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Abstract

The structure of pre-monsoon convective systems over southern peninsular India using polarimetric doppler weather radar
(DWR) observations has been analyzed. Convective-stratiform separation has been done for eleven convective events during
Mar-May, 2018. The mean vertical profile of reflectivity shows peak reflectivity of 32 dBZ near 3 km height for convective
regions and the bright band signature over stratiform regions was observed. The frequency distributions of reflectivity at 3
km height over convective and stratiform regions are of bell-shaped nature with peaks at 32 dBZ and 18 dBZ respectively.
A comprehensive analysis has been done on two prominent convective cases on 13th and 25th May 2018. Strong convective
regions represented by high reflectivity (> 45 dBZ) were noticed in the PPI diagrams. Specific differential phase (Kdp) has
been calculated from the slope of the filtered Φdp. Heavy precipitation near surface is reflected in the high value of Kdp (>

5° km-1). High values of Zdr (> 3 dB) were measured at lower levels due to the oblate bigger raindrops. A fuzzy logic-based

hydrometeor identification algorithm has been applied with five variables (Zh, Zdr, ρhv, Kdp, and T) to understand the bulk

microphysical processes at different heights within convective regions. The presence of bigger graupel particles near the melting

layer indicates strong updrafts within the convective core regions. The vertical ice hydrometeor might signify the existence of

a strong electric field causing them to align vertically and this could be linked to lightning occurrence associated with such

systems.
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Key points:

• Structure of pre-monsoon convective systems has been revealed using polarimetric radar and other
supporting instruments.
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• Reflectivity values greater than 30 dBZ reaching up to 10 km height has been observed in the rapid
development stage of thunderstorms.

• Graupels along the high reflectivity columns inside the storms suggest presence of strong updraft.
• Existence of vertical ice particles indicate strong electric field inside thunderstorms.

*Corresponding author address : E. A. Resmi, National Centre for Earth Science Studies (NCESS), Thiru-
vananthapuram, India; E-mail: resmi.ea@ncess.gov.in

Abstract: The structure of pre-monsoon convective systems over southern peninsular India using polari-
metric doppler weather radar (DWR) observations has been analyzed. Convective-stratiform separation has
been done for eleven convective events during Mar-May, 2018. The mean vertical profile of reflectivity shows
peak reflectivity of 32 dBZ near 3 km height for convective regions and the bright band signature over strat-
iform regions was observed. The frequency distributions of reflectivity at 3 km height over convective and
stratiform regions are of bell-shaped nature with peaks at 32 dBZ and 18 dBZ respectively. A comprehensive
analysis has been done on two prominent convective cases on 13th and 25th May 2018. Strong convective
regions represented by high reflectivity (> 45 dBZ) were noticed in the PPI diagrams. Specific differential
phase (Kdp) has been calculated from the slope of the filtered Φdp. Heavy precipitation near surface is
reflected in the high value of Kdp (> 5° km-1). High values of Zdr (> 3 dB) were measured at lower levels due
to the oblate bigger raindrops. A fuzzy logic-based hydrometeor identification algorithm has been applied
with five variables (Zh, Zdr, ρhv, Kdp, and T) to understand the bulk microphysical processes at different
heights within convective regions. The presence of bigger graupel particles near the melting layer indicates
strong updrafts within the convective core regions. The vertical ice hydrometeor might signify the existence
of a strong electric field causing them to align vertically and this could be linked to lightning occurrence
associated with such systems.

Keywords: Pre-monsoon, Convective systems, Doppler weather radar, Hydrometeor identifi-
cation

1. Introduction

Thunderstorms are severe mesoscale weather phenomena that develop mainly due to intense convection over
the heated landmass and are accompanied by heavy rainfall, lightning, and sometimes hail. They have a
spatial extent of a few kilometres to few hundred kilometres and a life span of less than an hour to several
hours (Tyagi et al., 2012; Saha et al., 2014; Thakur et al 2019). Numerous thunderstorms occur daily across
the globe (Christian et al., 2003), a major fraction of which is over the tropical belt. In the case of Indian
subcontinent, most of the thunderstorms occur during the pre-monsoon (March-April-May) season (Singh &
Bhardwaj, 2019). They are locally known as Kalbaisakhi in West Bengal, Bordoichila in Assam and Andhi
in north-west India. A large amount of precipitation particularly during the pre-monsoon season occur due
to thunderstorm events (Saha et al., 2014; Bhardwaj & Singh, 2018). Using satellite data, Cecil et al. (2014)
has prepared lightning climatology across the globe, which clearly shows different hotspots, especially over
the tropical region. Halder and Mukhopadhyay (2016) have identified five lightning hotpots during pre-
monsoon and one among them is over the southern peninsular India. Using data from different observatories
across India, Tyagi (2007) has shown that, the highest annual thunderstorm frequency is observed over
Assam and sub-Himalayan West Bengal in the east, Jammu region in the north and over Kerala, where the
frequency of thunderstorm is higher, in the southern peninsula. Manohar and Kesarkar (2004) have shown
that thunderstorm frequency peaks in the month of May over southern India. Study by Unnikrishnan et
al. (2021) on lightning activity using TRMM-LIS data and ground-based lightning detection network shows
strong lightning activity over south India particularly over the Kerala region. Effect of orography, along with
abundant supply of moisture from the sea and presence of land-sea breeze are some of the important factors
that favour the occurrence of thunderstorms over the southwest peninsular region (Rao & Srinivasan, 1969;
Romatschke et al., 2011).

Thunderstorms cause damage to crops, properties and even human lives every year. It is estimated that
between 1500 and 2800 deaths occurred annually due to thunderstorms/lightning during 2001-2017 (Roy et
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al., 2019). Heavy rainfall and high winds from these weather systems cause an interruption in connectivity
among different places and infrastructure in general. Hence, there is an increasing demand for better now-
casting of such weather systems. Several attempts have been made to predict such systems using statistical
approach (Ravi et al., 1999; Dhawan et al., 2008; Rajeevan et al., 2012), satellite-based nowcasting (Purdom
2003; Umakanth et al., 2021), numerical simulations (Abhilash et al., 2007; Litta & Mohanty 2008; Rajeevan
et al., 2010; Litta et al., 2012; Madhulatha & rajeevan 2018; Leena et al 2019; Sad et al., 2021) and even
artificial intelligence (Elio et al., 1987; Litta et al., 2013; Zhou et al., 2019). But because of their small-
scale nature and innate underlying nonlinearity, prediction of such systems is far from desirable accuracy.
More observations are required to understand the features and internal structures of these systems which
in turn will help their forecasting. Most of the thunderstorm related studies in India were on pre-monsoon
thunderstorms (Nor’westers) occurring over east and north-east parts of India (Litta & Mohanty, 2008;
Mukhopadhyay et al., 2009; Tyagi et al., 2012; Thakur et al., 2019). A few studies (Rajeevan et al., 2010;
Suresh 2012; Agnihotri et al., 2020) have been conducted on the thunderstorm occurrences over the southern
peninsular India, particularly over Kerala which is one of the potential lightning hotspots in the southern
peninsular India. Proximity of the Arabian Sea backed by the towering Western Ghats orography influences
the formation and development of clouds and thunderstorms in the region.

Doppler weather radar (DWR) is one of the most relevant and reliable instrument to monitor these weather
events in 3-dimension, starting from their genesis to dissipating stage. Radars have been used in numerous
studies (Mukhopadhyay et al., 2009; Rajeevan et al., 2010; Srivastava et al., 2010; Litta et al., 2012; Suresh
2012) to understand the structure and evolution of thunderstorms. But most of these studies mainly use
radar reflectivity and sometimes radial velocity also. However, studies using polarimetric radars are rare
particularly over the Indian region mainly because of less availability of such data. Radars with polarimetric
capabilities could provide much more information about the precipitating systems e.g., about size and shape
of the hydrometeors within the system.

Polarimetry has two major advantages viz. polarimetric measurements improve the retrieval of microphysical
parameters such as mean drop size, rainfall estimation (Chandrasekar et al., 1990; Bringi et al., 2006; Bringi
et al., 2009; Cifelli et al., 2011) and polarimetric clutter-detection techniques help in the removal of non-
meteorological echoes (Zrnic´ & Ryzhkov, 1999; Unal, 2009; Islam et al., 2012; Lakshmanan et al., 2014).
Since polarimetric measurements contain information on the shape and size of the hydrometeors, they can be
used for better retrieval of hydrometeor types. Fuzzy-logic based hydrometeor identification (HID) is a very
efficient and popular method for identifying hydrometeors within the radar scan volume (Vivekanandan et
al., 1999; Liu & Chandrasekar, 2000; Keenan, 2003; Marzano et al., 2006; Dolan & Rutledge, 2009; Dolan et
al., 2013). Such studies give valuable information about different ice hydrometeors present at different heights
within a precipitating system. Unlike raindrops, it is not easy to obtain information about ice particles using
remote sensing techniques, mainly because of their irregular shapes and varying densities. Hydrometeor
identification algorithms provide an indirect way to obtain information on ice particles. Such information
can help us understand the charge separation and subsequent lightning in thunderstorms as detailed in
different laboratory studies (Takahashi, 1978; Jayaratne et al., 1983; Saunders et al., 1991). These studies
suggest that the non-inductive charge separation due to rebounding collision between graupel and ice crystals
in the presence of super-cooled water droplets is the main mechanism of thunderstorm charging. Hence
hydrometeor identification is particularly important during thunderstorm events. Subrahmanyam and Baby
(2020) studied the spatial structure of the Ockhi cyclone and implemented HID algorithm using polarimetric
doppler weather radar observations at the west coast of southern peninsular India and provided information
about polarimetric signatures of rain-bearing clouds. However, the hydrometeor classification studies are rare
over the Indian region, mainly because of the lack of radars with polarimetric capabilities.

C-band polarimetric doppler weather radar data and several other observation data are used in this study
to understand the features of pre-monsoon thunderstorms over southern peninsular India. A hydrometeor
classification algorithm has been applied to obtain information on hydrometeors. The paper is organized as
follows, apart from the introduction (Section 1), the data from different instruments and methodology are
described in Section 2. Results and discussions are presented in Section 3. Section 4 summarizes the major
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findings/conclusions drawn from the study.

2. Data and Methodology

We have identified eleven convective events over the southern peninsular India during the pre-monsoon
period (i.e., Mar to May) of 2018 using C-band radar reflectivity field. For these events convective-stratiform
separation has been done to obtain statistics on radar reflectivity over convective and stratiform regions.
Two prominent convective events on 13th May and 25th May, 2018 have been selected as representative
cases for further analysis. Besides the DWR data, we have used rain drop size distribution (DSD) data from
disdrometer, cloud base height (CBH; m) data from ceilometer, brightness temperature data from INSAT
satellite, ERA5 reanalysis data and also radiosonde measurements. Disdrometer and ceilometer were installed
over the rooftop of the National Centre for Earth Science Studies (NCESS; 8.5228N, 76.9097E). Locations
of the DWR and NCESS along with the topography of the surrounding area are shown in Figure 1. A brief
description of the instruments and data is summarized in Table 1.

Optical disdrometer (model: OTT Parsivel, manufactured by OTT Hydromet, Germany) is a laser-based
system that detects all types of precipitation at the surface (Löffler-Mang and Joss, 2000; Friedrich et al.,
2013). It measures rain DSD and fall velocity distribution in 32 size and velocity classes as well as it provides
rain rates (R; mm h-1) and radar reflectivity (dBZ). The size of measurable liquid precipitation particles
ranges from 0.2 to 8 mm and it varies from 0.2 to 25 mm for solid precipitation particles. It can measure the
particles fall velocity from 0.2 to 20 ms-1. The temporal resolution of this data is 1 minute. The disdrometer
used in this study was installed over rooftop of NCESS.

Ceilometer (model: CHM15k-Nimbus manufactured by Lufft Mess-und Regeltechnik GmbH) is a ground-
based remote sensing device that uses standard lidar method to determine the cloud base height (CBH)
from the altitude profile of backscattered signals. It can provide cloud thickness where the cloud layers do
not totally attenuate the laser beam. But the signals get attenuated in a rainy situation depending on the
number concentration and size of raindrops and hence signal to noise ratio of the ceilometer decreases with
increasing rain rate (Clothiaux et al., 2000). Technical details of CHM15k can be obtained from the previous
studies by Heese et al. (2010) and Sumesh et al. (2019). The CHM15k is operated with a vertical resolution
of 15 m and the CBH is measured with a temporal resolution of 15 s.

Brightness temperature data (Infrared Brightness Temperature, IRBT) has been used as a proxy for the
cloud top height. This data is obtained from INSAT-3DR which is a multi-purpose geosynchronous spacecraft
and provides data with spatial resolution of 4x4 km and temporal resolution of 30 minutes, of mesoscale
phenomena in the visible and infrared (IR) spectral bands (0.55-12.5 μm) over the Indian region. This data
is freely available through the https://www.mosdac.gov.in/ server.

The synoptic circulations over the study region were analysed using the geopotential (m2 s-2), u-wind (m
s-1) and v-wind (m s-1) variables from ERA5 reanalysis hourly data having spatial resolution of 0.25°x0.25°.
Radiosonde measurements from India Meteorological Department (IMD), Thiruvananthapuram have been
utilized to analyse the Convective available potential energy (CAPE; J kg-1), vertical profiles of temperature
(K), mixing ratio (g kg-1), wind speed (m s-1) and wind direction (deg).

2.1. DWR data and quality control

C-band polarimetric Doppler Weather Radar (DWR), installed at VSSC, Thiruvananthapuram (8.5374N,
76.8657E, 27 m above mean sea level) operates at a frequency of 5.625 GHz and have a peak transmitting
power of 250 kW. The radar performs a volumetric scan of the surrounding atmosphere within a radius
of 240 km at 11 elevation angles (0.5°, 1°, 2°, 3°, 4°, 7°, 9°, 12°, 15°, 18° and 21°) with an azimuthal and
radial resolutions of 1° and 150 m respectively. One full volume scan takes around 15 minutes. The radar
provides base products such as reflectivity at horizontal polarization (Zh), differential reflectivity (Zdr),
differential propagation phase (Φdp), cross-correlation(ρhv), radial velocity (Vr) and Spectral width(σ). Zdris
the difference between reflectivities (in decibel) at horizontal and vertical polarization, Φdp is the phase
difference between the horizontally and vertically polarized pulses. More information about these variables
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can be found in Doviak and Zrnic (1993) and also in Bringi and Chandrasekar (2001). A comprehensive detail
about the radar is given in Mishra et al. (2020). The validation of the radar data with other instruments
showed that the DWR reflectivity agrees quite well with GPM satellite measurements and also the radar
retrieved precipitation have a good correlation (0.89) with ground based in-situ measurements (Kumar et
al., 2020).

Received signal by radar is often contaminated by signals reflected from non-meteorological objects such as
hills, birds etc., anomalous propagation and also attenuation of the electromagnetic wave by different types
of hydrometeors (Ryzhkov & Zrnic, 1998; Friedrich et al., 2006; Unal, 2009; Lakshmanan et al., 2014). Even
though the radar signal processor takes into account many factors to give reasonably accurate base products
from the return signal, still the data needs certain quality control measures. The use of simple thresholds for
different variables can be quite useful in removing unwanted echoes (Ryzhkov & Zrnic, 1998; Lakshmanan
et al., 2014). The following quality control measures are considered for this study- (i) pixels with Zh > 70
dBZ or ρhv<0.7 are ignored, (ii) topography data from Shuttle Radar Topography Mission (SRTM) (Farr
et al., 2007) to remove ground clutter from hills present towards 40 km east of the radar (Figure 1) using
the method proposed by Friedrich et al., (2006). Figure 2 shows the radar reflectivity during an event on
13thMay, 2018 before quality control (Figure 2a) and after quality control (Figure 2b). The clutter due to
hills is present on the reflectivity field before quality control, which is removed nicely after applying the
above-mentioned quality control measures. Other variables (Zdr, Φdp and ρhv) were processed similarly.

Table 1 . Overview of the instruments and the data used in this study

Data source

Parameters

used in the study

Spatial

resolution

Temporal resolution

C-band polarimetric Doppler weather radar

Reflectivity at horizontal polarization (dBZ), differential reflectivity (dB), differential propagation phase
(deg.), cross-correlation

150 m along radial and 1° along azimuth

˜ 15 min

Disdrometer (OTT parsivel)

Rain rate (mm h-1), concentration of precipitation particles in diameter classes 0.2-25 mm (m-3 mm-1).

In-situ

1 min

Ceilometer (CHM15k)

Cloud base height (m), cloud cover (oktas), cloud penetration depth (m)

-

15 sec

INSAT-3DR

Brightness temperature (K)

5
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4 x 4 km

30 min

ERA-5

u-wind (m s-1), v-wind (m s-1), geopotential (m2 s-2)

0.25° x 0.25°

1 hour

Radiosonde

Temperature (K), mixing ratio (g kg-1), wind speed (m s-1), wind direction (deg.), CAPE (J kg-1) etc.

-

-

2.2. Convective-Stratiform separation

Several studies have been done for the classification of precipitation into convective and stratiform parts
using in-situ measurements (Tokay & Short, 1996; Testud et al., 2001; Bringi et al., 2003) and weather
radars (Steiner et al., 1995; Williams et al., 1995; Biggerstaff & Listemaa, 2000; Ulbrich & Atlas, 2002;
Thurai et al., 2010). Convective and stratiform parts of the cloud systems exhibit significantly different
behaviours in terms of dynamics as well as microphysics (Houze, 1997). Vertical air motions within these two
portions of a cloud system differ significantly; convective parts are mainly driven by large narrow updrafts
(5–10 m s-1 or more), while stratiform portions are governed by gentler mesoscale ascents (< 3 m s-1).
Thus, microphysical processes responsible for particle growth within the convective and stratiform parts are
very different. Particles within convective cores regions mainly grow by riming or accretion (collection of
supercooled liquid water droplets onto the ice particle surface), which leads to large/dense hydrometeors,
whereas in the stratiform region vapour deposition and aggregation are dominating processes that lead to
smaller and less dense ice hydrometeors (though large aggregates may exist).

The convective-stratiform separation method of Steiner et al. (1995), which is based on the texture of the
radar reflectivity field is adopted for the present study and is widely used by the radar community. This
method basically checks for two criteria viz. intensity orpeakedness criteria on the horizontal reflectivity field
at 3 km height, to identify a grid point (pixel) as a convective center. Any grid point with reflectivity at
least 40 dBZ (intensity criteria) or greater than a fluctuating threshold (peakedness criterion) depending on
the area-averaged background reflectivity (Zbgcalculated within a radius of 11km around the grid point),
is considered as a convective center. For each pixel identified as a convective center, all surrounding pixels
within a certain radius of influence are also included as convective pixels. This radius of influence is dependent
on Zbg. Once all the convective pixels are identified, the rest of the pixels with non-zero reflectivity values
are assigned as stratiform pixels.

2.3. Φdp data processing and Kdp calculation

The differential propagation phase (Φdp) is the phase difference between the horizontal and vertical polarized
pulses on traversing through the atmosphere. The differential propagation phase is proportional to the water
content along a rain path. Since, most of the hydrometeors in the atmosphere are aligned with their major
axis in the horizontal plane and it’s a range cumulative parameter, the value of Φdp increases with propagation
path. Now, the unambiguous range of Φdp usually is 180° in the alternate H/V transmission mode and 360°
in the simultaneous H/V transmission mode. Hence, for a long propagation path in rain, Φdp values can easily
exceed the unambiguous range and then the Φdp will be wrapped/folded which is usually manifested as a
sudden jump in the range profiles of Φdp. This issue with Φdp is known as phase wrapping/folding (Wang &
Chandrasekar, 2009; You et al., 2014). The unfolding of these phases has been done by adding appropriate
phase offset (You et al., 2014). So, even after the quality control steps mentioned in the previous section,

6
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Φdp needs this extra processing before it can be used in further analysis. In Figure 3a, such a situation of
phase wrapping is observed towards 15 km west of the radar during a convective event. Then the phase are
unfolded nicely and the unfolded Φdp is shown in Figure 3b.

Specific differential phase (Kdp) is defined as the slope of range profiles of Φdp (Seliga & Bringi, 1978;
Jameson, 1985; Bringi & Chandrasekar, 2001) and is defined as follows.

Kdp (r) =

[
Φdp

(
r + ∆r

2

)
− Φdp

(
r − ∆r

2

)
2r

]
(1)

Kdp is an important parameter for meteorological applications as it is closely related to rain intensity. More
importantly it’s insensitive to signal attenuation during propagation, radar calibration, partial beam blockage
and the presence of hail (Aydin et al., 1995; Zrnic & Ryzhkov, 1996). This makes specific differential phase
very useful for precipitation estimation at heavy rain intensity or during partial beam blockage. Though the
estimation of Kdp seems quite simple, it requires further processing of Φdp range profiles before calculating
the slope. Φdp is known to be a very noisy parameter particularly in regions with low rain rates and
the process of differentiation increases this noise even further. To tackle this, we have applied a low-pass
butterworth filter (Parks & Burrus, 1987; Proakis & Manolakis, 1988) of order 10 with a cut-off scale of 2
km to reduce the statistical fluctuation but keeping the overall features intact. Similar filters with similar
cut-off scales have been used in previous studies (Hubbert et al., 1993; Wang & Chandrasekar, 2009). Figure
4a shows the Φdp Plan Position Indicator (PPI) at 2° elevation angle during the convective event on 13th

May after quality control and unfolding. Then the previously mentioned filter has been applied on this Φdp

and obtained a smoothed Φdp (Figure 4b). Small scale fluctuations in the Φdp field are nicely removed in the
filtered Φdp. With this smoothed Φdp field Kdp has been estimated using Equation 1 and is shown in Figure
4c. Another Kdp estimate using slope of the linear regression line (Balakrishnan & Zrnic, 1990) has also
been calculated. Both the methods gave similar Kdp values. Kdp field shows high values close to 9° km-1 at
a distance of 5 to 15 km westward from the radar, indicating presence of heavy precipitation. The blue line
in this plot represents the 281° azimuth. Along this direction original Φdp (dot-dashed blue curve), filtered
Φdp (solid blue curve), estimated Kdp(red curves) are shown in Figure 4d. The ranges of Kdpvalues obtained
here, agrees quite well with previous studies on convective cases (Wang & Chandrasekar, 2009; Dolan et al.,
2013).

2.4. Hydrometeor identification

A hydrometeor identification (HID) algorithm by Dolan et al. (2013) is used to identify types of hydrometeors
present at different heights within a convective system. This is a fuzzy logic-based algorithm in which a fuzzy
logic score (μ) is calculated (Equation 2) for each hydrometeor type and the hydrometeor with the highest
fuzzy logic score is the most probable hydrometeor type at that grid point within the radar scan volume.

µi =

[
WZdr

βZdr,i + WKdp
βKdp,i + Wρhvβρhv,i

WZdr
+ WKdp

+ Wρhv

]
βT,i βZh,i (2)

β =
1

1 +
[(
x−m
a

)2]b (3)

Where, μi is the fuzzy logic score for the ith hydrometeor type. βj,i is the membership function for ith

hydrometeor types and jth variable (Equation 3). Wj is the weight factor for the jth variable. The values
of these membership function parameters and the weights are taken as in Dolan et al. (2013), which are
obtained from simulation at C-band. Five variables viz. Zh, Zdr, Kdp, ρhv and temperature (T) are used
to calculate the fuzzy logic score. Seven types of hydrometeors have been considered viz. drizzle (DZ),

7



P
os

te
d

on
16

N
ov

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

03
76

.1
—

T
h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

rain (RN), ice crystals (CR), aggregates (AG), low-density graupel (LDG), high-density graupel (HDG),
and vertically oriented ice (VI). Graupels are ice particles with diameter of 2-5 mm, which grow mainly
due to riming process i.e., collection of supercooled water droplets onto the surface of ice crystals and
subsequent freezing. Temperature for the HID scheme has been obtained from radiosonde measurements by
IMD Thiruvananthapuram at 5:30 IST (Indian Standard Time). Radar data interpolated on a 0.5x0.5x0.5
km grid have been used for the HID analysis.

3. Results and discussions

3.1. Reflectivity statistics over convective and stratiform regions

An implementation of the convective-stratiform separation algorithm is depicted in Figure 5 during the
convective event on 13th May, 2018. Figure 5a shows the reflectivity field averaged between 2.5 and 3.5
km height. Convective-stratiform separation algorithm is then applied on this horizontal reflectivity field
and the results are shown in Figure 5b. The red and blue pixels are identified as convective and stratiform
precipitation respectively. Not only high reflectivity regions, but also other regions with strong gradient have
been identified as convective regions. The convective-stratiform separation has been implemented for all the
volume scans available for all the eleven convective events during Mar-May, 2018 and the corresponding
reflectivity statistics are shown in Figure 6. Figure 6(a, b) shows the contour frequency by altitude diagram
(CFAD) of the reflectivity over the convective and stratiform regions. The convective core is visible near 3
km height though such feature is not visible in case of stratiform. Figure 6c shows the mean vertical profile
of reflectivity over the convective and stratiform regions. For the convective case (red), mean reflectivity
gradually increases with height from ground level and reaches a maxima near 3 km height and then gradually
decreases with height. Similar features in the reflectivity profile were found over the tropical region by Zipser
and Lutz (1994). The peak value of the reflectivity is about 32 dBZ. On the other hand, in stratiform case
mean reflectivity remains almost uniform up to 4 km height and it peaks near 5 km height and then gradually
decreases with height. This peak in the reflectivity signifies the bright band (caused by enhanced reflectivity
from melting ice particles near 0 °C level) over stratiform regions. Figure 6d shows the frequency distribution
of reflectivity at 3 km height. The peak of the distributions over the convective (red) and stratiform (blue)
regions are well separated though there is an overlap between the two distributions. The dashed vertical line
represents the reflectivity corresponding to the rain rate of 10 mm h-1. Here we have used Z=168R1.4relation,
which was obtained from another study by Jash et al. (2019) over this region using micro rain radar data.
This result clearly shows that use of a rain rate threshold (e.g., 10 mm h-1) to separate convective and
stratiform rain is questionable, though such simple classification method is often useful in many studies
(Testud et al. 2001; Bringi et al. 2003; Sisodiya et al. 2020).

3.2. Evolution of convective systems

An in-depth analysis is performed on two prominent convective events on 13th May and 25th May, 2018 for
the understanding of the evolution and structure of pre-monsoon convective systems over southern peninsula.

3.2.1 An overview of the synoptic conditions

Favourable synoptic and thermodynamic conditions help in the organization of convective storms to develop
into severe ones (Mukhopadhyay et al., 2009). High moisture, atmospheric instability, vertical wind shear
and a lifting mechanism are the different necessary conditions for the development of thunderstorms. Hence,
an overview of the synoptic conditions before and during the events will give more insights into their de-
velopment. Geopotential height anomaly and wind data from ECMWF Reanalysis v5 (ERA5) at 12 UTC
and vertical profile of equivalent potential temperature (θe), mixing ratio, wind speed, wind direction from
radiosonde measurements by IMD, Thiruvananthapuram at 00 UTC and 12 UTC were used to look into the
environmental conditions for the events.

A low-pressure area formed in the south west Arabian Sea (Figure 7a) on 13th May, 2018 which was evident
from the minimum geopotential height anomaly at 700 hPa levels between 55-65E and 4-10N, was far from
the study region. Under this influence, the mean wind was from Bay of Bengal to the Arabian Sea in the
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easterly direction (figure 7a). The strong negative gradient of the θe profile up to 3 km height shows the
instability in the lower atmosphere (Figure 7c). The mixing ratio profiles indicate the presence of moist layers
between 2-6 km levels, also suggest the existence of favourable atmospheric conditions for the formation of
thunderstorm. Wind direction changed abruptly along the vertical which is due to the turbulence associated
with the unstable lower atmosphere. Heavy rainfall in isolated places were reported over Kerala and Tamil
Nadu by IMD. These conditions lead to the formation of convective system over inland region on 13 May
2018 in the afternoon hours between 16:00-22:30 IST.

The convective event occurred over southern peninsula on 25th May 2018, between 13:00-19:00 IST. The
lower geopotential height anomaly at 700 hPa level clearly demonstrates the convection is active and strong
(Figure 7b) evident with scattered low and medium clouds favouring the intense to very intense convection.
The sounding analysis over the study region indicates that, θe and mixing profiles in the morning and evening
hours shows unstable and moist layers in the near surface levels. Also, the near surface wind was more than
10 ms-1 from the south westerly directions (near to monsoon onset). Further to the west, cyclonic vortex
Meknu (T5.0) was formed over west central adjoining south west Arabian sea with lay centred over 15.2°N
and 54.3°E.

3.2.2 Convective event on 13th May, 2018

Development of the convective system on 13th May 2018 (16:00-22:30 IST) is captured in the plan position
indicator (PPI) diagrams of radar reflectivity field at consecutive times during the event (Figure 8). The
convective clouds started developing over the land around 25 km east of the radar location at 16:00 IST and
then gradually it started moving westward. This movement of the system was due to the prevailing easterly
wind (Figure 7a). The cloud system passed over NCESS location around 18:00 IST (Figure 8d). As soon as
it reached over the NCESS location extremely heavy rainfall started, which was observed in the rain rate
measured by disdrometer (Figure 9a). The rain rate crossed 100 mm h-1 and sustained in that range for
over an hour. Gradually the rain intensity declined to a range of 0.1 - 1 mm h-1, which was basically the
stratiform precipitation following the main convective activity. The rain DSD obtained by the disdrometer
shows an abundance of bigger raindrops (diameter > 3 mm) during this intense convective spell followed
by smaller drops at the later stage of the event. The deep convective cloud system eventually moved over
the Arabian Sea around 30 km westward from the radar location and meanwhile it turned into a stratiform
system (Figure 8g-8i). The IMD weather report also mentioned about the rainfall during these hours. This
event was associated with rapid development of deep convective clouds as observed in the evolution of the
cloud top infrared brightness temperature (IRBT) measured from satellite (INSAT-3DR). A lower brightness
temperature signifies a higher cloud top height. Figure 10a-10e shows the spatial and temporal evolution of
the brightness temperature during this event. Around 18:00 IST much of the region was having brightness
temperature below 200 K revealing the occurrence of deep clouds over most of the region. Figure 11 (red
curve) shows the temporal evolution of the brightness temperature over the NCESS location (averaged over
a 12x12 km area centered at NCESS). A rapid decrease in the brightness temperature started at 15:45 IST
and reached a minimum value of 185 K at 17:45 IST, which demonstrates how fast such a deep system can
develop within such a short span of time. Also, cloud base height measured by ceilometer shows (Figure 12a)
the presence of multilevel clouds. Before 17:00 IST mostly high-level clouds are detected (CBH ˜ 7 km) and
then just before the precipitation starts all three cloud layers are having cloud base below 2.5 km. Such a
low cloud base height and high cloud top height (inferred from low IRBT values) measures the depth of the
cloud system. Once the rain rate reduced it detected multilevel clouds. The CAPE value of 1713 J kg-1 was
observed from the nearest radiosonde measurements in the mooring hour (05:30 IST) which was indicative of
already existing moderate instability in the atmosphere which built up further and eventually led to strong
updraft during evening hours.

The vertical structure of the storm in terms of DWR polarimetric measurements and associated hydrometeor
identification is shown in Figure 13. Averaged reflectivity between 2.5 and 3.5 km height during rapid initial
development stage of the storm shows active convective regions (Figure 13a). Then a vertical cross section
along the convection line AB has been considered to analyse the vertical structure of the storm. Figure
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13b shows the vertical cross section of reflectivity at horizontal polarization (Zh) along the convection line
AB. The x-axis represents the distance from point A towards point B. Reflectivity values greater than 30
dBZ reaching up to 10 km height signifies the existence of strong updraft within the convective core region.
This strong updraft can keep the larger hydrometeors (bigger raindrops, graupels etc.) float aloft for longer
period giving them more time to grow further by the collision-coalescence process for raindrops and by riming
process for ice particles (Schuur et al. 2001). Since, reflectivity is proportional to the 6th power of the particle
diameter (Bringi & Chandrasekar 2001), these larger particles produce such strong reflectivity values even
at higher altitudes.

Figure 13c shows the vertical cross section of differential reflectivity (Zdr) along the convection line. Zdrvalue
gives a measure of the oblateness of precipitation particles and hence could be useful in distinguishing between
larger raindrops, hail, and graupel due to differences in shape and orientation. Since raindrops (diameter> 1
mm) are deformed into oblate spheroid shape due to aerodynamic forces (Pruppacher & Beard, 1970) with
a preferred orientation of their major axes in the horizontal direction (and therefore Zh> Zv), Zdr is positive
and increases with raindrop size. This increase in the value of Zdr with raindrop size is shown quantitatively
in Bringi et al. (2009) in terms of a polynomial fit between observed Zdr and mean drop diameter measured
by disdrometer. Zdr values greater than 2 dB were observed which indicate presence of bigger raindrops or
melting bigger ice particles (Anderson et al. 2011) below 4 km height. Bigger raindrops are also observed in
the disdrometer measurements of rain DSD (Figure 9a).

Zdr values are much smaller at higher altitudes (above 0° isotherm ˜5 km height) as the ice particles such
as aggregate, graupel, hail, tend to be spherically symmetric or tumble while falling, causing low values of
Zdr. The lower value of dielectric constant for ice compared to water is another factor behind lower Zdr for
ice particles. Within the strong convective region at heights above the melting layer, a higher value of Zdr

along with high value of Kdpindicates supercooled liquid drops above freezing level (Hubbert et al., 1998).
The ρhv shows high values (>0.95) throughout the entire cross section (Figure 13d) and ρhvdepends on
several factors such as eccentricity, distribution of canting angle, irregular shape and mixture of different
types of hydrometeors. Relatively lower values of ρhv at the central region and at higher altitudes within
the cross-section, could be attributed to mixture of ice particles with rain.

The estimated Kdp (Figure 13e) shows that the spatial pattern of Kdp is in tandem with that of reflectivity
though there are differences. High values (greater than 5° km-1) of Kdp below melting level suggest the
presence of intense convective precipitation with bigger raindrops formed due to the coalescence process
or due to melting graupel. As drop eccentricity increases with diameter, the differential propagation phase
increases causing higher values of Kdp within regions of intense convective precipitation. A similar structure
of Kdpwithin convective regions is reported by Ryzhkov et al. (2002). Higher values of Kdp above freezing
level suggests prevalence of supercooled droplets which can help in formation of graupel particles via the
riming process.

Identified hydrometeor types are shown in Figure 13f. Below the melting level, it is mainly dominated by rain
(RN) and above melting level, ice aggregates (AG) are the dominating hydrometeors. At heights between
4.5 to 8 km, within the convective core regions graupel (HDG) particles are abundant. Similar findings are
obtained in Dolan et al. (2013), in which HDG was found close to the melting level and LDG at higher
heights. Within such convective cores reaching up to 10 km height, liquid droplets are pushed to heights
much above the freezing level and they stay there as unstable supercooled droplets. Upon contact with
ice-aggregates they immediately freeze onto the surface forming bigger ice particles viz. graupel. The strong
updraft can sustain these graupels in air for longer helping them grow even further. The presence of vertical
ice indicates the existence of electric field which forces these particles to orient vertically and this could be
due to the charging via the collisions between graupels and smaller ice particles, as confirmed by different
laboratory experiments (Takahashi, 1978; Jayaratne et al., 1983; Saunders et al., 1991).

3.2.3 Convective event on 25th May, 2018

An organized mesoscale convective system over southern peninsular India prior to the onset of the southwest
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monsoon occurred on 25th May, 2018 during 13:00-19:00 IST. The CAPE value of 148 J kg-1 was observed
from the nearest radiosonde measurements in the morning hour (05:30 IST) and increased to 1092 J kg-1 in
the afternoon hours (17:30 IST) suggesting the unstable layers favouring the formation of convective event.
The development of the convective system is presented in the PPI diagrams of radar reflectivity field from
12:58 IST to 16:10 IST consecutive times during the event (Figure 14). Unlike the convective system on 13th

May, this system started forming over the oceanic region (westward from radar) as well as over the land
(north-east ward from radar) around 13:00 IST and gradually covered more and more region. Compared to
the previous system, this system had a much larger spatial extent with a lower value of the peak reflectivity
during the development stage, suggesting lesser convective activity compared to the 13th May event. Rainfall
and the embedded rain DSD during the event were recorded by the disdrometer at NCESS (Figure 9b). The
peak rain rate (˜10 mm h-1) was significantly lower compared to that for the previous system (100 mm h-1).
The drops of diameter greater than 3 mm are absent on 25th May, 2018 suggesting lesser updraft speed and
hence lesser time for the growth of raindrops. The spatial-temporal evolution of the brightness temperature
(INSAT-3DR data) during the event (Figure 10f-10j & 11) reveals a slow development of the cloud system.
The development is markedly different from the one on 13th May event, which was much more rapid. Around
15:30 IST the lowest brightness temperature of ˜220 K was noted, which was significantly higher than the
convective event on 13th May 2018 (<185 K), indicating less deep cloud systems. The ceilometer observation
shows the presence of clouds having the base height below 5 km level (Figure 12b) during the initiation of
the convective system. The dissipation phase of the event was registered with high level clouds (5 < CBH <
10 km) over the region.

The vertical structure inside the system is shown through a vertical cross along a convective region (Figure
15). The spatial distribution of the reflectivity averaged between 2.5 and 3.5 km height during developing
stage is shown in Figure 15a. A vertical cross section along the line AB through the convective region is
taken and hydrometeor identification has also been done. The overall features of the different variables are
very much similar to those in Figure 13. The reflectivity core at a distance between 5 and 20 km from point
A was observed and it reached up to a height of 7 km (Figure 15b), which was 10 km on 13th May event. The
Zdr values (Figure 15c) along the convection line are much lower due to smaller drop size as observed in the
DSD from disdrometer. Values of ρhv(Figure 15d) are high (>0.9) indicating presence of rain with smaller
drops at lower levels. The structure of Kdp(Figure 15e) follows the structure of Zh but values are less (<4°
km-1) compared to that in 13th May case. This is mainly because of lower rain rate and relatively smaller
drops with less eccentricity, resulting in smaller difference between the reflectivity at horizontal and vertical
polarization. Identified hydrometeor types shown in Figure 15f are quite similar to the ones in 13th May case
(Figure 13f). Rain (RN), aggregates (AG) and graupels (HDG) are the main hydrometeor types identified.
The graupels are present mainly in the highest reflectivity column. In this case the abundance of graupels is
much less compared to the 13th May case. This is because of lower updraft as inferred from the brightness
temperature data. The occurrence of drizzle (DZ) types was also identified along the vertical cross section.

4. Summary

The present study is focused on the structure of pre-monsoon convective systems over a tropical coastal region
in southern peninsular India. Observations from several instruments such as Doppler weather radar (DWR),
disdrometer, ceilometer, INSAT-3DR satellite data, radiosonde measurements are used in the study. Using
the quality controlled DWR data, 11 convective events have been identified by inspecting the reflectivity field
from DWR. Out of which, the convective events occurred on 13th May and 25th May 2018 has been analysed
in detail to understand the development of mesoscale cloud systems. Convective-stratiform separation has
been done for all the events. Following are the major conclusions of the study.

• Convective-stratiform separation clearly demarcates the distinct difference in reflectivity profiles over
convective and stratiform regions. A peak in the mean reflectivity profile near 3 km height is registered
for convective regions. Stratiform regions are characterized by a peak reflectivity near melting layer
signifying the bright band and almost constant reflectivity profile between 1km and 4 km levels. The
distribution of the reflectivity values at a height of 3 km shows bell shaped nature and there is an
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overlap between distributions for the convective and stratiform precipitations. It also shows that using
a single threshold for reflectivity or rain rate may not be useful for convective-stratiform separation.

• The reflectivity PPI captured the spatial and temporal evolution of the convective cases on 13th and
25th May 2018 from the initiation to the dissipative stages of both the events. The development of the
system on 13th May was much more rapid with cloud tops reaching much higher altitudes as clearly
seen in the brightness temperature observed from satellite. Disdrometer measurements of rain rate and
DSD during the two events show that the event on 13th May, was associated with high rain rate (>100
mm h-1) having bigger raindrops (diameter > 3mm) during the first hour of the event. Even though
the spatial extent of the system on 25th May, was larger, much lower rain rate (<10 mm h-1) with
relatively smaller (diameter < 3 mm) raindrops was observed.

• Vertical structures inside the storms during rapid development stage have been obtained by taking
vertical cross sections of reflectivity through major convective regions. The reflectivity values show
convective cores reaching 10 km height on 13thMay and about 7 km height on 25th May. High values of
Zdr at lower levels were observed on 13th May, due to the oblate spheroid shape of the bigger raindrops.
The structure of Kdp field is quite similar to that of reflectivity in both the cases. High values of Kdp

reveals the presence of intense rainfall on 13th May, as Kdp is mainly dominated by bigger raindrops.
• Fuzzy-logic based hydrometeor identification (HID) has been done along the vertical cross sections

over prominent convective regions. HID analysis shows presence of graupel at middle levels within the
convective core regions revealing presence of strong updrafts. Ice aggregates and rain are the dominant
hydrometeors above and below melting level respectively. Presence of vertical ice signifies the presence
of electric field inside the storm. Such electric field may be generated due to non-inductive charging
via collision between graupel and smaller ice crystals.

It would be worth studying the observed lightning activity (if any) during these events as presence of vertical
ice indicates toward development of electric field. If major lightning activity occurred during these events,
then it would support the collision charging mechanism as graupels are identified within the convective core
regions.
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Figure 1. Terrain height (m) over the study area and the locations of the C- band DWR and NCESS
observatory are given. Concentric circles represent distance from the radar for better reference.

Figure 2. PPI diagrams of radar reflectivity at 2° elevation (a) before quality control and (b) after quality
control at 18:54:12 IST, 13th May, 2018.

19



P
os

te
d

on
16

N
ov

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

03
76

.1
—

T
h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 3. PPI diagrams at 2° elevation of (a) folded φdp and (b) unfolded φdp at 18:54:12 IST, 13th May,
2018.

Figure 4 . PPI at 2° elevation of (a)unfolded φdp, (b)filtered φdp and (c)estimated Kdp. Blue line in (b, c)
represents 281° azimuth. (d) Variation of φdp(blue) and Kdp(red) along 281° azimuth. DATA: 18:54:12 IST,
13-may-2018.

Figure 5 . (a) PPI diagrams of radar reflectivity at 2° elevation averaged between 2.5 - 3.5 km height at
18:54:12 IST, on 13th May, 2018 and (b) the identified convective (red) and stratiform (blue) regions.
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Figure 6 . Contour frequency by altitude diagram (CFAD) of radar reflectivity for (a) convective and (b)
stratiform regions. (c) Mean vertical profile of reflectivity over convective (red) and stratiform (blue) regions,
(d) frequency distribution of reflectivity at 3 km height. The dotted line represents rain rate of 10 mm h-1.

Figure 7 . Horizontal wind vectors overlaid with geopotential height anomaly on (a) 13th May 2018 at 12Z,
(b) 25th May 2018 at 12Z using ERA5 dataset. Vertical profiles of (c) θe, (d) mixing ratio, (e) wind speed
and (f) wind direction on 13th May 2018 at 00Z (red), 25th May 2018 at 00Z (green) and 25th May 2018 at
12Z (blue) from radiosonde.
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Figure 8 . PPI diagrams of radar reflectivity at 2° elevation angle at 16:20:18 IST to 21:55:40 IST (a-i)
during the event on 13th May, 2018.

Figure 9 . Time series of rain rate (red curve) overlaid with rain DSD (colour bar) during the convective
events on (a) 13th May, 2018 and (b) 25th May, 2018 using disdrometer data.
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Figure 10 . Spatial-temporal evolution of infrared brightness temperature during the convective events on
13th May, 2018 (a-e) and 25th May, 2018 (f-j) using INSAT-3DR satellite data.

Figure 11 . Time series of infrared brightness temperature (K) during the convective events on 13th May,
2018 (red) and 25th May, 2018 (blue) using INSAT-3DR satellite data.
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Figure 12 . Time series of cloud base height (m) of layer 1 (pink), layer 2 (cyan) and layer 3 (blue) clouds
during the convective events on (a) 13th May, 2018 and (b) 25th May, 2018 using ceilometer measurements
at NCESS.

Figure 13 . (a) Radar reflectivity averaged between 2.5 and 3.5 km height on 13th May, 2018. Vertical
cross section of (b) reflectivity, (c) Zdr , (d) ρhv , (e) Kdp and (f) identified hydrometeor types along AB
convection line at 17:07:59 IST.
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Figure 14 . PPI diagrams of radar reflectivity at 2° elevation angle at 12:58:39 IST to 16:10:26 IST (a-i)
during the event on 25th May, 2018.

Figure 15 . (a) Radar reflectivity averaged between 2.5 and 3.5 km height on 25th May, 2018. Vertical
cross section of (b) reflectivity, (c) Zdr, (d) ρhv , (e) Kdp and (f) hydrometeor types along AB convection
line at 14:15:13 IST.
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• Structure of pre-monsoon convective systems has been revealed using polarimetric radar and 14 
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• Reflectivity values greater than 30 dBZ reaching up to 10 km height has been observed in 16 

the rapid development stage of thunderstorms. 17 

• Graupels along the high reflectivity columns inside the storms suggest presence of strong 18 

updraft. 19 

• Existence of vertical ice particles indicate strong electric field inside thunderstorms. 20 
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Abstract: The structure of pre-monsoon convective systems over southern peninsular India using 28 

polarimetric doppler weather radar (DWR) observations has been analyzed. Convective-stratiform 29 

separation has been done for eleven convective events during Mar-May, 2018. The mean vertical 30 

profile of reflectivity shows peak reflectivity of 32 dBZ near 3 km height for convective regions and 31 

the bright band signature over stratiform regions was observed. The frequency distributions of 32 

reflectivity at 3 km height over convective and stratiform regions are of bell-shaped nature with 33 

peaks at 32 dBZ and 18 dBZ respectively. A comprehensive analysis has been done on two 34 

prominent convective cases on 13th and 25th May 2018. Strong convective regions represented by 35 

high reflectivity (> 45 dBZ) were noticed in the PPI diagrams. Specific differential phase (Kdp) has 36 

been calculated from the slope of the filtered Φdp. Heavy precipitation near surface is reflected in the 37 

high value of Kdp (> 5° km-1). High values of Zdr (> 3 dB) were measured at lower levels due to the 38 

oblate bigger raindrops. A fuzzy logic-based hydrometeor identification algorithm has been applied 39 

with five variables (Zh, Zdr, ρhv, Kdp, and T) to understand the bulk microphysical processes at 40 

different heights within convective regions. The presence of bigger graupel particles near the melting 41 

layer indicates strong updrafts within the convective core regions. The vertical ice hydrometeor 42 

might signify the existence of a strong electric field causing them to align vertically and this could 43 

be linked to lightning occurrence associated with such systems. 44 

Keywords: Pre-monsoon, Convective systems, Doppler weather radar, Hydrometeor 45 

identification 46 

 47 
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1. Introduction  56 

Thunderstorms are severe mesoscale weather phenomena that develop mainly due to intense 57 

convection over the heated landmass and are accompanied by heavy rainfall, lightning, and 58 

sometimes hail. They have a spatial extent of a few kilometres to few hundred kilometres and a life 59 

span of less than an hour to several hours (Tyagi et al., 2012; Saha et al., 2014; Thakur et al 2019). 60 

Numerous thunderstorms occur daily across the globe (Christian et al., 2003), a major fraction of 61 

which is over the tropical belt. In the case of Indian subcontinent, most of the thunderstorms occur 62 

during the pre-monsoon (March-April-May) season (Singh & Bhardwaj, 2019). They are locally 63 

known as Kalbaisakhi in West Bengal, Bordoichila in Assam and Andhi in north-west India. A large 64 

amount of precipitation particularly during the pre-monsoon season occur due to thunderstorm 65 

events (Saha et al., 2014; Bhardwaj & Singh, 2018). Using satellite data, Cecil et al. (2014) has 66 

prepared lightning climatology across the globe, which clearly shows different hotspots, especially 67 

over the tropical region. Halder and Mukhopadhyay (2016) have identified five lightning hotpots 68 

during pre-monsoon and one among them is over the southern peninsular India. Using data from 69 

different observatories across India, Tyagi (2007) has shown that, the highest annual thunderstorm 70 

frequency is observed over Assam and sub-Himalayan West Bengal in the east, Jammu region in the 71 

north and over Kerala, where the frequency of thunderstorm is higher, in the southern peninsula. 72 

Manohar and Kesarkar (2004) have shown that thunderstorm frequency peaks in the month of May 73 

over southern India. Study by Unnikrishnan et al. (2021) on lightning activity using TRMM-LIS 74 

data and ground-based lightning detection network shows strong lightning activity over south India 75 

particularly over the Kerala region. Effect of orography, along with abundant supply of moisture 76 

from the sea and presence of land-sea breeze are some of the important factors that favour the 77 

occurrence of thunderstorms over the southwest peninsular region (Rao & Srinivasan, 1969; 78 

Romatschke et al., 2011). 79 

Thunderstorms cause damage to crops, properties and even human lives every year. It is estimated 80 

that between 1500 and 2800 deaths occurred annually due to thunderstorms/lightning during 2001-81 

2017 (Roy et al., 2019). Heavy rainfall and high winds from these weather systems cause an 82 

interruption in connectivity among different places and infrastructure in general. Hence, there is an 83 

increasing demand for better nowcasting of such weather systems. Several attempts have been made 84 

to predict such systems using statistical approach (Ravi et al., 1999; Dhawan et al., 2008; Rajeevan 85 

et al., 2012), satellite-based nowcasting (Purdom 2003; Umakanth et al., 2021), numerical 86 
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simulations (Abhilash et al., 2007; Litta & Mohanty 2008; Rajeevan et al., 2010; Litta et al., 2012; 87 

Madhulatha & rajeevan 2018; Leena et al 2019; Sad et al., 2021) and even artificial intelligence (Elio 88 

et al., 1987; Litta et al., 2013; Zhou et al., 2019). But because of their small-scale nature and innate 89 

underlying nonlinearity, prediction of such systems is far from desirable accuracy. More 90 

observations are required to understand the features and internal structures of these systems which 91 

in turn will help their forecasting. Most of the thunderstorm related studies in India were on pre-92 

monsoon thunderstorms (Nor'westers) occurring over east and north-east parts of India (Litta & 93 

Mohanty, 2008; Mukhopadhyay et al., 2009; Tyagi et al., 2012; Thakur et al., 2019). A few studies 94 

(Rajeevan et al., 2010; Suresh 2012; Agnihotri et al., 2020) have been conducted on the thunderstorm 95 

occurrences over the southern peninsular India, particularly over Kerala which is one of the potential 96 

lightning hotspots in the southern peninsular India. Proximity of the Arabian Sea backed by the 97 

towering Western Ghats orography influences the formation and development of clouds and 98 

thunderstorms in the region. 99 

Doppler weather radar (DWR) is one of the most relevant and reliable instrument to monitor these 100 

weather events in 3-dimension, starting from their genesis to dissipating stage. Radars have been 101 

used in numerous studies (Mukhopadhyay et al., 2009; Rajeevan et al., 2010; Srivastava et al., 2010; 102 

Litta et al., 2012; Suresh 2012) to understand the structure and evolution of thunderstorms. But most 103 

of these studies mainly use radar reflectivity and sometimes radial velocity also. However, studies 104 

using polarimetric radars are rare particularly over the Indian region mainly because of less 105 

availability of such data. Radars with polarimetric capabilities could provide much more information 106 

about the precipitating systems e.g., about size and shape of the hydrometeors within the system. 107 

Polarimetry has two major advantages viz. polarimetric measurements improve the retrieval of 108 

microphysical parameters such as mean drop size, rainfall estimation (Chandrasekar et al., 1990; 109 

Bringi et al., 2006; Bringi et al., 2009; Cifelli et al., 2011) and polarimetric clutter-detection 110 

techniques help in the removal of non-meteorological echoes (Zrnic´ & Ryzhkov, 1999; Unal, 2009; 111 

Islam et al., 2012; Lakshmanan et al., 2014). Since polarimetric measurements contain information 112 

on the shape and size of the hydrometeors, they can be used for better retrieval of hydrometeor types. 113 

Fuzzy-logic based hydrometeor identification (HID) is a very efficient and popular method for 114 

identifying hydrometeors within the radar scan volume (Vivekanandan et al., 1999; Liu & 115 

Chandrasekar, 2000; Keenan, 2003; Marzano et al., 2006; Dolan & Rutledge, 2009; Dolan et al., 116 

2013). Such studies give valuable information about different ice hydrometeors present at different 117 
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heights within a precipitating system. Unlike raindrops, it is not easy to obtain information about ice 118 

particles using remote sensing techniques, mainly because of their irregular shapes and varying 119 

densities. Hydrometeor identification algorithms provide an indirect way to obtain information on 120 

ice particles. Such information can help us understand the charge separation and subsequent 121 

lightning in thunderstorms as detailed in different laboratory studies (Takahashi, 1978; Jayaratne et 122 

al., 1983; Saunders et al., 1991). These studies suggest that the non-inductive charge separation due 123 

to rebounding collision between graupel and ice crystals in the presence of super-cooled water 124 

droplets is the main mechanism of thunderstorm charging. Hence hydrometeor identification is 125 

particularly important during thunderstorm events. Subrahmanyam and Baby (2020) studied the 126 

spatial structure of the Ockhi cyclone and implemented HID algorithm using polarimetric doppler 127 

weather radar observations at the west coast of southern peninsular India and provided information 128 

about polarimetric signatures of rain-bearing clouds. However, the hydrometeor classification 129 

studies are rare over the Indian region, mainly because of the lack of radars with polarimetric 130 

capabilities.  131 

C-band polarimetric doppler weather radar data and several other observation data are used in this 132 

study to understand the features of pre-monsoon thunderstorms over southern peninsular India. A 133 

hydrometeor classification algorithm has been applied to obtain information on hydrometeors. The 134 

paper is organized as follows, apart from the introduction (Section 1), the data from different 135 

instruments and methodology are described in Section 2. Results and discussions are presented in 136 

Section 3. Section 4 summarizes the major findings/conclusions drawn from the study. 137 

2. Data and Methodology  138 

We have identified eleven convective events over the southern peninsular India during the pre-139 

monsoon period (i.e., Mar to May) of 2018 using C-band radar reflectivity field. For these events 140 

convective-stratiform separation has been done to obtain statistics on radar reflectivity over 141 

convective and stratiform regions. Two prominent convective events on 13th May and 25th May, 142 

2018 have been selected as representative cases for further analysis. Besides the DWR data, we have 143 

used rain drop size distribution (DSD) data from disdrometer, cloud base height (CBH; m) data from 144 

ceilometer, brightness temperature data from INSAT satellite, ERA5 reanalysis data and also 145 

radiosonde measurements. Disdrometer and ceilometer were installed over the rooftop of the 146 

National Centre for Earth Science Studies (NCESS; 8.5228N, 76.9097E). Locations of the DWR 147 
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and NCESS along with the topography of the surrounding area are shown in Figure 1.  A brief 148 

description of the instruments and data is summarized in Table 1. 149 

Optical disdrometer (model: OTT Parsivel, manufactured by OTT Hydromet, Germany) is a laser-150 

based system that detects all types of precipitation at the surface (Löffler-Mang and Joss, 2000; 151 

Friedrich et al., 2013). It measures rain DSD and fall velocity distribution in 32 size and velocity 152 

classes as well as it provides rain rates (R; mm h-1) and radar reflectivity (dBZ). The size of 153 

measurable liquid precipitation particles ranges from 0.2 to 8 mm and it varies from 0.2 to 25 mm 154 

for solid precipitation particles. It can measure the particles fall velocity from 0.2 to 20 ms-1. The 155 

temporal resolution of this data is 1 minute. The disdrometer used in this study was installed over 156 

rooftop of NCESS. 157 

Ceilometer (model: CHM15k-Nimbus manufactured by Lufft Mess-und Regeltechnik GmbH) is a 158 

ground-based remote sensing device that uses standard lidar method to determine the cloud base 159 

height (CBH) from the altitude profile of backscattered signals. It can provide cloud thickness where 160 

the cloud layers do not totally attenuate the laser beam. But the signals get attenuated in a rainy 161 

situation depending on the number concentration and size of raindrops and hence signal to noise 162 

ratio of the ceilometer decreases with increasing rain rate (Clothiaux et al., 2000). Technical details 163 

of CHM15k can be obtained from the previous studies by Heese et al. (2010) and Sumesh et al. 164 

(2019). The CHM15k is operated with a vertical resolution of 15 m and the CBH is measured with 165 

a temporal resolution of 15 s. 166 

Brightness temperature data (Infrared Brightness Temperature, IRBT) has been used as a proxy for 167 

the cloud top height. This data is obtained from INSAT-3DR which is a multi-purpose 168 

geosynchronous spacecraft and provides data with spatial resolution of 4x4 km and temporal 169 

resolution of 30 minutes, of mesoscale phenomena in the visible and infrared (IR) spectral bands 170 

(0.55-12.5 μm) over the Indian region. This data is freely available through the 171 

https://www.mosdac.gov.in/ server. 172 

The synoptic circulations over the study region were analysed using the geopotential (m2 s-2), u-wind 173 

(m s-1) and v-wind (m s-1) variables from ERA5 reanalysis hourly data having spatial resolution of 174 

0.25°x0.25°. Radiosonde measurements from India Meteorological Department (IMD), 175 

Thiruvananthapuram have been utilized to analyse the Convective available potential energy (CAPE; 176 
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J kg-1), vertical profiles of temperature (K), mixing ratio (g kg-1), wind speed (m s-1) and wind 177 

direction (deg). 178 

2.1. DWR data and quality control 179 

C-band polarimetric Doppler Weather Radar (DWR), installed at VSSC, Thiruvananthapuram 180 

(8.5374N, 76.8657E, 27 m above mean sea level) operates at a frequency of 5.625 GHz and have a 181 

peak transmitting power of 250 kW. The radar performs a volumetric scan of the surrounding 182 

atmosphere within a radius of 240 km at 11 elevation angles (0.5°, 1°, 2°, 3°, 4°, 7°, 9°, 12°, 15°, 183 

18° and 21°) with an azimuthal and radial resolutions of 1° and 150 m respectively. One full volume 184 

scan takes around 15 minutes. The radar provides base products such as reflectivity at horizontal 185 

polarization (Zh), differential reflectivity (Zdr), differential propagation phase (Φdp), cross-186 

correlation(ρhv), radial velocity (Vr) and Spectral width(σ). Zdr is the difference between reflectivities 187 

(in decibel) at horizontal and vertical polarization, Φdp is the phase difference between the 188 

horizontally and vertically polarized pulses. More information about these variables can be found in 189 

Doviak and Zrnic (1993) and also in Bringi and Chandrasekar (2001). A comprehensive detail about 190 

the radar is given in Mishra et al. (2020). The validation of the radar data with other instruments 191 

showed that the DWR reflectivity agrees quite well with GPM satellite measurements and also the 192 

radar retrieved precipitation have a good correlation (0.89) with ground based in-situ measurements 193 

(Kumar et al., 2020). 194 

Received signal by radar is often contaminated by signals reflected from non-meteorological 195 

objects such as hills, birds etc., anomalous propagation and also attenuation of the electromagnetic 196 

wave by different types of hydrometeors (Ryzhkov & Zrnic, 1998; Friedrich et al., 2006; Unal, 2009; 197 

Lakshmanan et al., 2014). Even though the radar signal processor takes into account many factors 198 

to give reasonably accurate base products from the return signal, still the data needs certain quality 199 

control measures. The use of simple thresholds for different variables can be quite useful in removing 200 

unwanted echoes (Ryzhkov & Zrnic, 1998; Lakshmanan et al., 2014). The following quality control 201 

measures are considered for this study- (i) pixels with Zh > 70 dBZ or ρhv<0.7 are ignored, (ii) 202 

topography data from Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) to remove 203 

ground clutter from hills present towards 40 km east of the radar (Figure 1) using the method 204 

proposed by Friedrich et al., (2006). Figure 2 shows the radar reflectivity during an event on 13th 205 

May, 2018 before quality control (Figure 2a) and after quality control (Figure 2b). The clutter due 206 



8 
 

to hills is present on the reflectivity field before quality control, which is removed nicely after 207 

applying the above-mentioned quality control measures. Other variables (Zdr, Φdp and ρhv) were 208 

processed similarly. 209 

Table 1. Overview of the instruments and the data used in this study 210 

Data source Parameters  

used in the study 

Spatial  

resolution 

Temporal 

resolution 

C-band polarimetric 

Doppler weather radar 

Reflectivity at horizontal polarization 

(dBZ), differential reflectivity (dB), 

differential propagation phase (deg.), 

cross-correlation 

150 m along 

radial and 1° 

along azimuth 

~ 15 min 

Disdrometer (OTT 

parsivel) 

Rain rate (mm h-1), concentration of 

precipitation particles in diameter 

classes 0.2-25 mm (m-3 mm-1). 

In-situ 1 min 

Ceilometer 

(CHM15k)  

Cloud base height (m), cloud cover 

(oktas), cloud penetration depth (m) 

- 15 sec 

INSAT-3DR Brightness temperature (K) 4 x 4 km 30 min 

ERA-5 u-wind (m s-1), v-wind (m s-1), 

geopotential (m2 s-2) 

0.25° x 0.25° 1 hour 

Radiosonde Temperature (K), mixing ratio (g kg-

1), wind speed (m s-1), wind direction 

(deg.), CAPE (J kg-1) etc. 

- - 

 211 

2.2. Convective-Stratiform separation  212 

Several studies have been done for the classification of precipitation into convective and stratiform 213 

parts using in-situ measurements (Tokay & Short, 1996; Testud et al., 2001; Bringi et al., 2003) and 214 

weather radars (Steiner et al., 1995; Williams et al., 1995; Biggerstaff & Listemaa, 2000; Ulbrich & 215 

Atlas, 2002; Thurai et al., 2010). Convective and stratiform parts of the cloud systems exhibit 216 

significantly different behaviours in terms of dynamics as well as microphysics (Houze, 1997). 217 

Vertical air motions within these two portions of a cloud system differ significantly; convective parts 218 

are mainly driven by large narrow updrafts (5–10 m s-1 or more), while stratiform portions are 219 

governed by gentler mesoscale ascents (< 3 m s-1). Thus, microphysical processes responsible for 220 

particle growth within the convective and stratiform parts are very different. Particles within 221 

convective cores regions mainly grow by riming or accretion (collection of supercooled liquid water 222 

droplets onto the ice particle surface), which leads to large/dense hydrometeors, whereas in the 223 
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stratiform region vapour deposition and aggregation are dominating processes that lead to smaller 224 

and less dense ice hydrometeors (though large aggregates may exist). 225 

The convective-stratiform separation method of Steiner et al. (1995), which is based on the texture 226 

of the radar reflectivity field is adopted for the present study and is widely used by the radar 227 

community. This method basically checks for two criteria viz. intensity or peakedness criteria on the 228 

horizontal reflectivity field at 3 km height, to identify a grid point (pixel) as a convective center. Any 229 

grid point with reflectivity at least 40 dBZ (intensity criteria) or greater than a fluctuating threshold 230 

(peakedness criterion) depending on the area-averaged background reflectivity (Zbg calculated 231 

within a radius of 11km around the grid point), is considered as a convective center. For each pixel 232 

identified as a convective center, all surrounding pixels within a certain radius of influence are also 233 

included as convective pixels. This radius of influence is dependent on Zbg. Once all the convective 234 

pixels are identified, the rest of the pixels with non-zero reflectivity values are assigned as stratiform 235 

pixels. 236 

2.3. Φdp data processing and Kdp calculation 237 

The differential propagation phase (Φdp) is the phase difference between the horizontal and vertical 238 

polarized pulses on traversing through the atmosphere. The differential propagation phase is 239 

proportional to the water content along a rain path. Since, most of the hydrometeors in the 240 

atmosphere are aligned with their major axis in the horizontal plane and it’s a range cumulative 241 

parameter, the value of Φdp increases with propagation path. Now, the unambiguous range of Φdp 242 

usually is 180° in the alternate H/V transmission mode and 360° in the simultaneous H/V 243 

transmission mode. Hence, for a long propagation path in rain, Φdp values can easily exceed the 244 

unambiguous range and then the Φdp will be wrapped/folded which is usually manifested as a sudden 245 

jump in the range profiles of Φdp. This issue with Φdp is known as phase wrapping/folding (Wang & 246 

Chandrasekar, 2009; You et al., 2014). The unfolding of these phases has been done by adding 247 

appropriate phase offset (You et al., 2014). So, even after the quality control steps mentioned in the 248 

previous section, Φdp needs this extra processing before it can be used in further analysis. In Figure 249 

3a, such a situation of phase wrapping is observed towards 15 km west of the radar during a 250 

convective event. Then the phase are unfolded nicely and the unfolded Φdp is shown in Figure 3b. 251 

Specific differential phase (Kdp) is defined as the slope of range profiles of Φdp (Seliga & Bringi, 252 

1978; Jameson, 1985; Bringi & Chandrasekar, 2001) and is defined as follows.  253 
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                               𝐾𝑑𝑝(𝑟) = [
Φ𝑑𝑝(𝑟 + Δ𝑟

2
) − Φ𝑑𝑝(𝑟 − Δ𝑟

2
)

2∆𝑟
]                                                         (1) 254 

Kdp is an important parameter for meteorological applications as it is closely related to rain intensity. 255 

More importantly it’s insensitive to signal attenuation during propagation, radar calibration, partial 256 

beam blockage and the presence of hail (Aydin et al., 1995; Zrnic & Ryzhkov, 1996). This makes 257 

specific differential phase very useful for precipitation estimation at heavy rain intensity or during 258 

partial beam blockage. Though the estimation of Kdp seems quite simple, it requires further 259 

processing of Φdp range profiles before calculating the slope. Φdp is known to be a very noisy 260 

parameter particularly in regions with low rain rates and the process of differentiation increases this 261 

noise even further. To tackle this, we have applied a low-pass butterworth filter (Parks & Burrus, 262 

1987; Proakis & Manolakis, 1988) of order 10 with a cut-off scale of 2 km to reduce the statistical 263 

fluctuation but keeping the overall features intact. Similar filters with similar cut-off scales have 264 

been used in previous studies (Hubbert et al., 1993; Wang & Chandrasekar, 2009). Figure 4a shows 265 

the Φdp Plan Position Indicator (PPI) at 2° elevation angle during the convective event on 13th May 266 

after quality control and unfolding. Then the previously mentioned filter has been applied on this 267 

Φdp and obtained a smoothed Φdp (Figure 4b). Small scale fluctuations in the Φdp field are nicely 268 

removed in the filtered Φdp. With this smoothed Φdp field Kdp has been estimated using Equation 1 269 

and is shown in Figure 4c. Another Kdp estimate using slope of the linear regression line 270 

(Balakrishnan & Zrnic, 1990) has also been calculated. Both the methods gave similar Kdp values. 271 

Kdp field shows high values close to 9° km-1 at a distance of 5 to 15 km westward from the radar, 272 

indicating presence of heavy precipitation. The blue line in this plot represents the 281° azimuth. 273 

Along this direction original Φdp (dot-dashed blue curve), filtered Φdp (solid blue curve), estimated 274 

Kdp (red curves) are shown in Figure 4d. The ranges of Kdp values obtained here, agrees quite well 275 

with previous studies on convective cases (Wang & Chandrasekar, 2009; Dolan et al., 2013). 276 

 277 

2.4. Hydrometeor identification 278 

A hydrometeor identification (HID) algorithm by Dolan et al. (2013) is used to identify types of 279 

hydrometeors present at different heights within a convective system. This is a fuzzy logic-based 280 

algorithm in which a fuzzy logic score (μ) is calculated (Equation 2) for each hydrometeor type and 281 
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the hydrometeor with the highest fuzzy logic score is the most probable hydrometeor type at that 282 

grid point within the radar scan volume.  283 

𝜇𝑖 = [
𝑊𝑍𝑑𝑟

𝛽𝑍𝑑𝑟,𝑖 +  𝑊𝐾𝑑𝑝
𝛽𝐾𝑑𝑝,𝑖 +  𝑊𝜌ℎ𝑣

𝛽𝜌ℎ𝑣,𝑖

𝑊𝑍𝑑𝑟
+  𝑊𝐾𝑑𝑝

+  𝑊𝜌ℎ𝑣

] 𝛽𝑇,𝑖 𝛽𝑍ℎ,𝑖                   (2) 284 

 285 

                              𝛽 =  
1

1 + [(
𝑥 − 𝑚

𝑎
)

2
]

𝑏                                                  (3) 286 

 287 

Where, μi is the fuzzy logic score for the ith hydrometeor type. βj,i is the membership function for ith 288 

hydrometeor types and jth variable (Equation 3). Wj is the weight factor for the jth variable. The 289 

values of these membership function parameters and the weights are taken as in Dolan et al. (2013), 290 

which are obtained from simulation at C-band. Five variables viz. Zh, Zdr, Kdp, ρhv and temperature 291 

(T) are used to calculate the fuzzy logic score. Seven types of hydrometeors have been considered 292 

viz. drizzle (DZ), rain (RN), ice crystals (CR), aggregates (AG), low-density graupel (LDG), high-293 

density graupel (HDG), and vertically oriented ice (VI). Graupels are ice particles with diameter of 294 

2-5 mm, which grow mainly due to riming process i.e., collection of supercooled water droplets onto 295 

the surface of ice crystals and subsequent freezing. Temperature for the HID scheme has been 296 

obtained from radiosonde measurements by IMD Thiruvananthapuram at 5:30 IST (Indian Standard 297 

Time). Radar data interpolated on a 0.5x0.5x0.5 km grid have been used for the HID analysis. 298 

3. Results and discussions 299 

3.1. Reflectivity statistics over convective and stratiform regions 300 

An implementation of the convective-stratiform separation algorithm is depicted in Figure 5 during 301 

the convective event on 13th May, 2018. Figure 5a shows the reflectivity field averaged between 2.5 302 

and 3.5 km height. Convective-stratiform separation algorithm is then applied on this horizontal 303 

reflectivity field and the results are shown in Figure 5b. The red and blue pixels are identified as 304 

convective and stratiform precipitation respectively. Not only high reflectivity regions, but also other 305 

regions with strong gradient have been identified as convective regions. The convective-stratiform 306 

separation has been implemented for all the volume scans available for all the eleven convective 307 
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events during Mar-May, 2018 and the corresponding reflectivity statistics are shown in Figure 6. 308 

Figure 6(a, b) shows the contour frequency by altitude diagram (CFAD) of the reflectivity over the 309 

convective and stratiform regions. The convective core is visible near 3 km height though such 310 

feature is not visible in case of stratiform. Figure 6c shows the mean vertical profile of reflectivity 311 

over the convective and stratiform regions. For the convective case (red), mean reflectivity gradually 312 

increases with height from ground level and reaches a maxima near 3 km height and then gradually 313 

decreases with height. Similar features in the reflectivity profile were found over the tropical region 314 

by Zipser and Lutz (1994). The peak value of the reflectivity is about 32 dBZ. On the other hand, in 315 

stratiform case mean reflectivity remains almost uniform up to 4 km height and it peaks near 5 km 316 

height and then gradually decreases with height. This peak in the reflectivity signifies the bright band 317 

(caused by enhanced reflectivity from melting ice particles near 0 °C level) over stratiform regions. 318 

Figure 6d shows the frequency distribution of reflectivity at 3 km height. The peak of the 319 

distributions over the convective (red) and stratiform (blue) regions are well separated though there 320 

is an overlap between the two distributions. The dashed vertical line represents the reflectivity 321 

corresponding to the rain rate of 10 mm h-1. Here we have used Z=168R1.4 relation, which was 322 

obtained from another study by Jash et al. (2019) over this region using micro rain radar data. This 323 

result clearly shows that use of a rain rate threshold (e.g., 10 mm h-1) to separate convective and 324 

stratiform rain is questionable, though such simple classification method is often useful in many 325 

studies (Testud et al. 2001; Bringi et al. 2003; Sisodiya et al. 2020). 326 

3.2. Evolution of convective systems 327 

An in-depth analysis is performed on two prominent convective events on 13th May and 25th May, 328 

2018 for the understanding of the evolution and structure of pre-monsoon convective systems over 329 

southern peninsula. 330 

3.2.1 An overview of the synoptic conditions  331 

Favourable synoptic and thermodynamic conditions help in the organization of convective storms to 332 

develop into severe ones (Mukhopadhyay et al., 2009). High moisture, atmospheric instability, 333 

vertical wind shear and a lifting mechanism are the different necessary conditions for the 334 

development of thunderstorms. Hence, an overview of the synoptic conditions before and during the 335 

events will give more insights into their development. Geopotential height anomaly and wind data 336 

from ECMWF Reanalysis v5 (ERA5) at 12 UTC and vertical profile of equivalent potential 337 
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temperature (θe), mixing ratio, wind speed, wind direction from radiosonde measurements by IMD, 338 

Thiruvananthapuram at 00 UTC and 12 UTC were used to look into the environmental conditions 339 

for the events. 340 

 A low-pressure area formed in the south west Arabian Sea (Figure 7a) on 13th May, 2018 which 341 

was evident from the minimum geopotential height anomaly at 700 hPa levels between 55-65E and 342 

4-10N, was far from the study region. Under this influence, the mean wind was from Bay of Bengal 343 

to the Arabian Sea in the easterly direction (figure 7a). The strong negative gradient of the θe profile 344 

up to 3 km height shows the instability in the lower atmosphere (Figure 7c). The mixing ratio profiles 345 

indicate the presence of moist layers between 2-6 km levels, also suggest the existence of favourable 346 

atmospheric conditions for the formation of thunderstorm. Wind direction changed abruptly along 347 

the vertical which is due to the turbulence associated with the unstable lower atmosphere. Heavy 348 

rainfall in isolated places were reported over Kerala and Tamil Nadu by IMD. These conditions lead 349 

to the formation of convective system over inland region on 13 May 2018 in the afternoon hours 350 

between 16:00-22:30 IST. 351 

The convective event occurred over southern peninsula on 25th May 2018, between 13:00-19:00 IST. 352 

The lower geopotential height anomaly at 700 hPa level clearly demonstrates the convection is active 353 

and strong (Figure 7b) evident with scattered low and medium clouds favouring the intense to very 354 

intense convection. The sounding analysis over the study region indicates that, θe and mixing profiles 355 

in the morning and evening hours shows unstable and moist layers in the near surface levels. Also, 356 

the near surface wind was more than 10 ms-1 from the south westerly directions (near to monsoon 357 

onset). Further to the west, cyclonic vortex Meknu (T5.0) was formed over west central adjoining 358 

south west Arabian sea with lay centred over 15.2°N and 54.3°E.  359 

3.2.2 Convective event on 13th May, 2018 360 

Development of the convective system on 13th May 2018 (16:00-22:30 IST) is captured in the plan 361 

position indicator (PPI) diagrams of radar reflectivity field at consecutive times during the event 362 

(Figure 8). The convective clouds started developing over the land around 25 km east of the radar 363 

location at 16:00 IST and then gradually it started moving westward. This movement of the system 364 

was due to the prevailing easterly wind (Figure 7a). The cloud system passed over NCESS location 365 

around 18:00 IST (Figure 8d). As soon as it reached over the NCESS location extremely heavy 366 

rainfall started, which was observed in the rain rate measured by disdrometer (Figure 9a).  The rain 367 
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rate crossed 100 mm h-1 and sustained in that range for over an hour. Gradually the rain intensity 368 

declined to a range of 0.1 - 1 mm h-1, which was basically the stratiform precipitation following the 369 

main convective activity. The rain DSD obtained by the disdrometer shows an abundance of bigger 370 

raindrops (diameter > 3 mm) during this intense convective spell followed by smaller drops at the 371 

later stage of the event. The deep convective cloud system eventually moved over the Arabian Sea 372 

around 30 km westward from the radar location and meanwhile it turned into a stratiform system 373 

(Figure 8g-8i). The IMD weather report also mentioned about the rainfall during these hours. This 374 

event was associated with rapid development of deep convective clouds as observed in the evolution 375 

of the cloud top infrared brightness temperature (IRBT) measured from satellite (INSAT-3DR). A 376 

lower brightness temperature signifies a higher cloud top height. Figure 10a-10e shows the spatial 377 

and temporal evolution of the brightness temperature during this event. Around 18:00 IST much of 378 

the region was having brightness temperature below 200 K revealing the occurrence of deep clouds 379 

over most of the region. Figure 11 (red curve) shows the temporal evolution of the brightness 380 

temperature over the NCESS location (averaged over a 12x12 km area centered at NCESS). A rapid 381 

decrease in the brightness temperature started at 15:45 IST and reached a minimum value of 185 K 382 

at 17:45 IST, which demonstrates how fast such a deep system can develop within such a short span 383 

of time. Also, cloud base height measured by ceilometer shows (Figure 12a) the presence of 384 

multilevel clouds. Before 17:00 IST mostly high-level clouds are detected (CBH ~ 7 km) and then 385 

just before the precipitation starts all three cloud layers are having cloud base below 2.5 km. Such a 386 

low cloud base height and high cloud top height (inferred from low IRBT values) measures the depth 387 

of the cloud system. Once the rain rate reduced it detected multilevel clouds. The CAPE value of 388 

1713 J kg-1 was observed from the nearest radiosonde measurements in the mooring hour (05:30 389 

IST) which was indicative of already existing moderate instability in the atmosphere which built up 390 

further and eventually led to strong updraft during evening hours.  391 

The vertical structure of the storm in terms of DWR polarimetric measurements and associated 392 

hydrometeor identification is shown in Figure 13. Averaged reflectivity between 2.5 and 3.5 km 393 

height during rapid initial development stage of the storm shows active convective regions (Figure 394 

13a). Then a vertical cross section along the convection line AB has been considered to analyse the 395 

vertical structure of the storm. Figure 13b shows the vertical cross section of reflectivity at horizontal 396 

polarization (Zh) along the convection line AB. The x-axis represents the distance from point A 397 

towards point B. Reflectivity values greater than 30 dBZ reaching up to 10 km height signifies the 398 
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existence of strong updraft within the convective core region. This strong updraft can keep the larger 399 

hydrometeors (bigger raindrops, graupels etc.) float aloft for longer period giving them more time 400 

to grow further by the collision-coalescence process for raindrops and by riming process for ice 401 

particles (Schuur et al. 2001). Since, reflectivity is proportional to the 6th power of the particle 402 

diameter (Bringi & Chandrasekar 2001), these larger particles produce such strong reflectivity values 403 

even at higher altitudes.  404 

Figure 13c shows the vertical cross section of differential reflectivity (Zdr) along the convection line.  405 

Zdr value gives a measure of the oblateness of precipitation particles and hence could be useful in 406 

distinguishing between larger raindrops, hail, and graupel due to differences in shape and orientation. 407 

Since raindrops (diameter> 1 mm) are deformed into oblate spheroid shape due to aerodynamic 408 

forces (Pruppacher & Beard, 1970) with a preferred orientation of their major axes in the horizontal 409 

direction (and therefore Zh> Zv), Zdr is positive and increases with raindrop size. This increase in the 410 

value of Zdr with raindrop size is shown quantitatively in Bringi et al. (2009) in terms of a polynomial 411 

fit between observed Zdr and mean drop diameter measured by disdrometer. Zdr values greater than 412 

2 dB were observed which indicate presence of bigger raindrops or melting bigger ice particles 413 

(Anderson et al. 2011) below 4 km height. Bigger raindrops are also observed in the disdrometer 414 

measurements of rain DSD (Figure 9a).  415 

Zdr values are much smaller at higher altitudes (above 0° isotherm ~5 km height) as the ice particles 416 

such as aggregate, graupel, hail, tend to be spherically symmetric or tumble while falling, causing 417 

low values of Zdr. The lower value of dielectric constant for ice compared to water is another factor 418 

behind lower Zdr for ice particles. Within the strong convective region at heights above the melting 419 

layer, a higher value of Zdr along with high value of Kdp indicates supercooled liquid drops above 420 

freezing level (Hubbert et al., 1998). The ρhv shows high values (>0.95) throughout the entire cross 421 

section (Figure 13d) and ρhv depends on several factors such as eccentricity, distribution of canting 422 

angle, irregular shape and mixture of different types of hydrometeors. Relatively lower values of ρhv 423 

at the central region and at higher altitudes within the cross-section, could be attributed to mixture 424 

of ice particles with rain.  425 

The estimated Kdp (Figure 13e) shows that the spatial pattern of Kdp is in tandem with that of 426 

reflectivity though there are differences. High values (greater than 5° km-1) of Kdp below melting 427 

level suggest the presence of intense convective precipitation with bigger raindrops formed due to 428 
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the coalescence process or due to melting graupel. As drop eccentricity increases with diameter, the 429 

differential propagation phase increases causing higher values of Kdp within regions of intense 430 

convective precipitation. A similar structure of Kdp within convective regions is reported by Ryzhkov 431 

et al. (2002). Higher values of Kdp above freezing level suggests prevalence of supercooled droplets 432 

which can help in formation of graupel particles via the riming process. 433 

Identified hydrometeor types are shown in Figure 13f. Below the melting level, it is mainly 434 

dominated by rain (RN) and above melting level, ice aggregates (AG) are the dominating 435 

hydrometeors. At heights between 4.5 to 8 km, within the convective core regions graupel (HDG) 436 

particles are abundant. Similar findings are obtained in Dolan et al. (2013), in which HDG was found 437 

close to the melting level and LDG at higher heights. Within such convective cores reaching up to 438 

10 km height, liquid droplets are pushed to heights much above the freezing level and they stay there 439 

as unstable supercooled droplets. Upon contact with ice-aggregates they immediately freeze onto the 440 

surface forming bigger ice particles viz. graupel. The strong updraft can sustain these graupels in air 441 

for longer helping them grow even further. The presence of vertical ice indicates the existence of 442 

electric field which forces these particles to orient vertically and this could be due to the charging 443 

via the collisions between graupels and smaller ice particles, as confirmed by different laboratory 444 

experiments (Takahashi, 1978; Jayaratne et al., 1983; Saunders et al., 1991). 445 

3.2.3 Convective event on 25th May, 2018 446 

An organized mesoscale convective system over southern peninsular India prior to the onset of the 447 

southwest monsoon occurred on 25th May, 2018 during 13:00-19:00 IST. The CAPE value of 148 J 448 

kg-1 was observed from the nearest radiosonde measurements in the morning hour (05:30 IST) and 449 

increased to 1092 J kg-1 in the afternoon hours (17:30 IST) suggesting the unstable layers favouring 450 

the formation of convective event. The development of the convective system is presented in the PPI 451 

diagrams of radar reflectivity field from 12:58 IST to 16:10 IST consecutive times during the event 452 

(Figure 14). Unlike the convective system on 13th May, this system started forming over the oceanic 453 

region (westward from radar) as well as over the land (north-east ward from radar) around 13:00 IST 454 

and gradually covered more and more region. Compared to the previous system, this system had a 455 

much larger spatial extent with a lower value of the peak reflectivity during the development stage, 456 

suggesting lesser convective activity compared to the 13th May event. Rainfall and the embedded 457 

rain DSD during the event were recorded by the disdrometer at NCESS (Figure 9b). The peak rain 458 
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rate (~10 mm h-1) was significantly lower compared to that for the previous system (100 mm h-1). 459 

The drops of diameter greater than 3 mm are absent on 25th May, 2018 suggesting lesser updraft 460 

speed and hence lesser time for the growth of raindrops. The spatial-temporal evolution of the 461 

brightness temperature (INSAT-3DR data) during the event (Figure 10f-10j & 11) reveals a slow 462 

development of the cloud system. The development is markedly different from the one on 13th May 463 

event, which was much more rapid. Around 15:30 IST the lowest brightness temperature of ~220 K 464 

was noted, which was significantly higher than the convective event on 13th May 2018 (<185 K), 465 

indicating less deep cloud systems. The ceilometer observation shows the presence of clouds having 466 

the base height below 5 km level (Figure 12b) during the initiation of the convective system. The 467 

dissipation phase of the event was registered with high level clouds (5 < CBH < 10 km) over the 468 

region.  469 

The vertical structure inside the system is shown through a vertical cross along a convective region 470 

(Figure 15). The spatial distribution of the reflectivity averaged between 2.5 and 3.5 km height 471 

during developing stage is shown in Figure 15a. A vertical cross section along the line AB through 472 

the convective region is taken and hydrometeor identification has also been done. The overall 473 

features of the different variables are very much similar to those in Figure 13. The reflectivity core 474 

at a distance between 5 and 20 km from point A was observed and it reached up to a height of 7 km 475 

(Figure 15b), which was 10 km on 13th May event. The Zdr values (Figure 15c) along the convection 476 

line are much lower due to smaller drop size as observed in the DSD from disdrometer. Values of 477 

ρhv (Figure 15d) are high (>0.9) indicating presence of rain with smaller drops at lower levels. The 478 

structure of Kdp (Figure 15e) follows the structure of Zh but values are less (<4° km-1) compared to 479 

that in 13th May case. This is mainly because of lower rain rate and relatively smaller drops with less 480 

eccentricity, resulting in smaller difference between the reflectivity at horizontal and vertical 481 

polarization. Identified hydrometeor types shown in Figure 15f are quite similar to the ones in 13th 482 

May case (Figure 13f). Rain (RN), aggregates (AG) and graupels (HDG) are the main hydrometeor 483 

types identified. The graupels are present mainly in the highest reflectivity column. In this case the 484 

abundance of graupels is much less compared to the 13th May case. This is because of lower updraft 485 

as inferred from the brightness temperature data. The occurrence of drizzle (DZ) types was also 486 

identified along the vertical cross section. 487 

 488 
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 4. Summary 489 

The present study is focused on the structure of pre-monsoon convective systems over a tropical 490 

coastal region in southern peninsular India. Observations from several instruments such as Doppler 491 

weather radar (DWR), disdrometer, ceilometer, INSAT-3DR satellite data, radiosonde 492 

measurements are used in the study. Using the quality controlled DWR data, 11 convective events 493 

have been identified by inspecting the reflectivity field from DWR. Out of which, the convective 494 

events occurred on 13th May and 25th May 2018 has been analysed in detail to understand the 495 

development of mesoscale cloud systems. Convective-stratiform separation has been done for all the 496 

events. Following are the major conclusions of the study. 497 

➢ Convective-stratiform separation clearly demarcates the distinct difference in reflectivity 498 

profiles over convective and stratiform regions. A peak in the mean reflectivity profile near 499 

3 km height is registered for convective regions. Stratiform regions are characterized by a 500 

peak reflectivity near melting layer signifying the bright band and almost constant reflectivity 501 

profile between 1km and 4 km levels. The distribution of the reflectivity values at a height 502 

of 3 km shows bell shaped nature and there is an overlap between distributions for the 503 

convective and stratiform precipitations. It also shows that using a single threshold for 504 

reflectivity or rain rate may not be useful for convective-stratiform separation. 505 

➢ The reflectivity PPI captured the spatial and temporal evolution of the convective cases on 506 

13th and 25th May 2018 from the initiation to the dissipative stages of both the events. The 507 

development of the system on 13th May was much more rapid with cloud tops reaching much 508 

higher altitudes as clearly seen in the brightness temperature observed from satellite. 509 

Disdrometer measurements of rain rate and DSD during the two events show that the event 510 

on 13th May, was associated with high rain rate (>100 mm h-1) having bigger raindrops 511 

(diameter > 3mm) during the first hour of the event. Even though the spatial extent of the 512 

system on 25th May, was larger, much lower rain rate (<10 mm h-1) with relatively smaller 513 

(diameter < 3 mm) raindrops was observed.  514 

➢ Vertical structures inside the storms during rapid development stage have been obtained by 515 

taking vertical cross sections of reflectivity through major convective regions. The 516 

reflectivity values show convective cores reaching 10 km height on 13th May and about 7 km 517 

height on 25th May. High values of Zdr at lower levels were observed on 13th May, due to the 518 

oblate spheroid shape of the bigger raindrops. The structure of Kdp field is quite similar to 519 
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that of reflectivity in both the cases. High values of Kdp reveals the presence of intense rainfall 520 

on 13th May, as Kdp is mainly dominated by bigger raindrops.  521 

➢ Fuzzy-logic based hydrometeor identification (HID) has been done along the vertical cross 522 

sections over prominent convective regions. HID analysis shows presence of graupel at 523 

middle levels within the convective core regions revealing presence of strong updrafts. Ice 524 

aggregates and rain are the dominant hydrometeors above and below melting level 525 

respectively. Presence of vertical ice signifies the presence of electric field inside the storm. 526 

Such electric field may be generated due to non-inductive charging via collision between 527 

graupel and smaller ice crystals.  528 

It would be worth studying the observed lightning activity (if any) during these events as presence 529 

of vertical ice indicates toward development of electric field. If major lightning activity occurred 530 

during these events, then it would support the collision charging mechanism as graupels are 531 

identified within the convective core regions.  532 

 533 
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 879 

Figure 1. Terrain height (m) over the study area and the locations of the C- band DWR and NCESS 880 

observatory are given.  Concentric circles represent distance from the radar for better reference. 881 
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 896 

 897 

 898 

Figure 2. PPI diagrams of radar reflectivity at 2° elevation (a) before quality control and (b) after 899 

quality control at 18:54:12 IST, 13th May, 2018. 900 
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 915 

Figure 3. PPI diagrams at 2° elevation of (a) folded φ
dp

 and (b) unfolded φ
dp

 at 18:54:12 IST, 13th 916 

May, 2018. 917 
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 935 

 936 

 937 

Figure 4. PPI at 2° elevation of (a)unfolded φ
dp

, (b)filtered φ
dp

 and (c)estimated K
dp

. Blue line in (b, 938 

c) represents 281° azimuth. (d) Variation of φ
dp

(blue) and K
dp

(red) along 281° azimuth. DATA: 939 

18:54:12 IST, 13-may-2018. 940 
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 962 

 963 

Figure 5. (a) PPI diagrams of radar reflectivity at 2° elevation averaged between 2.5 - 3.5 km height 964 

at 18:54:12 IST, on 13th May, 2018 and (b) the identified convective (red) and stratiform (blue) 965 

regions. 966 
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 995 

 996 

Figure 6. Contour frequency by altitude diagram (CFAD) of radar reflectivity for (a) convective and 997 

(b) stratiform regions. (c) Mean vertical profile of reflectivity over convective (red) and stratiform 998 

(blue) regions, (d) frequency distribution of reflectivity at 3 km height. The dotted line represents 999 

rain rate of 10 mm h
-1
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 1009 

Figure 7. Horizontal wind vectors overlaid with geopotential height anomaly on (a) 13th May 2018 1010 

at 12Z, (b) 25th May 2018 at 12Z using ERA5 dataset. Vertical profiles of (c) θe, (d) mixing ratio, (e) 1011 

wind speed and (f) wind direction on 13th May 2018 at 00Z (red), 25th May 2018 at 00Z (green) and  1012 

25th May 2018 at 12Z (blue) from radiosonde.  1013 
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 1039 

 1040 

Figure 8. PPI diagrams of radar reflectivity at 2° elevation angle at 16:20:18 IST to 21:55:40 IST 1041 

(a-i) during the event on 13th May, 2018. 1042 
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 1069 

Figure 9. Time series of rain rate (red curve) overlaid with rain DSD (colour bar) during the 1070 

convective events on (a) 13th May, 2018 and (b) 25th May, 2018 using disdrometer data. 1071 
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 1096 

Figure 10. Spatial-temporal evolution of infrared brightness temperature during the convective 1097 

events on 13th May, 2018 (a-e) and 25th May, 2018 (f-j) using INSAT-3DR satellite data. 1098 
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 1126 

Figure 11. Time series of infrared brightness temperature (K) during the convective events on 13th 1127 

May, 2018 (red) and 25th May, 2018 (blue) using INSAT-3DR satellite data. 1128 
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 1142 

 1143 

Figure 12. Time series of cloud base height (m) of layer 1 (pink), layer 2 (cyan) and layer 3 (blue) 1144 

clouds during the convective events on (a) 13th May, 2018 and (b) 25th May, 2018 using ceilometer 1145 

measurements at NCESS. 1146 
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 1168 

Figure 13. (a) Radar reflectivity averaged between 2.5 and 3.5 km height on 13th May, 2018. Vertical 1169 

cross section of (b) reflectivity, (c) Z
dr

 , (d) ρ
hv

 , (e) K
dp

 and (f) identified hydrometeor types along 1170 

AB convection line at 17:07:59 IST. 1171 
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 1197 

Figure 14. PPI diagrams of radar reflectivity at 2° elevation angle at 12:58:39 IST to 16:10:26 IST 1198 

(a-i) during the event on 25th May, 2018. 1199 
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 1205 

Figure 15. (a) Radar reflectivity averaged between 2.5 and 3.5 km height on 25th May, 2018. Vertical 1206 

cross section of (b) reflectivity, (c) Z
dr

, (d) ρ
hv

 , (e) K
dp

 and (f) hydrometeor types along AB 1207 

convection line at 14:15:13 IST. 1208 
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