEnVar-based deterministic forecast has 583 

comparable performance to the 4DVar-based forecast in the Northern Extratropics and slightly 584 

better  performance than the 4DVar-based forecast in the Southern Extratropics. Moreover, the 585 

4DEnVar-based ensemble mean forecast significantly reduce the errors, especially in the Southern 586 

Extratropics, which is consistent with the conclusions obtained by the ACC and ARMSE metrics. 587 

The 4DEnVar-based forecast of geopotential height also has similar performances at most 588 

other vertical levels (Figure 12). The 4DVar-based forecast errors show the largest in the Southern 589 

Extratropics, followed by the Northern Extratropics and East Asia, and the smallest in the Tropics. 590 

In the Northern Extratropics, the 4DVar-based forecast has significant errors at the vertical levels 591 

between 400hPa and 200hPa, which keeps increasing following the lead time and reaches the 592 

maximum on the lead day 10. These errors gradually extend to lower and upper levels following 593 

the lead time (Figures 12a, 12d, 12g and 12j). As shown in Figure 12b, the 4DEnVar-based 594 

deterministic forecast has a similar error structure to the 4DVar-based forecast except for larger 595 

errors in the stratosphere, which extends to the troposphere on the lead days 1 and 10, and smaller 596 

errors in the lower stratosphere and middle troposphere on the lead days 5-8, which extends to the 597 

lower troposphere on the lead days 7-8. The maximum improvements (degradations) by the 598 

4DEnVar-based deterministic forecast comparing with 4DVar are located between 400hPa and 599 

200hPa (above 100hPa) on the lead days 6-7 (the lead days 1-9). In the Southern Extratropics, the 600 

4DEnVar-based deterministic forecast has larger errors on the lead days 1-6 than the 4DVar-based 601 

one, especially in the stratosphere on almost all lead days, and smaller errors on the last 3 lead 602 

days (Figure 12e). In the East Asia, the 4DEnVar-based deterministic forecast has a performance 603 

comparable to and even better than the 4DVar-based one on the lead days 1-7 except in the upper 604 

stratosphere. However, it has larger errors on the last 3 lead days, especially between 600-100hPa 605 

(Figure 10h). In the Tropics, it has a degradation near the stratosphere (the lower and middle 606 

troposphere) on the lead days 1-9 (1-3) as shown in Figure 12k. In contrast, the 4DEnVar-based 607 

ensemble mean forecast reduces errors at almost all regions and vertical levels on the middle and 608 
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later lead days compared with the 4DVar-based forecast, especially on the later days in the 609 

Northern and Southern Extratropics, where the errors of the 4DVar-based forecast are the largest. 610 

The places where the 4DEnVar-based deterministic forecast becomes worse than the 4DVar-based 611 

forecast are largely improved in the ensemble mean forecast, especially for the lead days 8-10 in 612 

the East Asia (Figures 12c, 12f, 12i and 12l). 613 

The 4DVar-based zonal wind forecast has an error structure similar to the geopotential 614 

height forecast at most vertical levels with the largest errors in the Southern Extratropics and 615 

smallest errors in the Tropics (Figures 13a, 13d, 13g and 13j). The improvement and degradation 616 

locations of the 4DEnVar-based deterministic forecast compared with the 4DVar-based forecast 617 

are generally consistent with the geopotential height forecast (Figures 13b, 13e, 13h and 13k). 618 

However, quite different from the geopotential height forecast, the 4DEnVar-based deterministic 619 

forecast of zonal wind reduces the errors relative to the 4DVar-based forecast at almost all vertical 620 

levels on the first lead day and the improvement extends to the lead day 9 (the lead day 7) in the 621 

middle and upper troposphere of the Northern Extratropics (East Asia) as shown in Figure 13b, 622 

13e, 13h and 13k. In contrast, the 4DEnVar-based ensemble mean forecast performs better in 623 

almost all situations than the 4DVar-based forecast, especially on the middle and later lead days 624 

(Figures 13c, 13f, 13i and 13l). In addition, the locations where the 4DEnVar-based deterministic 625 

forecast deteriorates compared with 4DVar largely get improved in the 4DEnVar-based ensemble 626 

mean forecast, especially for the lead days 2-7 in the Southern Extratropics and the lead days 8-10 627 

in the East Asia (Figures 13f and 13i). However, the 4DEnVar-based ensemble mean forecast is 628 

still worse than the 4DVar-based forecast on the first 5 lead days around the stratosphere in the 629 

Southern Extratropics and Tropics, which is similar to the geopotential height forecast (Figures 630 

12f and 12l). 631 

The error distribution of the 4DVar-based temperature forecast is not quite the same as 632 

those of the geopotential height and zonal wind forecasts, with the error size sorting as same as in 633 

geopotential height and zonal wind forecasts (Figures 14a, 14d, 14g and 14j). The locations of the 634 

improvements and degradations in the 4DEnVar-based deterministic temperature forecast relative 635 

to the 4DVar-based forecast is similar to the zonal wind forecast but with the following differences. 636 

The locations of the largest improvements in the 4DEnVar-based deterministic forecast in the 637 

Southern Extratropics and East Asia compared with the 4DVar-based forecast extend to the lower 638 

and middle troposphere. In addition, the ranges of the degradations of the 4DEnVar-based 639 
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deterministic forecast compared with the 4DVar-based forecast also increase (Figures 14b, 14e, 640 

14h and 14k). In contrast, the  4DEnVar-based ensemble mean forecast is still significantly 641 

improved for almost all situations compared with 4DVar (Figures 14c, 14f, 14i and 14l). 642 

The 4DVar-based specific humidity forecast has an error structure different from other 643 

variables, with large errors between 900hPa and 700hPa in each of four regions, increasing with 644 

the lead time and reaching a maximum since the lead day 9 (Figures 15a, 15d, 15g and 15j). 645 

Compared with the 4DVar-based forecast, the 4DEnVar-based deterministic forecast reduces 646 

errors on the lead days 1-7 in the Northern Extratropics and East Asia, while degradation occurs 647 

on the lead days 8-10 (Figures 15b and 15h). The 4DEnVar-based deterministic forecast reduces 648 

errors in the Southern Extratropics (Tropics) except the lead days 3-7 (4-10) compared with 4DVar 649 

(Figures 15e and 15k). In contrast, 4DEnVar-based ensemble mean forecast stably reduces errors 650 

for almost all regions and lead days, and the largest improvements can be found where and when 651 

large forecast errors of 4DVar are located (Figures 15c, 15f, 15i and 15l) .  652 

4.2.4 Computational efficiency 653 

The computational efficiency of the 4DEnVar system is also a key concern. Taking the 6-654 

h assimilation window (0900 UTC 11 September 2016 - 1500 UTC 11 September 2016) as an 655 

example, the computational time was about 25 minutes for a 4DVar DA using 480 cores on the 656 

high-performance computer PI-SUGON of the China Meteorological Administration. In 657 

comparison, the 4DEnVar system took only 13 minutes since the ensemble members of the 658 

4DEnVar system are independent and all members can be analyzed concurrently using a total of 659 

60×480 cores. The aforementioned results may be slightly impacted by several factors, such as 660 

the high-performance computer state, but overall, the 4DEnVar system has the advantage of  good 661 

parallel efficiency and scalability and is thereby timesaving when more computational resources 662 

are used. 663 

5 Summary and discussion 664 

In this study, a new 4DEnVar DA system was developed based on the DRP-4DVar 665 

approach. This system is novel in some aspects. It introduces the idea of ensemble into the 666 

variational framework to achieve the time-variant BEC and minimizes the cost function without 667 

using the ADM. It can easily take full advantage of the mature variational framework and 668 
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implicitly include the hybrid BEC into the pure ensemble covariance. An inflation method similar 669 

to RTPP (Zhang et al., 2004) based on balanced random perturbations produced using the static 670 

B-matrix of 4DVar is applied to alleviate the filter divergence during the assimilation cycle, which 671 

can be conveniently and efficiently implemented. Moreover, a limited number of leading 672 

eigenvectors of the localization correlation function are used to perform the localization of the B-673 

matrix and rapidly increase the ensemble size without any extra model integrations. 674 

Preliminary tests including SOEs and OSSEs were conducted to evaluate the performance 675 

of the 4DEnVar system, using the 4DVar system as a reference for comparison. The OSSE-based 676 

one-month DA cycles using both systems were conducted, in which the first 2-day cycles were 677 

used for spin-up. The SOEs were conducted at and the OSSE results were evaluated and compared 678 

since the ninth assimilation window. The SOEs show that both 4DEnVar and 4DVar assimilated 679 

the single-point observation effectively and satisfied certain balance constraints. Moreover, 680 

4DEnVar using the ensemble BEC exhibits obvious flow-dependent features.  681 

In the OSSEs, we first tuned the inflation coefficients. The weight of the ensemble analyses 682 

kept larger than that of the balanced random perturbations to avoid too much loss of flow-683 

dependent information during the assimilation cycle. It is found that the forecast errors grow when 684 

the inflation is too weak or too strong. Finally, the weights 0.9 for the ensemble analysis and 0.2 685 

for the balanced random perturbations were thought to be the proper inflation coefficients, which 686 

optimally reduced the ARMSEs of the forecast initialized by the 4DEnVar ensemble mean analysis. 687 

The results of the OSSE-based one-month DA cycle show that the 4DEnVar and 4DVar 688 

analyses can significantly improve the dynamic variables such as the zonal wind, and has slight 689 

impacts on the thermodynamic variables such as the temperature and specific humidity compared 690 

with their backgrounds. In addition, 4DEnVar outperforms 4DVar in terms of ARMSE on the 691 

background and analysis fields of model variables. Compared with the 4DVar analysis, the 692 

4DEnVar analysis can significantly reduce the errors in the model variables at low and middle 693 

latitudes. The greatest improvements in the zonal wind and temperature by the 4DEnVar analysis 694 

located mainly near the stratosphere, although there is significant degradation at high latitudes in 695 

the Southern Extratropics. The greatest improvements in the specific humidity are mainly in the 696 

lower troposphere. In conclusion, the analysis error of the 4DEnVar system is basically smaller 697 

than that of the 4DVar system. 698 
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The effect of the 4DEnVar system on the forecast is also evaluated. From the ACC and 699 

ARSME indicators of the 500hPa geopotential height forecasts, the 4DEnVar-based deterministic 700 

forecast has a performance comparable to or slightly better than the 4DVar-based forecast in the 701 

short and medium range in the Northern Extratropics and East Asia, and slightly worse 702 

performance in the long range. In the Southern Extratropics and Tropics, the results are roughly 703 

opposite to those in the Northern Extratropics and East Asia. Moreover, the 4DEnVar-based 704 

ensemble mean forecast is comparable to or even better than the 4DVar-based forecast except for 705 

the first few days in the Tropics. The geopotential height forecasts at other vertical levels are 706 

generally consistent with the results of the 500hPa geopotential height, but both the deterministic 707 

and ensemble mean forecasts from the 4DEnVar system show significant degradations near the 708 

stratosphere. 709 

The 4DEnVar-based deterministic forecasts of the zonal wind and temperature are similar 710 

to and better than that of the geopotential height. In particular, these deterministic forecasts 711 

outperform the 4DVar-based forecasts in almost all regions and vertical levels on the first lead day, 712 

and this positive effect continues in the upper troposphere in the Northern Extratropics and East 713 

Asia to the middle and later lead days, but the temperature forecasts are slightly worse than the 714 

zonal wind. The improvements of the 4DEnVar-based deterministic specific humidity forecast 715 

over the 4DVar-based one are mainly located on the early lead days. In contrast, the 4DEnVar-716 

based ensemble mean forecast of the zonal wind, temperature and specific humidity show 717 

significant improvements over both the 4DVar and 4DEnVar-based deterministic forecasts, with 718 

the greatest improvements on the later lead days.  719 

Overall, the 4DEnVar system shows great promise in terms of reducing the analysis errors 720 

and producing high quality ensemble forecasts. The significantly improved ensemble forecasts 721 

from the 4DEnVar system suggest that they have the potential to provide high quality flow-722 

dependent ensemble BECs for hybrid DA systems. Moreover, 4DEnVar is more timesaving than 723 

4DVar given that the ensemble members of 4DEnVar can be predicted and analyzed concurrently. 724 

There is still much room for further improving the performance of the 4DEnVar system. For 725 

example, the current localization used here does not include the balance constraints and a balanced 726 

localization calls for further study. The localization length-scales currently adopted in the 727 

4DEnVar system are constant and adaptive length-scales are expected in the future. The current 728 

4DEnVar system borrows the low-resolution TLM of the 4DVar system and the NLM with the 729 
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same resolution may provide  more accurate and more timesaving ensemble forecasts. In addition, 730 

assimilation experiments using real observations, especially satellite radiance observations, should 731 

be further carried out to evaluate the performance of the 4DEnVar system. 732 
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 931 

Figure 1. Schematic of the 4DEnVar system used in this study. 932 
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 933 

Figure 2. The 500hPa geopotential height at 1200 UTC on 14 September 2016 (top), 16 September 934 

2016 (middle) and 18 September 2016 (bottom) from the ERA-Interim reanalysis (left) and the 935 

“truth” state (middle left) in the Northern Extratropics (20°N~90°N, 180°W~180°E), and the 936 

results in the Southern Extratropics (20°S~90°S, 180°W~180°E; the ERA-Interim reanalysis, 937 

middle right; the “truth” state, right) are plotted. 938 
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 939 

Figure 3. Locations of (a) sounding and (b) cloud-derived wind observations covered the period 940 

from 0900 UTC 13 September 2016 to 1500 UTC 13 September 2016. Different colored dots in 941 

(b) indicate different sampling times. 942 
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 943 

Figure 4. The temperature (shading; units: K) and vector wind (vector; units: m/s) analysis 944 

increments from assimilating the single-point temperature observations valid at the (left) 945 

beginning, (middle) middle and (right) end of the assimilation window for (top) 4DVar and 946 

(bottom) 4DEnVar on the model level closest to the single temperature observation assimilated, 947 

which locates at 500hPa (marked with a green dot). The solid contour is the 500hPa background 948 

field geopotential height (units: gpm) valid at the beginning of the assimilation window, when the 949 

analysis time is taken. 950 
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 951 

Figure 5. The scorecard of the ARMSE error mean calculated for the forecast initialized by the 952 

ensemble mean analysis from the 4DEnVar system adopting inflation coefficients of (0.2, 0.9) 953 

against the forecasts from the 4DEnVar system adopting inflation coefficients of (a) (0.1, 1.0), (b) 954 

(0.3, 0.8)  and (c) (0.5, 0.6)  with identical settings, respectively. If the former forecast has a 955 

significantly lower (higher) ARMSE error than the latter, then a green upward-pointing (red 956 

downward-pointing) triangle is plotted. The corresponding color outline is the three sizes that each 957 

symbol can be plotted, and the sizes from large to small corresponds to error mean differences 958 

greater than 3 times, between 1 times and 3 times, and between 0.5 times and 1 times the t value 959 

of the 95% confidence level, i.e., fairly significant, significant, and insignificant. The graph is not 960 

shown when the error mean differences are less than 0.5 times the t value of the 95% confidence 961 

level, indicating equivalent. 962 
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 964 

Figure 6. Vertical profiles of the ARMSE (verified relative to the “truth” state) of the background 965 

(dashed line) and analysis (solid line) fields of the zonal wind (top; units: m/s), temperature 966 

(middle; units: K) and specific humidity (bottom; units: g/Kg) in the Northern Extratropics 967 

(20°N~90°N, 180°W~180°E; left), Southern Extratropics (20°S~90°S, 180°W~180°E; middle 968 

left), East Asian (15°N~65°N, 70°E~145°E; middle right), and Tropics (20°S~20°N, 969 

180°W~180°E; right). The black and red lines show the 4DVar and 4DEnVar results, respectively. 970 
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 971 

Figure 7. The pressure versus latitude plots of the ARMSEs (verified relative to the “truth” state) 972 

of the zonal wind (top; units: m/s), temperature (middle; units: K) and specific humidity (bottom; 973 

units: g/Kg) analyses of 4DVar (left), 4DEnVar (middle) and the ARMSE differences between 974 

4DEnVar and 4DVar (right), respectively. 975 
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 976 

Figure 8. The anomaly correlation coefficients (ACCs) of the 4DVar-based (black line),  977 

4DEnVar-based deterministic (red line) and the 4DEnVar-based ensemble mean (blue line) 978 

forecasts of the 500hPa geopotential height against the “truth” state in the (a) Northern Extratropics 979 

(20°N~90°N; 180°W~180°E), (b) Southern Extratropics (20°S~90°S; 180°W~180°E), (c) East 980 

Asia (15°N~65°N, 70°E~145°E),  and (d) Tropics (20°S~20°N, 180°W~180°E). The 981 

corresponding ACC differences between the 4DEnVar-based deterministic forecast and the 982 

4DVar-based forecast (red line), between the 4DEnVar-based ensemble mean forecast  and the 983 

4DVar-based forecast (blue line), and the 95% confidence thresholds are also plotted in the bottom. 984 
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 985 

Figure 9. The ARMSE differences between the 4DEnVar-based deterministic forecast and the 986 

4DVar-based forecast (red line) , between the 4DEnVar-based ensemble mean forecast  and the 987 

4DVar-based forecast (blue line) of the 500hPa geopotential height against the “truth” state in the 988 

(a) Northern Extratropics (20°N~90°N; 180°W~180°E), (b) Southern Extratropics (20°S~90°S; 989 

180°W~180°E), (c) East Asia (15°N~65°N, 70°E~145°E), and (d) Tropics (20°S~20°N, 990 

180°W~180°E). The bar charts show the 95% confidence thresholds.  991 
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 992 

Figure 10. The horizontal distributions of the 240-h forecast of the 500hPa geopotential height in 993 

the Northern Extratropics (20°N~90°N; 180°W~180°E) for (a) the “truth” state, (b) the 4DVar-994 

based forecast, (c) the 4DEnVar-based deterministic forecast and (d) the 4DEnVar-based ensemble 995 

mean forecast. The differences (e) between the 4DVar-based forecast and the “truth” state, (f) 996 

between the 4DEnVar-based deterministic forecast and the “truth” state and (g) between the 997 

4DEnVar-based ensemble mean forecast and the “truth” state are also plotted, respectively.  998 
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 999 

Figure 11. As in Figure 10, but showing the results in the Southern Extratropics (20°S~90°S; 1000 

180°W~180°E).  1001 
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 1002 

Figure 12. The ARMSEs of the geopotential height forecasts (units: gpm) initiated from the 1200 1003 

UTC analyses of the 4DVar experiment as a function of lead time (left) in the (a) Northern 1004 

Extratropics (20°N~90°N; 180°W~180°E), (d) Southern Extratropics (20°S~90°S; 1005 

180°W~180°E), (g) East Asia (15°N~65°N, 70°E~145°E), and (j) Tropics (20°S~20°N, 1006 

180°W~180°E). The differences of ARMSE between the 4DEnVar-based deterministic forecast 1007 

and the 4DVar-based forecast, and between the 4DEnVar-based ensemble mean forecast and the 1008 

4DVar-based forecast are plotted in (middle) and (right), respectively. 1009 
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 1010 

Figure 13. As in Figure 12, but showing the results of the zonal wind forecasts. 1011 
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 1012 

Figure 14. As in Figure 12, but showing the results of the temperature forecasts. 1013 
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 1014 

Figure 15. As in Figure 12, but showing the results of the specific humidity forecasts. 1015 

 

 

 

 

 


