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Abstract

This study statistically evaluated the aerosol impact on the temperature error in the lower-level troposphere in short-range

numerical weather prediction (NWP). The Global Ensemble Forecast System version 12 (GEFSv12) reforecast exhibited large

temperature errors in high-loading areas (North India, Africa, South America, and China). In 1-day GEFSv12 forecasts, the

largest average temperature error occurred in the aerosol optical depth (AOD) peak month, and the daily error distribution

corresponded to the daily AOD distribution. Even though the temperature error in the 1-day operational forecasts was smaller

than that in the GEFSv12 forecasts, the forecast uncertainties in the operational forecasts were comparable to those in 3-day

GEFSv12 forecasts over high-loading areas. The daily temperature errors in all NWP models exhibited a correlation coefficient

of ˜0.5–0.6 for the AOD over Central Africa and northern South America and ˜0.3–0.6 for AOD anomalies over China and

northern South America. These results indicated that the yearly aerosol variability contributed 25–36% to errors, and the daily

variability contributed 10–36% to temperature errors in 3-day forecasts. Although the correlation was low, aerosol impacts

also emerged in North India and Central Africa. Partial correlation and composite analysis suggested that the direct effect

mainly influenced temperature forecast errors over northern South America, whereas both direct and indirect effects influenced

temperature errors over China. Model intercomparison revealed that operational NWP models could experience common

forecast errors associated with aerosols in high-loading areas.
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Key Points: 140 characters

• The lower-level troposphere temperature error was correlated with the
AOD over Africa and northern South America (R was ~0.6).

• The error was correlated with AOD anomalies over northern South Amer-
ica (China), and direct (direct and indirect) effects were important.

• Operational short-range forecasts experienced common errors associated
with yearly and daily aerosol variabilities in these regions.

Abstract (250 words)

This study statistically evaluated the aerosol impact on the temperature error in
the lower-level troposphere in short-range numerical weather prediction (NWP).
The Global Ensemble Forecast System version 12 (GEFSv12) reforecast exhib-
ited large temperature errors in high-loading areas (North India, Africa, South
America, and China). In 1-day GEFSv12 forecasts, the largest average tem-
perature error occurred in the aerosol optical depth (AOD) peak month, and
the daily error distribution corresponded to the daily AOD distribution. Even
though the temperature error in the 1-day operational forecasts was smaller
than that in the GEFSv12 forecasts, the forecast uncertainties in the oper-
ational forecasts were comparable to those in 3-day GEFSv12 forecasts over
high-loading areas. The daily temperature errors in all NWP models exhibited a
correlation coefficient of ~0.5–0.6 for the AOD over Central Africa and northern
South America and ~0.3–0.6 for AOD anomalies over China and northern South
America. These results indicated that the yearly aerosol variability contributed
25–36% to errors, and the daily variability contributed 10–36% to temperature
errors in 3-day forecasts. Although the correlation was low, aerosol impacts also
emerged in North India and Central Africa. Partial correlation and composite
analysis suggested that the direct effect mainly influenced temperature forecast
errors over northern South America, whereas both direct and indirect effects
influenced temperature errors over China. Model intercomparison revealed that
operational NWP models could experience common forecast errors associated
with aerosols in high-loading areas.

Plain Language Summary
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Atmospheric aerosols significantly impact weather and climate system via direct
(aerosol-radiation interactions) and indirect (aerosol-cloud interactions) effects.
Aerosol influences are, however, treated via a monthly climatology (i.e., real-
time spatiotemporal variations are not included) in short- to medium-range
numerical weather predictions. This study assessed the aerosol influences on
temperature forecasts in the lower-level troposphere on short-range timescales.
The results indicated that the variability in monthly and daily temperature
errors almost corresponded to the aerosol optical depth (AOD) variability in
high-loading areas (North India, Africa, South America, and China). The corre-
lation coefficients of the temperature error and AOD ranged from ~0.5–0.6 over
central Africa and northern South America, indicating that the yearly aerosol
variability contributed ~25–36% to this error. In addition, the correlation be-
tween the error and AOD anomalies reached 0.6 over northern South America
and 0.3 over China. These results suggested a 10–36% contribution of the
daily aerosol variability. Additionally, the direct effect dominated over north-
ern South America, while the both direct and indirect effects were important
over China. Model intercomparison in this study revealed that state-of-the-art
NWP models are subject to a common error source associated with the aerosol
variability in high-loading regions.

1 Introduction

Atmospheric aerosols considerably influence on the weather and climate sys-
tems via direct and indirect effects (Haywood and Boucher, 2000; Lohmann
and Feichter, 2005). The direct effect entails aerosol-radiation interactions over
cloud-free areas, while the indirect effect encompasses aerosol-cloud interactions
in cloudy areas. The direct effect indicates aerosol scattering or absorption of
short- and long-wave radiation, leading atmospheric warming and cooling de-
pending on the aerosol species, vertical distribution, and environmental condi-
tions. Regarding the indirect effect, aerosols alter cloud properties by function-
ing as cloud condensation nuclei and ice nuclei. While aerosols enhance the
formation of clouds, aerosols can reduce the precipitation efficiency of clouds by
preventing the growth of cloud particles. In addition to these two effects, absorb-
ing aerosols impose a certain influence on the atmospheric stability (semidirect
effect; Hansen et al., 1997; Lohmann and Feichter, 2001).

Simulations of atmospheric aerosols typically involve various elemental pro-
cesses, such as primary emission of aerosols and precursor gases, chemical reac-
tions and secondary formation, transportation, dry and wet deposition processes,
and aerosol-atmosphere interaction processes. Thus, numerous aerosol simula-
tion studies have been conducted with regional (e.g., Kajino et al., 2019, 2021a;
Grell et al., 2005) and global (Bhattacharjee et al., 2018; Gong et al., 2012; Mor-
crette et al., 2009; Rémy et al., 2019; Tanaka, 2003; Tanaka and Chiba, 2005)
models. Regardless of these numerous studies, high uncertainties are associated
with each elemental process. To reduce these uncertainties, several approaches
have been studied, such as data assimilation to improve the spatiotemporal dis-
tribution (Benedetti et al., 2009; Sekiyama et al., 2011; Yumimoto et al., 2016;
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Kajino et al., 2021a), the inversion method to improve emissions (Maki et al.,
2011; Sugimoto et al., 2010; Yumimoto et al., 2008), and the superensemble
method (Kajino et al., 2021b). However, because the solution to all these pro-
cesses requires very high computational resources, aerosols have been treated in
a simple manner in numerical weather prediction (NWP) models.

Aerosol treatment in NWP models depends on the timescale. Whereas
aerosols and gas cause high uncertainties (Adebiyi et al., 2020; Thorsen
et al., 2020), these components significantly affect the radiation budget on
climate timescales. Thus, climate simulations include detailed aerosol processes
involving an atmosphere-ocean-land model coupled with an aerosol model. The
IPCC (2021) demonstrated that anthropogenic aerosols lowered the global
surface temperature from 2010–2019 by 0.0–0.8 K below 1850–1900 levels,
while greenhouse gases contributed to warming by 1.0–2.0 K.

On short- to medium-range timescales, forecast skills mainly depend on the
accuracy of the initial states (Bauer et al., 2015). Boundary condition and slow-
varying atmospheric modes influence forecast skills on subseasonal to seasonal
(S2S) timescales (White et al., 2017; Vitart et al., 2017; Vitart and Robertson,
2018). Although the aerosol influence has been addressed based on their clima-
tology at these timescales, this treatment has been updated. Rodwell and Jung
(2008) examined the impacts of aerosol climatology replacement from annual
fixed values to monthly varying values in the European Centre for Medium-
range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). Their
results revealed that the above replacement improved not only surface variables
but also global circulations through teleconnections. Bozzo et al. (2020) re-
ported that the replacement of aerosol climatology produced through Coperni-
cus Atmosphere Monitoring Service (CAMS) reanalysis further enhanced Indian
monsoon circulation forecasts. The update of aerosol direct effect could improve
S2S forecasts (Benedetti and Vitart, 2018). The Japan Meteorological Agency
(JMA) Global Spectral Model (GSM) also attained improvement in front and
tropical cyclone forecasts by upgrading the aerosol treatment approach (JMA,
2019). Mulcahy et al. (2014) demonstrated that prognostic aerosols under
the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC)
scheme reduced the model bias due to dust storm prediction enhancement with
the UK Met Office (UKMO) Unified Model (UM). It was further reported that
the inclusion of indirect effects improved clouds in high-latitude clean-air re-
gions and strengthened the Indian monsoon circulation and African Easterly
Jet. The Korea Integrated Model was also improved by including the indirect
aerosol effect (Jeong, 2020).

Despite these aerosol treatment updates, state-of-the-art NWP models cannot
adequately predict aerosol impacts. An occasional high-loading event involving
dust (Rémy et al., 2015) or biomass burning (Zhang et al., 2016) could notably
affect radiation and the surface temperature and lead to forecast errors. The
difference in temperature in the lower-level troposphere between reanalysis data
(ERA-Interim, Huang et al., 2018; GDAS, Huang and Ding, 2021) and obser-
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vations reached up to 2.2 K under highly polluted conditions in North China.
Huang and Ding (2021) also the aerosol loading and surface conditions influ-
enced the temperature bias in the lower-level troposphere in 1-day US National
Centers for Environmental Prediction (NCEP) Global Forecast System (GFS)
predictions.

In these studies, aerosol impacts were evaluated during a short period (shorter
than one season) or case study (Rémy et al., 2015) and considering one NWP
model (Rodwell and Jung, 2008; Mulcaphy et al., 2014; Bozzo et al., 2020).
Zhang et al. (2016) conducted a multimodel comparison, and Huang and Ding
(2021) evaluated the aerosol impact during the period from 2016–2018, but their
study also involved a case study or one NWP model. Although individual NWP
models suffer their own problems, certain forecast errors might be common
among these models because most NWP models treat aerosol impacts via the
monthly climatology. Additionally, long-term evaluation is desirable because
the yearly variability in aerosols is commonly not included. However, long-term
simulation at the operational NWP model resolution coupled with sophisticated
aerosol schemes is difficult due to the high computational cost. Therefore, this
study statistically evaluated the forecast error, especially the temperature error
in the lower-level troposphere, associated with the aerosol loading considering
multiple prediction datasets and an aerosol reanalysis approaches.

2 Data and Methods

2.1 Aerosol reanalysis dataset

This study employed the aerosol optical depth (AOD) provided by the Japanese
Reanalysis for Aerosols (JRAero) v1.0 (Yumimoto et al., 2017) to measure the
aerosol distribution and density. JRAero is based on the JMA Earth System
Model version 1 (MRI-ESM1) developed by the Meteorological Research Insti-
tute (Yukimoto et al., 2012). MRI-ESM1 consists of an atmospheric general
circulation model (MRI-AGCM3) and an aerosol transport model, namely, the
Model of Aerosol Species IN the Global AtmospheRe mk-2 (MASINGAR mk-2;
Tanaka et al., 2003). MRI-AGCM3 exhibits a T159 (~1.1° x 1.1°) horizontal grid
spacing and 48 vertical levels. MASINGAR mk-2 calculates the emission, trans-
port, chemical reaction, and removal processes for five major aerosol species
(black carbon (BC), organic carbon (OC), mineral dust, sea salt, and sulfate
aerosols) and their precursors. MASINGAR mk-2 calculated the AOD at the
550- and 870-nm wavelengths based on the extinction coefficient for each aerosol
species at each vertical level. In MRI-ESM1, MASINGAR mk-2 received the re-
quired atmospheric field from MRI-AGCM3 and calculated chemical processes.
Then, MRI-AGCM3 received aerosol mixing ratio and deposition flux data from
MASINGAR mk-2 to calculate radiation modified by the aerosol effect through
a coupler. MODIS AOD observations provided by the US Naval Research Labo-
ratory (NRL) and the University of North Dakota were assimilated with 2-D Var
into the AOD in JRAero. The observed AOD (two-dimensional) was converted
into the three-dimensional mixing ratio based on the predicted vertical profile
for each aerosol species. The MODIS AOD was assimilated at 6-hour intervals.
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In addition, the predicted horizontal wind and temperature were nudged by
linearly interpolated 6-hour JMA operational global analysis (GANAL/JMA;
JMA, 2002) data at each timestep (900 s). Tanaka et al. (2003), Yukimoto
et al. (2011, 2012), and Yumimoto (2017) provided a detailed description of
MRI-ESM1 and MASINGAR mk-2. This study employed the 6-hourly AOD at
550 nm in JRAero from January 2011 to December 2017. Because JRAero as-
similates the MODIS AOD and then calculates the contribution of each aerosol
species in MASINGAR mk-2 (based on anthropogenic emission inventories, at-
mospheric variables, and surface conditions), we mainly examine the results
based on the total AOD.

2.2 Forecast datasets

We applied the reforecast dataset issued by the NCEP (Zhou et al., 2021) and
operational forecasts retrieved from the TIGGE data portal (Swinbank et al.,
2016). The ensemble reforecast datasets provided by the NCEP Global En-
semble Forecast System were recently updated to version 12 (GEFSv12). The
forecast skill of the geopotential height at 500 hPa of GEFSv12 is comparable to
that of the operational GFS, especially up to a lead time of 5 days (Zhou et al.,
2019). One of the advantages of reforecast data is that the model configuration
remains consistent throughout the period. The improvement in forecast skill
arises from the quality of the initial condition due to the increase in assimilated
observational data. This study employed GEFSv12 reforecast data initialized
at 0000 UTC on each day during the same period matching that of JRAero.

In addition to GEFSv12, we applied operational forecasts of five lead-
ing NWP centers: Environmental Climate Change Canada (ECCC),
ECMWF, JMA, NCEP, and UKMO. We adopted control forecasts ini-
tialized at 0000 UTC on each day during the same period as that of
JRAero. As operational systems, the NWP models were updated sev-
eral times. The TIGGE model description on the ECMWF webpage
(https://confluence.ecmwf.int/display/TIGGE/Model+upgrades) provides a
detailed model update history, and Yamagami et al. (2018) summarized
changes in the model resolution, forecast length, and ensemble size in its
Supporting Material. Note that the forecast data of the JMA initialized at 0000
UTC are available after February 2014, and there occur missing data for each
NWP center, as mentioned in Yamagami and Matsueda (2021). The treatment
method of the aerosol impact in these NWP models is summarized in Table
1. The aerosol climatology is also updated in the ECMWF, JMA, and UKMO
systems. In particular, only the UKMO system employed prognostic dust
aerosols after February 2015. Most NWP models, however, treated aerosols via
a monthly climatology, as mentioned in Section 1.

2.2 Calculation of the forecast error and evaluation of the aerosol impact on the
forecast error

We calculated the temperature error of the GEFSv12 forecasts with NCEP
FNL data. NCEP FNL data exhibit a grid spacing of 1.0° x 1.0° and a 6-hour
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temporal interval. Note that distribution and seasonal cycle of the average
temperature error in GEFSv12 calculated with NCEP FNL data was almost
similar to that calculated through NCEP GDAS analysis during the same period
(July 8, 2015–December 31, 2018) and GFS- and GDAS-based results (Huang
and Ding 2021). In the above operational forecasts, their forecast errors were
calculated through corresponding control analysis (initial analysis in the control
forecast) in a bias-free manner.

Similar to the correlation skill (Yamagami and Matsueda, 2020), the relation-
ship between the temperature forecast error (Terr) and AOD was evaluated
considering the correlation coefficient R(Terr, AOD) at each grid point as fol-
lows:

𝑅(𝑇err, 𝐴𝑂𝐷) = 𝐶𝑜𝑣(𝑇err, 𝐴𝑂𝐷)
𝜎(𝑇err)∗𝜎(𝐴𝑂𝐷) ,

where Cov(x, y) and 𝜎(𝑥) are the covariance between x and y and the standard
deviation of x, respectively. In addition, to estimate the relative importance
of aerosol-radiation and aerosol-cloud interactions, the partial correlation coef-
ficient was determined as follows:

𝑅(𝑇err, 𝐴𝑂𝐷; 𝑐𝑙𝑜𝑢𝑑) = 𝑅(𝑇err, 𝐴𝑂𝐷)−𝑅(𝑇err, 𝑐𝑙𝑜𝑢𝑑)∗𝑅(𝐴𝑂𝐷,𝑐𝑙𝑜𝑢𝑑)
√1−𝑅(𝑇err, 𝑐𝑙𝑜𝑢𝑑)2√1−𝑅(𝐴𝑂𝐷,𝑐𝑙𝑜𝑢𝑑)2 ,

where R(x,y;z) is the partial correlation coefficient between x and y, in which the
influence of z is removed. Because JRAero employed atmospheric fields nudged
by JMA operational analysis data, we obtained the analyzed total cloud cover
(TCC) from Japanese 55-year reanalysis (JRA-55; Kobayashi et al., 2015) data.

Table 1. Treatment of aerosols in the operational NWP models.

@ >p(- 4) * >p(- 4) * >p(- 4) * @

Center

& Period & Aerosol treatment

ECCC

& Jan. 2011 & AOD of Toon and Pollack (1976) distributed across the first
1500 m above the surface.

ECMWF
(Bozzo et al. 2020)

& Jan. 2011–Jul. 2017 & Five aerosol types (dust, organic matter, sulfate,
black carbon and maritime aerosols); monthly average and total integrated
AODs based on Tegen et al. (1997).
& Aug. 2017 & Five main aerosol types (dust, in three size bins; organic
matter; sulfate; black carbon; and sea salt, in 3 size bins) of the CAMS.
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JMA
(JMA 2019)

& Feb. 2014–May. 2017 & Monthly average climatological AOD created based
on MODIS, MISR, and OMI observations.
& Jun. 2017 & Five aerosol types (dust, in three size bins; organic carbon;
sulfate; black carbon; and maritime aerosols, in two size bins); 3-D monthly
average climatology via the MASINGAR mk-2 model with modification based
on the observed climatology.

NCEP
(Lu et al., 2013, NCEP Office Note 472)

& Jan. 2011 & Prescribed aerosol distributions based on a global climatological
aerosol database (Hess et al., 1998).
& &

UKMO
(Mulcahy et al., 2014, Kolusu et al., 2015)

& Jan. 2011–Jan. 2015 & Eight aerosol types (dust, sulfate, biomass burning,
fossil fuel black carbon, fossil fuel organic carbon, sea salt, nitrate, and
secondary organic aerosols); monthly mean three-dimensional climatologies of
the mass mixing ratio created with the CLASSIC algorithm.
& Feb. 2015 & Monthly mean three-dimensional climatologies of the mass
mixing ratio, except for mineral dust for which the mixing ratio is prognostic
(2 bins) based on Woodward (2001).

3 Results

3.1 Temperature error in the lower-level troposphere in the GEFSv12 dataset

The monthly mean forecast error in the temperature at the 850 hPa level at a
lead time of 1 day in GEFSv12 exhibited different seasonal cycles over individ-
ual regions (Fig. 1). In northern India, a positive error of ~1.5 K was observed
from late spring to early autumn. This error occurred over northeastern India in
May (Fig. 1e) and was extended to northeastern India from June to September
(Fig. 1f–i). A positive error also emerged over equatorial Africa in both winter
(Fig. 1a, b, and l) and summer (Fig. 1f–i). In South America, a positive error
occurred in the northern part in September (Fig. 1i) and the southern part in
February (Fig. 1b). A positive error was also observed in February over China
(Fig. 1b). In contrast, a negative error occurred near the Tibetan Plateau and
Rocky Mountains throughout the year. The difference in topography resolution
between the GEFSv12 and NCEP FNL models could contribute to this negative
error. In addition, a negative error was observed over the ocean. The negative
bias over the ocean, except for the Southern Pacific and Indian Oceans, disap-
peared when the error was calculated over the period from July 2015–December
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2018, indicating that this negative error arose from period extension to 2011–
2017. This study focused on the positive errors over northern India, northern
and equatorial Africa, northern and southern South America, and China at a
monthly mean error larger than 0.5 K during the peak month (Fig. 2). Note
that the areas of North Africa (N. Africa in Fig. 2) and China were defined by
the error at 925 hPa because the error at 925 hPa was larger than that at 850
hPa.

Figure 1 Monthly mean 1-day forecast error in the temperature at 850 hPa in
GEFSv12 during the period from 2011–2017. Errors with a statistical signifi-
cance at the 99% confidence level are shaded.
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Figure 2 Definition of each area. The shading in each area satisfies the condition
that the monthly mean temperature error is larger than 0.5 K in the 1-day
GEFSv12 forecasts at a certain level and month (described above or below each
shaded area).

3.2 Variability in the temperature error and AOD

The monthly variability in the AOD over northern India indicated two peaks in
early summer and winter (Fig. 3a-c). In northern India (Fig. 3a), one of the
peaks reached 0.47 in June, and the other reached 0.46 in January. While the
seasonal cycle of the AOD in northeast India was similar to that in northern
India, the seasonal cycle in northwest India attained the highest value in July
(~0.49). Similar to the temperature error (Fig. 1), the AOD peak also shifted
from east to west across northern India from May–September. In Africa, the
climatological AOD was the highest in winter (Fig. 3d). The peak reached 0.59
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in February, followed by a value of 0.43 in June and July and 0.42 in January and
December. In northern Africa, the AOD exhibited a rapid increase from January
to February and the highest value in May (Fig. 3e). In contrast, the AOD in
Central Africa (Fig. 3f) revealed two peaks in August (~0.63) and in February
(~0.43), and the amplitude was larger than that in northern Africa. The seasonal
cycle of the AOD was almost consistent with that of the temperature error in
these three areas. The monthly variability in the AOD attained a peak in
September in both North (~0.39, Fig. 3g) and South America (~0.22, Fig. 3h).
While the highest AOD in September corresponded to the largest temperature
error in the northern part, there occurred no AOD peak in February in the
southern part. In China, the AOD was apparently higher than in the other
areas, and the peak value reached 0.95 in March, followed by a value of 0.76 in
January and April (Fig. 3i). Overall, the peak month of the AOD corresponded
to that of the temperature error in all areas, except for the northern part of
Africa and the southern part of South America, suggesting that a higher aerosol
loading is one of the possible sources for the temperature error in the lower-level
troposphere.

The distribution of the daily temperature error corresponded to that of the
daily AOD in each area (Fig. 4). In particular, the relationship was clear in the
African regions (Fig. 4d-f). For example, the median AOD was higher in 2012
and 2016 in Africa, and the median daily temperature error was also larger in
these years (Fig. 4d). This result indicates that the number of high-loading
days corresponded to that of large-error days. Thus, a higher aerosol loading
could lead to a larger temperature error. A similar relationship was observed
in northern India (Fig. 4a), the northern part of South America (Fig. 4g), and
China (Fig. 4i). In addition to the median value, the 90th percentile values
of the temperature error corresponded to those of the AOD. For example, the
higher 90th percentile values in northwest India (Fig. 4b), North Africa (Fig.
4e), and Central Africa (Fig. 4f) corresponded to the broad distribution of the
daily temperature error in 2015, 2012, and 2011, respectively. Interestingly, the
relationship was notable in the southern part of South America, where the peak
month of the temperature error did not correspond to that of the AOD (Fig.
3h). Therefore, occasional high-loading events could lead to a high forecast
uncertainty in lower-level tropospheric temperatures.
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Figure 3 Average monthly variability in the AOD in each area. Red, black, gray,
yellow, and blue indicate the contributions of sulfate, black carbon, organic
carbon, dust, and sea salt, respectively.
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Figure 4 Distribution of the temperature error in the 1-day GEFS forecasts (box
plot, left axis) and AOD (lines, right axis) in the 3 months (described in each
panel). The horizontal bar in the box (the bold black line with a black circle)
indicates the median value of the temperature error (AOD). The box limits
(thin black lines) indicate the range of the 25th and 75th percentile values of the
temperature error (AOD), and the vertical lines extending from the box (thin
gray lines) indicate the range of values from the 10th to 90th percentiles of the
temperature error (AOD).

3.3 Comparison of the temperature error among the various NWP centers and
its relationship to the AOD

Intermodel comparison of the temperature error revealed that the errors in the
GEFSv12 and NCEP forecasts were larger than those in the forecasts of the
other NWP centers (e.g. over north India; Fig. S1a-c) and some errors were
specific to the GEFSv12 (and NCEP) forecasts at a lead time of 1 day (Fig.
S1). The temperature error, however, reached �0.5 K in the 3-day forecasts of
the other centers in North India (Fig. 5a–c), the northern part of South America
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(Fig. 5g), and China (Fig. 5i). In these areas, while the average error was larger
in the GEFSv12 forecasts than that in the forecasts of the other NWP centers,
the daily error distribution of the other NWP centers was comparable to that
in the GEFSv12 forecasts (the bars in Fig. 5). These results indicated that the
uncertainties in the temperature forecasts were prominent in these high-loading
areas across all NWP centers.

Figure 5 Monthly mean temperature error in the 3-day forecasts of the GEFS
(brown), ECCC (yellow), ECMWF (blue), JMA (red), NCEP (green), and
UKMO (purple) in the defined area in Fig. 2. The filled circles and error
bars indicate the average error larger than 0.5 K and 1 standard deviation,
respectively.

The correlation coefficient between the temperature error in the 3-day forecasts
and AOD was notable over Central Africa and northern South America (Fig. 6).
The correlation coefficient reached �0.5 over Central Africa and �0.6 over North-
ern South America for the GEFSv12 forecasts (Fig. 6a). A positive correlation
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indicated a large temperature error on higher-loading days (i.e., the predicted
temperature was higher than the observed temperature). Thus, a positive cor-
relation could correspond to a decrease in the analyzed (observed) temperature
due to aerosols. All NWP centers showed a similar correlation coefficient distri-
bution in these areas, except for the ECMWF and UKMO over Central Africa
(Fig. 6b–f). In addition, the correlation coefficient reached ~0.3 over China
and Australia in general across all centers, except for the JMA. The correlation
coefficient indicated that approximately 10–36% of the temperature error in the
lower-level troposphere was associated with the aerosol variability. Because the
monthly variability in the AOD was treated in most of the NWP models (Table
1), the forecast error might be associated with the yearly variability in the AOD
and the bias in the AOD climatology in each NWP model. The update of the
aerosol climatology in the ECMWF (Bozzo et al., 2020), JMA (JMA, 2019), and
UKMO (Mulcahy et al., 2014) models influenced the temperature and radiation
over Central Africa and the circulation of the Indian monsoon. The correlation
coefficient value of ~0.3 near the Arabian Peninsula for the ECCC and UKMO
forecasts and around Southeast Asia for the JMA and UKMO forecasts might
be related to the circulation change associated with the dust aerosol variabil-
ity. Therefore, consideration of the yearly variability in aerosols could further
increase the temperature forecast skill in short- to medium-range forecasts in
high-correlation areas, in addition to improving the monthly climatology.

The daily aerosol variability was also not treated in all NWP models, except for
dust aerosols in the UKMO model after February 2015 (Table 1). To evaluate
the contribution of the daily aerosol variability, we calculated the correlation
coefficient between the temperature error and AOD anomalies (Fig. 7). The
high correlation coefficient over Central Africa and northern South America
disappeared. However, a correlation coefficient of ~0.3 emerged over northeast
South America and China across all NWP centers in general. These results
indicated that the temperature forecast skill could improve across all NWP
centers by treating the daily aerosol variability over northeast South America
and China. In particular, the correlation coefficient reached 0.6 over northeast
South America from July–November (contour in Fig. 9). Thus, the treatment
of daily aerosols could lead to an improvement in the temperature forecast error
of ~36% in these months.

A correlation coefficient of zero does not necessarily indicate that aerosols exert
no impact on the temperature forecasts in the other areas (Fig. 8). Although
each model experienced a different temperature bias in each area, the forecast
errors on high-loading days were generally larger than those on low-loading
days over Northwest India and Central Africa across all models (Fig. 8b and
f). Similar positive differences also emerged over northern India in the ECCC,
ECMWF, and JMA forecasts and over southern South America in the GEFSv12
and ECCC forecasts. These results indicated that occasional high-loading events
could increase the temperature error in these areas. In contrast, a small or
negative difference indicated the low impact of the daily aerosol variability or
higher impact of other processes on temperature forecast errors. Consistent
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with Fig. 7, the forecast error was larger on high-loading days than that on
low-loading days over northeast South America and China (Fig. 8g and i). In
northeast South America (China), the difference in error ranged from 0.1–0.6 K
(0.6–1.5 K) between high- and low-loading days with a 0.3 (1.0) AOD anomaly
difference. Thus, the impact of aerosols on the temperature forecast error ranged
from approximately 0.3 to 2.0 K/AOD. These results are relatively consistent
with the values estimated by Zhang et al. (2016).

Figure 6 The correlation coefficient between temperature error in the 3-day (a)
GEFS, (b) ECCC, (c) ECMWF, (d) JMA, (e) NCEP, and (f) UKMO (purple)
forecasts and AOD.
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Figure 7 Similar to Fig. 6 but for the AOD anomalies.

16



Figure 8 Average (shaded) and median (broken line) values of the area-averaged
temperature forecast error on high- (AOD anomaly >75th percentile value, red)
and low-loading (AOD anomaly < 25th percentile value, blue) days and their
difference (high-low, gray). The difference in the average AOD is provided above
the bars (high-low).

3.4 Contribution of the direct and indirect effects over northeast South America
and China

Aerosols can generate both direct and indirect effects. We employ partial cor-
relation coefficient (Figs. 9 and 11, respectively) and composite analyses (Figs.
10 and 12, respectively) to estimate the relative importance of these effects over
northeast South America and China. The partial correlation coefficient could
evaluate the relationship between the temperature error and AOD anomalies
without TCC influence. The partial correlation coefficient (shading in Fig. 9)
was almost similar to the original correlation coefficient (contour), indicating
that the TCC imposed little influence on the relationship between the temper-
ature error and AOD over northeast South America. In particular, the partial
correlation coefficient nearly matched the original correlation coefficient over
central Brazil. This result suggested the dominance of aerosol-radiation inter-
actions in this area. On average, GEFSv12 exhibited a positive error of ~1.2 K
over Brazil on large-error days (upper 25th percentile of the temperature error,
Fig. 10a). The predicted TCC was higher on high-loading days than that on
low-loading days in the southern part of Brazil (Fig. 10b). Consistent with
the high TCC, the downward shortwave radiation at the surface (DSW) was
lower on high-loading days than that on low-loading days. These results indi-
cated that higher aerosol loadings induced a higher TCC and lower DSW in
the southern part of Brazil (Fig. 10c). The all-sky DSW in the JRAero data
was lower on high-loading days than that on low-loading days in this area, sim-
ilar to the GEFSv12 forecasts (Fig. 10f). Thus, GEFSv12 correctly predicted
the DSW decrease due to the TCC increase in the southern part of Brazil. In
addition, the analyzed clear-sky DSW revealed a notable negative difference in
the JRAero data (Fig. 10e) in central Brazil, where the difference in the AOD
was the largest (�0.2, Fig. 10d). Because JRAero does not provide radiation
at the top of the atmosphere, we could not reveal the relationship between the
radiation budget difference and temperature error. However, similar to the re-
lationship between the temperature difference and AOD, as shown in Fig. 8,
the difference in the clear-sky DSW of ~100 W/m2/AOD is consistent with the
results of Zhang et al. (2016). Additionally, the difference in the DSW between
high- and low-loading days (~30 W/m2) was similar to the aerosol impact on the
DSW calculated by Mulcuphy et al. (2014). The partial correlation coefficient
and composite fields suggested that part of the temperature error was associated
with the direct effect, especially in the northern part of Brazil. The temperature
error over northeast Brazil was independent of the relative humidity (RH) at
850 hPa and TCC (Fig. S3), supporting that the direct effect caused the tem-
perature error. Biomass burning could constitute one of the main contributors
to the temperature error (Kolus et al., 2015; Thornhill et al., 2018).
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Figure 9 (Contours) Similar to Fig. 6 but from July to November in South
America. (Shading) The correlation coefficient between the temperature error
and AOD anomalies in which the forecast error explained by the TCC variability
is removed through partial correlation analysis.
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Figure 10 (a) Average temperature error on the large-temperature error days
(high+low-loading days). (b-f) Difference in the predicted (b) TCC and (c)
all-sky downward shortwave radiation at the surface values between high- and
low-loading day composite (high-low) forecasts in GEFSv12 and (d-f) that in
the analyzed (d) AOD, (e) clear-sky downward shortwave radiation, and (f)
all-sky downward shortwave radiation at the surface (shading). The stippled
line indicates the difference with a statistical significance at the 99% confidence
level.

In contrast to the northern part of South America, the partial correlation coeffi-
cient (shading in Fig. 11) was �0.1 lower than the original correlation coefficient
over China from December to April across all centers, suggesting that the tem-
perature error was related to AOD anomalies through the TCC. Based on the
composite fields on large-error days, GEFSv12 yielded a positive error of �1.2 K
in the southern part of China (Fig. 12a). While the predicted TCC was higher
on high-loading days than that on low-loading days in the central to northern
parts, the difference was small and statistically insignificant in the southern
part (Fig. 11b). The difference in the DSW was negative in Central China
but reached almost zero near the southern part of China (Fig. 12c). These
results suggest that GEFSv12 predicted the increase in TCC and the associated
decrease in DSW from northern to Central China. Nevertheless, there occurred
no difference in DSW predictions along the southern coast of China between
high- and low-loading days. In JRAero, a significant difference in the AOD of
�0.2 was observed across all of China, including along the southern coast (Fig.
12d). Associated with the AOD difference, the all-sky DSW exhibited a signif-
icant negative difference (approximately -30 W/m2, Fig. 12f). The clear-sky
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DSW contributed to the difference in the all-sky DSW in Central China, but the
contribution was relatively small near the edge of the all-sky DSW difference
(Fig. 12e). In addition, the temperature error was insignificant at a lower RH
at 925 hPa and under TCC conditions (Fig. S5). These results suggest that
GEFSv12 did not suitably predict clouds near the southern part of China on
high-loading days, resulting in a positive temperature forecast error.

Because the TCC resulting from reanalysis contains a high uncertainty (Free
et al., 2015; Miao et al., 2019). we calculated the partial correlation coefficient
using the TCC retrieved from ERA5 (Hersbach et al., 2020). The ERA5 results
were similar to those of JRA-55 over northern South America (Fig. S2) and
China (Fig. S4). Therefore, the indirect effect could yield an as large contri-
bution as that of the direct effect to the temperature forecast error along the
southern coast of China.

Figure 11 Similar to Fig. 9 but for China.
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Figure 12 Similar to Fig. 10 but for China.

4 Summary and Conclusion

In this study, we statistically evaluated the aerosol impact on the temperature
error from 2011–2017 considering JRAero and GEFSv12 reforecast and five op-
erational forecast datasets (ECCC, ECMWF, JMA, NCEP, and UKMO). This
study focused on northern India, northern to Central Africa, South America,
and China, where the 1-day GEFSv12 forecast exhibited a large temperature
error. The positive temperature error in northern India was the largest in June,
and the error shifted from east to west from May to September. The tempera-
ture error was the largest in Central Africa in January and July and in North
Africa in February. The GEFSv12 forecast also exhibited the largest forecast
error in February over China. The peak month of the temperature error was
generally consistent with that of the AOD in each region, except for Central
Africa and southern South America. In addition, the daily temperature error
distribution corresponded to the daily AOD distribution in each year in all
regions.

Although these results were relatively consistent with a previous study of Huang
and Ding (2021), the 1-day operational forecasts, except for those of the NCEP,
indicated a much smaller temperature error than that in the GEFSv12 forecast.
The temperature error in the operational forecasts increased in the 3-day fore-
casts, and the daily variability reached as high as that in the GEFSv12 forecast
in northern India, Central Africa, northern South America, and China. There-
fore, the forecast uncertainty in the lower-level troposphere is high in these
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areas, and aerosol loading could represent one of the reasons for this forecast
uncertainty.

The correlation coefficient between the daily temperature error and AOD
reached ~0.6 over Central Africa and northern South America across all NWP
centers, indicating that ~36% of the temperature error was related to the AOD
throughout the year in these regions. The correlation coefficient increased
in specific months (e.g., May to September over northern India) and for
specific aerosol species (e.g., the AOD of mineral dust yielded a correlation
coefficient of ~0.6 over northern India, Fig. S6). Thus, the impact of aerosols
on temperature forecasts largely depended on the season, region, and aerosol
species. The operational NWP models treated only the monthly variability
via the climatology of aerosols. Hence, some of the temperature error could
be associated with the yearly variability in aerosols. In addition, the aerosol
climatologies created from aerosol models and observations could include high
uncertainties (Session et al., 2015; Andrews et al., 2018). Therefore, the aerosol
climatology should be further improved, which could reduce these temperature
errors.

The correlation coefficient between the temperature error and AOD anomalies
reached ~0.6 over northern South America from July to November and ~0.3 over
China from December to April, indicating that the temperature error ranging
from 10–36% was associated with the daily aerosol variability in these regions.
Whereas aerosol-radiation interactions mainly influenced the temperature error
over northern South America, both direct and aerosol-cloud interactions influ-
enced the error over China. These results indicated that the relative importance
of the direct and indirect effects varied among the individual regions. Although
the change in the effective radius of hygroscopic aerosols was treated in certain
NWP models, aerosol-cloud interactions were not considered in any of the NWP
models. Mulcahy et al. (2014) reported that the zonal mean cold bias below 700
hPa could be improved by including aerosol indirect effects in 5-day UKMO fore-
casts. The results in this study suggested that the treatment of indirect effects
could further impact high-loading regions, such as China. In addition, only the
UKMO model employed prognostic dust aerosols in the upgrade process of the
aerosol treatment in 2015. This could be related to the smaller difference in the
temperature error between high- and low-loading days in the UKMO forecasts
than that in the forecasts of the other centers over northern India.

The statistical analyses in this study are consistent with the fully coupled ex-
periments conducted in previous studies (e.g., Rodwell and Jung 2008; Bozzo et
al., 2020; Mulchahy et al., 2014). Model intercomparison revealed that certain
temperature forecast errors were common issues among the considered NWP
models, and some of these errors were associated with the yearly and daily
aerosol variabilities. This study further suggested the importance of including
the indirect effect on short- to medium-range forecasts in specific areas. How-
ever, this statistical analysis could not separate the impacts of aerosols between
the increase in effective radius or the increase in concentration. Further studies
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targeting both the observation and modeling of aerosols are desired to reduce
these forecast errors in operational NWP models by improving the aerosol treat-
ment approach.

Acknowledgments

The authors thank the ECMWF for providing the TIGGE and ERA5 datasets
and the NCEP for providing the GEFSv12 and NCEP FNL datasets. The au-
thors are also grateful to the MRI and University of Kyushu for providing the
JRAero and JRA55 reanalysis datasets. This study was supported by the Funda-
mental Technology Research of the MRI (M5), the Integrated Research Program
for Advancing Climate Models (TOUGOU), the Environmental Restoration and
Conservation Agency (ERCA), the Environment Research Technology Develop-
ment Fund (JPMEERF20215003 and JPMEERF20205001), and the Japanese
Society for the Promotion of Sciences (JSPS) KAKENHI grant no. JP19H01155.

Open Research

The JRAero dataset can be obtained upon data request from the developers
(https://www.riam.kyushu-u.ac.jp/taikai/JRAero/index.html). The opera-
tional ensemble forecast datasets are available at the TIGGE data portal
(https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/), and the
GEFS version 12 ensemble reforecast can be obtained from Amazon Web
Services (https://noaa-gefs-retrospective.s3.amazonaws.com/index.html). The
reanalysis datasets of JRA-55 (https://jra.kishou.go.jp/JRA-55/index_ja.html)
and NCEP FNL (doi:10.5065/D6M043C6) and ERA5 (doi:10.5065/D6X34W69)
reanalyses are also available at https://reanalyses.org/.

References

Adebiyi, A. A., Kok, J. F., Wang, Y., Ito, A., Ridley, D. A., Nabat, P.,
& Zhao, C. (2020). Dust Constraints from joint Observational-Modelling-
experiMental analysis (DustCOMM): Comparison with measurements and
model simulations. Atmospheric Chemistry and Physics, 20(2), 829–863.
https://doi.org/10.5194/acp-20-829-2020

Andrews, E., Ogren, J. A., Kinne, S., & Samset, B. (2017). Comparison of
AOD, AAOD and column single scattering albedo from AERONET retrievals
and in situ profiling measurements. Atmospheric Chemistry and Physics, 17(9),
6041–6072. https://doi.org/10.5194/acp-17-6041-2017

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical
weather prediction. Nature, 525(7567), 47–55. https://doi.org/10.1038/nature14956

Bhattacharjee, P. S., Wang, J., Lu, C., & Tallapragada, V. (2018). The
implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for
global multispecies forecasting at NOAA/NCEP – Part 2: Evaluation of
aerosol optical thickness. Geoscientific Model Development, 11(6), 2333–2351.
https://doi.org/10.5194/gmd-11-2333-2018

23



Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J., Fisher,
M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A.,
Razinger, M., Simmons, A. J., & Suttie, M. (2009). Aerosol analysis and fore-
cast in the European Centre for Medium-Range Weather Forecasts integrated
forecast system: 2. data assimilation. Journal of Geophysical Research Atmo-
spheres, 114(13). https://doi.org/10.1029/2008JD011115

Benedetti, A., & Vitart, F. (2018). Can the direct effect of aerosols improve
subseasonal predictability? Monthly Weather Review, 146(10), 3481–3498.
https://doi.org/10.1175/MWR-D-17-0282.1

Bozzo, A., Benedetti, A., Flemming, J., Kipling, Z., & Rémy, S. (2020). An
aerosol climatology for global models based on the tropospheric aerosol scheme
in the Integrated Forecasting System of ECMWF. Geoscientific Model Develop-
ment, 13(3), 1007–1034. https://doi.org/10.5194/gmd-13-1007-2020

 Free, M., Sun, B., & Yoo, H. L. (2016). Comparison between total cloud
cover in four reanalysis products and cloud measured by visual obser-
vations at U.S. weather stations. Journal of Climate, 29(6), 2015–2021.
https://doi.org/10.1175/JCLI-D-15-0637.1

Gong, S. L., Lavoué, D., Zhao, T. L., Huang, P., & Kaminski, J. W. (2012).
GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system:
model development and evaluation of global aerosol climatology. Atmospheric
Chemistry and Physics, 12(17), 8237–8256. https://doi.org/10.5194/acp-12-
8237-2012

Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Ska-
marock, and B. Eder, (2005) Fully coupled “online” chemistry within the WRF
model. Atmos. Environ., 39, 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027

Hansen, J., Sato, M., & Ruedy, R. (1997). Radiative forcing and climate re-
sponse. Journal of Geophysical Research: Atmospheres, 102(D6), 6831–6864.
https://doi.org/10.1029/96JD03436

Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect ra-
diative forcing due to tropospheric aerosols: A review. Reviews of Geophysics,
38(4), 513–543. https://doi.org/10.1029/1999RG000078

 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., … Thépaut, J. (2020). The ERA5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
https://doi.org/10.1002/qj.3803

Hess, M., Koepke, P., & Schult, I. (1998). Optical Properties of Aerosols
and Clouds: The Software Package OPAC. Bulletin of the American
Meteorological Society, 79(5), 831–844. https://doi.org/10.1175/1520-
0477(1998)079<0831:OPOAAC>2.0.CO;2

Huang, X., Wang, Z., & Ding, A. (2018). Impact of Aerosol-PBL Interaction on

24



Haze Pollution: Multiyear Observational Evidences in North China. Geophysi-
cal Research Letters, 45(16), 8596–8603. https://doi.org/10.1029/2018GL079239

Huang, X., & Ding, A. (2021). Aerosol as a critical factor causing forecast
biases of air temperature in global numerical weather prediction models. Science
Bulletin, 66(18), 1917–1924. https://doi.org/10.1016/j.scib.2021.05.009

IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Phys-
ical Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change [MassonDelmotte,
V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen,
L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews,
T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge
University Press. In Press.

Japan Meteorological Agency (2002). Annual WWW Technical Progress Report
on the Global Data Processing System, GDPS Technical Progress Report Series,
12, WMO/TD-No. 1148- 21.03.03.

Japan Meteorological Agency, 2019: Improvement and prospect of Global Spec-
tral Model. Additonal Volume to Report of Numerical Prediction Division, 65,
175 pp (in Japanese).

Jeong, G.-R. (2020). Weather Effects of Aerosols in the Global Forecast Model.
Atmosphere, 11(8), 850. https://doi.org/10.3390/atmos11080850

Kajino, M., Deushi, M., Sekiyama, T. T., Oshima, N., Yumimoto, K., Tanaka,
T. Y., Ching, J., Hashimoto, A., Yamamoto, T., Ikegami, M., Kamada,
A., Miyashita, M., Inomata, Y., Shima, S. I., Takami, A., Shimizu, A., &
Hatakeyama, S. (2019). NHM-Chem, the Japan meteorological agency’s
regional meteorology – chemistry model: Model evaluations toward the
consistent predictions of the chemical, physical, and optical properties of
aerosols. Journal of the Meteorological Society of Japan, 97(2), 337–374.
https://doi.org/10.2151/JMSJ.2019-020

 Kajino, M., Deushi, M., Sekiyama, T. T., Oshima, N., Yumimoto, K., Tanaka,
T. Y., Ching, J., Hashimoto, A., Yamamoto, T., Ikegami, M., Kamada, A.,
Miyashita, M., Inomata, Y., Shima, S., Khatri, P., Shimizu, A., Irie, H., Adachi,
K., Zaizen, Y., Igarashi, Y., Ueda, H., Maki, T., & Mikami, M. (2021a). Com-
parison of three aerosol representations of NHM-Chem (v1.0) for the simulations
of air quality and climate-relevant variables. Geoscientific Model Development,
14(4), 2235–2264. https://doi.org/10.5194/gmd-14-2235-2021

Kajino, M., Tanji, N., & Kuramochi, M. (2021b). Better prediction of surface
ozone by a superensemble method using emission sensitivity runs in Japan. At-
mospheric Environment: X, 12, 100120. https://doi.org/10.1016/j.aeaoa.2021.100120

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K.

25



(2015). The JRA-55 Reanalysis: General Specifications and Basic Character-
istics. Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5–48.
https://doi.org/10.2151/jmsj.2015-001

Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush, M.,
& Spracklen, D. v. (2015). Impacts of Amazonia biomass burning aerosols as-
sessed from short-range weather forecasts. Atmospheric Chemistry and Physics,
15(21), 12251–12266. https://doi.org/10.5194/acp-15-12251-2015

Lohmann, U., & Feichter, J. (2005). Global indirect aerosol effects: a review. At-
mospheric Chemistry and Physics, 5(3), 715–737. https://doi.org/10.5194/acp-
5-715-2005

Lu, S., da Silva, A., Chin, M., Wang, J., Moorthi, S., Juang, H., Chuang, H.-Y.,
Tang, Y., Jones, L., Iredell, M., and McQueen, J. (2003). The NEMS GFS
Aerosol Component: NCEP’s Global Aerosol Forecast System, NCEP Office
Note 472, 26 pp.

Maki, T., Tanaka, T. Y., Sekiyama, T. T., & Mikami, M. (2011). The
Impact of Ground-Based Observations on the Inverse Technique of Aeolian
Dust Aerosol. Scientific Online Letters on the Atmosphere, 7(A), 21–24.
https://doi.org/10.2151/sola.7A-006

 Miao, H., Wang, X., Liu, Y., & Wu, G. (2019). An evaluation of cloud ver-
tical structure in three reanalyses against CloudSat/cloud‐aerosol lidar and in-
frared pathfinder satellite observations. Atmospheric Science Letters, 20(7), 1–9.
https://doi.org/10.1002/asl.906

Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Bel-
jaars, A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., Schulz,
M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A.
M., & Untch, A. (2009). Aerosol analysis and forecast in the European
Centre for Medium-Range Weather Forecasts Integrated Forecast System:
Forward modeling. Journal of Geophysical Research, 114(D6), D06206.
https://doi.org/10.1029/2008JD011235

Mulcahy, J. P., Walters, D. N., Bellouin, N., & Milton, S. F. (2014). Im-
pacts of increasing the aerosol complexity in the Met Office global numerical
weather prediction model. Atmospheric Chemistry and Physics, 14(9), 4749–
4778. https://doi.org/10.5194/acp-14-4749-2014

National Centers for Environmental Prediction, Environmental Modeling Center
(2003). The GFS atmospheric model. NCEP Office Note, 442, 14 pp.

Rémy, S., Benedetti, A., Bozzo, A., Haiden, T., Jones, L., Razinger, M., Flem-
ming, J., Engelen, R. J., Peuch, V. H., & Thepaut, J. N. (2015). Feedbacks
of dust and boundary layer meteorology during a dust storm in the eastern
Mediterranean. Atmospheric Chemistry and Physics, 15(22), 12909–12933.
https://doi.org/10.5194/acp-15-12909-2015

26



Rémy, S., Kipling, Z., Flemming, J., Boucher, O., Nabat, P., Michou, M.,
Bozzo, A., Ades, M., Huijnen, V., Benedetti, A., Engelen, R., Peuch, V.-
H., & Morcrette, J.-J. (2019). Description and evaluation of the tropospheric
aerosol scheme in the European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geoscientific
Model Development, 12(11), 4627–4659. https://doi.org/10.5194/gmd-12-4627-
2019

Rodwell, M. J., & Jung, T. (2008). Understanding the local and global impacts
of model physics changes: an aerosol example. Quarterly Journal of the Royal
Meteorological Society, 134(635), 1479–1497. https://doi.org/10.1002/qj.298

Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., & Miyoshi, T. (2010). Data
assimilation of CALIPSO aerosol observations. Atmospheric Chemistry and
Physics, 10(1), 39–49. https://doi.org/10.5194/acp-10-39-2010

Sessions, W. R., Reid, J. S., Benedetti, A., Colarco, P. R., da Silva, A., Lu,
S., Sekiyama, T., Tanaka, T. Y., Baldasano, J. M., Basart, S., Brooks, M.
E., Eck, T. F., Iredell, M., Hansen, J. A., Jorba, O. C., Juang, H.-M. H.,
Lynch, P., Morcrette, J.-J., Moorthi, S., … Westphal, D. L. (2015). Develop-
ment towards a global operational aerosol consensus: basic climatological char-
acteristics of the International Cooperative for Aerosol Prediction Multi-Model
Ensemble (ICAP-MME). Atmospheric Chemistry and Physics, 15(1), 335–362.
https://doi.org/10.5194/acp-15-335-2015

Sugimoto, N., Hara, Y., Yumimoto, K., Uno, I., Nishikawa, M., & Dulam, J.
(2010). Dust Emission Estimated with an Assimilated Dust Transport Model
Using Lidar Network Data and Vegetation Growth in the Gobi Desert in Mon-
golia. SOLA, 6(1), 125–128. https://doi.org/10.2151/sola.2010-032

Swinbank, R., Kyouda, M., Buchanan, P., Froude, L., Hamill, T. M., Hewson,
T. D., Keller, J. H., Matsueda, M., Methven, J., Pappenberger, F., Scheuerer,
M., Titley, H. A., Wilson, L., & Yamaguchi, M. (2016). The TIGGE Project
and Its Achievements. Bulletin of the American Meteorological Society, 97(1),
49–67. https://doi.org/10.1175/BAMS-D-13-00191.1

Tanaka, T. Y., Orito, K., Sekiyama, T. T., Shibata, K., Chiba, M., & Tanaka,
H. (2003). MASINGAR, a global tropospheric aerosol chemical transport model
coupled with MRI/JMA98 GCM: Model description. Papers in Meteorology and
Geophysics, 53(4), 119–138. https://doi.org/10.2467/mripapers.53.119

Tanaka, T. Y., & Chiba, M. (2005). Global simulation of dust aerosol with a
chemical transport model, MASINGAR. Journal of the Meteorological Society
of Japan, 83(3), 255–278. https://doi.org/10.2151/jmsj.83a.255

Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., & Penner, J. (1997). Con-
tribution of different aerosol species to the global aerosol extinction optical
thickness: Estimates from model results. Journal of Geophysical Research: At-
mospheres, 102(D20), 23895–23915. https://doi.org/10.1029/97JD01864

27



Toon, O. B., & Pollack, J. B. (1976). A Global Average Model of
Atmospheric Aerosols for Radiative Transfer Calculations. Journal
of Applied Meteorology, 15(3), 225–246. https://doi.org/10.1175/1520-
0450(1976)015<0225:AGAMOA>2.0.CO;2

Thorsen, T. J., Ferrare, R. A., Kato, S., & Winker, D. M. (2020). Aerosol Direct
Radiative Effect Sensitivity Analysis. Journal of Climate, 33(14), 6119–6139.
https://doi.org/10.1175/JCLI-D-19-0669.1

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J.,
Kang, H. S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I.,
… Zhang, L. (2017). The Subseasonal to Seasonal (S2S) Prediction Project
Database. Bulletin of the American Meteorological Society, 98(1), 163–173.
https://doi.org/10.1175/BAMS-D-16-0017.1

Vitart, F., & Robertson, A. W. (2018). The sub-seasonal to seasonal prediction
project (S2S) and the prediction of extreme events. Npj Climate and Atmo-
spheric Science, 1(1), 3. https://doi.org/10.1038/s41612-018-0013-0

White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar,
A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S.,
MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R.,
Kjellström, E., Becker, E., … Zebiak, S. E. (2017). Potential applications of
subseasonal-to-seasonal (S2S) predictions. Meteorological Applications, 24(3),
315–325. https://doi.org/10.1002/met.1654

Woodward, S. (2001). Modeling the atmospheric life cycle and ra-
diative impact of mineral dust in the Hadley Centre climate model.
Journal of Geophysical Research: Atmospheres, 106(D16), 18155–18166.
https://doi.org/10.1029/2000JD900795

Yamagami, A., & Matsueda, M. (2020). Subseasonal Forecast Skill for Weekly
Mean Atmospheric Variability Over the Northern Hemisphere in Winter and
Its Relationship to Midlatitude Teleconnections. Geophysical Research Letters,
47(17), 1–9. https://doi.org/10.1029/2020GL088508

Yamagami, A., Matsueda, M., & Tanaka, H. L. (2018). Medium-range forecast
skill for extraordinary Arctic cyclones in summer of 2008–2016. Geophysical
Research Letters, 45(9), 4429–4437. https://doi.org/10.1029/2018GL077278

Yamagami, A., & Matsueda, M. (2021). Statistical characteristics of Arctic
forecast busts and their relationship to Arctic weather patterns in summer. At-
mospheric Science Letters, March. https://doi.org/10.1002/asl.1038

Yukimoto, S., H. Yoshimura, M. Hosaka, T. Sakami, H. Tsujino, M. Hirabara,
T. Y. Tanaka, M. Deushi, A. Obata, H. Nakano, Y. Adachi, E. Shindo, S. Yabu,
T. Ose, and A. Kitoh, (2011). Meteorological Research Institute Earth System
Model Version 1 (MRI-ESM1)—Model Description—. Tech. Rep. of MRI, 64,
83 pp.

28



Yukimoto, S., Adachi, Y., Hosaka, M., SAKAMI, T., YOSHIMURA, H.,
HIRABARA, M., TANAKA, T. Y., SHINDO, E., TSUJINO, H., DEUSHI, M.,
MIZUTA, R., YABU, S., OBATA, A., NAKANO, H., KOSHIRO, T., OSE, T.,
& KITOH, A. (2012). A New Global Climate Model of the Meteorological Re-
search Institute: MRI-CGCM3 —Model Description and Basic Performance—.
Journal of the Meteorological Society of Japan. Ser. II, 90A(A), 23–64.
https://doi.org/10.2151/jmsj.2012-A02

Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., & Winker,
D. M. (2008). Adjoint inversion modeling of Asian dust emission using
lidar observations. Atmospheric Chemistry and Physics, 8(11), 2869–2884.
https://doi.org/10.5194/acp-8-2869-2008

Yumimoto, K., Nagao, T. M., Kikuchi, M., Sekiyama, T. T., Murakami, H.,
Tanaka, T. Y., Ogi, A., Irie, H., Khatri, P., Okumura, H., Arai, K., Morino, I.,
Uchino, O., & Maki, T. (2016). Aerosol data assimilation using data from Hi-
mawari‐8, a next‐generation geostationary meteorological satellite. Geophysical
Research Letters, 43(11), 5886–5894. https://doi.org/10.1002/2016GL069298

Yumimoto, K., Tanaka, T. Y., Oshima, N., & Maki, T. (2017). JRAero: the
Japanese Reanalysis for Aerosol v1.0. Geoscientific Model Development, 10(9),
3225–3253. https://doi.org/10.5194/gmd-10-3225-2017

Zhang, J., Reid, J. S., Christensen, M., & Benedetti, A. (2016). An evaluation
of the impact of aerosol particles on weather forecasts from a biomass burning
aerosol event over the Midwestern United States: observational-based analysis
of surface temperature. Atmospheric Chemistry and Physics, 16(10), 6475–6494.
https://doi.org/10.5194/acp-16-6475-2016

Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., & Rees, S. L. (2019).
Toward Convective-Scale Prediction within the Next Generation Global Predic-
tion System. Bulletin of the American Meteorological Society, 100(7), 1225–1243.
https://doi.org/10.1175/BAMS-D-17-0246.1

Zhou, X., and others (2021). The Introduction of the NCEP Global Ensemble
Forecast System 779 Version 12, in preparation.

29



 
 

1 
 

 
Journal of Geophysical Research: Atmosphere 

Supporting Information for 

Statistical Evaluation of the Temperature Forecast Error in the Lower-level 
Troposphere on Short-Range Timescales Induced by Aerosol Variability 

A. Yamagami1, M. Kajino1,2, and T. Maki1  

 

1 Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA), Tsukuba, Ibaraki, 305-0052, 
Japan 

2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan 

 

Contents of this file  
 

Figures S1 to S6 
 

Introduction  

This supporting information includes the following table and figures: 

• Monthly mean temperature error for the 1-day GEFSv12 and five operational 
forecasts. (Fig. S1); 

• Partial correlation coefficient between temperature error and AOD anomalies 
using total cloud cover from ERA5 over northern South America (Fig. S2) and 
China (Fig. S4); 

• Average temperature error in different relative humidity and total cloud cover 
thresholds over northern South America (Fig. S3) and China (Fig. S5); 

• Correlation coefficient between temperature error of the 1-day GEFSv12 forecasts 
and AOD of each aerosol (Fig. S6). 
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Figure S1. Similar to Fig. 5 but for the 1-day forecasts. 
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Figure S2. Similar to Fig. 9 but for the TCC retrieved from ERA5. 

 

Figure S3. Similar to Fig. 10a but for the days for (a-e) the relative humidity at 850 hPa 
lower than (a) 80% to (e) 98% and for (f-j) the TCC lower than (f) 5% to (j) 25% average. 
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Figure S4. Similar to Fig. S2 but for China. 
 

 

Figure S5. Similar to Fig. S3 but for China. 
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Figure S6. Similar to Fig. 6a but for the 1-day GEFSv12 forecast error and AOD of the (a) 
total, (b) sulfate, (c) black carbon, (d) organic carbon, (e) dust, and (f) sea salt aerosols. 


