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Abstract

Emerging parametric insurance products targeted at regional governments consider an index of flooding as the instrument for

payoff and rate setting. Inundation extent from satellite remote sensing may provide a more direct measure of flood risk in

this context than hydraulic modeling of flow and inundation. Here, we examine satellite-based fractional inundated area as

a proxy for flood impact that can be used for index insurance payment at a regional scale. Typical methods for estimating

return periods from unbounded distributions such as the GEV (generalized extreme value distribution) are not appropriate

for fractional flooded area, which is bounded by 0 and 1. Here we examine alternative bounded distributions (2 parameter

and a 4 parameter Beta) to estimate return periods and quantify uncertainty using a bootstrap sampling procedure for the

short duration satellite record of fractional flooded area. We consider two examples with distinct flood dynamics i) a country

(Bangladesh) where a flood can cover the majority of the land surface, and ii) a river basin (the Rio Salado basin in Argentina)

where the worst flood covered only a modest fraction of the watershed. We explore how a parametric insurance policy based on

fractional flooded area could be priced based on a typical approach used in the industry, that accounts for uncertainty for small

sample estimation. Our exploratory approach to model selection illustrates how estimating the uncertainty price influences

insurance contract pricing and is important to consider the choice of distribution beyond just the traditional measures of

goodness of fit.
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Plain language summary: 
 
Index insurance, catastrophe bonds, and other types of risk transfer instruments could play an 
important role in adapting to floods and ensuring sustainable development in a world of 
increasing flood risk. In this article, we examine how satellite time series of inundation can be 
used to develop an emerging type of flood insurance, known as parametric or index-based 
insurance. Unlike traditional indemnity insurance, which relies on adjusters to estimate loss for 
individual damage, index insurance uses data ex-ante to determine payout contracts when pre-
specified thresholds are crossed. Inundation extent from satellite remote sensing may provide a 
more direct measure of flood risk than data from models or stream gauges. However, typical 
methods used to estimate return periods for floods from models and gauges are not appropriate 
for fractional inundated area measurements from satellites. Here we provide a more appropriate 
method to estimate return periods and quantify uncertainty to price an insurance product 
leveraging the relatively short satellite record.  Example applications for Bangladesh and Rio 
Salado, Argentina are provided. We show why estimating and pricing uncertainty ultimately 
influences insurance contract pricing and can help governments select insurance policies that 
align with their flood adaptation strategy. 
 
Abstract: 
Emerging parametric insurance products targeted at regional governments consider an index of 
flooding as the instrument for payoff and rate setting. Inundation extent from satellite remote 
sensing may provide a more direct measure of flood risk in this context than hydraulic modeling 
of flow and inundation. Here, we examine satellite-based fractional inundated area as a proxy for 
flood impact that can be used for index insurance payment at a regional scale. Typical methods 
for estimating return periods from unbounded distributions such as the GEV (generalized 
extreme value distribution) are not appropriate for fractional flooded area, which is bounded by 0 
and 1. Here we examine alternative bounded distributions (2 parameter and a 4 parameter Beta) 
to estimate return periods and quantify uncertainty using a bootstrap sampling procedure for the 
short duration satellite record of fractional flooded area. We consider two examples with distinct 
flood dynamics i) a country (Bangladesh) where a flood can cover the majority of the land 
surface, and ii) a river basin (the Rio Salado basin in Argentina) where the worst flood covered 
only a modest fraction of the watershed. We explore how a parametric insurance policy based  
on fractional flooded area could be priced based on a typical approach used in the industry, that 
accounts for uncertainty for small sample estimation. Our exploratory approach to model 
selection illustrates how estimating the uncertainty price influences insurance contract pricing 
and is important to consider the choice of distribution beyond just the traditional measures of 
goodness of fit. 
 
Index Terms: inundation, insurance, remote sensing, probability, risk transfer 
 
1 Introduction 

Flood frequency and magnitude estimates that underpin spatial zoning and risk mitigation 
strategies rely primarily on flood exceedance probabilities from discharge measurements 
estimated from gauges, models, or space-borne observations. Instead of indirectly estimating 
asset exposure through discharge or modeled inundation, satellite observations of inundated area 
can provide a more direct measurement of flood exposure. Given the growing length of the 



Manuscript submitted to Earth’s Future 

 3 

satellite record, time series of inundated area could be used for exceedence probability 
estimation. Here we present the first exploration of whether inundation data could be used 
directly for parametric insurance products that seek to use an index of large area inundation as a 
mechanism for insurance and payment. The primary contribution of this paper is to open a new 
avenue for flood risk analysis and its mitigation, that can leverage the growing satellite record 
and complement traditional discharge and flood model-based approaches. We explore 
applications at the basin and country scale. Our application of interest is the financial 
securitization of catastrophic flood risk through a parametric instrument (an index insurance 
contract is used as the example, but others such as a catastrophe bond could also be considered) 
issued by a regional government seeking rapid funds in the event of disaster relief. Such a 
catastrophe may be indexed to the fraction of the area flooded in an event.  The inundated area is 
bounded by the drainage area of a river basin, hydrologically, and by the area of the country, 
politically, so a bounded distribution is necessary whether one considers area inundated or 
fractional area inundated. This is a different setting than the one traditionally considered for 
flood risk where discharge is the target variable, and a fat right tail is considered appropriate for 
the extreme value distribution. 

Flood frequency and risk analyses were developed in an engineering context where 
discharge was seen as a mass conserving and stationary process (as opposed to stage, which may 
be affected over time by sediment or erosion). Most literature regarding flood exceedance 
probabilities focuses on discharge measurements, usually from one or more points on a river 
(e.g. a gauge), or estimated from a rainfall-runoff model (Singh 2017). Physics-based models 
estimate velocity and stage as primary state variables (to calculate discharge) using a variety of 
land surface data, and parameterizations of key terms in the mass, momentum and energy 
conservation equations. Often, the parameters of these relationships need to be calibrated from at 
site data, which may be poorly constrained or even non-existent. Uncertainties associated with 
spatial inundation can consequently be large, especially in regions with limited topographic 
relief, or with complex river channel geometry, such as those in river deltas (Merwade et al. 
2008, Teng et al. 2017, Bates 2022).  

Stream gauge records are limited for estimating the impact of extreme flood events for 
several reasons. First, most gauges cannot measure extreme discharge and it is thus extrapolated 
using stage-discharge relationships. Second, declines in funding and civil conflict have led to a 
precipitous decline in global stream gauge data (Hannah et al. 2011). Third, many of the flood-
prone areas in large river basins cross international boundaries where politics prevent sharing 
gauge data information needed to properly calibrate models (e.g. Mekong, Ganges Brahmaputra-
Meghna, and Nile- see (Gleason and Hamdan 2017). Recent advances to estimate discharge via 
satellite are promising, but it remains difficult to estimate discharge of extreme flood events 
(Gleason and Durand 2020, Allen et al. 2020). Extreme events can influence sediment load and 
river conveyance, with implications for how bank full discharge volumes may change over time, 
influencing overbank flows and floods (Sofia and Nikolopoulos 2020). Changes in land use, 
demographics, and infrastructure, especially due to rapid urbanization of over 9,000 km2 

annually (Liu et al. 2020) also influence the degree to which discharge may induce different 
levels of flood damage. Human modifications of rivers (e.g. dam construction, paving 
floodplains, and channelizing rivers) mitigate, exacerbate, or shift flood waters (Chin 2006, Grill 
et al. 2019). Finally, discharge measurements for extreme flood events and physical estimates of 
them are themselves highly uncertain (Smith et al. 2018) given stage-discharge relationships that 
are calibrated to much lower flow regimes and for very different flow domains. Further, river 
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stage is only indirectly related to flood damage, which is more directly related to whether or not 
a location is inundated.  

To relate discharge to flood damage, hydraulic models take discharge as an input to 
spatial estimates (often with considerable uncertainty) of extent and depth of inundation for 
discharges whose return periods have been estimated at a few index gauges. These are then used 
to generate population and property exposure estimates. Modeled inundation footprints are 
uncertain, in part because discharge measurements are the main input to models predicting 
inundation, and in part due to the changing geometry of the flow domain and potentially the 
changing density of flow as related to increasing sediment uptake, during extreme floods (Sofia 
and Nikolopoulos 2020). Flood damage estimation requires information on asset attributes, as 
well as on depth, flow and duration of inundation, and often has even higher uncertainty when 
predicted from the few attributes on which data is available (Merz et al. 2010, 2013).  

Flood models also have difficulty predicting dam failure, levee breaches, failure in 
informal urban drainage systems, avulsions, and other extreme events, that are rare by definition 
(Swain et al. 2020). The accuracy of modeled global flood exposure is limited by inadequate data 
on flood defenses, topography, and discharge or flood footprints for calibration data (Ward et al. 
2015). Flood models rely on computerized representations of watersheds that rarely include all 
human alterations to the earth’s surface that impact flood dynamics- from fish canals in 
Cameroon (Shastry et al. 2020) to urbanization in Houston (Sebastian et al. 2019). Global hazard 
models differ in their structure and assumptions, leading to high disagreement of population and 
area exposure estimates (Ward et al. 2015, Trigg et al. 2016, Aerts et al. 2020). While 
incorporating high-resolution data improves flood model performance in the USA (Wing et al. 
2017), these detailed elevation data are largely unavailable globally, and this is but one 
component of the uncertainty in model estimates.  

Inundation is even more difficult to model than discharge for extreme floods because it 
requires modeling out of bank flow, and the data required to calibrate these models is sparse for 
extreme events. Remote sensing and social media have emerged to aid model calibration and to 
improve modeled floodplains (Bernhofen et al. 2018, Hultquist and Cervone 2020, Liang and Liu 
2020, Scotti et al. 2020). Modeled inundation underpins existing insurance mechanisms, such as 
the FEMA 100-year floodplain maps to price the National Flood Insurance Program. However, 
these models are often based on estimation of 100-year discharge at ungauged locations, 
amplifying the associated uncertainty in inundated area. Yet these uncertainties are ignored in 
flood maps, leading to considerable basis risk, or when actual losses do not match predicted 
losses based on an index or data, for both the insurer and the insured. 
 These issues lead us to explore whether a more direct measure of inundation would be 
suitable for creating and verifying an index for flood insurance. For the past several decades, 
near-daily observation of changes in surface water and inundation are available through a variety 
of satellite sensors. From coarse resolution (25km) L-band radar capable of detecting water 
through vegetation on a daily basis since 1992 (Jensen and Mcdonald 2019), to daily high 
resolution (3-5m) optical observations capable of detecting water in dense urban areas (e.g., 
since 2017 from Planet), flood observation has become easier over time with an ever-increasing 
number, resolution, and type of sensor (Finer et al. 2018). Advances in parallel computing (e.g. 
Google Earth Engine) facilitate these advances. Several methods exist to estimate flood 
incidence and flood events from daily sensors at moderate resolution (MODIS, 250m) (Klein et 
al. 2015, Kuenzer et al. 2015, Policelli et al. 2016, Tellman et al. 2021a). Spatial flood frequency 
observation from the 20-year record MODIS satellite and nearly 40-year record Landsat satellite 
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can aid watershed agencies and governments in estimating relative areas of high risk (Hawker et 
al. 2020, Tellman et al. 2021b). These observations have been used, for example, to relocate 
refugee populations (Zajic 2019) in countries where flood models are unavailable at high 
resolution or have high degree of uncertainty (Trigg et al. 2016). Remote sensing of flood extent 
has inherent and known uncertainties, from vegetation, burned area, and clouds obfuscating the 
view of some pixels. However even accounting for these uncertainties, a recent study that 
compared satellite-based flood frequency have found that flood models largely overestimate 
flooding at low return periods (20 years or less), but were similar near the 50- or 100-year return 
period (Hawker et al. 2020). This study, however, was unable to test congruence or lack thereof 
between models and remote sensing data at higher return periods given uncertainty in flood 
models and remote sensing data. Leveraging the time series of remote sensing estimates of 
inundated area directly has so far not been explored for its potential insurance applications. 

Parametric or index-based insurance is relatively new (Surminski and Oramas-Dorta 
2014, Surminski et al. 2016). The key components of index insurance are the selection and 
verification of a payout index for the hazard of interest (in this case, floods). Currently, most 
flood-related parametric products rely on rainfall over a certain area and duration passing a 
specified threshold (e.g. CCRIF, the  (Caribbean Catastrophe Risk Insurance Facility 2015) or 
are tied to Sea Surface Temperature (ENSO) proxies for flooding (e.g., in Peru, see (Khalil et al. 
2007). Rainfall based insurance requires long station records, which are often available.  The 
spatial variability of rainfall is significant (Arnaud et al. 2002, Smith et al. 2004) and hence the 
rainfall record is often not representative of the locations flooded and insured, leading to high 
basis risk. Spatial variability in rainfall may be limited in events like Hurricane Harvey, with 
persistent and spatially uniform rainfall over a large area. However, for compound events such as 
the 5 typhoons that occurred in 90 days leading to widespread and persistent flooding in 
Thailand in 2010, how to trigger an index based on rainfall is unclear. Does the trigger payout 
for every typhoon? And which locations for that same year? In a country like Bangladesh, for 
example, where 70% of the watershed area and thus the rainfall leading to floods, is outside of 
the country borders, an index based on local rainfall in Bangladesh is unlikely to work and must 
be paired with discharge (Haraguchi 2018). All existing measurements- rainfall, discharge, or 
model-based inundation can lead to high basis risk. In all cases, the instrument defining the index 
needs to be measured transparently, and by a neutral third party. Satellites provide the ability for 
remote and transparent inundation measurement as both an insurance pricing and payoff 
mechanism. In Bangladesh, the first inundated area flood index insurance pilot based on the 
MODIS satellite has shown promising results (Matheswaran et al. 2019, Amarnath 2020). Here, 
we consider fractional inundated area could be computed with respect to a spatial unit (country, 
watershed, district, city) and serve as the index and trigger for insurance. The relatively short 
satellite records for inundation, coupled with significant climate variability, may lead to high 
estimation uncertainty for insurance pricing, and a key issue we explore in this paper.  

Index insurance applications ideally require out of sample estimates of inundation return 
periods that are unbiased and have low uncertainty. Methods that lead to high uncertainty would 
cause the insurance instrument to be more expensive, to cover the potential risk to the insurer. 
The primary question we explore in this paper is how to choose an appropriate probability 
distribution to estimate the return periods of satellite-derived fractional flooded area, while 
quantifying both bias and uncertainty.   

We address these questions in two contexts (Bangladesh and Rio Salado, Argentina) with 
different flood generating mechanisms and terrain. Riverine flooding in Bangladesh mainly 



Manuscript submitted to Earth’s Future 

 6 

occurs in wide areas on flat terrain, driven by characteristics of the monsoon and major rivers 
that are influent into a delta (Islam et al. 2010). By contrast, the Rio Salado basin in Argentina, , 
has frontal, convective, and episodic precipitation occurring over areas with more topographic 
relief (Latrubesse and Brea 2009), and hence the potential for full basin area flooding is limited. 

In this initial effort, recognizing the resolution and coverage of historical satellite 
inundation products, we consider a country wide insurance product (e.g. Bangladesh) or a river 
basin level insurance product (e.g., a basin in Argentina), that would be purchased by a 
government or a bank to securitize the risk at these larger scales. Such a product, when triggered, 
would enable rapid release of funds for relief and reconstruction if a catastrophic flooding event 
were to occur. In this initial work we do not consider individuals as insured parties, recognizing 
that a macro level product may manifest significant basis risk for those sub-regional users. 

 
1.2 The role of uncertainty when pricing flood index insurance  

Index insurance is designed to provide financial support for infrequent or catastrophic 
loss. Unlike traditional indemity insurance, which relies on adjusters to estimate loss for each 
invidual damage, index insurance uses data (e.g weather data or increasingly, based on satellites 
(Enenkel et al. 2019, Benami et al. 2021)) ex-ante to determine payout contracts when pre-
specified thresholds are crossed. To ensure a high correlation between the index and loss 
outcomes, accurate probability distributions are essential to identify thresholds for payouts 
(Clement et al. 2018). Poor correspondence between the index and insured losses is known as 
basis risk. Basis risk can lead to policy holders not receiving payouts when a catastrophic event 
occurs, resulting in low demand of purchasing the insurance product.  The insurer may also be 
concerned about too frequent payouts, and may thus increase the premium to cover that risk. If 
the insured is consistently paid more often than designed, leading to losses for the insurer, 
potential discontinuance of the product may result. There are multiple sources and causes of 
basis risk, including inadequate length of data, poor design of an index that was not validated by 
loss and damage data (Osgood et al. 2018), inadequate index measurement of spatial variance of 
hazard (Norton et al. 2012), and others (see a review in Benami et al. 2021). Here we focus on 
the basis risk due to uncertainty associated with computing the probability that an index will lead 
to payouts, and how this uncertainty affects the price of the contract (Benami et al. 2021). 

We illustrate the structure for the index insurance instrument in Figure 1. Most index 
insurance contracts consider an initial payout threshold to trigger a payout, and a payout limit 
(exit), which is the maximum possible payout. For example, the sovereign risk-pooling insurance 
contract for Caribbean countries (CCRIF) typically considers an initial threshold corresponding 
to a 15 year return period (e.g. red line), and an exit threshold that may correspond to a 75 or a 
200 year return period (e.g orange line) (Caribbean Catastrophe Risk Insurance Facility 2015). 
Some contracts may set continuously increasing payments up to the exit or maximum payout, 
while others may payout in a stepwise fasion, only when exceeding specific thresholds (e.g. 
corresponding to the 50 and 100 year return period events).  The threshold probabilities and the 
payout structure translate into an expected value of the contract that is central to determining the 
premium price. Transaction costs, profits, and a risk premium to cover the uncertainty of return 
period estimates is added on to the expected value or “fair premium”.  
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Figure 1. Potential parametric insurance loss structure of the initial payout (in orange), the 
payout limit (in red), and the loss curve for fractional inundated area, the associated flood return 
period, and expected damages (in black). 

 
Many types of index insurance designs are possible, ranging from a single threshold and 

payout (e.g. the red line) to multiple interval payouts (red and orange lines, with other possible 
payout intervals along the black line in between). In all cases, one needs an estimate of the 
average exceedance probability of the threshold at which payoff occurs, and of the uncertainty 
associated with the estimate. Note that estimating the uncertainty for small samples (such as the 
relatively short satellite record) is addressed in section 2.3. 

Consider a simple index insurance product that is designed as follows. A single threshold 
for payout corresponds to the fractional area inundated with annual exceedance probability pexc 
(red line). It is essential to estimate the variation or uncertainty in the pexc associated with the 
threshold or trigger and include it in the product price.  This product is offered on an annual 
basis, and pexc could potentially be re-evaluated annually based on either additional information 
available or using a predictive proxy index (e.g. (Khalil et al. 2007)). The simplest design of the 
product is that if the index threshold corresponding to pexc is exceeded, then the insured party 
gets a fixed payout P. For simplicity, in this example let us consider that the terms are that a 
single payout per term of an insurance contract is considered. A common way to set a premium 
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is outlined in equation 1, where the premium is determined by the risk load, the profit margin for 
the insurer, and the transaction costs. 

 
𝑅!∗ = 𝑃 ∗ 𝑝#!$ + 𝑘 ∗ 𝑃 ∗ 𝑠𝑝#!$ + 𝑓1 + 𝑓2 ∗ 𝑃                 (1) 

     
Here, 𝑅!∗ is the premium for a fractional inundation threshold of x* (e.g., 0.3),  pexc is the 
corresponding estimate of the probability of exceedance, spexc is a measure of the uncertainty of 
the estimated pexc  (e.g., standard deviation of pexc or the spread between the 95th and 5th 
percentiles of the pexc associated with the trigger threshold based on bootstrapped samples, 
|pexc,95% -  pexc,5%|), k (e.g., 5) is a risk pricing factor that is set by the company as a policy 
parameter reflecting their degree of risk aversion, f1 (e.g., $100k) is a transaction cost, and f2 is a 
profit margin (e.g., 0.06) that is proportional to the payout amount, P. The key parameters of 
interest are then the estimates of the pexc and the spexc  corresponding to a specified threshold. 
The first term (𝑃 ∗ 𝑝#!$) is the fair premium or the amount an insurer needs to charge the client 
to cover the payment, while the second term (k∗ 𝑃 ∗ 𝑠𝑝#!$)is the risk premium, or the amount the 
insurer must charge to cover the uncertainty of the probability estimation. These are discussed 
next.  

 
2 Materials and Methods  
 
2.1 Choosing a distribution to model annual maximum fractional flood area 

 
From the extensive experience in fitting flood frequency curves, it is known (Vogel 1986, 

Razali and Wah 2011) that for the typical sample sizes available for estimating the return periods 
of floods from streamflow discharge data, statistical tests such as the Kolmogorov-Smirnov test, 
the Chi-Square test and Filliben’s correlation have low power in discriminating between multiple 
candidate distributions. Consequently, choices such as the Log-Normal or the Log Pearson III 
were adopted by committee in the USA (USGS 1982) and eventually, the generalized extreme 
value distribution (GEV). The GEV is an asymptotic distribution (i.e., as the sample size 
approaches ∞) for the block maxima of variables that may be drawn randomly from different 
distributions; a property which led to its emergence as a commonly used distribution 
(Chowdhury et al. 1991, Martins and Stedinger 2000). Douglas and Vogel (2006) show that the 
GEV, Log Normal, and Log Pearson 3 distribution can be a good fit for annual maximum floods 
in the USA and in the UK, while the Gumbel distribution is widely used in India. However, for 
most typical applications, the GEV is unbounded on the upper tail. When the variable of interest 
is the annual maximum of the fraction of area inundated in the country or basin, the application 
of the GEV is not appropriate, since this variable is bounded by 0 and 1. Botero and Francés 
(2010) found GEV was unacceptable to estimate distributions with an upper bound, e.g. when a 
physical limit applies, such as a PMP (Probable maximum precipitation) or PMF (probable 
maximum flood). Botero and France (2012) provide alternatives to GEV estimation, including 
the 4 parameter log-normal and 4 parameter extreme value distribution. Others have explored an 
inverted Weibull as an alternative (Bardsley 2018), which has the issue of lower values estimates 
going negative and changing the shape of the distribution. 
 
The GEV distribution is defined as: 
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𝑓(𝑥) = %
&
𝑡(𝑥)'(%𝑒)*(!)			𝑤ℎ𝑒𝑟𝑒	𝑡(𝑥) = 51 + 	𝜉 (!)-)

&
7
)%/'

	   (2) 
 
Where 𝜎	is a scale parameter, 𝜇 is a threshold (x > 𝜇), and 𝜉 is a shape parameter >0 and the 
domain of 𝑥 ∈ (0,∞).  
 
 
For the annual maxima of fractional flooded area, the variable of interest in this paper, the Beta 
distribution is an attractive candidate since it is bounded, and can also take a variety of shapes 
using only 2 parameters. We explore the 2 parameter Beta distribution, bounded at 0 and 1. A 
generalization of the Beta distribution that considers arbitrary bounds, not restricted to 0 and 1, 
can also be considered (e.g. (Wang 2005). However, given the short remote sensing records that 
are available (~20 years), estimating 4 parameters (the two shape parameters, and the 2 bounds) 
may significantly increase the uncertainty of return period estimation.  
 
The 2-parameter Beta distribution is defined as: 
 
𝑓(𝑥) = 	 !

!"#(%)!)$"#

/(0,2)
   (3) 

 
Where x  is a random variable, 𝑥 ∈ (0,1)., and 𝛼	and	𝛽 are shape parameters of the distribution, 
and B(.,.) is the Beta function.  
 
The 4-parameter Beta distribution is defined as: 
 
𝑓(𝑥) = 	 (!)345)

!"#(67!)!)$"#

/(0,2)(67!)345)!%$"#
   (4) 

Where of 𝑥 ∈ (𝑚𝑖𝑛,𝑚𝑎𝑥). 
 
 
The estimation of the pexc  and the spexc  is discussed in the next section.  
 
2.2 Methods for return period estimation 
 
The average probability of exceedance given a threshold is estimated as 
 
𝑝#!$ = 1 − ∫ 𝑓I(𝑥)𝑑𝑥8&

)9     (5)  
 
where 𝑓I(𝑥)	is the probability distribution estimated from the sample data and 𝑝#!$ 	is an estimate 
of the probability of exceedance. Many academics and practitioners instead routinely compute 
the average (expected value) of the flood discharge corresponding to a specified return period. 
This is typically expressed as 𝐸L𝑋:NO = 𝑥̅ + 𝐾:𝑠, where T is the return period (=1/p), 𝑋:N  is an 
estimate of the corresponding quantile 𝑋:, p is the probability of exceedance, 𝑥̅	is the mean of 
the sample, s is the standard deviation, 𝐾: is a frequency factor for the probability distribution 
model selected corresponding to the return period, and E[.] is the expectation or the averaging 
operator. 
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However, estimating the exceedance probability of a threshold (or quantile) (equation 5) 
is not equivalent to the latter approach of estimating the threshold (or quantile) of a specific 
exceedance probability. This issue was discussed extensively in the hydrologic flood frequency 
literature (Beard 1960, 1997, Tai 1987, Stedinger 1997). The sampling distribtions f(𝑝̂) and f(𝑋:N) 
are asymmetric leading to 𝑝#!$ ≠ ∫ 𝑓I(𝑥)𝑑𝑥8&;

)9  (the asymmetry increases for smaller samples and 
for higher return periods). 

An appropriate way to estimate the parameters of the distribution using the data is to 
maximize the likelihood of the sample relative to the candidate values of 𝜽: 
 
max
𝜽
𝐿(𝜽) = max

𝜽
∏ 𝑓(𝑥=|𝜽)>
=?%  (6) 

 
Since (x1, x2, …..xn) is a random sample, the resulting estimate	𝜽[ also has a probability 
distribution f(𝜽[|𝒙), as do the estimates of interest, f(𝑝̂#!$(𝑥∗)|𝜽[, 𝑥∗) and f(𝑥]:|𝜽[, 𝑇), where ^ 
denotes the sample estimate. Since these probability distributions are typically asymmetric, the 
mean of the estimated probability of exceedance for a specified x* will not match the 
corresponding probability of exceedance (equation 7) for the expected value of the flood 
magnitude for that probability of exceedance. The same applies to the uncertainty distributions.   
 
E[𝑝̂#!$(𝑥∗)|𝜽[, 𝑥∗ = 𝑥:] ≠ 𝑝#!$(𝐸[𝑥]:|𝜽,[ 𝑇 = 1/p#!$])  (7) 
 
Placed in context of our flood parametric insurance example, if we estimate that the average 
return period associated with a particular level of fractional flooded area of 0.4, is for example, 
100 years, then the average fractional flooded estimated corresponding to a return period of 100 
years from a finite sample will not be 0.4. Typically using 𝑋:N  leads to a biased estimate of pexc 
that for small samples can significantly understate the risk associated with that threshold (Beard 
1960, Stedinger 1983). Once a payoff threshold is defined, the average exceedance probability 
𝐸[𝑝̂#!$]	associated with that threshold informs the average payoff. Therefore for parametric 
insurance applications, estimating the exeedance probability of a threshold (not the opposite 
direction- estimating the threshold tied to a specific return period or exceedance probability) is 
preferred for unbiased results. Noting that the payoff occurs corresponding to a specified 
threshold, and for pricing we need to know its average probability of exceedance, we recommend 
(and construct an insurance price model) estimating the exceedance probability by fitting a 
distribution to the annual maximum inundation area data, and calculating uncertainty of this 
estimate via bootstrapping. 
 We illustrate the difference in estimating exceedance probability for a 
threshold/quantile (what we recommend) versus estimating the threshold or quantile for a 
specified exceedance probability for the Beta distribution with shape parameters equal to 1.5 and 
4 respectively in Figure 2. The theoretical quantiles corresponding to return periods of 10, 20, 
50, 100, 200, 500 and 1000 years were computed first. Subsequently, we draw 1000 samples of 
size 20 each from the distribution, using maximum likelihood estimation for the shape 
parameters, followed by an estimation of the quantiles for each of the return periods, and of the 
return period for each corresponding theoretical quantile. The theoretical quantile-return period 
relationship is illustrated using the symbol “o” in Figure 2. The blue line end points mark the 10th 
to 90th percentile of the return periods corresponding to each theoretical quantile, while the + 
symbols mark the 25th and 75th percentiles from the 1000 simulations. The red lines and + 
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symbols provide the corresponding information for the quantiles estimated for each return 
period. The asymmetry in the uncertainty distributions is notable. The uncertainty in the return 
periods is quite dramatic for this sample size. Uncertainty reduction by using a sample size of 
200 is shown in the second part of the figure.  

 
Figure 2. Sampling distributions of 𝑝̂#!$ and 𝑥]: estimated using maximum likelihood for 
samples drawn from a Beta distribution with shape parameters 1.5 and 4, as an example for 
fitting a model to the fractional flooded area (FFA). Sample sizes are 20 (top) and 200 (bottom) 
respectively. Blue lines represent the uncertainty in the estimated return period and red lines in 
the estimated fractional flooded area corresponding to a quantile. The lines go from the 10th to 
the 90th percentile, The “true” quantile return period is shown using “o”, and the 25th and 75th 
percentiles are marked with a “+”.  
 

The uncertainty of estimation of 𝑝̂#!$ as represented by the difference between the 95th 
and the 5th percentile, is shown in Figure 3 as a function of the theoretical quantiles 
corresponding to each of the return periods, as a ratio of the average estimated 𝑝̂#!$. Note that the 
relative uncertainty increases significantly as more extreme events are considered as would be 
expected. This shows that for the small samples typically available, the risk premium (term 2 in 
equation 1) could dominate the fair premium (term 1 in equation 1). When the ratio of the risk 
premium to the fair premium  >1, then the risk premium dominates the price of the insurance 
instrument. The uncertainty ratio increases with fractional flood area (FFA), because large, 
infrequent, extreme floods are estimated with higher relative uncertainty. 
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Figure 3. Ratio of estimated uncertainty to mean value of probability of exceedance from 10,000 
bootstrap samples of size 20 (red) and 200 (blue) for the synthetic data drawn from a Beta 
distribution with shape parameters 1.5 and 4, with estimation by maximum likelihood, evaluated 
for fractional flooded area (FFA) corresponding to 10, 20, 50, 100, 200, 500 and 1000 year 
return periods. For small samples the risk premium (term 2 in equation 1) due to uncertainty will 
increasingly dominate the fair premium (term 1 in equation 1) as more extreme events are 
considered.  

 
The parameter vector 𝜽[ for a candidate distribution is estimated by maximum likelihood. 

For the Beta distribution, the shape parameters are obtained through maximum likelihood 
estimation, using Rfast (v. 1.9.9 (Papadakis et al. 2020). For the 4 parameter beta distribution we 
use the ExtDist package in R (Wu, Haizhen et al. 2020) to estimate the minimum (min) and 
maximum (max) bound (instead of imposing it a priori as 0 and 1) (equation 3). Upper and lower 
bounds are solved using numerical maximum likelihood. 

For the extreme value distribution we used the ExtRemes 2.0 package in R (Gilleland and 
Katz 2016) and the VGAM package (Yee 2010) to estimate the shape parameter of the GEV. In 
all cases we bootstrapped the time series with 10,000 random draws with replacement to estimate 
the mean and 95% confidence intervals for each statistic of interest, including 𝑝̂#!$  and 𝑥]:.  
We used the ppcc package (Pohlert 2020) to compare the Beta and GEV cumulative distribution 
to the empirical cumulative distributions using the probability plot correlation coefficient (ppcc) 
test. The estimates from bootstrapping the sample to estimate Beta and GEV parameters were 
used to compute the mean and confidence intervals for return periods to estimate the insurance 
premiums for each distribution (using equation 1). 
 
2.3 Inundation Data for Bangladesh and Argentina 
 

We used inundated area for two regions, a watershed and a country, summarized in 
Figure 4. The country scale data is from Bangladesh, a mega delta of three major rivers, which 
experiences consistent large area inundation. Riverine flooding in Bangladesh occurs mainly in 
wide areas on flat terrain, driven by characteristics of the monsoon and the major rivers that are 
influent into a delta (Islam et al. 2010). As the two largest flood events in Bangladesh history 
occurred before the daily satellite record from MODIS (in 1988 and 1998), we use annual 
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maximum inundated fractional area estimates of the country based on the Flood Forecasting and 
Warning Center (FFWC) flood model (MIKE11 from DHI (Danish Hydraulic Institute) from 
1975-2019. The model uses 74 rainfall stations and 94 water level stations and a 300m spatial 
resolution DEM to estimate inundated area. The time series of inundated fractional area (Figure 
4b) and maximum inundated area observed (the 1998 flood- Figure 4d) are displayed in Figure 4.  

 
Figure 4. Time series of the fraction inundated and map of study area of maximum observed 
flood extent in each study region. a) Inundated area time series in Rio Salado, MODIS satellite 
derived, 2001-2016 (Tellman 2021c). b) Inundated area as percent of the country, Bangladesh, 
from the Flood Forecasting and Warning Center (FFWC) model, using the Mike 11 
hydrodynamic model coupled to a Mike 11 RR rainfall runoff model 1975-2019. c) Rio Salado 
watershed, Argentina, with maximum observed flood extent over the time series, d) Bangladesh, 
maximum modeled flood extent for 1998, covering 68% of the country, from the FFWC. 
 

Previous research suggests that severe damage to crops and infrastructure in Bangladesh 
occurs with 0.26-0.34 fraction of the country flooded, extensive damage occurs when 0.34-0.385 
is inundated, and catastrophic damage with exceptional economic loss occurs at >0.385 
fractional area inundated (Monirul Qader Mirza 2002). More recent damage data collected since 
2010 (Table 1) indicates however the two largest and most extreme events were over a fractional 
area inundated of 0.6. A smaller flood that occurs at an inopportune time in the planting or 
harvesting season, or in an urban area, may cause more damage. Inundated area and damage 
relationships have likely changed over time, given the high rate of population growth and 
urbanization in floodplains in Bangladesh (Tellman et al. 2021a) and investments in flood 
control and embankments(Rahman and Salehin 2013). Ultimately a country would want to 
consider insurance for the inundated area that causes damage given its current land use and flood 
exposure conditions. 
 

d

Maximum 
observed 
flood extent

Domain 
Boundary
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Table 1. Estimated damage in USD for extreme or catastrophic flood events reported in both 
Bangladesh and Rio Salado, adjusted for inflation and reported in 2010 USD. 

 
Location Year Damage (USD) 

billions 
Fractional 
inundated area 

Source 

Bangladesh 1974 4.5 0.36 Word Bank 
2010 1987 4.498 0.39 

1988 4.884 0.61 
1998 4.023 0.68 
2004 2.941 0.38 
2007 1.365 0.42 
2017 .0671 0.42 (World Food 

Program 2017) 
Rio Salado 2002 1.32 0.11 (Ibarlucía et al. 

2017) 
 2012 0.42 0.1 Ibarlucía et al. 

2017) 
 2015 0.072 0.09 (Rivas 2017) 

 
The watershed-scale times series data is for the Rio Salado basin in Argentina. The Rio 

Salado Basin is 170,000 km2 in the Buenos Aires Province in Argentina. Similar to Bangladesh, 
this low sloped basin (1/1000) experiences frequent wide-area inundation. The Rio Salado basin 
in Argentina, in contrast, has more frontal, convective, and episodic prediction occurring over 
areas with more topographic relief (Latrubesse and Brea 2009), and hence the potential for full 
basin area flooding is limited. Maximum annual flooded area was estimated from a remotely 
sensed inundation time series (Tellman et al. 2021b) using the MODIS satellite from 2000-2017. 
Only the data from 2001-2016 were used for analysis in this paper, because in the year 2000 only 
one (Terra) of the two daily MODIS sensors (Aqua and Terra) was operational. The 2001-2016 
time series represents data of maximum annual inundation by applying an inundation algorithm 
to twice daily 250m resolution MODIS images to estimate pixel inundation. Notable damaging 
floods during this time occurred in 2002 ($700M USD), 2013 ($546M USD), and 2015 ($82M 
USD) (Ibarlucía et al. 2017) (see Table 1). 

The inundation algorithm is a modified version of the Brakenridge and Anderson (2006) 
algorithm (see Tellman et al. (2021), summarized here). The algorithm uses the near-infrared 
(NIR) at 250-meters and short-wave infrared (SWIR) band (pan-sharpened from 500 to 250m) to 
monitor surface water. Pixels are flagged as water or non-water if their values are below 
thresholds across three bands: red (b1), SWIR (b7) and a ratio of NIR-red (b2b1ratio). Threshold 
values are based on Brakenridge and Anderson (2006) and determined from regression of 
discharge data on MODIS digital numbers (reflectance values scaled by 10,000 (E. Vermote and 
R. Wolfe 2015). Cloud and cloud shadow misclassifications are accounted for with a multi-day 
compositing technique that classifies a pixel as water if it is stable throughout a composite 
window. A 3-day composite is used where a pixel must be classified as water in 3 out of the 6 
available images to remain classified. As clouds and cloud shadows move throughout the 3-day 
composite, overlapping misclassifications of cloud shadows do not occur frequently enough (e.g. 
3 times in 6 images over 3 days) to provide a significantly large number of false-positive 
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observations. The daily water detections are combined into annual composites, representing a 
total maximum annual flood extent. The fractional flooded annual area of Rio Salado are 
presented in Figure 4A, with maximum observed historical inundation extent in Figure 4C. 
 
4 Results 
 
4.1 Comparative Analysis of model fitting for the two regions 
 
Theoretically, the GEV is an inadmissible distribution to use for fractional inundated area, 
because it is not bounded at 1. We present it here to show the implications of blindly using this 
distribution given its popularity for flood risk analysis. We compare the 2 and 4 parameter Beta 
distribution to assess if the bound of the distribution is likely to be below 1 (which the 4 
parameter Beta can estimate). 

 
Figure 5. Beta and GEV comparisons for Bangladesh. a) 2 parameter Beta modeled quantiles; b) 
2 parameter Beta distribution return period estimates and 95% confidence intervals of the 
quantiles; c) 4 parameter Beta modeled quantiles; d) 4 parameter Beta distribution return period 
estimates and 95% confidence intervals quantiles ; e) GEV modeled quantiles f) GEV 
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distribution return period estimates and 95% confidence interval quantiles. Black points are 
observed data. 
 

 
 
Figure 6. Beta and GEV comparisons for Argentina a) 2 parameter Beta modeled quantiles; b) 2 
parameter Beta distribution return period estimates and 95% confidence intervals of the 
quantiles; c) 4 parameter Beta modeled quantiles; d) 4 parameter Beta distribution return period 
estimates and 95% confidence intervals of the quantiles; e) GEV modeled quantiles f) GEV 
distribution return period estimates and 95% confidence intervals of the quantiles. Black points 
are observed data. 
 

The probability plot correlation coefficient tests (ppcc) do not reject the Beta distribution 
or the GEV for both the Argentina and Bangladesh data. The ppcc values for Argentina were 2 
param Beta = 0.979, p=0.45; 4 param Beta= 0.977, p=;0.60 p=, GEV =0.946, p=0.32 and for 
Bangladesh 2 param Beta = 0.989, p=0.56; 4 param Beta= 0.984, p=0.80; GEV =0.99, p=0.32. 
This lack of ability to discriminate between plausible distributions is typical for the small 
samples available here. The corresponding quantile plots of modeled distributions also do not 
discriminate between both Beta distributions and the GEVwhen compared to observed data 
(Bangladesh Figure 5 a,c,e; Argentina, Figure 6 a,c,e).  
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However, the return period estimates reveal differences in uncertainty for each 
distribution. In Bangladesh, the GEV return period plot (Figure 5f) reveals that the 95% 
confidence interval exceeds 1 (a physically infeasible value, which does not even appear in the 
plot bounded at 1) at the 50-year return period. The 4 parameter Beta distribution (Figure 5d) 
also has greater uncertainty than the 2 parameter Beta distribution (Figure 5b) especially for 
return periods greater than 100 years. 

In Argentina, the 4 parameter Beta distribution has the tightest uncertainty bounds 
(Figure 6d), compared to both the 2 parameter Beta (Figure 6v) and the GEV (Figure 6f). While 
the GEV does not exceed physically infeasible values as it did for the Bangladesh example, the 
uncertainty out of sample is very large. 

PDFs of the upper bound of the 4 parameter Beta distribution reveals it approximates 1 in 
Bangladesh (Figure 7c). However, in Argentina, the upper bound is likely much lower than 1 
(estimates cluster near 0.2) (Figure 7a), suggesting there may be a physical upper limit for this 
basin much lower than 1. Thus, the 4 parameter Beta distribution indicates lower uncertainty in 
the Argentina case, despite having to estimate 2 additional parameters. However, in the bootstrap 
samples there appear to be 17 out of 1000 simulations that select the upper bound of 1 (Figure 
7b). There are two peaks in the distribution of the upper bound estimate for Argentina because 
we used a Bayesian procedure that selects and upper bound of 1 (what would result if a 2 
parameter distribution were used)  part of the time and a Beta distribution with a lower bound 
part of the time. 

 
Figure 7. Probability density distribution of the upper bound of the 4 parameter beta for 
a)Argentina and c)Bangladesh, from 1,000 bootstrapped random draws with b) the cumulative 
density function for Argentina is added, with the 0.25, 0.5, and 0.75 quantiles marked in blue 
dotted lines. 
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4.2 Differences in insurance premiums across the probability distributions 
 

 We compare how insurance premiums in the insurance contract described in equation 1 
vary depending on which distribution we choose to use. Recall that P is the payout required to 
cover losses, and the risk tolerance of the insurer is k. We ground this example by comparing 
premium estimates for likely index insurance design triggers and desired coverage given the 
fractional inundation and damage history in each location. Argentina purchases a policy to cover 
$100 million in losses (P=100) that triggers at 0.09 fractional flooded area, and Bangladesh is 
considering a policy to cover $200 million (P=200) that triggers at either 0.5 or 0.4 fractional 
flooded area (Figure 8a). We consider a sigmoid loss function per fractional flooded area (x) in 
equation 8, where y represents the approximate maximum amount of damage likely to occur 
given the flood history, z the slope of the relationship between damage and fractional flooded 
area, x* the fractional inundated area at the inflection point, peak, or highest slope of the damage 
curve, and a the lower limit of recorded damage. We use reported damages in billions ($USD, 
see table 1) and inundated area history in each location to parametrize the loss function, 
assuming y=1.4 , z=80, and a=0.07  for Argentina and y=5, z=10, and a=0.7 for Bangladesh, 
and plot the estimated loss across a range of fractional flooded area (Figure 8a). 
 
𝑓(𝑥) = @

%(#"'()*(,,.".∗) − 𝛼	   (8) 
 

 
Figure 8. Proposed index insurance trigger and flood history. A) Estimated loss in millions per 
fractional inundated area and proposed index insurance trigger for Argentina (red) and 
Bangladesh (blue). B) Fractional inundated area in Argentina, with trigger in red. C) Fractional 
inundated area in Bangladesh, with trigger in blue. 
 
We examine the cost of insurance premiums using equation 1 using the GEV, the 2-parameter 
Beta, and the 4 parameter Beta distribution for a policy chosen by each region (Figure 8). 
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Policyholders can choose at which fractional inundated area they want to trigger the policy and 
receive the payout. Other designs are possible, where coverage increases with larger fractional 
inundated area, but is held constant at one coverage in this example ($200 million for 
Bangladesh and $100 million for Argentina). The policyholder must consider at what fractional 
inundated area they expect to have a high loss (e.g. Figure 8a) that their capital reserves cannot 
cover. For example, the Indian government allocated ~$4 billion in USD for disaster response 
(Allocation and Release of Funds from the State Disaster Response Mitigation Fund during 
2020-2021 2020), in 2020 and would only want to purchase a policy for extreme events at a 
fractional flood area that causes more damage than their available cover in the government 
budget.  

 
Figure 9. Estimated uncertainty ratio (risk premium/fair premium) (a and c for Bangladesh and 
Argentina and cost of premiums across fractional inundated area (b and d) for Bangladesh and 
Argentina for different probability distributions across fractional inundated area. 
 

The risk premium is increasingly larger than the fair premium as fractional inundated 
area increases, as measured by the Uncertainty Ratio (risk premium/fair premium) (Figure 9a, c). 
In small sample sizes (which will be typical for writing insurance policies on a relatively short 
satellite record), the risk premium will nearly always be higher than the fair premium 
(Uncertainty Ratio >1). The risk premium decreases with larger sample sizes (e.g. Figure 3, 
comparing the uncertainty ratio for n=20 vs. n=200), and for smaller fractional flooded area. 
However, most policy holders will desire policies that both i) offer coverage at larger fractional 
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inundated areas that represent losses larger than their reserves and ii) keep insurance premium 
costs low while result in seeking coverage for extreme events at larger fractional flooded areas. 
Uncertainty plays a larger role in insurance premium prices with more extreme events. 

Given policy holders will often desire payouts at larger return periods, we do not consider 
the GEV as a suitable probability distribution to price insurance premiums. The GEV can be 
dismissed on theoretical grounds because it is unbounded (and fractional flooded area can never 
be >1). Uncertainty estimates are wider using the GEV, which quickly include values >1 by the 
50 or 100 year return period (Figure 5f, 6f). Figure 9 also demonstrates that the GEV results in a 
more expensive insurance premium at all fractional flooded areas in Argentina, and at fractional 
flooded areas >0.5 in Bangladesh.  

 
Table 2. Estimated annual premium and flood losses per country, in units of millions of USD. 
Flood losses are estimated using the loss function in Figure 8, using the empirical time series in 
Figure 4. The estimated exceedance probability (and return periods) are in columns 3 and 4 for 2 
Beta and 4 Beta estimates, respectively for the parameters considered. Column 5 is the number 
of times each trigger would have paid out based on the empirical flood history (Figure 8a red 
line, 8b blue line). Column 6 is the cumulative flood losses during this time period (1975-2019 in 
Bangladesh, 2001-2017 in Argentina) by multiplying the fractional flooded area per year with 
the associated estimated loss from equation 8 above the threshold/trigger (Figure 8a). The 
estimated annual premium for a trigger (0.09 for Argentina and 0.4 vs. 0.5 for Bangladesh) for 
the 2- and 4-parameter Beta are estimated in columns 7 and 8 (Table 2), along with the total 
premiums paid to the insurer in parentheses over the time period analyzed. The final two 
columns (9 and 10) are the ratio of total payouts to the region by the insurer (numbers of payouts 
times coverage (column 5) to the premiums paid by the government during the time period 
analyzed. 
 

Country and 
years 
analyzed 

Fractional 
flood 
trigger 
threshold 

Pexc 2 
Beta; 
return 
period 

Pexc 4 
Beta; 
return 
period 

Times 
paid 
out 
(cover 
M 
USD) 

Total 
flood 
losses 
M USD 
above 
trigger  

2 Beta 
premium 
(total 
paid) M 
USD 

4 Beta 
premium 
(total 
paid) M 
USD 

2 Beta 
ratio of 
payouts 
to 
premium  

4 Beta 
ratio of 
payouts 
to 
premium  

Bangladesh 
(1975-2019) 

0.4 0.11; 
8.7 
yrs 

0.12; 
8.19 
yrs 

4 
(200) 

1769.87 48.2 
(2120.4) 

47.7 
(2098.8) 

0.377 0.381 

Bangladesh 
(1975-2019) 

0.5 0.05; 
19.9 
yrs 

0.05; 
18.2 
yrs 

2 
(200) 

896.93  26 
(1144) 

27.6 
(1214.4) 

0.350  0.330 

Argentina 
(2001-2017) 

0.09 0.11; 
9.32 
yrs 

0.24; 
4.24 
yrs 

3 
(100) 

263.33 29 (464) 
 

28.3 
(452.8) 

0.647 0.663 

 
We compare insurance premiums prices across the 2- and 4-parameter Beta distribution 

for Bangladesh and Argentina (Table 2) since these are both admissible distributions, and the 
main question is whether the upper bound is smaller than 1 or 1. The societal optimum of the 
ratio of payouts to premiums is 1, where over time, the premium the buyer pays is closer to the 
average annual payout by the insurer. We therefore bold the numbers in columns 9 and 10 to 
indicate which insurance policy is preferred and closer to the ideal “fair” ratio. Note that the ratio 
of payouts to premiums will never equal 1, because the insurer needs to make a profit and cover 
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uncertainty, and the government values large sums of capital it needs to spend right after an 
event.  

The 4 parameter Beta distribution is likely a better choice for insurance design for 
Argentina, and results in a cheaper premium and higher average annual payout to premium ratio. 
This is because inundation in Argentina is likely bounded far below 1 (the largest recorded 
fractional flood area is 0.12), and the additional parameters in the distribution help constrain the 
estimation (Figure 6). In Bangladesh, either the 2 or 4 Beta distribution could be used, but the 
cheaper insurance premium depends on the fractional flood area trigger chosen. In Bangladesh, 
the bound is already estimated to be close to 1 (Figure 5), and the effort of estimating two 
additional parameters for the 4 Beta distribution generates additional costs in the uncertainty 
ratio at larger fractional flooded areas (e.g. 0.5).  

In general, uncertainty of estimation increases with return periods (larger, more 
infrequent floods) and as fractional flooded area grows in both examples (Figure 9, a and b). This 
implies that the proportion the estimation uncertainty contributes (the risk premium) increases. 
The lesson here is there is not ONE best distribution for estimating uncertainty for all flood index 
insurance situations. Our results suggest the 4-parameter Beta distribution is likely a good 
choice, but in some situations where the fractional flooded area bound is near 1, the 2-parameter 
Beta distribution may also be justified. An analysis such as the one presented here can help 
insurers and the insured appreciate the nuances and make an informed decision.  
 
5. Discussion and Conclusion 

This paper was motivated by a desire to directly explore the estimation of the annual 
exceedance probabilities for the fractional area inundated by flooding applied to index insurance. 
Using two settings as examples, we have demonstrated that a distribution, such as the Beta that 
has bounded support may in general be preferable to the GEV distribution that is commonly used 
for modeling extreme values. Results indicate that uncertainty is much higher for GEV compared 
to the Beta distribution for the relatively short record inundation time series analyzed in 
Argentina, or for extreme events in Bangladesh. GEV estimation becomes physically unfeasible 
(predicts fractional inundation greater than 1) at the 50 year return period in one dataset, showing 
the importance of a bounded distribution to estimate exceedance probabilities for extremely large 
inundated areas.  

Our experiments showed estimating uncertainty associated with the resulting annual 
exceedance probabilities can vary by setting. We found the 4 parameter Beta distribution to yield 
lower uncertainty in Argentina, while in Bangladesh the 2 parameter Beta distribution is also 
acceptable, because an upper bound of 1 seemed plausible. We do not suggest that a particular 
distribution, or a fitting method for the parameters of a distribution be used prescriptively across 
all inundation risk analyses. The analyst should consider a strategy for each application that 
effectively reduces uncertainty. The choice of distribution should depend on two factors, i) the 
goodness of fit of that distribution to the data, as measured by an appropriately estimated log-
likelihood of fit (or equivalent measure such as the BIC) and ii) the estimated uncertainty of the 
“predicted” distribution over the range of application of the distribution. In particular, we suggest 
assessing the uncertainty under extrapolation to the annual exceedance probabilities or return 
periods of interest when using short records such as satellite data. A more complex distribution 
that fits the observations better (factor i) may actually posit considerably higher or lower 
uncertainty under extrapolation to return periods amenable to index insurance applications 
(factor ii).  
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In this example, results show the distribution of the log-likelihood of the fit to the 
candidate distributions was often not distinguishable. The power of typical tests of goodness of 
fit of distributions is generally low with small sample sizes. What that means in practical terms is 
that the PPCC, Kolmogorov-Smirnov, or the Chi-Square tests used to choose between candidate 
probability distributions are a) not very robust in indicating which one is better, and b) that they 
are heavily weighted towards in sample performance, rather than the quality of fit in the tails of 
the distribution. This observation is what has often motivated the use of the Hill’s (Hill 1975) 
and other tail index methods for extreme values. However, Moon et al. (1993) noted that such 
estimators typically have significantly higher uncertainty. The same argument applies to more 
complex distributions. Consequently, our argument in this paper is that for inundated area, which 
is anticipated to be bounded, the GEV that is unbounded would in many cases be conceptually 
inadmissible. However, for relatively small samples, the GEV may indeed exhibit a better fit in 
terms of log-likelihood than even a two-parameter Beta distribution. However, this may come 
with substantially higher uncertainty for the pexc associated with the threshold selected for the 
index.  

Parametric or index insurance policies would be written for the exceedance probability of 
a specific area inundated. A practical approach, beyond “fit” of the distribution, is to evaluate 
how the uncertainty (spexc) around the exceedance probability (pexc) affects the insurance 
premium associated with that distribution for the desired inundated area trigger. Equation 1 can 
be used to estimate the premium price for a specified level of coverage, P, the needed payout to 
cover the damages associated with that level of inundation. The sensitivity of the premium to 
distribution choice covering both the expected value and the spread of pexc for that threshold of 
inundated area can thus be evaluated to ultimately inform the choice of distribution. We 
emphasize that where distributions have a comparable fit to the data, the one which indicates a 
lower uncertainty is preferred, since it reflects a parsimony argument. However, we fully 
recognize that the true model uncertainty reflecting choice across distributions may be higher 
still, and this is reflected to an extent in the risk premium multiplier, k, that the insurer may 
choose. Given smaller sample sizes, the insurer may apply higher values of k reflecting their 
higher risk aversion. Of course this will magnify the impact of the uncertainty of estimation on 
the premium, and reinforce the choice of a more parsimonious model. The apparent duplicity in 
this reality is understood as the factorization of the insurer’s risk perception (higher k) and the 
appropriateness of a model selection conditional on that as the one that is most consistent with 
the data in terms of fit and parsimony.  

We focused on the variability of the predicted exceedance probability curve in the tails of 
the distribution, where a prospective insurance product is targeted. When using a short (<30 
year) record to fit a distribution for a product that pays out at the 100-year return period, the 
performance or uncertainty on the extrapolated “tail” of the distribution matters most. For 
example, the fit of a 4-parameter distribution (where bounds are estimated instead of prescribed 
them as 0,1) may be indistinguishable from the 2-parameter distribution, and the pexc 
corresponding to 𝑅!∗ (the trigger) may be the same. However, if the uncertainty, or spexc, would 
be higher for the 4-parameter distribution, then the 2 parameter distribution is a better choice, as 
in the Bangladesh example. On the other hand, if an upper bound of 1 is not justified, as 
indicated for Argentina, then the 4 parameter distribution does offer a better fit and lower 
uncertainty. If the fit of the two distributions were significantly different, then the computed 𝑅!∗ 
for the same candidate x, would provide the basis for comparison across the two distributions, 
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since it would account for both the change in the pexc  and the spexc. As x is varied, the conclusion 
as to which one is better could very well change.  

Our intent with these two examples was to emphasize that the choice of distribution and 
estimation procedure should be based on the target application for index insurance, instead of a 
prescriptive choice. Using only a goodness of fit measure fails to account for the typical 
extrapolation of the fit beyond the length of the record relevant for insurance or other 
catastrophic risk instrument design.  

Focusing on uncertainty in index insurance design (over a goodness of fit measure) yields 
useful information to help governments arrive at an informed choice of which policy to purchase, 
with what coverage, and at what exceedance probability they desire payouts. Governments (and 
any insurance purchaser) have to make tradeoffs between the cost of investing in flood 
mitigation which can prevent frequent floods at high exceedance probabilities versus an 
insurance policy to cover more frequent events. Comparing the ratio of payouts to premiums 
(e.g. in table 2), compared to the relative costs of mitigation can aid that decision. Cheaper index 
insurance premiums to only cover rare catastrophic events at higher fractional flooded areas 
(Figure 9 b and d) can seem attractive, but implies the buyer is paying large portions of premium 
to cover the uncertainty associated with estimating exceedance probabilities of these rare events 
(Figure 9 a and c). Ultimately governments have to examine a holistic suite of flood adaptation 
options, and decide what type of insurance fits their risk mitigation strategy and budget best. 

A major limitation of the proposed approach and important in future work is the issue of 
nonstationarity. Two major factors, climate change and flood adaptation efforts, change the 
relationship between fractional flood area and damage. Investing in flood mitigation significantly 
lowers the loss experienced as a function of inundated area (Jongman et al. 2015, Boulange et al. 
2021). Table 1, for example, shows how fractional inundated area that was financially 
devastating in Bangladesh in the 70s and 80s (>4 billion), now cause less the 1 billion dollars of 
damage, likely due to extensive investments in embanks to protect infrastructure and agriculture 
(Rahman and Salehin 2013). This makes estimating the necessary coverage for fractional 
inundated area difficult. As floods increase in frequency and magnitude with a changing climate, 
exceedance probabilities with specific fractional inundated area could be underestimated using 
the past record. Yet current climate model projections for extreme event probabilities may be too 
uncertain to usefully inform insurance contracts at sub-regional resolutions (Fiedler et al. 2021). 
Both adaptation and climate change should be addressed in future work to improve index 
insurance design that reflects the needs of risk transfer products for the Anthropocene. 

Index insurance, catastrophe bonds, and other types of risk transfer instruments could 
play an important role in adapting to floods and ensuring sustainable development. The direct 
use of inundation as a measure of flood risk, using satellite imagery for both risk estimation and 
verification of payoff, opens up an interesting set of questions for spatial analysis as well as 
insurance product design. The use of a direct measure could potentially reduce the uncertainties 
associated with the chain of hydrologic and climate models that are used for inundation 
estimates. On the other hand, the short records from satellites lead to higher uncertainty. The fact 
that the random variable of interest is bounded suggests an alternate choice of distribution 
beyond the GEV that constrains the uncertainty associated with extreme events and ultimately 
reduces the price of insurance premiums, making them more accessible. Bayesian approaches not 
explored in this paper could further reduce uncertainty in small samples of satellite data to 
improve flood index design. How best can the satellite data on inundation, land-use change, and 
recent climate be best used to update the changing probability of inundation and loss and inform 
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risk transfer products? This is an open question that we hope the flood risk community will 
consider to complement traditional discharge and flood model-based approaches to 
understanding risk. 
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