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Abstract

Multispectral imaging instruments have been core payload components of Mars lander and rover missions for several decades. In

order to place into context the future performance of the ExoMars 2022 Rosalind Franklin rover, we have carried out a detailed

analysis of the spectral performance of three visible and near-infrared (VNIR) multispectral instruments. We have determined

the root mean square error (RMSE) between the expected multispectral sampling of the instruments and high-resolution spectral

reflectance data, using both laboratory spectral libraries and Mars orbital hyperspectral data. ExoMars Panoramic Camera

(PanCam) and Mars2020 Perseverance Mastcam-Z instruments have similar values of RMSE, and are consistently lower than

for Mars Science Laboratory Mastcam, across both laboratory and orbital remote sensing data sets. The performance across

mineral groups is similar across all instruments, with the lowest RMSE values for hematite, basalt, and basaltic soil. Minerals

with broader, or absent, absorption features in these visible wavelengths, such as olivine, saponite, and vermiculite have overall

larger RMSE values. Instrument RMSE as a function of filter wavelength and bandwidth suggests that spectral parameters that

use shorter wavelengths are likely to perform better. Our simulations of the spectral performance of the PanCam instrument

will allow the future use of targeted filter selection during ExoMars 2022 Rosalind Franklin operations on Mars.
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Abstract

Multispectral imaging instruments have been core payload components of Mars
lander and rover missions for several decades. In order to place into context
the future performance of the ExoMars 2022 Rosalind Franklin rover, we have
carried out a detailed analysis of the spectral performance of three visible and
near-infrared (VNIR) multispectral instruments. We have determined the root
mean square error (RMSE) between the expected multispectral sampling of the
instruments and high-resolution spectral reflectance data, using both laboratory
spectral libraries and Mars orbital hyperspectral data. ExoMars Panoramic
Camera (PanCam) and Mars2020 Perseverance Mastcam-Z instruments have
similar values of RMSE, and are consistently lower than for Mars Science Lab-
oratory Mastcam, across both laboratory and orbital remote sensing data sets.
The performance across mineral groups is similar across all instruments, with
the lowest RMSE values for hematite, basalt, and basaltic soil. Minerals with
broader, or absent, absorption features in these visible wavelengths, such as
olivine, saponite, and vermiculite have overall larger RMSE values. Instrument
RMSE as a function of filter wavelength and bandwidth suggests that spectral
parameters that use shorter wavelengths are likely to perform better. Our sim-
ulations of the spectral performance of the PanCam instrument will allow the
future use of targeted filter selection during ExoMars 2022 Rosalind Franklin
operations on Mars.

Plain Language Summary

Mars landers and rovers tend to carry camera instruments that record images
at a range of different wavelengths. Such multispectral instruments can be used
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to help determine the composition of the surface, and guide both scientific anal-
yses and mission operations. Subtle differences in the exact wavelengths that
are sampled on different instruments mean that comparison across missions is
not straightforward. In this study we simulate the performance of three differ-
ent multispectral camera instruments: ExoMars Panoramic Camera (PanCam),
Mars Science Laboratory Mastcam, and Mars2020 Perseverance Mastcam-Z. We
compare the ability of each instrument to determine the true spectral response
for both laboratory data compiled into spectral libraries, and for hyperspec-
tral data recorded of the surface of Mars. We find that the choice of filters for
PanCam and Mastcam-Z result in similar performance between these two instru-
ments, with both apparently performing better than Mastcam. This study will
allow more confident comparison of results from across instruments, and help
the development of best practice for the future use of the ExoMars PanCam
instrument.

1. Introduction

The scientific objectives of the ExoMars 2022 Rosalind Franklin rover mission,
due to land on Mars in 2023, are to (1) search for signs of past and present life
on Mars, and (2) to characterize the geochemical environment as a function of
depth in the shallow subsurface (Vago et al., 2015; Vago et al., 2017). The pri-
mary remote sensing instrument on previous Mars landers and rovers has been
multispectral imagers operating in the visible and near-infrared (VNIR) wave-
lengths (e.g. Bell et al., 2019; Gunn and Cousins, 2016). In addition to allowing
geomorphological interpretations of the surface, the acquisition of in situ spec-
tral information can help determine the composition of the environment close to
the lander or rover. Although diagnostic spectral features of planetary surfaces
tend to occur at longer IR wavelengths (e.g. Clark, 2019; Mustard and Glotch,
2019; Rossman and Ehlmann, 2019), there are many examples of studies using
VNIR multispectral imaging instruments to derive important compositional in-
formation about both crystalline and amorphous materials (e.g. Farrand et al.,
2019), which not only allow deeper scientific investigations (e.g. Fraeman et al.,
2020; Horgan et al., 2020; Wellington et al., 2017), but also have an impact on
tactical and strategic planning during mission operations (e.g. Squyres et al.,
2008). Such studies have ranged in their scope, including, but not limited to
soil composition with Mars Pathfinder (Bell III et al., 2000), rock coatings with
Mars Exploration Rover (MER) Spirit (Bell et al., 2004), identifying meteorites
on Mars with MERs Spirit and Opportunity (Schröder et al., 2008), water-ice
abundance with Phoenix (Gyalay et al., 2019), and resolving cm-scale gypsum
veins in host rocks (Vaniman et al., 2014).
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Figure 1. Geology filter positions and bandwidths for different Mars rover
camera instruments. (A) Imager for Pathfinder (IMP) (Smith et al., 1997). (B)
Mars Exploration Rover (MER) Pancam (Bell III et al., 2003). (C) Phoenix
Surface Stereo Imager (SSI) (Smith et al., 2008). (D) Mars Science Laboratory
(MSL) Mastcam (Malin et al., 2017). (E) Mars2020 (M2020) Mastcam-Z (Bell
et al., 2021). (F) ExoMars Panoramic Camera (PanCam) (Coates et al., 2017).

The general filter positions of these multispectral instruments are similar, con-
centrating on wavelengths that attempt to maximize spectral discrimination of
the surface. At the VNIR wavelengths covered by these instruments, the most
dominant absorption features are typically due to the presence of iron in dif-
ferent minerals (e.g. Horgan et al., 2014), including: crystal field absorptions
near 900 and 1000 nm in the Fe-bearing neo- and inosilicates olivine and py-
roxene respectively (e.g. Cloutis and Gaffey, 1991), charge transfer and crystal
field transitions around 500 and 900 nm in Fe3+ oxides such as hematite (e.g.
Townsend, 1987), and charge transfer effects in iron oxides and hydroxides such
as goethite between 400 and 500 nm (e.g. Morris et al., 1985). However, sub-
tle differences between the filter positions and bandwidths across instruments
(Figure 1) makes cross-instrument comparisons difficult (Cousins et al., 2012).
For example, the longer wavelengths covered by the Mars2020 (M2020) Perse-
verance rover Mastcam-Z instrument (Bell et al., 2021), allow key absorption
features to be identified at and slightly beyond 1000 nm. This spectral region
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is of particular interest in studies of hydrated and hydroxylated minerals, due
to a weak H2O overtone absorption near 1000 nm (e.g. Rice et al., 2013b). The
differences in filter choices also renders cross-site comparisons more difficult, as
the relative capability of instruments in identifying certain mineral groups could
result in mis- or non-identification. This effect is particularly important when
attempting to compare local in situ studies to infer regional or global processes
and geologic histories.

In order to better understand the multispectral performance of the most recent
instruments on Mars rovers, and to optimize the future performance of the Ex-
oMars Rosalind Franklin rover, we have carried out an analysis of the spectral
performance of three different instruments. We focus this study on Mars Science
Laboratory (MSL) Mastcam (Malin et al., 2017), Mars2020 (M2020) Persever-
ance rover Mastcam-Z (Bell et al., 2021), and ExoMars (EM) Rosalind Franklin
Panoramic Camera (PanCam) Wide Angle Camera (WAC) (Coates et al., 2017)
instruments. Using both laboratory spectral libraries of pure mineral and mixed
rock spectra, and hyperspectral data collected from Mars orbit, we determine
the error between the multispectral instruments and hyperspectral data. We use
these errors to assess the relative performance of these three instruments across
a range of mineral types and distinct units on Mars, and discuss confidence
levels in comparison across instruments. In comparison to previous studies (e.g.
Cuadros et al., 2022), we focus our discussion on the implications for optimiza-
tion of the EM PanCam instrument, particularly the potential compositions
expected at the landing site in Oxia Planum, before arrival at Mars in 2023.

2. Data and Methods

Our approach for determining the spectral performance of a filter set, and thus
a rover camera instrument, is similar across different data sets. We first describe
the data and pre-processing steps, before outlining the methods used in each
case.

2.1 Data
We used the Western Washington University Visible and Infrared Spectroscopy
brOwseR (VISOR, Million et al. (2022)), a compilation of four open databases
(USGS, Kokaly et al. (2017); ‘playa evaporites’, Crowley (1991); ASTER /
ECOSTRESS, Meerdink et al. (2019), Baldridge et al. (2009)), to provide
spectral library data. We selected a total of 163 spectra across 6 different
mineralogical and rock groups (Table S1): basalt (n = 41), basaltic soil (n = 6),
hematite (n = 35), olivine (n = 56), saponite (n = 15), and vermiculite (n = 10).
These groups were selected due to their relevance and likely occurrence at the
Oxia Planum landing site (Mandon et al., 2021; Quantin-Nataf et al., 2021). To
predict the spectral response of each instrument to different mineral groups, we
first linearly interpolated the VISOR spectra to a 1 nm spectral interval, to allow
for detailed comparison (see Section 2.2). We then used the relevant instrument
filter center wavelength and bandwidth (Table 1) to spectrally resample all
VISOR spectra (Figure 2).
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Figure 2. Spectral resampling of VISOR for PanCam. In each case, the
original spectral library spectrum is plotted (thin grey line), in addition to the
PanCam spectrally resampled spectrum (thick black line) and filter positions
(circles). A total of 163 spectra were used. (A) basalt spectra, (B) basaltic soil,
(C), hematite, (D) olivine, (E) saponite, and (F) vermiculite.

We processed and analyzed Full Resolution Targeted (FRT) Compact Recon-
naissance Imaging Spectrometer for Mars (CRISM, (Murchie et al., 2007)) data
sets (Table 2), following well-validated techniques (e.g. Ehlmann et al., 2009;
Murchie et al., 2009a). We first used a CRISM image of the Vera Rubin Ridge
(VRR) area of Gale Crater, explored by the Mars Science Laboratory (MSL,
Grotzinger et al. (2012)) Curiosity Rover, because of the extensive recent Mast-
cam multispectral and comparative CRISM studies (Fraeman et al., 2020; Hor-
gan et al., 2020; Salvatore et al., 2020). We then extended our analysis to two
further CRISM images at both Oxia Planum and Jezero Crater, the landing
sites for ExoMars 2022 Rosalind Franklin rover and Mars 2020 Perseverance
rover. All CRISM images were obtained as Map-Projected Targeted Reduced
Data Records (MTRDRs) from the NASA Planetary Data System (PDS) Geo-
sciences Node. We used the CRISM Analysis Toolkit (CAT) v7.3 plug-in for
the commercial software ENVI to analyze CRISM data when necessary, ac-
cording to methods described by the CRISM team (Seelos et al., 2011), but
no pre-processing or calibration is required for the higher level MTRDR data
products. Single pixel spectra were taken from regions of interest (ROIs), as
well as from spectrally-bland regions to produce ratioed spectra that emphasize
spectral shape. We linearly interpolated the instrument spectra to match the
spectral bands of CRISM data. Spectral parameters were also used (e.g. Vi-
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viano‐Beck et al., 2014) to create band threshold ROIs, which were then used
to extract multi-pixel spectra.

2.2 Methods
To provide a quantitative and objective measure of how well a filter set cap-
tures the spectral morphology, we followed previous studies in assessing the
performance of different filter sets by determining the error between full spectra
and deconvolved instrument spectra (Cousins et al., 2010; Cousins et al., 2012).
We used the Root Mean Square Error (RMSE) method, a common metric to
measure the difference between spectra (e.g. Harris and Grindrod, 2018). For
the spectral library study, the RMSE is between the resampled, interpolated
reflectance at filter wavelengths and the original VISOR spectrum,

𝑅𝑀𝑆𝐸 = √ ∑1000
𝜆=440[𝑅𝑚(𝜆)−𝑅𝑒(𝜆)]2

𝑛 (1)

where Rm(�) is the reflectance of the mineral spectrum m at wavelength l, Re(�)
is the resampled and interpolated reflectance at wavelength l, and n is the
number of data points. This procedure is repeated for every VISOR spectrum
and instrument filter set. We also separately determine the magnitude of the
reflectance error for each filter and instrument, by calculating the difference
between every VISOR spectrum and the resampled, interpolated reflectance
at each filter wavelength. For the CRISM study, the RMSE is between the
resampled, interpolated reflectance at filter wavelengths and the original CRISM
spectrum, and is also given by Equation 1. In this case, we calculate a RMSE
value for every pixel in the CRISM image array, allowing additional spatial
analysis.

3. Results

We separate our results into two main categories, based on laboratory spectral
libraries and hyperspectral Mars data, but in each case aim to assess instrument
performance for different mineral or rock types.

3.1 Laboratory Spectral Libraries
We first assessed individual instrument performance for all laboratory spec-
tra according to compositional group (Figure 3, Table 3). For EM PanCam,
the mean and maximum RMSE across all compositional groups is 0.0022 and
0.0089 respectively. Across the compositional groups of basalt, basaltic soil,
hematite, olivine, saponite, and vermiculite, the mean and standard deviation
(SD) RMSE values for EM PanCam are 0.0006 (0.0005), 0.0013 (0.0003), 0.0015
(0.0015), 0.0037 (0.0020), 0.0020 (0.0013), and 0.0027 (0.0009) respectively. For
MSL Mastcam, the mean and maximum RMSE across all compositional groups
is 0.0052 and 0.0250 respectively. Across the compositional groups of basalt,
basaltic soil, hematite, olivine, saponite, and vermiculite, the mean and stan-
dard deviation (SD) RMSE values for MSL Mastcam are 0.0023 (0.0016), 0.0054
(0.0028), 0.0028 (0.0034), 0.0082 (0.0046), 0.0069 (0.0070), and 0.0067 (0.0036)
respectively. For M2020 Mastcam-Z, the mean and maximum RMSE across
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all compositional groups is 0.0035 and 0.0172 respectively. Across the composi-
tional groups of basalt, basaltic soil, hematite, olivine, saponite, and vermiculite,
the mean and standard deviation (SD) RMSE values for M2020 Mastcam-Z
are 0.0010 (0.0008), 0.0024 (0.0007), 0.0025 (0.0031), 0.0061 (0.0036), 0.0026
(0.0017), and 0.0042 (0.0018) respectively. Overall, EM PanCam has the lowest
RMSE values, with MSL Mastcam having the largest RMSE values. But there
is significant variation between and within each compositional group for each
instrument. All instruments show the lowest range of RMSE values for basalt
and basaltic soil spectra. The standard deviation of RMSE shows the range
in instrument performance for each compositional group, with the largest SD
values for EM PanCam being for hematite, for MSL Mastcam being for olivine,
and for M2020 Mastcam-Z being for olivine.

Figure 3. The Root Mean Square Error (RMSE) for all spectra. In the top row,
the spectra are split into compositional group, and retain the same spectra number
across plots. (A) RMSE for PanCam. (B) RMSE for Mastcam. (C) RMSE
for Mastcam-Z. In the bottom row, the spectra are split into groups according to
grain size, as recorded in the spectral library, and retain the same space number
across plots. (D) RMSE for PanCam. (E) RMSE for Mastcam. (F) RMSE for
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Mastcam-Z.

We then assessed the relative instrument performance for individual laboratory
spectra according to compositional group (Figure 4). EM PanCam has lower
RMSE than MSL Mastcam for 137 of 163 spectra, equivalent to 84% of the
spectral library. The mean difference in RMSE for those spectra for which EM
PanCam has a lower value is 0.0039, whereas for those spectral for which MSL
Mastcam has a lower value is 0.0013. Of those 26 spectra for which EM PanCam
has higher RMSE, 8 are basalt, 7 are hematite, 9 are olivine, and 2 are saponite.
EM PanCam has lower RMSE than M2020 Mastcam-Z for 123 of 163 spectra,
equivalent to 75% of the spectral library. The mean difference in RMSE for those
spectra for which EM PanCam has a lower value is 0.0022, whereas for those
spectral for which M2020 Mastcam-Z has a lower value is 0.0014. Of those 40
spectra for which EM PanCam has higher RMSE, 10 are basalt, 9 are hematite,
13 are olivine, 4 are saponite, and 4 are vermiculite. M2020 Mastcam-Z has
lower RMSE than MSL Mastcam for 154 of 163 spectra, equivalent to 94% of
the spectral library. The mean difference in RMSE for those spectra for which
M2020 Mastcam-Z has a lower value is 0.0019, whereas for those spectral for
which MSL Mastcam has a lower value is 0.00009. Of those 9 spectra for which
M2020 Mastcam-Z has higher RMSE, 7 are hematite, and 1 is saponite. There
does not appear to be any systematic trend in RMSE between EM PanCam and
other instruments, but there is a noticeable relationship for RMSE of spectra
between MSL Mastcam and M2020 Mastcam-Z. We also assessed the relative
instrument performance for individual laboratory spectra according to grain
size of the samples (Figure 4). Overall, for those samples in the spectral library
for which it is recorded, we see no clear relationships between grain size and
RMSE. To some extent, the grain size of a particular compositional group can
be limited to just a few ranges, but does not show any correlation with RMSE.
In essence, all grain sizes occur at all RMSE values across compositional groups
and instruments.
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Figure 4. Comparison of RMSE between instruments. (A) Schematic expla-
nation of which camera has lower RMSE. (B) Bivariate plot of PanCam and
Mastcam RMSE. (C) Bivariate plot of PanCam and Mastcam-Z RMSE. (D)
Bivariate plot of Mastcam and Mastcam-Z RMSE.

In an attempt to further explore the performance of different instruments, we
assessed the error at each filter wavelength position (Figure 5). In this case, the
error was calculated at each wavelength position, rather than as a total RMSE
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value. For each instrument, increasing filter number corresponds to increasing
wavelength (Table 1). In general, individual filter performance varies within, and
across, instruments for different mineral groups, but the lowest errors occur for
basalt, basaltic soil, and hematite. For basalt spectra, all instruments have an
overall similar performance, tending to have higher errors at the two lowest and
highest filter positions, and lowest errors for the middle 7 to 8 filters. For basaltic
soil spectra, all instruments have relatively higher errors in the second filter
position (and beyond for MSL Mastcam), where there is a generally positive
spectral slope in these compositions. For hematite, relative performance of each
instrument varies across the filters, with EM PanCam having lowest errors at
the smallest filter positions. For olivine spectra, all instruments perform best at
filters 6 to 10, but with significant variation across instruments elsewhere. For
both saponite and vermiculite, although errors are overall relatively low for EM
PanCam, it is noticeable that significant errors occur at the filter 11 position,
which has a lower wavelength (950 nm) than both MSL Mastcam (1012 nm)
and M2020 Mastcam-Z (978 nm).

Figure 5. Box and whisker plot showing absolute reflectance error as a function
of filter number. In each case the median (horizontal line), the 25th and 75th

percentiles (box), and the most extreme data points not considered outliers –
values 1.5 times larger than the interquartile range – (whiskers) are given. A
total of 163 spectra were used. (A) basalt spectra, (B) basaltic soil, (C), hematite,
(D) olivine, (E) saponite, and (F) vermiculite.

3.2 Orbital Hyperspectral Data
In using orbital hyperspectral data in our study, we first carried out single
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pixel analysis, before moving onto larger multi-pixel regions of interest, and
finally whole image examinations. We first focused our attention on the Vera
Rubin Ridge area of Gale Crater (Figure 6), which was explored by MSL in
2017 and 2018, the investigation of which included a dedicated multispectral
campaign with Mastcam (e.g. Bennett et al., 2021; Edgar et al., 2020; Fraeman
et al., 2020; Horgan et al., 2020). To the best of our ability, we identified
the area in CRISM hyperspectral data that was explored with Mastcam by
MSL, as a ground-truth to our simulations. This particular part of Vera Rubin
Ridge has been shown to be rich in hematite, both with Mastcam (Fraeman
et al., 2020; Horgan et al., 2020) and other instruments (e.g. Berger et al.,
2020; L’Haridon et al., 2020), and is surrounded down- and up-section by rocks
containing phyllosilicates and hydrated sulfates respectively (e.g. Fraeman et
al., 2016; Golombek et al., 2012; Milliken et al., 2010; Sheppard et al., 2021).
All simulated multispectral instruments have a similar overall spectral slope to
that seen in the full spectral resolution CRISM data, but with some noticeable
differences. To identify and enhance these differences, we used ratioed spectra,
applying the common technique of using a spectrally-bland region to remove
the background spectral signatures (e.g. Murchie et al., 2009b). The diagnostic
absorption feature for hematite at ~850-900 nm is identified in all instruments,
but only M2020 Mastcam-Z partially resolves a possible drop in reflectance
~1000 nm. EM PanCam also misidentifies an absorption feature at 670 nm,
which is likely the result of the 610 nm filter coinciding with a possible high
noise part of the CRISM spectrum. M2020 Mastcam-Z also has a slight decrease
in reflectance at that wavelength, but to a lesser degree than EM PanCam.
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Figure 6. Single pixel investigation of spectral resampling of CRISM data for
Gale Crater. (A) Visible wavelength RGB image of CRISM hyperspectral cube
FRT0000B6F1. Star shows the location of spectrum at Vera Rubin Ridge (VRR)
analysed in sub-figures. (B) Spectral parameter image highlighting regions of
possible enrichments in different minerals. (C) CRISM single pixel spectra of
VRR, bland region, and subsequent ratio. (D) PanCam resampled single pixel
spectra of VRR, bland region, and subsequent ratio. (E) Mastcam resampled
single pixel spectra of VRR, bland region, and subsequent ratio. (F) Mastcam-Z
resampled single pixel spectra of VRR, bland region, and subsequent ratio.

We next investigated the spectral performance of the instruments using multi-
pixel Regions of Interest (ROIs) throughout the CRISM image scene (Figure 7).
This common technique uses spectral parameters to first identify regions with
particular spectral features (e.g. Pelkey et al., 2007; Viviano‐Beck et al., 2014),
which are then selected to calculate average spectra. The aim of this approach
is to determine typical spectra for regions that could correspond to units of sim-
ilar spectral shape, and ideally, composition. We used two spectral parameters
in the first instance, calculated using standard techniques (Viviano‐Beck et al.,
2014): (1) BD860_2, which measures the band depth of the absorption feature
at 860 nm, often diagnostic of crystalline ferric minerals, especially hematite;
and (2) BDI1000VIS, which measures the integrated band depth at 1000 nm,
often diagnostic of olivine, pyroxene, or Fe-bearing glass. These BD860_2 and
BDI1000VIS ROIs returned spectra averaged over 8009 and 30,225 pixels respec-
tively, for which we investigate both the spectral shape and the RMSE of each
instrument from the original CRISM data. The spectra of each instrument has
a similar overall shape to the original CRISM spectrum, and on the whole recre-
ates well the spectral morphology. There are no obvious absorption features for
either ROI, but the gap in filters between ~530 and 670 nm for MSL Mastcam
mean that some information on any possible shoulder at ~600 nm is lost. It
is clear that in terms of RMSE from the CRISM data, M2020 Mastcam-Z has
the best performance, with a mean (SD) value of 0.0030 (0.0003) for BD860_2
and 0.0028 (0.0003) for BDI1000VIS. EM PanCam has slightly higher RMSE,
with a mean (SD) value of 0.0035 (0.0004) for BD860_2 and 0.0031 (0.0003) for
BDI1000VIS. MSL Mastcam has noticeably higher RMSE, with a mean (SD)
value of 0.0065 (0.0006) for BD860_2 and 0.0070 (0.0008) for BDI1000VIS.
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Figure 7. Multi-pixel region of interest (ROI) investigation of spectral resam-
pling of CRISM data for Gale Crater. (A) Visible wavelength RGB image of
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CRISM hyperspectral cube FRT0000B6F1, overlain by band threshold ROI (8009
pixels) using spectral parameter BD860_2. (B) Visible wavelength RGB image
of CRISM hyperspectral cube FRT0000B6F1, overlain by band threshold ROI
(30,225 pixels) using spectral parameter BDI1000VIS. (C) Spectra for BD860_2
for CRISM, and resampled for PanCam, Mastcam, and Mastcam-Z. (D) Spec-
tra for BDI1000VIS for CRISM, and resampled for PanCam, Mastcam, and
Mastcam-Z. (E) RMSE histogram for BD860_2 between CRISM and resampled
for PanCam, Mastcam, and Mastcam-Z. (F) RMSE histogram for BDI1000VIS
between CRISM and resampled for PanCam, Mastcam, and Mastcam-Z.

We finally extended the RMSE analysis for the entire CRISM image scene (Fig-
ure 8). Again, M2020 has the best performance, with a mean (SD) RMSE value
of 0.0037 (0.0007). EM PanCam has only a slightly worse performance, with a
mean (SD) RMSE value of 0.0041 (0.0008). MSL Mastcam again has the high-
est RMSE, with a mean (SD) value of 0.0072 (0.0007) across the entire CRISM
image scene. In an attempt to better understand the partial bimodality in
the RMSE frequency in EM PanCam data, we further break down the analysis
with four more spectral parameters typically used in CRISM analysis. There is a
large number of RMSE values that correspond to regions with strong BD640_2
signatures, typical of areas rich in select ferric minerals, especially maghemite.
Contributions from other regions that have signatures from SH660_2 (typical of
select ferric minerals, especially hematite or goethite), SH770 (typical of select
ferric minerals, but less sensitive to low-calcium pyroxene), and BD920 (typical
of crystalline ferric minerals and low-calcium pyroxene), are less significant than
previous spectral parameters considered, suggesting further contributions not
accounted for in the choice of spectral parameters. To investigate where these
areas might be in the CRISM image scene, we produced maps of RMSE values,
which show high RMSE values that correspond to the higher elevation, anhy-
drous regions of Mt Sharp (e.g. Sheppard et al., 2021). All instruments show a
similar region of high RMSE in this area, but MSL Mastcam also shows addi-
tional areas of relatively high RMSE in the west and northwest of the CRISM
image scene, corresponding to areas of low RMSE in other instruments.
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Figure 8. RMSE analysis for all pixels in CRISM data of Gale Crater. (A)
RMSE histogram for all pixels between CRISM and resampled PanCam, Mast-
cam, and Mastcam-Z. (B) RMSE histogram for ROIs between CRISM and re-
sampled PanCam, using band threshold ROI for spectral parameters BD_640_2
(52,098 pixels), SH660_2 (36,268 pixels), SH770 (27,186 pixels), and BD920_2
(24,404 pixels). (C) RMSE image between CRISM and resampled PanCam. (D)
RMSE image between CRISM and resampled Mastcam. (E) RMSE image be-
tween CRISM and resampled Mastcam-Z.

Applying a similar whole CRISM image analysis to four more images, two of the
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EM landing site in Oxia Planum, and two of the M2020 landing site in Jezero
Crater, yields similar overall results. M2020 Mastcam-Z and EM PanCam have
similar RMSE values at all four sites, although EM PanCam has slightly better
performance at two of the sites (one in Oxia Planum, one in Jezero Crater).
The mean values for these two instruments are similar to those observed at Gale
Crater, albeit with no obvious bimodal RMSE distribution. MSL Mastcam has
consistently higher RMSE values, with similar values to those observed at Gale
Crater. The range of RMSE values is lower at these four sites for all instruments,
as demonstrated by the standard deviation of values.

Figure 9. RMSE analysis for different CRISM images. (A) RMSE histogram
for all pixels between CRISM and resampled PanCam, Mastcam, and Mastcam-
Z for Oxia Planum site 1 (FRT00009A16). (B) RMSE histogram for all pixels
between CRISM and resampled PanCam, Mastcam, and Mastcam-Z for Oxia
Planum site 2 (FRT0000810D). (C) RMSE histogram for all pixels between
CRISM and resampled PanCam, Mastcam, and Mastcam-Z for Jezero crater
site 1 (FRT000047A3). (D) RMSE histogram for all pixels between CRISM
and resampled PanCam, Mastcam, and Mastcam-Z for Jezero crater site 2
(FRT00005C5E).

4. Discussion

The delay in the launch of the EM Rosalind Franklin rover mission means that
we can use experience from previous and ongoing multispectral imaging instru-
ments to optimize not only the science returned from the PanCam instrument,
but also operational strategies. Although the Mastcam-Z instrument is now on
Mars, at the time of writing, initial results have only just begun to be pub-
lished (Mangold et al., 2021). Thus, relevant examples of the application of in
situ multispectral investigations are best provided at present by the Mastcam
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instrument (e.g. Bell et al., 2019; Horton et al., 2021; Johnson et al., 2016;
Wellington et al., 2017).

In both the laboratory spectral library and CRISM hyperspectral simulations,
we have observed similar performance across instruments. Overall, M2020
Mastcam-Z and EM PanCam have similar performance, with both being better
than MSL Mastcam in terms of minimizing RMSE. There is a clear system-
atic improvement in M2020 Mastcam-Z over MSL Mastcam when comparing
individual mineral and rock type spectra. This improvement is likely due to
the method by which the M2020 Mastcam-Z filters were selected. The inten-
tional repositioning of several narrowband filters on Mastcam-Z was designed
to give an overall similar, albeit improved, performance over MSL Mastcam,
particularly with hydrated and iron-bearing mineral phases (Bell et al., 2021).

It is important to note that spectral libraries were chosen to reflect the miner-
alogy expected at the Oxia Planum landing site for the EM Rosalind Franklin
rover, and although there are likely to be similarities in composition, the simu-
lated instrument performance may differ slightly with other general mineralogies.
Nonetheless, the general performance across mineral groups are similar across
all instruments, with the lowest RMSE values for hematite, basalt, and basaltic
soil. Although the median error was the lowest for hematite, there are some no-
ticeable outliers that correspond to those spectra that have the largest shoulder
at ~750 nm. Minerals with broader, or absent, absorption features in these vis-
ible wavelengths, such as olivine, saponite, and vermiculite have overall larger
RMSE values. This difference in performance as a function of compositional
group is important when considering the possible different aqueous alteration
products often used in targeting and detailed study in situ on Mars (e.g. Bennett
et al., 2021; Edgar et al., 2020; Fraeman et al., 2020; Horgan et al., 2020).

During the campaign at Vera Rubin Ridge, MSL Mastcam acquired several full
multispectral image datasets of the surface. Observations of brushed rock sur-
faces in particular revealed strong absorption features at ~860 nm, interpreted
to be due to the presence of hematite in significant abundances (Fraeman et al.,
2020). Our simulations using CRISM data of the same area are not an exact
comparison, due to (1) the difference in spatial resolution between orbital and
in situ datasets, (2) the gap in sampling between ~620 and 720 nm, and (3)
because the surfaces have not been brushed. But, in our simulated data, this
absorption feature is present in all instrument ratioed spectra. The MSL Mast-
cam spectrum in particular has a similar overall shape similar to that observed
in situ at the ‘Stranraer’ target on Sol 2007 (Fraeman et al., 2020). This target
had some of the deepest ferric absorptions along this part of the traverse, and
is thought to be the opposite end-member to the nearby ‘Oban’ target, which
is likely rich in grey hematite material (Fraeman et al., 2020). It is not possible
to separate these end-members from our simulated spectra, but given that both
the diagnostic absorption feature and overall spectral shape are correctly recov-
ered, we are confident that (1) our simulated instrument spectra using CRISM
data accurately predict the instrument responses to such a mineralogy, and (2)
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that both EM PanCam and M2020 Mastcam-Z should be able to identify similar
hematite deposits on the surface of Mars.

The main scientific goal of the ExoMars Rosalind Franklin rover mission is to
search for life on Mars (Vago et al., 2017). The PanCam instrument will sup-
port this goal through the characterization of the surface as the main remote
sensing instrument on the rover. The PanCam WACs studied here provide
spectral information between approximately 400 and 1000 nm, and are com-
plemented by the PanCam High Resolution Camera (HRC), which provides
focusable, visible wavelength, color images through a Bayer filter (Coates et al.,
2017). Other complementary instruments include the Infrared Spectrometer for
ExoMars (ISEM) instrument, a mast-mounted spectrometer, which provides
point spectra between 1150 and 3300 nm (Korablev et al., 2017), and the Close-
Up Imager (CLUPI), a drill-mounted, high-resolution, focusable camera that
takes color images with a Foveon detector in the 400 – 700 nm range (Josset et
al., 2017). Therefore it is important that any optimization of PanCam is carried
out with consideration of these other instruments. For example, we have shown
that PanCam performs well in the spectral characterization of hematite, but
will almost certainly require longer wavelength information from ISEM for min-
erals such as olivine, saponite, or vermiculite, for which PanCam has a higher
RMSE. These apparent poorer identifications are particularly important at Oxia
Planum, where the two main types of bedrock can be split into a (1) Fe/Mg-
rich clay, possibly including saponite, and (2) probable olivine-rich deposits as
identified by a broad absorption feature at ~1000 nm (Mandon et al., 2021). In
these bedrock regions, which are likely to be high priority targets for drilling
and sampling, it is likely that complementary instruments, such as ISEM, will
be critical for mineral identification. Previous studies have used emulators for
studying the performance of PanCam and other ExoMars instruments in the
field on Earth (e.g. Allender et al., 2020; Allender et al., 2021; Harris et al.,
2015), and we can also use multispectral instrument application on Mars as a
guide to best practice use (e.g. Farrand et al., 2008; Farrand et al., 2007; Far-
rand et al., 2014; Farrand et al., 2006; Farrand et al., 2013; Rice et al., 2010; Rice
et al., 2013a). These studies made particular use of spectral parameters, which
capture some specified spectral feature (e.g. Bell III et al., 2000; Pelkey et al.,
2007; Viviano‐Beck et al., 2014), to help indicate broad mineralogical compo-
sition, abundance, or grain size fluctuations. We will address the optimization
of spectral parameters, and calibrated instrument response of PanCam in an-
other study, but note here that instrument error as a function of filter number
suggests that spectral parameter performance is likely to vary according to the
reflectance error at each filter wavelength. For example, the relatively poor per-
formance by EM PanCam at filter number 11 (950 nm) for the phyllosilicates
saponite and vermiculite should be taken into account when devising and select-
ing spectral parameters that aim to emphasize any hydration-related absorption
features close to 1000 nm.

In an ideal situation, PanCam will be able to collect and return to Earth full
multispectral data on a regular basis. However, limits in power, data, and time
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are all likely to reduce the occasions on which the full geology filter set can be
implemented on Mars (e.g. Balme et al., 2019). In these cases, our analysis
suggests that minerals with distinctive absorption features in the VNIR, such
as hematite, are well suited to restricted filter selection to target specific spec-
tral features. For example, the performance of PanCam in identifying the ~860
nm absorption feature could be exploited during operations by only using filter
numbers 8, 9, and 10, which bracket this region. Although PanCam performs
well on basaltic and basaltic soil compositions from laboratory data, when spec-
tra are lacking diagnostic absorption features, such as in the higher elevation,
anhydrous regions of Mt Sharp, then multispectral performance decreases, re-
ducing the opportunity for targeted filter use. The tactical decision making
in selecting PanCam filter use for considering drill targets will then have to be
guided carefully by complementary in situ data such as EM PanCam broadband
RGB and HRC (Coates et al., 2017), ISEM (Korablev et al., 2017), and CLUPI
(Josset et al., 2017), in addition to orbital data such as CRISM (Murchie et al.,
2007), HiRISE (McEwen et al., 2007), and CaSSIS (Thomas et al., 2017).

5. Conclusions.

The ability of a visible and near-infrared multispectral imaging instrument to
acquire accurate spectra for in situ Mars science is controlled by the selection
of narrowband filters. These instruments not only provide contextual geological
information, but through the use of narrowband filters at discrete wavelengths,
also allow spectral information of the surface to be gathered at visible and near-
infrared wavelengths. The primary use of the multispectral information is to
determine composition and putative mineralogy that can be used in isolation,
but also allow targeted investigation with other payload instruments. Given
that different instruments have subtle differences in filter center wavelengths
and bandwidths, and have gone to different locations on Mars, it is difficult to
quantitatively assess the relative performance across missions. We have assessed
the relative performance of filter sets for three different instruments that are
either already, or will soon land, on Mars. By determining the root mean
square error (RMSE) between the simulated instrumental spectral response,
and both laboratory spectral libraries and Mars orbital hyperspectral data, we
have assessed the relative performance across instruments, mineral groups, and
spectral parameter surface units. We found that PanCam and Mastcam-Z have
generally similar values of RMSE, and are consistently lower than for Mastcam,
across both laboratory and remote sensing data sets. The general performance
across mineral groups are similar across all instruments, with the lowest RMSE
values for hematite, basalt, and basaltic soil. Minerals with broader, or absent,
absorption features in these visible wavelengths, such as olivine, saponite, and
vermiculite have overall larger RMSE values. Instrument RMSE as a function
of filter wavelength and bandwidth suggests that spectral parameters that use
lower wavelengths are likely to perform better. Our simulations of the spectral
performance of the PanCam instrument will help direct comparisons between
cross-mission instrument analyses, and allow the future use of targeted filter
selection during ExoMars Rosalind Franklin operations on Mars.
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Table 1. Geology filter center wavelength (�) and Full Width-Half Maximum
(FWHM) of multispectral imaging instruments on Mars. Values in parentheses
represent an identical filter in a separate left or right camera.

Filter number EM PanCam1 MSL Mastcam2 M2020 Mastcam-Z3

� (nm) FWHM (nm) � (nm) FWHM (nm) � (nm) FWHM (nm)
1 440 25 445 20 442 24
2 500 20 447 20 528 22
3 530 15 527 14 605 18
4 570 12 (527) (14) 677 22
5 610 10 676 10 754 20
6 670 12 751 20 800 18
7 740 15 805 20 (800) (18)
8 780 20 867 20 866 20
9 840 25 908 22 910 24
10 900 30 937 22 939 24
11 950 50 1012 42 978 20
12 1000 50 1013 42 1022 38

1 Coates et al. (2017), 2 Malin et al. (2017), 3 Bell et al. (2021)

Table 2. CRISM images used in Mars data simulations.

CRISM ID Acquisition Date Location Resolution
Spectral (nm) Spatial (m/px)

FRT0000B6F1 2008-07-09 Gale Crater 6.55 18
FRT00009A16 2008-01-25 Oxia Planum 6.55 18
FRT0000810D 2007-10-06 Oxia Planum 6.55 18
FRT000047A3 2007-02-26 Jezero Crater 6.55 18
FRT00005C5E 2007-05-19 Jezero Crater 6.55 18
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Table 3. Instrument performance for all laboratory spectra according to com-
positional group. In each case, the mean and standard deviation (SD) RMSE
are given.

Compositional group EM PanCam MSL Mastcam M2020 Mastcam-Z
Mean SD Mean SD Mean SD

All 0.0022 0.0019 0.0052 0.0047 0.0035 0.0034
Basalt 0.0006 0.0005 0.0023 0.0016 0.0010 0.0008
Basaltic soil 0.0013 0.0003 0.0054 0.0028 0.0024 0.0007
Hematite 0.0015 0.0015 0.0028 0.0034 0.0025 0.0031
Olivine 0.0037 0.0020 0.0082 0.0046 0.0061 0.0036
Saponite 0.0020 0.0013 0.0069 0.0070 0.0026 0.0017
Vermiculite 0.0027 0.0009 0.0067 0.0036 0.0042 0.0018
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