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Abstract

Afforestation and land use changes have turned Southern China into one of the largest carbon sinks globally, which sequesters
carbon from the atmosphere thus mitigating climate change. However, forest growth saturation and available land that can
be forested limit the longevity of this carbon sink, and while a plethora of studies have quantified vegetation changes over
the last decades, the remaining carbon sink potential of this area is currently unknown. Here, we train a model with multiple
predictors characterizing the heterogeneous landscapes of Southern China and predict the carbon carrying capacity of the region
for 2002-2017. We compare observed and predicted carbon density and find that during two decades of afforestation, 2.34 Pg C
have been sequestered between 2002 and 2017, and a total of 5.32 Pg carbon can potentially still be sequestrated. This means
that the region has reached 75% of its carbon carrying capacity in 2017, which is 12% more than in 2002, equal to a decrease
of 0.83% per year. We identify potential afforestation areas that can still sequester 2.39 Pg C, while old and new forests have
reached 87% of their potential with 1.85 Pg C remaining. Our work locates areas where vegetation has not yet reached its full

potential but also shows that afforestation is not a long-term solution for climate change mitigation.
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Abstract

Afforestation and land use changes have turned Southern China into one of
the largest carbon sinks globally, which sequesters carbon from the atmosphere
thus mitigating climate change. However, forest growth saturation and available
land that can be forested limit the longevity of this carbon sink, and while a
plethora of studies have quantified vegetation changes over the last decades, the
remaining carbon sink potential of this area is currently unknown. Here, we train
a model with multiple predictors characterizing the heterogeneous landscapes of
Southern China and predict the carbon carrying capacity of the region for 2002-
2017. We compare observed and predicted carbon density and find that during
two decades of afforestation, 2.34 Pg C have been sequestered between 2002
and 2017, and a total of 5.32 Pg carbon can potentially still be sequestrated.
This means that the region has reached 75% of its carbon carrying capacity in
2017, which is 12% more than in 2002, equal to a decrease of 0.83% per year. We
identify potential afforestation areas that can still sequester 2.39 Pg C, while old
and new forests have reached 87% of their potential with 1.85 Pg C remaining.
Our work locates areas where vegetation has not yet reached its full potential
but also shows that afforestation is not a long-term solution for climate change
mitigation.
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1. Introduction

Global warming, resulting from human-induced emissions of greenhouse gases,
not only increases the frequency of extreme climate events and causes the sea
level to rise (IPCC, 2001; Benitez et al., 2007), but also leads to adverse en-
vironmental impacts, such as the reduction of vegetation productivity and bio-
diversity (Wu et al., 2020), significant losses of soil inorganic carbon (Song et
al., 2021), and the disturbance of the natural carbon cycle (Reichstein et al.,
2013). Forests sequester carbon dioxide from the atmosphere in the form of
vegetation biomass, and are thus an effective way to reduce atmospheric carbon
(Nunes et al., 2020; Zhang et al., 2021). The total global forest carbon stock
is estimated to be 662 Pg C, of which ~45% are stored in living aboveground
biomass (FAO, 2020), accounting for 70-80% of the total terrestrial carbon (Bac-
cini et al., 2012). With increasing greenhouse gas emissions, reports such as the
United Nations Framework Convention on Climate Change (UNFCCC) propose
to invest in afforestation to remove carbon dioxide from the atmosphere. The
regrowth of natural forests is considered as one of the most important natural
climate solutions (Cook-Patton et al., 2020).

China has invested considerable effort in increasing vegetation coverage by
forestation projects (Fang et al., 2018). By 2020, China has afforested a to-
tal of 6.77 million hectares (FAO, 2020; SFGA, 2020) leading to a total forest
area of 220 million hectares, which accounts for 5% of the global forests (FAO,
2020). About 45% of these forests are concentrated in and around the karst
region of southern China (Tong et al., 2020), making this area a global hot spot
of vegetation growth (Tong et al., 2018; Brandt et al., 2018). Indeed, Tong
et al (2020) have shown that land and forest management have removed an
amount of carbon equivalent to 33% of the regional fossil fuel emissions over
the last decade. Following massive plantation efforts, the forest growth of this
area was remarkable (Tong et al., 2020), yet many studies indicate that carbon
storage increases quickly in young forests, but reaches a relatively stable level
in older forests (Wang et al., 2011; He et al., 2017; Yu et al., 2017; Zhang et
al., 2017). Moreover, forest growth and carbon storage potential of the region
are heterogeneous, depending on land use, forest stand age and type, as well as
landscape and climate (Liu et al., 2014; He et al., 2017; Brandt et al., 2018; Liu
et al., 2020; Tong et al., 2020; Cai et al., 2021). Consequently, while CO, emis-
sions continue to increase, estimating the remaining carbon removal potential
of Southern China’s forests is important for ecological restoration strategies.

Estimating the potential of a forest to sequester carbon requires comparing its
current state with its carbon carrying capacity, which is the amount of carbon
that can be stored under prevailing environmental conditions (Roxburgh et al.,
2006). Forest surveys and field observations are widely used to estimate the



carbon sequestration capacity under different growing and management scenar-
ios (Lal and Singh, 1998; Roxburgh et al., 2006; Kumar. 2006; Udawatta and
Jose, 2011; Macreadie et al., 2017; Tang et al., 2018; Cai et al., 2021). Liu
et al., (2014) estimated the carbon carrying capacity in China based on 338
forest inventory sites in 2006, 2007, and 2010, and calculated a carrying capac-
ity of 19.87 Pg C with a remaining potential of 13.86 Pg C. Cai et al., (2021)
used the forest carbon sequestration model from 3365 forest survey plots, to
assess the carbon sequestration rate of Chinese existing and new forests during
2010-2060. They found a carbon sequestration rate of 0.21 Pg C yr! over the
period, with 11% of this sink coming from forestation. However, the application
of these assessments based on field records in areas characterized by spatially
heterogeneous landscapes and with a high forest dynamic, like Southern China,
is challenging.

Multi-source satellite data and machine learning allow for a rapid assessment of
carbon sequestration potentials at global and regional scales (Hamilton et al.,
2018; Pascual et al., 2021; Ross et al., 2021). The prediction of the carbon sink
potential is particularly important in forest plantation areas, such as in some
parts of the Brazilian Amazon (Heinrich et al., 2021), the Hawaiian forest re-
serves (Pascual et al., 2021), or the Three-North Shelterbelt in China (Zhang et
al., 2021). This is also the case for Southern China, where a heterogeneous land-
scape impedes generalized assumptions and requires locally calibrated models.
A high level of details, including different land covers/uses, human disturbances
as well as long-term observations covering larger areas are important to provide
a scientific reference for regional policymakers and stakeholders evaluating and
planning ecological protection measures.

Here we used 17 factors well describing the local landscape characteristics to
predict the carbon carrying capacity of Southern China modeled at a 500 x 500
m resolution. We derived the per-pixel carbon sink potential by comparing the
carbon carrying capacity with the observed carbon density (dataset available
from Tong et al., (2020)) per grid cell for the years 2002-2017. We used an-
nual forest maps to monitor changes in the carbon sink potential of old forests
(always forest over 2002-2017), new forests (no forest in 2002 but in 2017) and
potential forests (never forest over 2002-2017), and study the remaining carbon
sink potential in 2017. The major objectives of this study were to assess to
which extend forest growth has reached the limits of the carbon sink potential
of Southern China over 2002-2017, to quantify the remaining carbon sink poten-
tial for different forest types in 2017, and to determine which factors influence
the spatial patterns.

2. Materials and methodology
2.1 Study area

The study area (Fig. 1) is located in southern China and covers over 1.96 mil-
lion km?, including the provinces Hubei, Hunan, Guangdong, Guangxi, Guizhou,
Yunnan, Sichuan, and Chongqing. The sloping landscape is characterized by a



variety of different karst formations, large variations in mean annual tempera-
ture (-14 to 25 °C) and rainfall (518-2235 mm), and decades of deforestation
followed by decades of afforestation. Urbanization, rural depopulation, and eco-
logical protection programs have reduced the agricultural use of the area, with
about 29% still being croplands in 2020. A total of 28% of the region are cov-
ered by karst, which are often degraded landscapes subject to various ecological
projects (Wang et al., 2019). A total of 71% of the croplands and urban areas
are found in the non-karst area, which accounts for 70% of the region. Other
major vegetation types are subtropical evergreen and deciduous broad-leaved
forests (~50%) and grassland (~14%) (Wang et al., 2019). The Southeast mar-
gin of the Tibetan Plateau has an annually accumulated temperature lower
than 2000°C and is not suited for forests, so we masked this study (CMA, 1978).
We also masked croplands and urban areas (32% of the study area) as a re-
duction of croplands on the expense of additional afforestation would lead to
unpredictable shortages in the food production. Croplands, urban and water
areas were masked using the maps from Globeland30 from 2020 (30 x 30 m)
(http://www.globeland30.org/).
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Fig.1 Study area and forest types. Annual forest data are from Tong et al.,
(2020). Old forests were forests during 2002-2017, new forests were forests in
2017 but not in 2002, and potential forests have not been forested during 2002-
2017. Croplands, urban areas and the Southeast margin of the Tibetan Plateau



have been masked.
2.2 Annual C density and forest maps

Both the annual carbon density and annual forest maps are available at a reso-
lution of 500 x 500 m for 2002-2017 from Tong et al., (2020). The annual carbon
density of the study area uses boosted regression trees, which were trained with
a static global benchmark map of carbon density of woody vegetation for 2018,
using MODIS (MCD43A4 7 bands; NDII, EV12, MCD43A3 shortwave albedo)
and STRM data. We refer to Tong et al., (2020) for details on the maps.

Annual forest maps were also derived from MODIS data. We identified three
types of forests (Fig.1): (1) old forests (always forest during 2002-2017), (2) new
forests (no forest in 2002 but in 2017), and potential forests (never forest during
2002-2017). Note that potential forests may include areas where forest growth
is limited by natural factors.

2.3 Environmental data and the human influence intensity index

We used 17 environmental factors to predict the potential carbon density: Mean
annual temperature (MAT), mean annual precipitation (MAP), 0°C annually
accumulated temperature, 10°C annually accumulated temperature, and the
aridity and humidity index. These data are available from the Research Cen-
ter for Eco-Environmental Sciences, Chinese Academy of Sciences at 500 m
resolution. Further data applied are maps on the lithology, geology, and the
hydrological richness (obtained by summing the hydrological elements from the
1:1M scale national fundamental geographic map including rivers, lakes and
springs), as well as geomorphological units, topography (DEM, slope, aspect)
and soil properties (soil types, clay content, sand content and silt content).

The human influence intensity (HII) index proposed by Sanderson et al., (2002)
was used. We applied a road distance map (https://www.openstreetmap.org/),

a grided population density map from 2015 (1 km x 1 km) (https://www.resdc.cn/),
nighttime lights from 2018 (500 m x 500 m) (https://dataverse.harvard.edu/)
and land use data from 2020 (30 m x 30 m) (http://www.globeland30.org/) to
generate the HIT at 500 m x 500 m. We assigned scores to population density,
roads and railways, land use/ cover, which were summed to quantify the HII,
which ranges from 0.05 to 30 (Fig. S4).

2.4 Predicting the carbon carrying capacity

We selected all pixels with a carbon density value above the 75% quantile of
each province resulting in a total number of 728,786 pixels. The stratification
in provinces guarantees that diverse landscapes are covered (Table S1). Selecting
only high values assumes that vegetation in these areas has reached a mature
state representing values close to the carbon carrying capacity. Out of these
values, we randomly selected 50,000 samples that were used to train a Random
Forest model. The 17 environmental factors (previous section) were used as
independent variables to predict the carbon carrying capacity for each 500 x
500 m pixel. The per-pixel prediction reflects the carbon carrying capacity of



individual factor combinations. To guarantee a robust model, we repeated the
procedure 5 times with different random samples, thereby training 5 separate
models. We used the average of the 5 models for the presentation of the results,
and the difference between the models reflects the uncertainty. The average R?
of the models was 0.92 and the average PMSE was 22.75 Mg C ha'! and, MAE
15.12 Mg C hal.

The difference between observed carbon density and the carbon carrying capac-
ity is the potential carbon density. The observed carbon stocks / carbon car-
rying capacity in % shows how much of the carrying capacity has been reached
during 2002-2017. Low percentage values imply that the area has not reached
its carbon carrying capacity (corresponding to 100%).

2.5 The optimal parameter-based geographical detector (OPGD)
model

Identifying the potential constraints of forest growth in different geographical
settings is crucial to optimize actions to achieve the local carbon carrying ca-
pacity. The OPGD model was used to explore the dominant factors influencing
the spatial patterns of carbon density for different forest types. The model
consists of five parts: the factor detector, parameter optimization, the interac-
tion detector, the risk detector, and the ecological detector (Song et al., 2020).
The relative importance of factors determining the patterns of carbon density
is quantified with a Q-value derived from the factor detector. The Q value of
each factor is calculated as follows:

L 2
o Zizl N1z,i0v,i
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Where N, , and o2, represent the number and the variance of C density in

v,% X

each of stratum, N, and o2 represent the number and the variance of C den-
sity over the entire study area. The F-test is used to determine significant
(p<0.05) differences among the stratified factors. The risk detector is used
to search for areas with high observed and potential carbon density in the
stratified factors. The differences between mean values of subregions can be
compared using a t-test (Wang et al., 2017). The parameters optimization is
used to determine the most suitable discretization method and break numbers,
and it was also used for rainfall and temperature. For the HII, we used 5
levels: slight pressure (0.05<HII 9.67), light pressure (9.67<HII 11.20), moder-
ate pressure (11.20<HII 14.84), severe pressure (14.84<HII 18.95), and extreme
pressure (18.95<HII 30), based on the parameters optimization of the OPGD
model (S4).

3. Results

3.1 Changes of potential carbon stocks



We calculated the difference between the predicted carbon carrying capacity,
and the observed carbon stocks to reflect the potential carbon stocks, which is
the amount of carbon that can potentially still be sequestered. The potential
carbon stocks were calculated for the period 2002-2017 (Fig. 2a). Note that
we did not include croplands and urban areas in these calculations. Our results
show that forestation and associated carbon density gains decreased the remain-
ing potential carbon density from 65.52 + 2.41 Mg C ha™! in 2002 to 45.41 +
2.40 Mg C ha'! in 2017, which is a decrease of -30.69% (Fig. 2b). More specifi-
cally, only 10.19% of the area has reached a saturated stage during the period,
while 49.21% remain below their potential. This implies that 12.88 Pg C carbon
had been sequestered before 2002, 2.34 Pg C during 2002-2017, and 5.32 Pg C
carbon can still be sequestrated. In other words, 63.01% of the carbon carrying
capacity was reached in 2002, while it is 75.39% in 2017 (Fig. 2c¢). Most carbon
gains were observed in the mountains around the Chengdu Plain, as well as the
karst regions of western Hubei, Hunan, Guizhou, and Guangxi (Fig. 2a). The
center of the Yunnan-Guizhou Plateau (eastern Yunnan, Guizhou, and north-
western Guangxi) has the largest remaining carbon sink potential, highlighting
this region as a target area for future ecological restoration projects, but also
eastern Hunan and Hubei show a considerable remaining potential (Fig. 2a).
The potential carbon stocks continuously declined from 2002 to 2017 with 0.15
+ 0.03 Pg C year!, following a polynomial fit (Fig. 2c). If the forest growth con-
tinues following this fit, the carbon carrying capacity would possibly be reached
in 2029.
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carrying capacity that was reached in 2017. Croplands and urban areas are
masked. The satellite image is from GoogleEarth. b, Mean values of observed
and potential carbon density in 2002 and 2017. The error bars reflect the
differences between 5 model runs. c, Observed and potential carbon stocks
at annual scale. The right y-axis shows how much of the carrying capacity has
been reached during 2002-2017. A polynomial regression was fitted over the
annual data.

3.2 Carbon sequestration potential for different forest types

We used annual forest maps generated by Tong et al (2020) to classify the
study area into old forests (always forest during 2002-2017), new forests (no
forest in 2002, but in 2017) and potential forests (never forest during 2002-
2017). Potential forests, new forests, and old forests account for 10.91%, 8.23%,
and 23.51% of the study area (Fig. 1, Fig. 3a). All three types show an overall
decrease in potential carbon stocks over 2002-2017, implying that the observed
carbon stocks are increasing (Fig. 3b-d). The strongest decrease of potential
carbon density was found in new forests (2.59 Mg C ha™! yr'1, 25.19%), followed
by potential forests (1.13 Mg C hat yr!, 10.38%) and old forests (0.90 Mg C
ha't yrt) 7.81%) (Fig. 3b, 3d). In 2017, potential forests have reached 42.41%
of their carbon carrying capacity, with 2.39 Pg C (100.15 £ 2.87 Mg C ha'!)
potential carbon stocks remaining. New forests have reached 71.29% with 0.99
Pg C (19.21 4 2.44 Mg C ha'!) remaining, and old forests have reached 92.30%
with 0.86 Pg C (47.84 + 2.90 Mg C ha'!) remaining. The potential carbon
stocks decreased at the same rate in new forests (0.0540.004 Pg C yr!) and
old forests (0.0540.01 Pg C yr1), followed by potential forests (0.0340.004 Pg
C yr'!) (Fig. 3d). Overall, 9.75x10* km? (4.99 %) of the area has reached their
carbon carrying capacity during the period: 12.31% (1.20 x 10* km?) of the new
forests and 84.92% (8.28 x 10* km?) of the old forests (Fig. 3c). Non-karst areas
showed a stronger decrease of potential carbon density in new forests (2.74 Mg
C ha'! yr!) as compared to karst areas (2.34 Mg C ha™! yr!), but the values in
old forests in karst area (1.04 Mg C ha™! yr'!) decreased faster than in non-karst
areas (0.85 Mg C ha! yr!) (Fig. S3).
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Fig.3: Potential carbon sequestration in different forest types. a, The % of
the carbon carrying capacity that was reached in different forest types in 2017.
High values reflect a mature state of the vegetation. The satellite image is
from GoogleEarth. b, Mean values of observed and potential carbon density in
different forest types in 2002 and 2017. The error bars reflect the differences
between 5 model runs. ¢, The proportion of areas with unsaturated carbon
potential for different forest types in 2002 and 2017. d, Potential carbon stocks
and the percent of carrying capacity for different forest types in 2002 and 2017.

3.3 Factors influencing potential and observed carbon density

We applied a factor detection (Q-value) to explore the drivers influencing po-
tential and observed carbon density in southern China; note that croplands and
urban areas are excluded (Fig. 4). The results show that the geographical
setting is the major factor explaining the spatial patterns. With a Q value of
0.11, the terrain relief had the strongest influence on the spatial pattern of the
potential carbon density, followed by soil types and slope, both with a Q value
of 0.06. The observed carbon density was most influenced by elevation, with
a Q value of 0.40. Climate conditions impact both potential and observed car-
bon density MAP mostly influenced the potential carbon density but not the
observed carbon density, while it was the opposite for MAT. In addition, even
though we excluded croplands and urban areas, the human influence factor had
a clear influence on the spatial patterns of potential and observed carbon den-
sity, with Q values of 0.09 and 0.14, respectively. The influence of soil types on
potential carbon density was almost the same as climate zones (0.06), but was
stronger on observed carbon density (0.15).
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Fig.4 The relative importance of explanatory variables influencing the spatial
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pattern of carbon density. Relief: Terrain relief; HII: Human influence intensity;
MAP: Mean annual precipitation; Elevation: Digital Elevation Model; MAT:
Mean annual temperature.

The spatial patterns of potential, observed, and predicted (=carrying capacity)
carbon density vary with factors, and we compared averaged carbon density
for different classes of each factor derived from the risk detector analysis (Fig.
5) (Song et al., 2020). The potential carbon density clearly decreases with
increasing terrain relief (Fig. 5a) and increases with increasing human pressure
(Fig. 5b), while it is the opposite for the observed carbon density. Observed
carbon density in rough (Fig. 5a), remote (Fig. 5b), and sloping (Fig. 5f) areas
was close to the carbon carrying capacity. The highest carbon carrying capacity
and observed carbon density was found at an altitude between 2500 m and 3600
m (326.86 Mg C ha™! and 263.72 Mg C ha™!) (Fig. 5g), which coincides with the
plateau climate zone (Fig. 5d) characterized by low mean annual temperature
and alfisols (Fig. 5c). The highest average potential carbon density (117.60 Mg
C ha!) was found in areas with semi-alfisols (Fig. 5c). Potential carbon density
showed a greater spatial difference for various levels of MAP as compared to
MAT, and the areas with the highest carbon potential were located for areas
with MAP less than 1000 mm (Fig. 5e) while fewer differences were found for
different MAT levels (Fig. 5h).

12



)

w
(91}
o

0

@
<300 A b C
O
o 250
=3
= 200 1
N |
2 150 [ ] .
2 100 | V
g s R
] ] ~ ]

2 [ I ¥

Flat Hill Low Moderate High Slight Light Moderate Severe Extreme  Alfisol Entisol Ferralsol Semi-Alfis

250 Relief Human influence intensity Soil types

~ 35
@
<30 d e f
(@)
o 250
2
> 200 1
2 150 1
3
© 100 |
o
2 50 ]
©
o , . . ‘ . ‘ ‘

Plateau SE SW <1000 1300 1600 1800 =>1800 <6° 15°

Climate Zone MAP / mm Slope / °
= 350
<30 g N
O —
2 250 % 1 [ ] carbon carrying capacity
< 200- P
'S 150 . . [ | Potential carbon density
[}
©
1004 [ V

c
8 =0l z % % / |/ ) Observed carbon density
S A , . . . .

<1000 2500 3600 >3600 <12 15 20 >20

Elevation / m MAT /°C

Fig.5 Average carbon density values for different classes of a, relief, b, human
influence intensity, c, soil types, d, climate zones, e, mean annual precipitation

(MAP), {, slope, g, elevation (DEM), and h, mean annual temperature (MAT).

Observed + potential carbon density = carbon carrying capacity.
4. Discussion
4.1 A win-win situation by restoration projects

Promoting forest restoration and increasing tree cover is a nature-based climate
solution and a possible way to mitigate global climate change by removing CO,
from the atmosphere (Griscom et al., 2017; Doelman et al., 2020). Local projects
restoring forests and planting trees are a crucial component of this pathway to
sustainable carbon neutrality (Domke et al, 2020; Erbaugh et al., 2020; Wang
et al., 2020). Over the past two decades, afforestation and ecological restoration
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projects in Southern China have transformed large areas of croplands into forests
(Yue et al., 2020), but about 5.3 Pg C can still be sequestered. According to
Le Quéré et al, (2018), there are 42 Pg C potential carbon stocks globally in
2017, which would imply that about 12.6% of these are located in Southern
China. However, the rapid growth of trees limits the remaining carbon stock
potential of the region, making regular carbon stock inventories an important
part of forestation projects.

Maximizing carbon uptake was not among the major aims when China’s restora-
tion projects were planned several decades ago. Rather poverty reduction, stop-
ping the loss of top soil and rocky desertification as well as maximizing forest
cover were key aims of the projects (Jiang et al., 2014; Hua et al. 2018b). The
abandonment of croplands and the increase in forest cover can be regarded as
environmental success, and our study shows that 75% of the carbon carrying
capacity has been reached in 2017, which is 12% more than in 2002. The in-
crease in carbon sequestration and other ecosystem services also benefits local
livelihoods which is a win-win situation that not only addresses environmental
problems and mitigates poverty, but also helps to combat climate change.

Our results uncover and quantify where vegetation has not yet reached its full
potential, which is, not surprisingly, in non-forested areas, but also new forests
which were planted in the frame of afforestation projects have only reached
71% of their potential in 2017, while old forests are close to their carbon car-
rying capacity (92%). A total of 58% of the remaining carbon stock potential
is found in areas which are currently not forested mainly in the central of the
Yunnan-Guizhou plateau, Nanling Mountains and the southeastern coastal ar-
eas of Guangdong. These areas should be the main target of future restoration
programs, however, human interference, a harsh climate and fragile geological
settings make a rapid recovery difficult (Wang et al., 2019; Yue et al., 2020). Po-
tential forestation areas, include abandoned farmlands and mining areas, which
are difficult to identify with coarse resolution imagery as used in this study, and
require high-resolution images to precisely identify these areas.

Planted trees are usually selected based on the criteria of rapid growth and/
or economic output, either by tree harvest or as cash crops. For example, fast
growing Fucalyptus plantations rapidly generate revenues but do not provide
the same ecological benefits as native forests (Hua et al., 2018a). Moreover,
most forest plantations are not optimized to sustain long-term carbon stocks
(Palmer, 2021), which explains why only 10% of the region has reached its
carbon carrying capacity, in spite of intensive forestation. Future ecological
projects could be adjusted towards fixing more CO, maximizing the full carbon
sequestration potential of the region.

Consequently, to improve future ecological projects and rapidly reach the full
carbon sequestration potential of an area, it is crucial to identify the potential
constraints of forest growth as well as determine the land available for sus-
tainable afforestation (Waring et al., 2020), natural regeneration and assistant
reconstruction (Palmer, 2021).
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4.2 How to make full use of the local carbon carrying capacity

We demonstrated that local terrain and human interference define the spatial
patterns of vegetation carbon density in Southern China, which differs from
other studies conducted at national and global scale, highlighting the importance
of climatic factors (Jiao et al., 2021), such as temperature and precipitation. For
southern China, the subtropical monsoon climate provides sufficient rainfall, so
human activities, such as economic development, urban expansion, agriculture,
but also ecological restoration projects determine the patterns of forests (Lu et
al., 2018). The spatial distribution of human population density is influenced
by terrain (Ma and He, 2021), with human activities mainly being concentrated
in areas of low elevation, and flat terrain. We observed that observed and
potential carbon density varied with the intensity of human interference and
terrain, which can be interpreted by the following points. First, many croplands
have been transformed into managed forests dominated by monocultures with
a high remaining carbon sequestration potential. Second, native forests close
to croplands and urban areas have often been replaced by afforestation areas
yielding higher economic output, resulting in a decline of ecological benefits,
such as biodiversity, carbon sequestration and water retention) (Ouyang et al.,
2016; Hua et al., 2018a; 2018b). These areas usually have favorable natural
conditions and efforts replacing monocultures with multiple species or assist
natural regeneration could generate a potential carbon sink (Lamb et al. 2005).
Also, bare areas resulting from construction and mining works have a certain
carbon sink potential (Wang et al., 2018), but the restoration of these areas is
challenging. Forests in protected areas with little human interference (NDRC,
2016) as well as forests in remote mountain areas are less disturbed and close
to their carrying capacity with a lower carbon sequestration potential.

Soil types are important as well, and we found the highest carbon sink potential
in semi-alfisols (Shi et al. 2010), which are mainly distributed in dry-hot valleys
of the Hengduan Mountains, where plant growth is controlled by a special mi-
croclimate with high temperature and low rainfall (Yang et al., 2016). Native
tropical valley monsoon forests have been degraded from human overuse and are
difficult to recover in this dry area (Ma and McConchie 2001). Here, vegetation
communities vary with elevation and slope (He et al., 2000), which requires ad-
justed ecological restoration measures (Zhang et al., 2003). Moreover, tropical
and subtropical fruit could be introduced into this area (HKT, 2021), which
would improve the region’s economy and increase carbon sequestration.

In summary, the carbon sink potential in areas with a high human pressure and
steep slope is still high. These areas have now been located and their potential
has been quantified, it is now up to stakeholders to take action.

5. Conclusions

Forestation programs have been suggested as a measure to mitigate global cli-
mate change. Southern China has been subject to large-scale forestation activ-
ities over the past two decades, but the longevity of this carbon sink is rather

15



unknown. We find that 8% of the area has been forested during 2002-2017,
consuming 12% of the carbon carrying capacity over the past two decades. This
implies that the region has reached 75% of the carbon carrying capacity in 2017.
However, previous forestation projects were designed to maximize forest cover
but not carbon stocks, and future forestation programs need to make use of
maps such as the one provided by this study to identify areas that are below
their carbon carrying capacity. Moreover, planted tree species, tree density and
harvest cycles can be adjusted to generate a long-term and sustainable carbon
sink making use of the local carbon carrying capacity of a given area. However,
we also show that afforestation provides only a short-term solution as climate
change mitigation measure and only a reduction of CO, emissions can mitigate
climate change in the long term.
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