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Abstract

\justifying Full-waveform inversion (FWI) is a non-linear optimization algorithm to estimate the velocity model by fitting the

observed seismic data. With a smooth starting velocity model, FWI mainly inverts for the shallower background velocity model

by fitting the observed direct, diving and refracted data, and updates the interfaces by fitting the observed reflected data. As

the deeper background velocity model cannot be effectively updated by fitting the reflected data in FWI, the deeper interfaces

are less accurate than the shallower interfaces. To update the deeper background velocity model, many reflection-waveform

inversion (RWI) algorithms were proposed to separate the tomographic and migration components from the reflection-related

gradient. We propose a convolutional-neural-network-based reflection-waveform inversion (CNN-RWI) to repeatedly apply

the iteratively-updated CNN to predict the true velocity model from the smooth starting velocity model (the tomographic

components), and the high-resolution migration image (the migration components). The CNN is iteratively updated based

on the more representative training dataset, which is obtained from the latest CNN-predicted velocity model by the proposed

spatially-constrained divisive hierarchical k-means parcellation method. The more representative training velocity models are,

the more accurate CNN-predicted velocity model. Synthetic examples using different portions of the Marmousi2 P-wave velocity

model show that CNN-RWI inverts for both the shallower and deeper velocity model more accurately than the conjugate-gradient

FWI (CG-FWI) does. Both the CNN-RWI and the CG-FWI are sensitive to the accuracy of the starting velocity model and

the complexity of the unknown true velocity model.
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Abstract14

Full-waveform inversion (FWI) is a non-linear optimization algorithm to estimate the15

velocity model by fitting the observed seismic data. With a smooth starting velocity model,16

FWI mainly inverts for the shallower background velocity model by fitting the observed di-17

rect, diving and refracted data, and updates the interfaces by fitting the observed reflected18

data. As the deeper background velocity model cannot be effectively updated by fitting the19

reflected data in FWI, the deeper interfaces are less accurate than the shallower interfaces.20

To update the deeper background velocity model, many reflection-waveform inversion (RWI)21

algorithms were proposed to separate the tomographic and migration components from22

the reflection-related gradient. We propose a convolutional-neural-network-based reflection-23

waveform inversion (CNN-RWI) to repeatedly apply the iteratively-updated CNN to predict24

the true velocity model from the smooth starting velocity model (the tomographic compo-25

nents), and the high-resolution migration image (the migration components). The CNN26

is iteratively updated based on the more representative training dataset, which is obtained27

from the latest CNN-predicted velocity model by the proposed spatially-constrained divisive28

hierarchical k-means parcellation method. The more representative training velocity models29

are, the more accurate CNN-predicted velocity model. Synthetic examples using different30

portions of the Marmousi2 P-wave velocity model show that CNN-RWI inverts for both31

the shallower and deeper velocity model more accurately than the conjugate-gradient FWI32

(CG-FWI) does. Both the CNN-RWI and the CG-FWI are sensitive to the accuracy of the33

starting velocity model and the complexity of the unknown true velocity model.34

Plain Language Summary35

Full waveform inversion (FWI) is generally a combination of tomography and migra-36

tion techniques. However, the conventional FWI cannot estimate the deeper background37

velocity model accurately. By separating the tomographic and migration components,38

reflection-waveform inversion (RWI) effectively utilizes the tomographic component to up-39

date the deeper background velocity model. We propose a convolutional-neural-network-40

based reflection-waveform inversion (CNN-RWI) to combine the smooth starting velocity41

model (the tomographic component) and the corresponding migration image (the migration42

component), to accurately predict both the background velocity and interfaces in the veloc-43

ity model. The conventional CNN application predicts the velocity model, by following the44

training dataset preparation, CNN training, and the CNN prediction, once only. In contrast,45

the CNN-RWI contains an innovative outer loop to iteratively update the CNN to predict46

the more accurate velocity model from the original starting velocity model and migration47

image, by dynamically recreating the more representative training velocity models for the48

CNN training. We also propose a novel spatially-constrained divisive hierarchical k-means49

parcellation method to obtain the more representative velocity models by parcellating the50

latest CNN-predicted velocity model into a model basis.51

1 Introduction52

Full waveform inversion (FWI) (Bamberger et al., 1982; Lailly, 1983; Tarantola, 1984;53

Gauthier et al., 1986; Mora, 1987; Crase et al., 1990; Pratt et al., 1998; Pratt, 1999) is a54

powerful algorithm to perform a least-squares non-linear data-fitting optimization to esti-55

mate a high-resolution velocity model. The conventional FWI gradient, obtained by zero-lag56

cross-correlating both the source and residual wavefields, can be divided into three compo-57

nents (Xu et al., 2012; Alkhalifah, 2014; Wu & Alkhalifah, 2015; Yao et al., 2020): (1)58

the low-wavenumber component obtained from the direct, refracted, and diving waves, (2)59

the low-wavenumber (tomographic) component and (3) the high-wavenumber (migration)60

component obtained from reflected waves. Because of the shallower penetration depth of61

the direct, refracted, and diving waves (relative to the reflected waves) and also because of62

the overlapping of their wavepaths in both the source and residual wavefields, this compo-63
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nent of the gradient can effectively update mainly the shallower background velocity model,64

provided that the traveltime errors are within a half cycle (Virieux & Operto, 2009). As65

the initial model is normally smooth, at the first iteration of FWI, the source wavefield only66

meets the reflection-related residual wavefield at the interfaces. Thus, at the first iteration,67

reflected waves provide mainly the high-wavenumber component of the FWI gradient at the68

interface (migration component) (Mora, 1989; Yao et al., 2020). In the following iterations,69

both the source and reflection-related residual wavefields create corresponding scattered70

waves at the interfaces. Then, the low-wavenumber (tomographic) component of the FWI71

gradient is obtained from the reflected waves, because the wavepaths of the source and72

reflection-related residual wavefields overlap with the scattered waves, which are created by73

each other at the interfaces. The reflection-related high-wavenumber (migration) component74

at the interface is generally one order of magnitude higher than the reflection-related low-75

wavenumber (tomographic) component above the interfaces (Yao et al., 2020). Therefore,76

with a smooth starting velocity model, conventional FWI mainly updates the deeper inter-77

faces, rather than the deeper background velocity model, by fitting the observed reflection78

data.79

To effectively update the background velocity model by tomographic component, there80

are mainly three types of reflection-waveform inversion (RWI) proposed to retain the to-81

mographic component but remove the migration component from the gradient. The first82

strategy is to separate the up- and down-going wavefield based on the assumption that the83

incident and reflection wavefields propagates downward and upward, respectively (Hu &84

McMechan, 1987; Liu et al., 2011; Wang et al., 2013; Fei et al., 2015; Chi et al., 2017; Lian85

et al., 2018). However, if a layer has a large dipping angle, the migration component cannot86

be removed completely and so causes the background velocity model to be updated in the87

wrong direction. To separate the incident and reflection wavefields in both the vertical and88

horizontal direction, Irabor and Warner (2016) propose to use a pair of 1D two-way wave89

equations to separately simulate the vertical and horizontal wave propagations. The second90

strategy is to apply scattering angle filtering, based on the assumption that the tomographic91

component corresponds to the scattering angle close to 180o (Khalil et al., 2014; Alkhalifah,92

2014; Wu & Alkhalifah, 2015; Wu & Alkhalifah, 2017; Yao et al., 2018, 2019). The third93

strategy is to apply Born modeling to separate tomographic and migration components (Xu94

et al., 2012; Wu & Alkhalifah, 2017; Sun et al., 2017; Yao & Wu, 2017). Ma et al. (2012)95

propose to utilize image-guided interpolation and its adjoint operator to get a sparse model96

from the migration image and to constrain the inversion to the blocky model, interpolated97

from the sparse model. Wang et al. (2021) propose a generalized internal multiple imaging-98

based RWI (GIMI-RWI) to convolve the data residuals with the reflection kernel stored99

for each source-receiver pair to update the tomographic velocity. Thus, GIMI-RWI avoids100

the Born modeling for demigration and is also source independent to update the velocity101

along the wavepaths. We refer Yao et al. (2020) for an overview of the reflection-waveform102

inversion.103

The convolutional neural network (CNN) is first developed in the computer vision104

field for image classification (Fukushima & Miyake, 1982; LeCun et al., 1989, 1990, 1998;105

Krizhevsky et al., 2012). The success of CNN in computer vision is partially attributed to106

many open-access large datasets, such as the ImageNet dataset (Deng et al., 2009) and the107

Microsoft COCO dataset (Lin et al., 2014), both of which contain thousands of randomly-108

selected images with labels. The large image datasets are then divided into training, test,109

and validation datasets for CNN application. Because of the success of the CNN in computer110

vision, it became a popular tool in seismic inversion, to predict the velocity model directly111

from a raw seismic data or a migration image (Araya-Polo et al., 2018; Lin & Wu, 2018;112

Yang & Ma, 2019; Wang & Ma, 2020; Liu et al., 2021; Zhang & Gao, 2021). These CNN113

applications to predict the velocity model replace the conventional wave-equation-guided114

procedures (e.g., calculation of the model gradient in FWI and RWI to fit the seismic data),115

by training CNN to approximate the mapping relations in the training dataset. However,116

unlike the image datasets which have a relatively small variety of types, shapes and profiles117
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of targets (e.g., human, animals, objects, etc.), the earth contains realistic, complex geologic118

models with numerous, random, shapes of various layers, salts, and faults. What is worse,119

most of the geologic models are either unknown or not open-access. Therefore, many CNN120

applications to predict velocity models rely on different model generation methods to create121

random velocity models for CNN training, validation, and testing. Araya-Polo et al. (2018)122

generate velocity models with random faults and salt bodies. Lin and Wu (2018), and123

Zhang and Gao (2021) generate velocity models with random flat subsurface layers, and124

curved subsurface layers with faults. Yang and Ma (2019) generate random velocity models125

with smooth interface curvatures and increasing velocity values with depth. Then, a salt126

body with a random shape and position was embedded into each random model. Wang and127

Ma (2020) convert natural images (e.g., from the Microsoft COCO dataset), which are rich128

in structure and details, to velocity models. Liu et al. (2021) generate dense-layer, fault,129

and salt body models, by applying multiple random trigonometric and linear equations to130

generate continuous, fluctuating, and complicated curves.131

The open-access image datasets (e.g., the ImageNet dataset and the Microsoft COCO132

dataset) randomly select worldwide images with realistic targets in different realistic scenes.133

In contrast, the random velocity models are generated or selected based on the specific134

rules, rather than the prior information on the realistic geologic structures in the targeted135

regions. Thus, the random velocity models created in these ways suffer more or less from136

the selection bias (i.e. the velocity models do not randomly represent the targeted regions).137

Thus, dividing the random velocity models into training, validation, and test datasets to138

train and test the CNN, cannot guarantee the accurate prediction of the realistic velocity139

models in the targeted regions, because of the selection bias of the random velocity models.140

Therefore, successful application of CNN to approximate the inverse operator mapping from141

the observed seismic data or migration images to the unknown true velocity model (Araya-142

Polo et al., 2018; Lin & Wu, 2018; Yang & Ma, 2019; Wang & Ma, 2020; Liu et al., 2021;143

Zhang & Gao, 2021) also relies on the selection-unbiased training models as well as their144

related seismic data or migration images. Thus, the critical issues in conventional FWI145

(e.g., updating the background velocity model, cycle-skipping, etc.) are converted to the146

selection bias of the training velocity models and the overfitting of CNN. The overfitting is a147

phenomenon (Chicco, 2017) that the minimized performance error in the CNN training does148

not lead the CNN to predict the unknown true velocity model more accurately. Therefore,149

whether the training velocity models represent the unknown true velocity model (or the150

unknown true velocity model is within the distribution of the training models), becomes a151

valid concern and a critical issue in application of CNN to predict velocity models. Kazei et152

al. (2021) propose to generate random velocity models from a guiding model, by applying153

complicated image processing procedures (flipping, cropping, distortion, etc.). Then, the154

CNN is trained to approximate the mapping from full seismic waveforms to 1D vertical155

velocity profiles, which, compared to a 2D velocity model, are more randomly sampled and156

selected (less selection-biased). Thus, their method can effectively train a less-overfitted157

CNN to invert for the velocity model profile. Alternatively, CNN-domain FWI is proposed158

to apply CNN as a functional approximator to reparameterize and then replace a given159

starting velocity model to automatically capture its salient features as prior information160

(Wu & McMechan, 2018, 2019; Zhu et al., 2020; He & Wang, 2021). Then, the CNN-161

domain FWI iteratively constrains the inversion mainly to these captured features in CNN162

hidden layers, as an implicit regularization, to minimize the data residuals.163

In this paper, we first propose a novel, spatially-constrained, divisive, hierarchical, k-164

means parcellation method to maximumly partition the velocity model into small features165

as the model basis. Each feature in the model basis will then be uniformly assigned by a166

value, which is randomly drawn from each feature’s velocity distribution, to create a random167

velocity model. With the implementation of the proposed innovative parcellation method to168

prepare the training velocity model, we propose a CNN-based reflection-waveform inversion169

(CNN-RWI) to iteratively apply the CNN to predict the velocity model from the original170
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starting velocity model and the corresponding original migration image, both of which are171

the prior information sequentially obtained by the seismic preprocessing.172

CNN-RWI mainly contains two loops. The inner loop is the CNN training step which173

iteratively trains CNN to approximate the training velocity models from the corresponding174

training starting velocity models and the training migration images. The main difference175

between the proposed CNN-RWI and the conventional CNN applications to predict veloc-176

ity model is the outer loop. Conventional CNN applications to predict the velocity model177

follow the three sequential main steps once only: the training model preparation, the CNN178

training, and the CNN prediction. In contrast, the outer loop of CNN-RWI iteratively179

follows these three sequential steps until the CNN-RWI converges (e.g., the data or travel-180

time errors are minimized). Specifically, in the outer loop of the CNN-RWI, the training181

velocity models are prepared by applying the proposed parcellation method to partition182

the CNN-predicted velocity model, obtained at the previous iteration, to generate random183

training velocity models. Then, after CNN training on the latest generated random training184

velocity models, CNN is applied to predict the unknown true velocity model again from the185

original starting velocity model and the corresponding original migration image. The CNN-186

predicted velocity model will then be partitioned to prepare the training velocity model,187

at the next iteration. The two-loop mechanism enables CNN-RWI to dynamically adjust188

the selection-biased training velocity models to gradually predict a more-accurate velocity189

model, from the original starting velocity model and the corresponding original migration190

image. Therefore, instead of minimizing the data residuals as the FWI or the RWI does,191

the CNN-RWI dynamically shifts the distributions of the training velocity models as well as192

the CNN-predicted velocity models towards the unknown true velocity model, in a iterative193

deep learning manner, to implicitly reduce the selection bias.194

The CNN-RWI possesses the following advantages that the conventional FWI, the CNN-195

domain FWI, and the CNN applications to predict velocity model cannot compete for. First,196

for the inversion of the deeper velocity model, the FWI and the RWI mainly update the197

interface and background velocities, respectively, whereas the CNN-RWI efficiently updates198

both of them. Secondly, both the FWI and the RWI rely on the lower-frequency data such199

that the traveltime errors should be within a half cycle to avoid cycle-skipping, whereas the200

CNN-RWI prefers the higher-frequency data to obtain a higher-resolution migration image201

as the CNN input data. Thirdly, the conventional CNN application used to predict the202

velocity model can be treated as a special case of CNN-RWI with only one iteration in the203

outer loop, to train the CNN to accurately approximate the training models, which generally204

fails to represent the unknown real velocity model in the targeted region (and thus exhibits205

selection bias).206

The structure of the paper is outlined as follows. We first introduce the CNN-RWI207

algorithm with flowcharts. Then in the synthetic examples section, the CNN-RWI is com-208

pared with the conjugate-gradient FWI (CG-FWI), which is provided by the PySIT Toolbox209

(Hewett et al., 2020), to invert for three different portions of the Marmousi2 P-wave velocity210

model (Martin et al., 2006). Synthetic examples on these cropped Marmousi2 models show211

that the CNN-RWI outperforms the CG-FWI to invert for the velocity models. The syn-212

thetic examples also show that a second pass of the CG-FWI is needed to help the CNN-RWI213

further invert for the shallower parts of the velocity models, which are partially omitted by214

the CNN-RWI in the first pass.215

2 Methodology of CNN-RWI216

The CNN-RWI is an iterative inversion to apply the CNN to predict an unknown true217

velocity model repeatedly from the original starting velocity model and the corresponding218

original migration image. The original starting velocity model is assumed to be obtained by219

reflection tomography or migration-based velocity analysis (MVA) from the observed data.220

The corresponding original migration image I(x) can be obtained by reverse-time migration221
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(RTM) (Baysal et al., 1983; McMechan, 1983b; Whitmore, 1983), in which the image is222

given by223

I(x) =

∫ T

0

Us(x, t)Ur(x, t)dt, (1)224

where Us(x, t) and Ur(x, t) are the source and receiver wavefields propagated into the225

original starting velocity model, at the location of x and the time t, respectively. T is the226

maximum traveltime.227

Figure 1 shows the workflow of the CNN-RWI, which contains an outer and inner loops.228

The outer loop (indicated by the orange arrows in Figure 1) contains four main parts at229

each iteration: the preparation of the training velocity models (the purple box) , the CNN230

training (the red boxes), the CNN prediction (the black boxes), and the error evaluation.231

The inner loop is the CNN training to iteratively update CNN to fit the training velocity232

models (in the red box in Figure 1).233

Once the original starting velocity model and the corresponding original migration234

(RTM) image are calculated at the beginning of the CNN-RWI, they are fixed and are235

repeatedly input to CNN, in the CNN prediction part (the black boxes), to predict the236

unknown true velocity model, at each iteration. As the CNN input data for the CNN237

prediction is fixed at each iteration, the main task of the CNN-RWI is to dynamically238

adjust the training velocity models with less selection bias to update the CNN. Thus, the239

core idea of the CNN-RWI is that, the better the representation of the unknown true velocity240

model by the training velocity models, the less the over-fitting in the CNN training part,241

and the better the prediction of the unknown true velocity model by CNN. The following242

five subsections detail the CNN-RWI algorithm.243

2.1 Preparation of the training velocity models244

A key novelty of the CNN-RWI is the preparation of the training velocity models from245

the prior velocity model (the purple box). For the first iteration of the CNN-RWI, the246

best prior velocity model is the original starting velocity model, which is generally obtained247

by preprocessing (e.g., traveltime tomography or MVA) from the observed seismic data, to248

estimate the unknown true velocity model. For the following iterations of the CNN-RWI,249

the best prior velocity model becomes the latest CNN-predicted velocity model.250

The preparation of the training velocity models contains two main procedures: the251

generation of the model basis from a prior model, and the generation of the training velocity252

models from the model basis. A model basis is created by parcellating the prior velocity253

model into spatially related and connected features. Then, the model basis is used to create254

training velocity models.255

2.1.1 Generation of the model basis from a prior velocity model256

We propose a spatially-constrained, divisive hierarchical k-means parcellation method257

to parcellate a velocity model into spatially related and connected features, as a model258

basis. McMechan (1983a) proposed to differentiate a image and look for local maxima to259

parcellate a migrated common mid-point profile. Thus, the number of features parcellated260

by this method depends on the gradients of the image. The conventional k-means method261

(Lloyd, 1982; Forgy, 1965; MacQueen et al., 1967) is also not properly used for parcellation,262

since the conventional k-means method does not guarantee spatial continuity. The proposed263

parcellation method combines the k-means with the region growing, in the divisive (top-264

down) hierarchical structure.265

A critical hyper-parameter is the threshold of the minimum feature size, which is the266

criterion to decide whether the feature should be further subdivided. This threshold plays267

the key role in weighing the homogeneity and the minimum size of each feature. The268

threshold should be set to maximize the number of features, without creating meaningless269
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small scattering regions. The mathematical explanation of the proposed parcellation method270

is divided into the following seven steps, and is described in the pseudo-code of Algorithm271

1.272

Step 1. Apply k-means clustering.273

Apply k-means clustering (Lloyd, 1982; Forgy, 1965; MacQueen et al., 1967) with k=2274

to partition the prior velocity model V into two disjoint clusters C1 and C2, where275

V = C1 ∪C2, C1 ∩C2 = ∅. (2)276

The two disjoint clusters C1 and C2 are obtained, by minimizing the loss function277

D(V) =

2∑

i=1

∑

p∈Ci

||v(p)− µi||
2, (3)278

where v(p) denotes the velocity at the model grid point p, and µi denotes the mean of279

velocities in Ci.280

The k-means clustering method partitions the velocity model V into the clusters C1281

and C2, based on the velocity distribution, without consideration of the spatial relations282

and connections. Therefore, the clusters C1 and C2 may include many spatially unrelated283

and disconnected small regions, which should be avoided to produce unwanted scattering284

artifacts in the corresponding seismic data.285

Step 2. Find the largest regions.286

By independently computing the number of grid points in each spatially disjoint regions287

in each of clusters C1 and C2, the respective largest spatially connected regions are selected288

as S1 and S2, respectively.289

Step 3. Apply region growing.290

The velocity model V is repartitioned into three disjoint clusters V = {S0,S1,S2}291

where S1 ⊆ C1 and S2 ⊆ C2 are the regions selected in step 2, and S0 = V ∩ S1 ∪ S2.292

Then, each model grid point p ∈ S0 is merged into either S1 or S2, based on the Manhattan293

distance Dm, using294

p ∈

{
S1, if Dm(p,S1) ≤ Dm(p,S2),

S2, if Dm(p,S1) > Dm(p,S2),
(4)295

where Dm(p,Si) (for i ∈ {1, 2}) is defined (for a 2-D model) as296

Dm(p,Si) = min
s∈Si

|xp − xs|+ |yp − ys|, (5)297

where x and y are the horizontal and vertical coordinates, and s denotes the grid point in298

the cluster Si (for i ∈ {1, 2}).299

The region growing step is numerically achieved by iteratively merging the model grid300

points (p ∈ S0) adjacent to each of clusters S1 and S2, respectively.301

Step 4. Split the velocity model into two submodels.302

After the completion of the region growing, the velocity model V is ultimately parcel-303

lated into two spatially related and connected disjoint submodels (S1 and S2)304

V = S1 ∪ S2, S1 ∩ S2 = ∅. (6)305

Steps 5 and 6. Recursively parcellate submodels.306

The spatially related and connected disjoint submodels S1 and S2 are then separately307

and recursively parcellated, until the submodel size (the number of grid points in the sub-308

model to be partitioned) is smaller than the threshold (the smallest tolerated feature size).309
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Step 7. Save the feature as a component of a model basis.310

If the submodel size (the number of grid points in the submodel to be partitioned) is311

smaller than the threshold (the smallest tolerated feature size), the submodel will not be312

recursively parcellated. Instead, it will be saved as a component of the model basis (i.e., it313

becomes a leaf node in the hierarchical tree).314

With the recursive parcellation in steps 1-7, the velocity model V is consequentially315

parcellated into many spatially-related, and connected, disjoint features (submodels) as a316

model basis317

V = {S1,S2, . . . ,Sn}, (7)318

where n is the number of features and319

Si ∩ Sj = ∅ if i 6= j. (8)320

Algorithm 1 Spatially-constrained divisive hierarchical k-means

Set a threshold as the stopping criterion when the size (the number of grid points) of the
model is less than the threshold
procedure spatially-constrained k-means(model)

if model size ≥ threshold then

1. Apply k-means with k=2 to divide the model into two clusters a and b, based
on the velocity distribution.

2. Find the largest regions x and y in clusters a and b, respectively.
3. Let regions x and y compete to merge other regions in the model.
4. Split the model into submodels A and B, according to the regions x and y.
5. spatially-constrained k-means(submodel A)
6. spatially-constrained k-means(submodel B)

end if

7. Save the model as a leaf node (a component of the model basis).
end procedure

2.1.2 Generation of the training velocity model from the model basis321

After the model basis {S1,S2, . . . ,Sn} is obtained, the training velocity models can be322

created, based on the mean E(Si) and variance Var(Si) of the velocities in each component323

of the model basis, as324

E(Si) =
1

Ni

∑

s∈Si

s, (9)325

and326

Var(Si) = E{[Si − E(Si)]
2} =

1

Ni

∑

s∈Si

[s− E(Si)]
2, (10)327

where Ni is the number of grid points in each component (parcel) Si. Then, the random328

training velocity model set V̂ = {V̂1, V̂2, . . . , V̂m} (where m is the number of random329

training velocity models) are obtained by assigning random values, drawn from the velocity330

distributions of the components in the model basis, to themselves331

V̂k = {Ŝ1, Ŝ2, . . . , Ŝn}, k = 1, 2, . . . ,m, (11)332

where333

Ŝi ∼ N [E(Si), Var(Si)], i = 1, 2, . . . , n, (12)334

where N denotes a normal distribution.335

–8–



manuscript submitted to Solid Earth

The assignment of a random value to each feature (equation 11), not only increases336

the diversity of the training velocity models, but also creates training velocity models with337

many different homogeneous layers (each homogeneous layer has a uniform velocity). The338

contrasts of velocities between any two adjacent homogeneous layers create reflectors with339

different reflectivity in the training velocity models, which ensure that the corresponding340

training seismic data contains reflection events, just like the observed data.341

2.2 CNN training342

After the training velocity models are created in the preparation of the training ve-343

locity models procedure (subsection 2.1), the training starting velocity model set Ṽ =344

{Ṽ1, Ṽ2, . . . , Ṽm} and RTM image set Ĩ = {Ĩ1, Ĩ2, . . . , Ĩm} could be obtained by the con-345

sistent preprocessing (e.g., reflection tomography or MVA) and the corresponding RTM,346

respectively, from the training seismic data, calculated from the corresponding training ve-347

locity model set V̂ = {V̂1, V̂2, . . . , V̂m} (equation 11). Thus, the training starting velocity348

model set Ṽ and the training RTM image set Ĩ are obtained from synthetic data, in the349

same way that the original starting velocity model V0 and RTM image I0 are obtained from350

observed data.351

Imitating the original processing to obtain the training starting velocity model (e.g.,352

reflection tomography or MVA) is beneficial to reducing the selection bias, since the training353

starting velocity model is obtained in the same way as the original starting velocity model.354

However, this imitation is costly for all the training velocity models. Here, we apply a355

Gaussian filter to imitate the costly reflection tomography or MVA, to obtain the training356

starting velocity models by smoothing the training velocity models. Finding the best way357

to efficiently and accurately imitate the reflection tomography or MVA is a key to reduce358

the computational cost of the CNN-RWI; this is beyond the scope of this paper and so is359

left for future research.360

After the training dataset is prepared, the training starting velocity models Ṽ and the
training RTM images Ĩ are the input data to train the CNN to accurately reproduce the
training velocity models V̂ (the red boxes in Figure 1), by minimizing the loss function

w∗ = argmin
w

1

2

m∑

k=1

‖V̂k −G(Ṽk, Ĩk;w)‖22, (13)

where G is the convolutional neural network (CNN), parameterized by the weights w,361

and w∗ is the optimized CNN weights after CNN training (equation 13). By iteratively362

minimizing the loss function (equation 13), the CNN is assumed to accurately approximate363

the mapping from Ṽ and Ĩ to V̂, in the training dataset.364

2.3 CNN prediction365

In the CNN prediction (the black boxes in Figure 1), the combination of the original
starting velocity model V0 and the corresponding RTM image I0 are input to the trained
CNN to predict the unknown true velocity model

Vp = G(V0, I0;w
∗), (14)

where Vp is the CNN-predicted velocity model.366

2.4 Error evaluation367

After the velocity model Vp is predicted by the CNN, forward modeling is needed to368

obtain the corresponding synthetic seismic data for error evaluation (e.g., computing the369

least-squares data residuals). Unlike the conventional FWI which updates the velocity model370

by minimizing the data error at each iteration, the CNN-RWI calculates the data error for371
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the indirect evaluation of the accuracy of the CNN-predicted velocity model Vp. If the data372

error, obtained from the CNN-predicted velocity model Vp, does not meet the convergence373

criteria (e.g., a threshold of the minimum data error), the CNN-predicted velocity model374

Vp will become the latest generated prior model, to be parcellated to generate the training375

velocity model set (subsection 2.1), for the next iteration.376

2.5 Dynamic adjustment of the training dataset377

Subsections 2.1-2.4 above correspond to the four main parts in the outer loop of the378

CNN-RWI (Figure 1). Apart from the novelty to generate the training velocity models379

from the prior velocity model (subsection 2.1), another key novelty of the CNN-RWI is the380

dynamic adjustment of the training dataset based on the latest prior velocity model at each381

iteration in the outer loop (indicated by the orange arrows in Figure 1). The latest prior382

velocity model is defined as the original starting velocity model V0 at the first iteration, or383

the CNN-predicted velocity model Vp, obtained at each of the following iterations.384

As the original starting velocity model contains the inaccurate prior content information385

(e.g., the inaccurate background velocity), the corresponding training velocity model set V̂,386

at the first iteration, is selection-biased, since V̂ is a good representation of the original387

starting velocity model V0, rather than the unknown true velocity model Vt. In contrast,388

in the ideal case, the preprocessing to obtain the training starting velocity model set Ṽ and389

the training migration image set Ĩ from the training velocity model set V̂ could be highly390

consistent with the preprocessing to obtain the original starting velocity model V0 and the391

original migration image I0 from the unknown true velocity model Vt. In other words, the392

spatial relations are not as selection-biased as the content information in the training dataset393

{Ṽ, Ĩ, V̂}, since the former shares the similar preprocessing with the real application, but the394

latter are different from the content information in the real dataset {V0, I0,Vt}. Therefore,395

by minimizing the loss function (equation 13) to accurately approximate the mapping from396

Ṽ and Ĩ to V̂ in the training dataset, the CNN predicts the unknown velocity model Vp,397

which is generally more accurate than the original starting velocity model V0 but is still398

far from the unknown true velocity model Vt. Then, CNN-RWI dynamically adjusts the399

training dataset {Ṽ, Ĩ, V̂}, by parcellating the latest CNN-predicted velocity model Vp400

obtained at the previous iteration, as the latest prior velocity model, to create the new401

model basis and the corresponding training velocity model set V̂ (subsection 2.1) for the402

CNN training (subsection 2.2).403

The convergence of the CNN-RWI relies on the assumption that the CNN-predicted404

velocity model Vp is more accurate than the training velocity model set V̂, which is derived405

from, and so represents, the CNN-predicted velocity model obtained at the previous iteration406

(or the original starting velocity model at the first iteration). This assumption is reasonable,407

since the original velocity model V0 and the original migration image I0 input to the CNN408

to predict the velocity model Vp (equation 14), at each iteration, are obtained from the409

observed data (Figure 1), which are acquired from the unknown true velocity model Vt. In410

contrast, the CNN input data for the CNN training (Ṽ and Ĩ in equation 13) are obtained411

from the synthetic data, which are calculated from the training velocity model set V̂ (the412

red boxes in Figure 1). Thus, the CNN-predicted velocity model Vp will be more likely to413

be closer to the unknown true velocity model Vt than the training velocity model set V̂ will414

be. Therefore, this dynamic adjustment of the training velocity model, at each iteration,415

implicitly reduces the selection bias of the training velocity model set V̂, and so makes the416

CNN more representative of the unknown true velocity model. Consequentially, the CNN417

progressively predicts the unknown true velocity model Vp more accurately, by implicitly418

reducing the selection bias, instead of minimizing the data error as FWI does.419
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3 Numerical Examples420

In this section, three different portions of the Marmousi2 P-wave velocity model (Martin421

et al., 2006) with a grid of 256× 256 are used as the true velocity models (the areas inside422

the red, black, and cyan boxes in Figure 2). The synthetic tests on the three true velocity423

models are divided into tests 1 and 2, using the starting velocity models, smoothed by a424

3× 3 Gaussian filter for 400 and 1600 iterations, respectively, to mitigate the preprocessing425

(e.g., traveltime tomography or MVA) with different accuracy. Tests 1 and 2 compare the426

performance and the sensitivity of the CNN-RWI with the CG-FWI, which is provided by427

the PySIT Toolbox (Hewett et al., 2020), to the different accuracy of the starting velocity428

models. The vertical and horizontal extents of the model are 3.2 km with a 0.0125 km spatial429

sampling increment. The reason to crop the original Marmousi2 P-wave velocity model into430

three square velocity models is to evaluate the performance of the CNN-RWI and the CG-431

FWI to effectively and efficiently update the deeper part of the velocity model from the432

reflection data. To simulate the observed data, 25 explosive Ricker-wavelet sources with a433

dominant frequency of 20 Hz (and 7 Hz for the CG-FWI as a reference group) are spaced434

every 0.125 km, and 256 receivers are spaced every 0.0125 km. All sources and receivers are435

at the surface. The recording time is 3.5 s with a 1.0 ms time sampling increment.436

Here, we use a U-net convolutional neural network (Figure 3) (Ronneberger et al.,437

2015) to predict the velocity model, which has been empirically shown to be a powerful and438

an effective CNN architecture for generation tasks (Ronneberger et al., 2015; Yang & Ma,439

2019). The down- and up-sampling in the CNN architecture (Figure 3) are achieved by440

convolution and transposed convolution operations with stride=2, respectively.441

As the main contribution of this paper is the CNN-RWI algorithm (the methodology in442

section 2 and the workflow in Figure 1), rather than the advance of the CNN architecture,443

other CNN architectures can also be used, as long as they can accurately predict the training444

velocity models in the CNN training (subsection 2.2).445

To prepare the training model set with 24 samples at each iteration, the spatially-446

constrained, divisive, hierarchical k-means parcellation method (subsection 2.1.1) is applied,447

to build the model basis from the original starting velocity model for the first iteration, or448

from the CNN-predicted velocity models for the following iterations, respectively. The449

threshold of this parcellation method is set to be 655, which is one percent of the total450

number of model grid points (256× 256 = 65536). The threshold should be set to maximize451

the number of components in the model basis (the number of the leaf nodes in the hierarchi-452

cal tree), with the limitation of not creating meaningless small scattering regions. Another453

consideration of this threshold is the computational cost. The smaller threshold increases454

the depth of the hierarchical tree, and so exponentially increases the computational time to455

further parcellate the submodels into smaller features as the components of the model basis.456

Therefore, we set the threshold to be 655, one percent of the total number of model grid457

points (65536), to balance the quality of the model basis and the computational cost. For the458

velocity model containing large-scale salt bodies or reservoirs, the CNN-domain FWI (Wu459

& McMechan, 2018, 2019; Zhu et al., 2020; He & Wang, 2021) to focus the inversion mainly460

to the prior features in the starting velocity model (e.g., salt bodies, reservoir, etc.) might461

be more appropriate than the CNN-RWI. The comparison between the CNN-domain FWI462

and CNN-based RWI is beyond the scope of this paper and so is left for future comparison.463

Because of the faster convergence of the CNN-RWI, the CNN-RWI iteratively predict464

the velocity models from the original starting velocity model and its corresponding original465

migration images in 16 iterations. Then, the velocity models, inverted by the CNN-RWI466

after 16 iterations, are respectively used as the starting velocity model for the CG-FWI in467

additional 39 iterations in a second pass. Thus, the overall iteration number of the CNN-468

RWI in Pass 1 and the CG-FWI in Pass 2 (55 iterations) is a half of that of the CG-FWI469

(110 iterations) based on the original starting velocity models as the CNN-RWI does.470
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3.1 Test 1: Synthetic tests on the more accurate starting velocity models471

Figure 4 compares the performance of the CNN-RWI and the CG-FWI using the start-472

ing velocity models a-c (Figure 4a-4c). Figure 4d-4f are the CNN-RWI-inverted velocity473

models at the 16th iteration, based on the source with a dominant frequency of 20 Hz.474

Figure 4g-4i shows the CG-FWI-inverted velocity models at the 39th iteration, by using475

the CNN-RWI inverted velocity models (Figure 4d-4f) as the starting velocity models in a476

second pass. Figures 4j-4l and 4m-4o show the CG-FWI-inverted velocity models, at 110th477

iteration, based on the source with a dominant frequency of 20 Hz and 7 Hz, respectively.478

Figures 5 shows the corresponding model residuals between the models in Figure 4 and the479

corresponding true velocity models (Figure 2).480

Figures 4 and 5 clearly show that the CNN-RWI inverts for the velocity models (Figure481

4d-4f), more accurately than the CG-FWI does (both the 20 Hz and 7 Hz results in Figures482

4j-4o), especially in the deeper part of the velocity model. Figure 6d-6o uses the model483

residuals between the velocity models in Figures 4d-4o and the original starting velocity484

models a-c (Figure 4a-4c) to analyze which parts of the initial velocity models are predom-485

inantly updated by the CNN-RWI and the CG-FWI, respectively. Figure 6d and 6f shows486

that the CNN-RWI dramatically updates both the background velocity and the interfaces487

in the velocity models (Figures 4d and 4f), to the correct direction, at almost all depths.488

The correct updates of the velocity models (Figures 4d and 4f) can be quantitatively char-489

acterized by computing the RMS model error, across all positions for each depth (Figure 7).490

Figure 7 shows that these two CNN-RWI-inverted velocity models (the red lines in Figure491

7a and 7c) as well as the corresponding CG-FWI-inverted velocity models in Pass 2 (the492

blue lines in Figure 7a and 7c) correspond to the minimum RMS model errors, at almost all493

depths. By comparison, Figures 5e and 6e show that the CNN-RWI selectively updates the494

salient features of the relatively complicated velocity model (with many faults) more accu-495

rately than the CG-FWI does (Figures 5k-5n and 6k-6n), approximately above the 2.6 km496

in depth. This is consistent with the smaller RMS model errors of the CNN-RWI-inverted497

velocity model (the red line in Figure 7b) as well as the corresponding CG-FWI-inverted498

velocity model in Pass 2 (the blue line in Figure 7b) than those of the CG-FWI (the black499

and magenta lines in Figure 7b), approximately above 2.6 km in depth.500

Figures 4j-4l, 5j-5l, and 6j-6l show that the CG-FWI based on the source with a domi-501

nant frequency of 20 Hz, mainly updates the shallower background velocities as well as the502

interfaces at all depths, which is in accordance with the theoretical and numerical analysis503

of the FWI gradient (Xu et al., 2012; Alkhalifah, 2014; Wu & Alkhalifah, 2015; Yao et al.,504

2020). In contrast, the CG-FWI based on the source with a dominant frequency of 7 Hz,505

updates a relatively deeper velocity more accurately, except that some of the high-contrast506

velocity features are updated in the wrong directions (the two salient layers above and below507

2.1 km in depth in Figure 5m and the salient overarching layer between 1.1 km and 2.1 km508

in depth in Figure 5o). As these layers, which are wrongly updated by the CG-FWI, are509

correctly updated by the CNN-RWI (Figure 5d and 5f), the CG-FWI based on the source510

with a dominant frequency of 20 Hz, continues to update these layers more accurately (Fig-511

ure 5g and 5i), in Pass 2. Figure 7a and 7c also quantitatively illustrates that the velocity512

models inverted by the CG-FWI in Pass 2 (the blue lines in Figure 7a and 7c) have the513

lowest RMS model errors among these inversion results, whereas the CG-FWI (at both 20514

Hz and 7 Hz) inverts the velocity model least accurately (the black and magenta lines in515

Figure 7a and 7c). Figure 7b reveals that the CNN-RWI inverts the velocity model with a516

relatively smaller RMS model error than that of the CG-FWI at both 20 Hz and 7 Hz at517

each depth, therefore the CG-FWI-inverted velocity model in Pass 2 has the lowest RMS518

model error (compare the red and blue lines with the black and magenta lines in Figure 7b).519

Nevertheless, Figure 4 shows that the velocity model inverted by the CNN-RWI (Figure 4e)520

based on the starting velocity model (model b in Figure 4b) seems visually less accurate521

than the velocity models inverted by the CG-FWI (Figure 4k and 4n), partially because the522

interfaces in the velocity models, especially in the shallower depth, inverted by the CG-FWI,523
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are more obvious than those inverted by the CNN-RWI (compare Figure 6e with Figure 6k524

and 6n).525

Figure 8 compares the CNN-RWI with the CG-FWI, based on the model and data526

errors. Compared to the velocity model inverted by the CNN-RWI (the red lines in Figures527

8a-8c) which dramatically decreases and fast converges, the velocity models inverted by the528

CG-FWI for both the 20 Hz and 7 Hz cases (the black and magenta lines in Figures 8a-8c)529

gradually decreases and slowly converges to a relatively much higher RMS model errors.530

The cyan dots in Figure 8a-8c correspond to the RMS model errors of the 24 training531

velocity models at the first 16 iterations of the CNN-RWI. It verifies the assumption that532

the CNN-predicted velocity models will be more accurate than the training velocity models533

at each iteration, which is the key motivation for CNN-RWI to iteratively predict the more534

and more accurate velocity models. Figure 8a and 8d shows that the CG-FWI for the 7535

Hz case (the magenta line in Figures 8a and 8d) is trapped into a bad local minimum at536

the 46th iteration (the magenta circle in Figure 8a and 8d) to continue to minimize the537

data errors (the magenta line in Figure 8d), by wrongly increasing the velocities in the two538

salient layers, which are located above and below 2.1 km in Figure 4m. Thus, the model539

error increases from the 46th to the 110th iterations, with the decreasing data errors in540

CG-FWI (the magenta line in Figures 8a and 8d). In contrast, the velocity model inverted541

by the CG-FWI in Pass 2 by using the CNN-RWI-inverted velocity models as the starting542

velocity model are gradually more accurate, so both the RMS model and data errors are543

reduced at each iteration (the blue lines in 8a and 8d).544

Figure 8 shows that the RMS model errors of the CNN-RWI (the red lines in Figure545

8a-8c) decrease dramatically in the first several iterations and then converge with slight546

fluctuations, whereas the RMS data errors of the CNN-RWI (the red lines in Figure 8d-8f)547

decrease sharply but then converge with severe fluctuations. The main reason for these548

inconsistent behaviors of the fluctuations is that the CNN-RWI applies the approximated549

spatial mapping, gradually learned from the dynamically adjustable training dataset at550

each iteration (subsection 2.5), to predict the velocity model, instead of steadily minimizing551

the data errors as FWI does. When the CNN-predicted velocity model is less accurate,552

the spatial mapping in the training dataset (subsection 2.2), efficiently guides CNN to553

predict a more accurate velocity model, which corresponds to a sharp decreases in both554

the RMS model and data error (the red lines at the first several iterations in Figure 8).555

These more accurate velocity models still contain some variation of velocities in local areas,556

whose velocities and locations may vary at each iteration, due to the imperfect prediction of557

the velocity by the highly non-linear CNN. As the average accuracy of the CNN-predicted558

velocity model is dramatically increased, these local velocity errors and the corresponding559

data errors are less predominant, so both the RMS model and data errors do not fluctuate,560

at the first several iterations. However, when the CNN-predicted velocity model converges,561

the average accuracy of the CNN-predicted velocity model cannot sharply increase. Thus,562

the variance of the local errors in the CNN-predicted velocity model (the slight fluctuation)563

plays a predominant role in affecting the data errors (the severe fluctuation). As the seismic564

data is very sensitive to the model error, the data error fluctuates more severely than the565

model error does. For example, the incorrect shallower velocity predicted by the CNN in566

the CNN-RWI-inverted velocity model (circled by the white and black boxes in Figures567

4f and 5f, respectively) is the main reason that the corresponding data error dramatically568

increases (the red line in Figure 8f). Although the velocity model predicted by the CNN is,569

on average, much more accurate with the iterative inversion (the decreasing trend of the red570

line in Figure 8c), the accumulated incorrect velocities in this shallower area significantly571

increases the corresponding data error (the increasing trend of the red line in Figure 8f from572

the 7th to the 16th iterations). After these incorrect velocities are corrected by the CG-573

FWI (compare the white boxes in Figure 4f and 4i and the black boxes in Figure 5f and 5i),574

the RMS data error dramatically decreases (compare the red and blue lines in Figure 8f),575

whereas the RMS model error decreases slightly (compare the red and blue lines in Figure576

8c), since this shallower area is not salient in the whole velocity model.577
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The comparison of the performance of the CNN-RWI and CG-FWI on different models578

reveals that the CNN-RWI outperforms the CG-FWI to invert for the velocity model (espe-579

cially the background velocity model) at almost all depths. In contrast, CG-FWI effectively580

updates the shallower background velocity model along the diving and refracted waves more581

accurately. The background velocity and the interfaces in the deeper velocity models can582

be updated by the CG-FWI, however they are less accurate and may even be updated in583

the wrong direction. By applying CG-FWI in Pass 2 to continue to invert for the veloc-584

ity model, which is better recovered by the CNN-RWI in Pass 1, CG-FWI can effectively585

update interfaces, but not the background velocity models (Figures 6a-6c). Therefore, the586

CNN-RWI and the CG-FWI are sensitive to the complexity of the velocity model (e.g., the587

velocity model in the black box in Figure 2), and the CNN-RWI inverts for the velocity588

models more accurately than CG-FWI does, for all velocity models, at almost all depths589

(Figures 4-8).590

3.2 Test 2: Synthetic tests on the less accurate starting velocity models591

To analyze the sensitivity, of the performance of the CNN-RWI and the CG-FWI, to the592

accuracy of the starting velocity model, both approaches are tested to invert for the velocity593

models, using the less accurate starting velocity models A-C (Figure 9a-9c), by following594

the exactly the same test and comparison procedures as those in Test 1. Compared to595

the more accurate starting velocity models a-c (Figure 4a-4c) containing salient features,596

the starting velocity models A-C (Figure 9a-9c) are too smooth to contain salient features.597

Similar to the results in Test 1, the CNN-RWI outperforms the CG-FWI (at both 20 Hz and598

7 Hz) to invert for the velocity models (compare Figure 9d-9f with Figures 9j-9l and 9m-9o,599

respectively). However, all of the inversion results in Test 2 (Figure 9) are less accurate600

than the corresponding inversion results in Test 1 (Figure 4). The comparison of Figures 4601

and 9 reveal that both the CNN-RWI and the CG-FWI are sensitive to the accuracy of the602

starting velocity models.603

The residual model in Figure 10d shows that the CNN-RWI slightly updates the two604

salient layers, which are located above and below 2.1 km in depth, in the correct direction.605

In contrast, Figure 10j and 10m shows that the CG-FWI incorrectly updates these salient606

layers in the velocity model (Figure 9j and 9m). The RMS model errors across all positions607

for each depth (Figure 11a) quantitatively verify that the RMS model errors of the CG-FWI608

for both 20 Hz and 7 Hz are the highest in comparison with others (compare the RMS errors609

indicated by the arrows 1-4 in Figure 11). In contrast, these two salient layers inverted by610

the CNN-RWI in Pass 1 as well as the CG-FWI in Pass 2 (the red and blue lines in Figure611

11a, respectively) are the lowest. Actually, Figures 9-11 illustrate that the velocity models612

inverted by the CNN-FWI and then by the CG-FWI in Pass 2 are most accurate results at613

almost all depths, in Test 2.614

Figure 12 shows similar trends, in both RMS model and data errors of both CNN-RWI615

and CG-FWI in Test 2, to those in Test 1 (Figure 8), except that all of the model and616

data error levels are higher in Test 2 than those in Test 1. The velocity model errors of617

the CG-FWI-inverted velocity models increase (both the 20 Hz and 7 Hz cases), with the618

decrease in the corresponding data errors, just like those in Test 1 (compare the black and619

magenta lines in Figures 8a and 12a and in Figures 8d and 12d). The RMS model and data620

errors corresponding to the CNN-RWI dramatically decrease and converge to error levels621

which are higher than those in Test 1 (compare the red lines in Figures 8 and 12). The622

fluctuations in the model and data error curves, respectively, are similar to those in Test 1623

(compare in the white boxes in Figures 4 and 9 and in the black boxes in Figures 5 and 10).624

The underlying reason for the opposite directions in the trends of the model and data error625

curves has been analyzed in the previous subsection and so is omitted here.626

The synthetic tests on the three portions of Marmousi models (Figure 3), using the627

different smoothed starting velocity models (Figure 4a-4c in Test 1 and Figure 9a-9c in628
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Test 2) illustrate that the performance of both the CNN-RWI and CG-FWI are sensitive to629

the complexity of the true velocity models and the accuracy of the corresponding starting630

velocity models. The synthetic tests 1 and 2 also show that the CNN-RWI inverts for the631

deeper velocity model more accurately than the CG-FWI.632

4 Discussion633

We illustrate how the CNN-RWI iteratively predicts increasingly accurate velocity mod-634

els from the original starting velocity model and the corresponding migration image, without635

the need of the data-fitting procedure in the conventional FWI (e.g., CG-FWI). The highest636

accuracy of the CNN-predicted velocity model is partially constrained by the accuracy of637

the original starting velocity model, for two reasons. Firstly, the more accurate the original638

starting velocity model used is, the more accurate the original migration image will be. Both639

of them reduce the ill-posedness of the spatial mapping from themselves to the unknown640

true velocity model, which enables the CNN to predict the velocity model more accurately641

(subsection 2.3). Secondly, a more accurate original starting velocity model contains more642

abundant, and accurate, prior information for the generation of the model basis, which643

increases the accuracy (i.e., decreases the selection bias) of the training velocity model set644

and the corresponding CNN-predicted velocity model. Therefore, the CNN-RWI apparently645

replaces the data-fitting procedure, in conventional FWI, by the CNN training and predic-646

tion. However, the accurate prior information in the starting velocity model is needed for647

the CNN-RWI to reduce the ill-posedness of the mapping and to generate a more accurate648

model basis for the CNN training, just as it is needed for the conventional FWI to better649

tackle the cycle-skipping issue. In the synthetic tests 1 and 2, the starting velocity models650

are obtained by applying a 3 × 3 Gaussian filter to smooth the true velocity models for651

400 and 1600 iterations, respectively, to imitate the preprocessing. Synthetic tests 1 and652

2 clearly show that both the conventional FWI and the CNN-RWI are sensitive to the ac-653

curacy of the starting velocity models, as well as to the complexity of the unknown true654

velocity models.655

In the generation of the model basis from a prior velocity model (subsection 2.1.1),656

one of the main differences between the proposed spatially-constrained, divisive hierarchical657

k-means parcellation method, and the conventional k-means clustering, is that the proposed658

parcellation method retains the structural relations between features, and the connectivity659

within each feature, which is more reasonable and suitable for preparing the training veloc-660

ity models. In contrast, the conventional k-means clustering methods (Lloyd, 1982; Forgy,661

1965; MacQueen et al., 1967) may contain many spatially unrelated and disconnected re-662

gions, which become unwanted scattering points. Another main difference is the purpose of663

the clustering. The conventional k-means clustering aims to cluster and compress a dense664

model (with a relatively large number of parameters) to a sparse model (with relatively few665

parameters), by minimizing the difference between the sparse and dense models. Therefore,666

the sparse model, compressed by conventional k-means clustering methods, is still an accu-667

rate approximation and replacement of the dense parameter model. In contrast, the goal668

of the clustering in CNN-RWI is to parcellate the prior velocity model into small features669

as the model basis, to create random training velocity models with different homogeneous670

features and sharp boundaries. These training velocity models are then used to represent671

the unknown true velocity model for the CNN training. Therefore, the training velocity672

models, created by the proposed parcellation method, are considered as extremely lossy673

and unacceptable sparse models in their reconstruction and compression aspects, since the674

training velocity models are not optimized to fit the original velocity model.675

In the conventional FWI (e.g., CG-FWI), as the data misfit is minimized at each iter-676

ation, the RMS data error curve typically decreases. In contrast, the CNN-RWI does not677

require a (data) misfit function to be minimized to update the velocity model as FWI does.678

Instead, the original starting velocity model (the tomographic component) and the original679

high-resolution migration image (the migration component) are repeatedly input to CNN as680
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prior information to constrain the CNN to predict the velocity model, based on these prior681

information as well as the spatial mapping learned from the dynamically adjusted training682

dataset (subsection 2.5). Nevertheless, the data misfit as well as other validation tools (e.g.,683

travel-time misfits, etc.) can be used as error evaluations to analyze the performance of684

CNN-RWI at each iteration.685

The computational cost of the proposed spatially-constrained, divisive, hierarchical k-686

means parcellation method can be ignored since it is very fast to parcellate a prior velocity687

model to generate the random training velocity models, at each iteration. Therefore, the688

computational cost of the CNN-RWI mainly depends on the number of samples in the689

training dataset and the efficiency to obtain the training velocity models and the training690

migration images, as well as the CNN training. In Synthetic tests 1 and 2, 24 samples691

are experimentally proved to be adequate and very efficient for the CNN training in a692

GPU environment. If the training migration images are obtained in a parallel programming693

environment, the computation time of the training migration images will be approximately694

equal to that of one migration image, which will make the migration processing most efficient,695

at each iteration. The most dispute and uncertain procedure in the CNN-RWI is the means696

to obtain the training starting velocity models at each iteration. Applying the original697

processing (e.g., traveltime tomography or MVA) to obtain the training starting velocity698

models at each iteration, is very accurate but time-consuming. Instead, smoothing the699

training velocity models to imitate the original processing to obtain the training velocity700

models is very fast but less accurate. Therefore, development of a better way to balance701

the accuracy and the computational cost to obtain the training starting velocity models is702

a critical issue, which needs to be solved for real application of the CNN-RWI, but beyond703

the scope of this paper. It is therefore left for future research.704

5 Conclusions705

A novel method of convolutional-neural-network-based reflection-waveform inversion706

(CNN-RWI) is proposed to iteratively predict more accurate velocity models. The CNN-707

RWI contains inner and outer loops. The inner loop trains the CNN to accurately predict the708

training velocity models from the training starting velocity models and the corresponding709

migration images. The outer loop iteratively uses the latest prior velocity model predicted710

by the CNN after the CNN training, to create a more representative training dataset for the711

CNN training at the next iteration. The creation of the training velocity models from the712

prior velocity model is achieved by the proposed spatially constrained, divisive, hierarchical713

k-means parcellation method. The outer loop iteratively improves the training velocity714

models, to enable CNN to progressively predict more accurate velocity models. Synthetic715

examples using three portions of the Marmousi2 P-wave velocity shows that CNN-RWI716

predicts both the shallow and deep parts of the velocity models more accurately than the717

conjugate-gradient FWI does. Both the CNN-RWI and the CG-FWI are sensitive to the718

accuracy of the starting velocity model as well as to the complexity of the unknown true719

velocity model.720
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Figure 1. Flowchart of CNN-RWI. The larger red and black boxes on the right side show the

detailed procedures in the smaller red and black boxes on the left side, respectively.
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Figure 2. Marmousi2 P-wave velocity model. The three different portions of the Marmousi2

velocity model (in the red, black, and cyan boxes) are the three true velocity models in Tests 1 and

2.
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Figure 3. U-net convolutional neural network architecture. The black layer is the input layer in

which the starting velocity model and RTM image are concatenated as two channels. The red layer

is the output layer which outputs the velocity model in either the CNN training (equation 13) or

CNN prediction (equation 14). The down- and up-sampling are implemented by the convolution,

and the transposed convolution, with stride=2, respectively.
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Figure 4. Comparison of the velocity models in Test 1. (a)-(c) are the three starting velocity

models a-c, smoothed by a 3× 3 Gaussian filter for 400 iterations, from the true velocity models in

the red, black and cyan boxes in Figure 2. (d)-(f) are the velocity models inverted by the CNN-FWI

after 16 iterations. (g)-(i) are the velocity models inverted by the CG-FWI after 39 iterations, by

using the CNN-RWI-inverted velocity models in (d)-(f) as the starting velocity models, respectively.

(j)-(l) and (m)-(o) are the velocity models inverted by the CG-FWI after 110 iterations, based on

sources with 20 Hz and 7 Hz dominant frequencies, respectively.
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Figure 5. Comparison of the residual velocity models between the velocity models in Figure 4

and the true velocity models in Figure 2, respectively, in Test 1.
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Figure 6. Comparison of the residual velocity models between the velocity models in Figure 4

and the starting velocity models a-c in Figure 4a-4c, respectively, except for (a)-(c), which are the

residual velocity models between the CG-FWI-inverted velocity models in Pass 2 in Figure 4g-4i

and the CNN-RWI-inverted velocity models in Pass 1 in Figure 4d-4f, respectively.
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Figure 7. Comparison of the RMS model errors of the velocity models in Figure 4, across all

positions for each depth, in Test 1. Columns a, b, and c correspond to the velocity models in in

the left, middle, and right columns in Figure 4, respectively. The cyan lines correspond to the

starting velocity models in Figure 4a-4c, respectively. The red, blue, and black lines correspond to

the velocity models inverted by the CNN-RWI in Pass 1 in Figure 4d-4f, the CG-FWI in Pass 2 in

Figure 4g-4i, and the CG-FWI in Figure 4j-4l, respectively, based on sources with 20 Hz dominant

frequency. The magenta lines correspond to the velocity models inverted by the CG-FWI in Figure

4m-4o based on sources with 7 Hz dominant frequency.
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Figure 8. Comparison of the RMS model (the left column) and data errors (the right column)

in Test 1. The top, middle, and bottom rows correspond to the inverted velocity models, using the

starting velocity models a, b, and c (Figures 4a-4c), respectively. The red, blue, and black lines in

both the RMS model (the left column) and data (the right column) errors correspond to the velocity

models inverted by the CNN-RWI in Pass 1, the CG-FWI in Pass 2, and the CG-FWI, respectively,

based on sources with 20 Hz dominant frequency. The magenta lines in both the RMS model (the

left column) and data (the right column) errors correspond to the velocity models inverted by the

CG-FWI, based on sources with 7 Hz dominant frequency. The cyan dots in panels a-c correspond

to the RMS errors of the training velocity models in the CNN-RWI in Pass 1, at each iteration.
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Figure 9. Comparison of the velocity models in Test 2. (a)-(c) are the three starting velocity

models a-c, smoothed by a 3×3 Gaussian filter for 1600 iterations, from the true velocity models in

the red, black and cyan boxes in Figure 2. (d)-(f) are the velocity models inverted by the CNN-FWI

after 16 iterations. (g)-(i) are the velocity models inverted by the CG-FWI after 39 iterations, by

using the CNN-RWI-inverted velocity models in (d)-(f) as the starting velocity models, respectively.

(j)-(l) and (m)-(o) are the velocity models inverted by the CG-FWI after 110 iterations, based on

sources with 20 Hz and 7 Hz dominant frequencies, respectively.
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Figure 10. Comparison of the residual velocity models between the velocity models in Figure 9

and the true velocity models in Figure 2, respectively, in Test 2.
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Figure 11. Comparison of the RMS model errors of the velocity models in Figure 9, across

all positions for each depth, in Test 2. Columns a, b, and c correspond to the velocity models in

in the left, middle, and right columns in Figure 9, respectively. The cyan lines correspond to the

starting velocity models in Figure 9a-9c, respectively. The red, blue, and black lines correspond to

the velocity models inverted by the CNN-RWI in Pass 1 in Figure 9d-9f, the CG-FWI in Pass 2 in

Figure 9g-9i, and the CG-FWI in Figure 9j-9l, respectively, based on sources with 20 Hz dominant

frequency. The magenta lines correspond to the velocity models inverted by the CG-FWI in Figure

9m-9o based on sources with 7 Hz dominant frequency.
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Figure 12. Comparison of the RMS model (the left column) and data errors (the right column)

in Test 2. The top, middle, and bottom rows correspond to the inverted velocity models, using the

starting velocity models a, b, and c (Figures 9a-9c), respectively. The red, blue, and black lines in

both the RMS model (the left column) and data (the right column) errors correspond to the velocity

models inverted by the CNN-RWI in Pass 1, the CG-FWI in Pass 2, and the CG-FWI, respectively,

based on sources with 20 Hz dominant frequency. The magenta lines in both the RMS model (the

left column) and data (the right column) errors correspond to the velocity models inverted by the

CG-FWI, based on sources with 7 Hz dominant frequency. The cyan dots in panels a-c correspond

to the RMS errors of the training velocity models in the CNN-RWI in Pass 1, at each iteration.
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Figure 10.
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Figure 12.
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