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Abstract

Achieving high accuracy for Global Navigation Satellite Systems (GNSS) positioning at low cost, is the main reason for the

wide acceptance that has received the technique of Precise Point Positioning (PPP) from the geodetic community. However,

the long convergence time required to achieve centimeter-level accuracy in positioning, remains of PPP’s main disadvantage.

Our proposed method is aiming to provide accurate prediction of ionosphere variations at regional level, in a form suitable to

be applied in PPP processing as external ionospheric information, so that to successfully deal with the ionospheric error effects.

Machine Learning regression-based approaches for sequence modeling are suitable for predicting the ionospheric variability.

Gaussian Process Regression (GPR) and Support Vector Regression (SVR) are introduced for ionospheric variations modeling

at different locations of the International GNSS Service (IGS) network. The proposed algorithms predict the future electronic

content per satellite from a specific station, fitting a non-linear model. The evaluation of our proposed methods for vertical total

electron content (VTEC) values prediction is compared against the traditional Autoregressive (AR) and Autoregressive Moving

Average (ARMA) methods, per satellite. Additional, mean TEC timeseries are compared against classical Global Ionospheric

Maps (GIM), NeQuick and International Reference Ionosphere (IRI) models.
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Abstract 

Achieving high accuracy for Global Navigation Satellite Systems (GNSS) positioning at 

low cost, is the main reason for the wide acceptance that has received the technique of 

Precise Point Positioning (PPP) from the geodetic community. However, the long 

convergence time required to achieve centimeter-level accuracy in positioning, remains of 

PPP’s main disadvantage. Our proposed method is aiming to provide accurate prediction of 

ionosphere variations at regional level, in a form suitable to be applied in PPP processing as 

external ionospheric information, so that to successfully deal with the ionospheric error 

effects. Machine Learning regression -based approaches for sequence modeling are suitable 

for predicting the ionospheric variability. Gaussian Process Regression (GPR) and Support 

Vector Regression (SVR) are introduced for ionospheric variations modeling at different 

locations of the International GNSS Service (IGS) network. The proposed algorithms 

predict the future electronic content per satellite from a specific station, fitting a non-linear 

model. The evaluation of our proposed methods for vertical total electron content (VTEC) 

values prediction is compared against the traditional Autoregressive (AR) and 

Autoregressive Moving Average (ARMA) methods, per satellite. Additional, mean TEC 

timeseries are compared against classical Global Ionospheric Maps (GIM), NeQuick and 

International Reference Ionosphere (IRI) models. 

Key  words : ionosphere delay, GNSS, prediction, regression models, machine learning. 
 

 

1. Introduction 

The Precise Point Positioning (PPP) (Bakker et al., 2017) technique has attracted great 

interest among the geoscience community, mainly due to its ability to provide low cost and 

high accuracy position estimates using Global Navigation Satellite System (GNSS) data 

from stand alone receivers. One of its main drawbacks is the long convergence time to 

achieve positioning accuracy at a level of a few centimeters. Recently, various approaches 

aiming at accelerating the single-frequency PPP convergence time have been proposed, 

based on combining multi-constellation GNSS measurements with global ionospheric map 

(GIM) data. GIM (Ou et al., 2012) data provide the necessary external total electron content 

(TEC) information required to handle the error imposed by the ionosphere. As the GNSS 

signal is travelling through the upper part of the atmosphere, the ionosphere, in the region 

about 60 km to 1000 km altitude, it can encounter severe temporal and spatial changes of 
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the electron density which can cause significant disruptions on the traveling GNSS radio 

wave. TEC is a suitable parameter that reflects ionosphere changes caused by solar extreme 

ultra-violet radiation, geomagnetic storms, and the atmospheric waves that propagate up 

from the lower atmosphere. TEC estimates with high accuracy and precision are therefore 

important in determining ionospheric delays of the GNSS signals.  

The magnitude of TEC represents the integral of the location-dependent electron density 

along the signal path and is highly dependent on local time, latitude, longitude, season, solar 

cycle and activity, and geomagnetic conditions. In practice, as the radio wave signal passes 

through the electrons in the ionosphere, the velocity of signal changes and consequently, 

since the propagation characteristics of the GNSS signal depend on frequency, the change 

in the path and velocity of radio waves in the ionosphere has a big impact on the accuracy 

of GNSS satellite navigation systems (Alizadeh et al., 2013). Due to these factors, the 

ionosphere’s high variability, is difficult to model, and this is a reason that traditional 

ionosphere models (e.g., Klobuchar (Klobuchar et al., 1987), NeQuick (Nava et al., 2008)) 

frequently used in single-frequency GNSS data processing, fail to catch traditional 

ionosphere conditions or to provide TEC values with high accuracy and precision. For 

instance, the ionospheric parameters of the Klobuchar model are broadcasted via the GPS 

satellite’s navigation message to the user. The underlying model can only correct 

approximately 50-60% of the actual ionospheric delays at mid-latitude locations on the 

average during quiet ionospheric conditions, which can be useful to single-frequency users, 

in applications that do not demand high accuracy (Klobuchar et al., 1987).  However, 

recently, there has been a greater need to utilize accurate, real-time, single-frequency 

positioning measurements and, in turn, making necessary to consider using external 

ionosphere products of high accuracy. In this paper, we propose an advanced regression-

based machine learning model to efficiently predict TEC values per satellite in an attempt 

to replace the GIM derived data and consequently achieve high accuracy in PPP and/or in 

PPP-RTK positioning performance. 

  

2. Related work 

Based on empirical approaches, the Klobuchar and NeQuick broadcast models are used to 

estimate the ionospheric parameters for single frequency users. In a way similar to the 

Klobuchar’s ionospheric model (albeit with its aforementioned drawbacks), NeQuick is the 

ionospheric model adopted by the European global navigation satellite system Galileo, in 

order to compute the ionospheric delay corrections for its single-frequency users. 

Additionally, the International Reference Ionosphere (IRI) model is a global climatological 

model for the terrestrial ionosphere which is recommended for international use by the 

Committee On Space Research (COSPAR) and the International Union of Radio Science 

(URSI). 

Except for the above physical and empirical models to obtain TEC measurements, 

information about the ionosphere can also be extracted from GNSS observations, using 

linear combinations between multi-frequency observables. Based on such computational 

procedures, the International GNSS Service (IGS) provides Global Ionosperic Maps (GIM) 

in the IONospheric EXchange (IONEX) format (Montenbruck et al., 2017). The GIM models 
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are  constructed by using TEC data derived from hundreds of GNSS stations worldwide. 

The overall effort is coordinated by the IGS Working Group on Ionosphere which was 

established in 1998 and includes four Ionosphere Associate Analysis Centers (IAACs): the 

Centre for Orbit Determination in Europe (CODE), Jet Propulsion Laboratory (JPL), 

European Space Agency (ESA), and Polytechnic University of Catalonia (UPC). These 

centers use different approaches and techniques to compute global ionospheric models. It is 

worth to mention that Satellite Altimetry and Very Long Baseline Interferometry (VBLI) 

measurements are also suitable to obtain ionosphere parameters. 

The above mentioned models are global representations of TEC values, with their accuracy 

being limited by various factors such as, for instance the adoption of a simplified model in 

the case of the Klobuchar model, the fact that the NeQuick model provides typical median 

condition of the ionosphere (and hence, it cannot handle successfully extreme ionospheric 

conditions), or the non-uniform accuracy of IGS TEC data in the global scope for the GIM 

maps. Most of these models are stationary, difficult to be adapted to the irregular and 

complex distribution of TEC in the ionosphere, and additionally, they can not learn 

sufficiently enough the complex abstractions involved in the modeling of TEC variations.  

Many significant research efforts are utilized to develop the TEC forecasting method 

including Support Vector Machine (SVM) (Zhang et al., 2019), the nonlinear radial basic 

function (RBF) neural network (Huang et al., 2014), artificial neural network (Bosco et al., 

2009) and LSTM (Kaselimi et al., 2019, Sun et al., 2017). In particular, being capable of 

learning noisy and nonlinear relationships, Neural Networks are considered an interesting 

approach in the domain of ionosphere TEC prediction. However, the above-mentioned 

studies focus on TEC prediction based on estimates derived from TEC models, such as GIM 

maps, and they don't try to predict ionosphere delays separately from every different visible 

GNSS satellite, as in our approach. 

 
3. Theoretical Background 

3.1 Ionosphere variability  

   The ionosphere is typically defined as that part of the earth's upper atmosphere with 

sufficient concentration of free electrons affecting the propagation of electromagnetic 

waves. Its existence is primarily the result of the absorption of solar ultraviolet radiation in 

that part of the atmosphere which, in turn, reacts to produce free electrons and ions. TEC is 

often used to describe ionospheric variability and is space and time varying.  

It is widely known that ionosphere exhibits significant variations with: 

• latitude and longitude: the most disturbed region is the aurora zone (between 60o 

to 70o N geomagnetic latitude) followed by the polar zone (> 70o N), while 

significant ionospheric irregularities appear over the equatorial region. 
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• local time: during the sunny hours of the day, the ionospheric condition variations 

are higher than those in night-time period. 

• solar cycle and geomagnetic activity: linked to the 11-year cycle of the sporadic 

magnetic storms that coincide with the peak of solar sun spot activity, and the 

recurrent magnetic storms that exhibit their maximum approximately two years 

following the maximum solar activity. 

As the GNSS signal is propagated through the ionosphere, it can encounter severe temporal 

and spatial changes of the electron density which can cause significant disruptions on the 

traveling GNSS radio wave. As a consequence of the ionosphere's dispersive nature, 

different carrier wave frequencies, will be affected by different delays. This fact provides 

one of the greatest advantages of multi-frequency receivers over the single-frequency ones: 

appropriate mathematical combinations among the observable in different frequencies can 

eliminate the first order ionospheric delay error. Hence, the use of multiple navigation 

signals of distinct center frequency transmitted from the same GNSS satellite allows direct 

observation and removal of the most part of the ionospheric delay.  

The amount of time that a GNSS signal spends travelling through the ionosphere sets the 

severity of the ionosphere’s effect on that signal. A signal originating from a satellite near 

the observer’s horizon (low satellite elevation) passes through a larger portion of the 

ionosphere until it reaches the receiver, in comparison for a signal transmitted from a 

satellite near the observer’s zenith (high satellite elevation). Therefore, the longer the 

signal's path through the ionosphere, the greater will be the ionosphere’s effect on it. 

3.2 Precise Point Positioning method 

Our goal is to construct robust regional and adaptable models of the ionosphere variability 

that consequently could be applied in single-frequency PPP processing as external 

ionosphere correction information. Towards this end, we will create deep learning-based 

models that could be applied for prediction estimates of the ionosphere parameters. These 

models first needed to be trained, thus ground truth TEC values should be taken into 

consideration. The workflow is as follows: We apply dual-frequency undifferenced and 

unconstrained PPP model to estimate STEC values. These values are then separated from 

satellite and receiver DCBs (Differential Code Biases). Then, having pure STEC values we 

convert them to corresponding VTEC values through a mapping function dependent on the 

satellite’s elevation. VTEC values are then used as supervised model's ground truth for 

training.  

The code P and phase φ observations in a given frequency band fi between a receiver r and 

a GNSS satellite s, are written as (Wang et al., 2020): 

     

  
𝑃(𝑓𝑖)𝑟

𝑠 = ρ𝑟
𝑠 + 𝑐 ⋅ (𝑑𝑡𝑟 + 𝑑𝑡𝑠) + 𝑇 + 𝐼(𝑓𝑖) + 𝑐 ⋅ (𝑑(𝑓𝑖)𝑟

− 𝑑𝑓𝑖
𝑠 ) + ϵ𝑃(𝑓𝑖)

𝑠  

 

 

    (1) 
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            ϕ(𝑓𝑖)𝑟

𝑠 = ρ𝑟
𝑠 + 𝑐 ⋅ (𝑑𝑡𝑟 + 𝑑𝑡𝑠) + 𝑇 − 𝐼(𝑓𝑖) + λ𝑁(𝑓𝑖)

𝑠 + 𝑐 ⋅ (δ(𝑓𝑖)𝑟
− δ𝑓𝑖

𝑠 ) + ϵϕ(𝑓𝑖)

𝑠             (2) 

where 𝑃𝑓𝑖,𝑟
𝑠  and 𝜑𝑓𝑖,𝑟

𝑠  denote pseudorange and carrier phase observables, respectively; 𝜌𝑟
𝑠 is 

the geometric distance between the receiver to the satellite; c is the speed of light in vacuum; 

𝑑𝑡𝑟 and 𝑑𝑡𝑠 are the receiver and satellite clock offsets, respectively; 𝑑(𝑓𝑖)𝑟
 is the frequency-

dependent receiver uncalibrated code delay (UCD) while 𝑑𝑓𝑖

𝑠  is the frequency dependent 

satellite corresponding UCD (in seconds); 𝑇 is troposphere delay; 𝐼(𝑓𝑖) is the line of sight 

(LOS) ionospheric delay on the frequency fi; 𝛿(𝑓𝑖)𝑟
 and 𝛿𝑓𝑖

𝑠  are the frequency-dependent 

receiver and satellite uncalibrated phase delay (UPD), respectively (in seconds); 𝛮𝑓𝑖

𝑠  is the 

phase ambiguity; 𝜀𝑃,(𝑓𝑖)
𝑠  and 𝜀𝜑,(𝑓𝑖)

𝑠  are the sum of measurement noise and multi-path error 

for pseudorange and carrier phase observations. 

In the case of dual-frequency GPS observations, the equation (1) is: 

     

  
𝑃2𝑟

𝐺 = 𝜌𝑟
𝐺 + 𝑐 ⋅ (𝑑𝑡𝑟 + 𝑑𝑡𝐺) + 𝑇 + 𝐼2 + 𝑐 ⋅ (𝑑2𝑟

− 𝑑2
𝐺) + 𝜖𝑃2

𝐺  

 

 

(4) 

     

  
𝑃1𝑟

𝐺 = ρ𝑟
𝐺 + 𝑐 ⋅ (𝑑𝑡𝑟 + 𝑑𝑡𝐺) + 𝑇 + 𝐼1 + 𝑐 ⋅ (𝑑1𝑟

− 𝑑1
𝐺) + ϵ𝑃1

𝐺  

 

(3) 

 

since the code biases are commonly generated and distributed as differential code biases 

(DCBs): 

     

  
DCBP1/P2 = d1 − d2 

 

 

(4) 

Given  γ2 = 𝑓1
2/𝑓2

2, we have: 

     

  
𝑑1 = 𝑑𝐼𝐹 + 1/(1 − γ2) ⋅ 𝐷𝐶𝐵𝑃1/𝑃2  𝑎𝑛𝑑  𝑑2 = 𝑑𝐼𝐹 + γ2/(1 − γ2) ⋅ 𝐷𝐶𝐵𝑃1/𝑃2   

 

(5) 

then, 

     

  
𝑑1𝑟

− 𝑑1
𝐺 = 𝑑(𝐼𝐹)𝑟

− 𝑑𝐼𝐹
𝐺 + 1/(1 − γ2) ⋅ (𝐷𝐶𝐵𝑟𝑃1/𝑃2 − 𝐷𝐶𝐵𝑃1/𝑃2

𝑠 ) 

 

(6) 

     

  
𝑑2𝑟

− 𝑑2
𝐺 = 𝑑(𝐼𝐹)𝑟

− 𝑑𝐼𝐹
𝐺 + 𝛾2/(1 − 𝛾2) ⋅ (𝐷𝐶𝐵𝑟𝑃1/𝑃2 − 𝐷𝐶𝐵𝑃1/𝑃2

𝑠 ) 

 

(7) 

 

Based on Equation (3), the term I is grouped with DCBs, thus: 

     

  𝐼1̃ = 𝐼1 −
1

(1 − γ2)
𝐷𝐶𝐵𝑃1/𝑃2

𝑠 +
1

(1 − γ2)
𝐷𝐶𝐵𝑟𝑃1/𝑃2 

 

(7) 

After having separated STEC values from DCBs, then, based on the single layer model 

assumption, the STEC can be converted into the vertical total electron content VTEC as 

follows (Xiang et al., 2019): 

     

  𝑣𝑡𝑒𝑐 = (1 − (
𝑅𝑒

𝑅𝑒 + ℎ𝑠
𝑐𝑜𝑠𝜃)2)

1
2 𝑠𝑡𝑒𝑐 

 

(8) 

where 𝑅𝑒 is the mean radius of the Earth; θ is the elevation angle of the satellite; ℎ𝑠 is the 

height of the ionospheric layer (typically taken at 350 km). 
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4. Machine Learning Regression-based Tools for Ionosphere Variability Prediction 

4.1 Gaussian Process Regression 

Table 1  Performance metrics for the selected stations.  

 bor1 ganp graz 

MAE (W) RMSE (W) MAE (W) RMSE (W) MAE (W) RMSE (W) 

GPR 0.74 0.94 1.05 1.24 1.10 1.25 

SVR 0.75 0.96 1.07   1.26 1.09 1.27 

ARMA 1.41 1.76 1.63 2.03 1.70 2.03 

AR 1.91 2.29 1.85 2.25 1.77 2.13 

 
leij pots wtzz 

MAE (W) RMSE (W) MAE (W) RMSE (W) MAE (W) RMSE (W) 

GPR 0.75 0.97 0.70 0.92 0.95 1.12 

SVR 0.76 0.98 0.71 0.94 0.95 1.13 

ARMA 1.63 1.98 1.71 2.07 1.54 1.91 

AR 1.87 2.22 1.94 2.30 1.79 2.15 
 

Gaussian process regression (GPR) is a nonparametric kernel-based probabilistic model 

(Kopsiaftis et al., 2019). Considering a training set  {(𝑥𝑡, 𝑣𝑡𝑒𝑐𝑡)} 𝑡=1
𝑁  of independent, 

identically distributed (i.i.d.) examples from some unknown distribution, where 𝑥𝑡 ∈ ℝ𝑑 

and 𝑣𝑡𝑒𝑐𝑡 ∈ ℝ. A GPR model addresses the question of predicting the value of a response 

variable 𝑣𝑡𝑒𝑐∗, given the new input vector  𝑥∗ and the training set. A GPR model assumes 

that a response 𝑣𝑡𝑒𝑐𝑖 satisfies the following equation: 

     

  
𝑣𝑡𝑒𝑐𝑡 = 𝑓(𝑥𝑡) + 𝜖𝑡 

 

(9) 

where 𝜖𝑡 are i.i.d. noise variables, so that 𝜖𝑡~𝑁(0, 𝜎2).  

The GPR method calculates the posterior predictive distributions for the new test inputs. 

Gaussian processes can be considered as the extension of multivariate Gaussians to infinite-

sized collections of variables of real value. The marginal distribution of the training dataset 

responses 𝑣𝑡𝑒𝑐 follows: 𝑣𝑡𝑒𝑐~𝑁(0, 𝐶𝑁), where 𝐶𝑁 is the kernel matrix: 

     

  
𝐶𝑁 = [

𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑁)
⋮ ⋱ ⋮

𝑘(𝑥𝑁, 𝑥1) … 𝑘(𝑥𝑁, 𝑥𝑁)
] 

 

(10) 

Thus, the predictive distribution 𝑃(𝑣𝑡𝑒𝑐∗|𝑣𝑡𝑒𝑐) is: 

     

  
𝑃 ([

𝑣𝑡𝑒𝑐
𝑣𝑡𝑒𝑐∗

]) ~𝑁 ([
𝑣𝑡𝑒𝑐
𝑣𝑡𝑒𝑐∗

] | [
0
0

] , 𝐶𝑁+1) 

 

(11) 

where 

     

  
𝐶𝑁+1 = [

𝐶𝑁 𝑘∗

𝑘∗
𝑇 𝑘(𝑥∗, 𝑥∗)

] 

 

(12) 

and  𝑘∗ = [𝑘(𝑥∗, 𝑥1), … 𝑘(𝑥∗, 𝑥𝑁)]𝑇 
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4.2 Support Vector Regression 

Support vector machine (SVM) analysis is a popular machine learning tool for classification 

problems, first identified by (Kopsiaftis et al., 2019). Support Vector Regression (SVR) is the  

 
Figure 1: VTEC ground truth values and the respective prediction with the GPR method. 

generalization of the SVM method for regression problems. The regression problem is a 

generalization of the classification problem, in which the model returns a continuous-valued 

output, as opposed to an output from a finite set. In other words, a regression model 

estimates a continuous-valued multivariate function. Some regression problems cannot 

adequately be described using a linear model. In such a case, the Lagrange dual formulation 

allows the SVM technique to be extended to nonlinear functions. The next step is to obtain 

a nonlinear SVM regression model by replacing the dot product 𝑥 ∙ 𝑥′ with a nonlinear 

kernel function 𝑘(𝑥, 𝑥′) = ⟨𝜑(𝑥), 𝜑(𝑥′)⟩, where φ(x) is a transformation that maps x to a 

high-dimensional space. 

𝑣𝑡𝑒𝑐 = ∑(𝛼𝑡 − 𝑎𝑡
∗) ∙ ⟨𝜑(𝑥𝑡), 𝜑(𝑥)⟩ + 𝑏

𝑁

𝑡=1

 ⇔   𝑣𝑡𝑒𝑐 = ∑(𝛼𝑡 − 𝑎𝑡
∗) ∙ 𝑘(𝑥𝑡 , 𝑥) + 𝑏

𝑁

𝑡=1

 

 

(13) 

 

5. Experimental Results 

During the data preparation process, we used the GAMP software, an open-source GNSS 

Analysis software for Multi-constellation and multi-frequency Precise positioning (Zhou et 

al., 2018). GAMP allows the use of undifferenced and uncombined observations in dual-
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frequency PPP processing to extract STEC values. Using the uncombined PPP (UPPP) 

model allows estimating the ionospheric effects as unknown parameters, without the need 

to impose ionospheric-free constraints as it is done in the traditional PPP model which  

 
Figure 2: Comparison between VTEC (TECU) GPR and SVR predictions, the estimated GPS 

ionospheric VTEC values (GRD) and the VTEC models (GIM, NeQuick, IRI2001 and IRI01-cor). 

amplifies the measurement noise when dual frequency observations are combined in order 

to remove the ionospheric effects. The necessary RINEX observation and navigation files, 

along with precise orbit and clock information, IGS ANTEX (igs14.atx) and SINEX files, 

as well as ocean tide loading coefficients and Differential code biases (DCBs) from 

available IGS supplied DCB products are entered into the GAMP software for static PPP 

processing. Wuhan University’s satellite orbits and clock offsets were also provided as input 

to GAMP software. DCBs (Wang et al., 2020) are essential in many navigation and non-

navigation applications (such as ionospheric analysis). As new signals are currently 

provided by the modernized GNSS systems, the need for a comprehensive multi-GNSS 

DCB product arises. DCB products, as part of the IGS Multi-GNSS Experiment (MGEX), 

are provided by the Chinese Academy of Sciences (CAS) in Wuhan.    

Table 1 summarizes the average Mean Absolute Error (MAE) and the average Root Mean 

Squared Error (RMSE) for TEC predictions for all visible satellites. As noted, GPR and 

SVR methods have similar performance, ranging between 0.7 and 1.0 for the MAE and 0.9-

1.3 for the RMSE metric. The GPR and SVR approaches have be implemented in 

conjunction to linear-in-the-parameters time-series model, such as the simple 

Autoregressive (AR) and Autoregressive Moving Average (ARMA) models (Wang et al., 

2018, Mandrikova et al., 2014, Cheng et al., 2018). As it is observed, non-linearity helps GPR 

and SVR models to improve their performance and to provide better results than the 

traditional AR and ARMA models in VTEC estimation.  

In particular, Figure 1 shows the predicted GPR-aided vertical TEC values for each one of 

the GPS satellites (when they are visible from 'bor1' station), along with the vertical TEC 

values being derived from GAMP software (and taken as the ground truth data). As noted, 

the GPR model can adequately predict the VTEC's variation for every satellite separately.   
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The satellites G01, G11 and G17 have the best performance, with satellites G12, G13 and 

G27 showing the worst performance in VTEC prediction.   

In the final step, Figure 2 shows the mean VTEC values at every station, as obtained from 

NeQuick, IRI2001 (An, 2020), IRI01-cor and GIM TEC estimates compared to the GPS-

based TEC as well as, GPR and SVR TEC predictions, during the day. The VTEC peak for 

all stations occurs between 8:00 and 12:00 AM. In most cases, GPR and SVR predicted 

values are similar to GPS TEC derived values, however, it is noted that our model 

underestimates VTEC values, showing lower values than those of GPS TEC. GIM-aided 

TEC values are also close to GPR and SVR derived TEC values. NeQuick, IRI2001 and 

IRI01-cor values show greater variability during the day with higher maximum and lower 

minimum than those of GPS TEC and GIM values.        

6. Conclusion 

In this paper, we illustrated the performance of a non-linear, shallow learning method for 

constructing regional TEC models. The proposed model achieves error lower than 1.5 TECU which 

is slightly better than the accuracy of the current GIM products which is currently about 2.0-3.0 

TECU. At next steps, we attempt to further investigate machine learning models’ efficiency in 

providing accurate TEC estimations, by introducing deep learning models such as convolutional 

neural networks and recurrent neural networks (Voulodimos et al., 2018, Massinas et al., 2018). In 

addition, we intent to further expand our data analyses to other GNSS satellite systems, i.e. by 

including dual frequency GLONASS, Galileo and BeiDou -derived TEC timeseries.   
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