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Abstract

Nudging is a ubiquitous capability of numerical weather and climate models

that is widely used in a variety of applications (e.g. crude data assimilation,

“intelligent’ interpolation between analysis times, constraining flow

in tracer advection/diffusion simulations). Here, the focus is on the

momentum nudging tendencies themselves, rather than the atmospheric state

that results from application of the method.

The initial intent was to interpret these tendencies as a quantitative

estimation of model error (net parameterization error in particular). However,

it was found that nudging tendencies depend strongly on the nudging time scale

chosen, which is the primary result presented here. Reducing the nudging time

scale reduces the difference between the model state and the target state,

but much less so than the reduction in the nudging time scale, resulting

in increased nudging tendencies. The dynamical

core, in particular, appears to increasingly oppose nudging tendencies

as the nudging time scale is reduced. These results suggest nudging

tendencies cannot be quantitatively interpreted as model error. Still,

nudging tendencies do contain some information on model errors and/or missing

physical processes and still might be useful in model development and tuning,

even if only qualitatively.
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Key Points:11

• Nudging tendencies, or nudging forces per unit mass, depend strongly on the nudg-12

ing time scale chosen (i.e. are ∝ τ−1
ndg).13

• Nudging tendencies cannot be quantitatively interpreted as errors in total (dynam-14

ics + physics) model forces on the atmospheric fluid15

• Still, time-averaged differences between the modeled and target states can be use-16

ful in metrics for model evaluation.17
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Abstract18

Nudging is a ubiquitous capability of numerical weather and climate models that is widely19

used in a variety of applications (e.g. crude data assimilation, “intelligent” interpolation20

between analysis times, constraining flow in tracer advection/diffusion simulations). Here,21

the focus is on the momentum nudging tendencies themselves, rather than the atmospheric22

state that results from application of the method. The initial intent was to interpret these23

tendencies as a quantitative estimation of model error (net parameterization error in par-24

ticular). However, it was found that nudging tendencies depend strongly on the nudg-25

ing time scale chosen, which is the primary result presented here. Reducing the nudg-26

ing time scale reduces the difference between the model state and the target state, but27

much less so than the reduction in the nudging time scale, resulting in increased nudg-28

ing tendencies. The dynamical core, in particular, appears to increasingly oppose nudg-29

ing tendencies as the nudging time scale is reduced. These results suggest nudging ten-30

dencies cannot be quantitatively interpreted as model error. Still, nudging tendencies do31

contain some information on model errors and/or missing physical processes and still might32

be useful in model development and tuning, even if only qualitatively.33

Plain Language Summary34

Nudging is a common feature of weather and climate models used to guide the model’s35

atmospheric state along the observed atmospheric evolution in the past. Here, an ini-36

tial attempt was made to interpret the nudging tendencies as model error. However, it37

was learned that these nudging tendencies change when the nudging time scale is changed,38

largely due to the model’s dynamical core opposing the effect of the nudging in trying39

to achieve its desired state. Results presented here suggest the model wins this “tug-of-40

war.” The overall conclusions is that these nudging tendencies cannot be quantitatively41

interpreted as model error, but still have some use in identifying model issues, even if42

only qualitatively.43

1 Introduction44

Nudging atmospheric models is a process where a linear relaxation term is intro-45

duced into the governing equation for some variable (e.g. the zonal wind, u). The nudg-46

ing term produces a tendency that acts to bring that variable toward some target state.47

For example, the prognostic equation for u can be written48

∂u

∂t
= Dx(φφφ) + Px(φφφ) +Nx(u, u0), (1)

where Dx( . ) is the sum of zonal wind tendencies from dynamical terms (e.g. advection,49

pressure gradient, Coriolis), Px( . ) is the sum of zonal wind tendencies from physical pa-50

rameterizations (turbulence, gravity wave drag, . . . ), φφφ a vector of variables making up51

the state required by dynamics and physics model components, and Nx(u, u0) is the added52

linear relaxation nudging term defined below.53

The form of nudging term, Nx(u, u0), depends on the type of target state, u0. For54

example, the target state might be a particular observation, with nudging tendencies pro-55

portional to the difference between the model state and the observation, inversely pro-56

portional to distance in space and time, and inversely proportional to some specified nudg-57

ing time scale, τndg. This approach is referred to as observational nudging. Another pos-58

sibility is that the target state is a gridded analysis, referred to as analysis nudging. In59

this case, the nudging term often takes the following form:60
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Nx(u, u0) = −W
(
u− u0
τndg

)
(2)

where u0 = u0(x, y, z, t) is some target state (e.g. analysis) spatiotemporally interpo-61

lated onto the host model grid and W = W (x, y, z, t) is a weighting function that can62

be used to limit nudging to certain regions, model levels, or times. Here, analysis nudg-63

ing is the focus with the weighting function set to unity (W = 1).64

The use of such nudging first appears in scientific literature in the mid-1970s (Kistler,65

1974; Anthes, 1974; Davies & Turner, 1977). The original application was to use nudg-66

ing to assimilate data for analyses and model initial conditions. This approach more con-67

tinuously assimilated information from data, preventing numerical instabilities that arose68

in previous assimilation methods that simply inserted observations (e.g. Charney et al.69

(1969); Jastrow and Halem (1970)). For additional early historical context and appli-70

cations, see Stauffer and Seaman (1990) and Skamarock et al. (2008).71

Subsequently, another application of analysis nudging was first demonstrated in Kao72

and Yamada (1988), where a numerical weather model was nudged to analyzed obser-73

vations, allowing realistic tracer transport and diffusion with synoptic-scale meteorol-74

ogy constrained. Such an exercise was sometimes preferable to just using the standard75

12-hourly analyses of the time, allowing physical processes represented in the model to76

influence the state trajectory and tracer advection/diffusion between analyses in a plau-77

sible way. Currently, using analysis nudging to constrain meteorology in advection, dif-78

fusion, and chemistry models is fairly common, often referred to as a “specified dynam-79

ics” configuration of some host model (e.g. Davis et al. (2021)).80

Here, the initial intent was to use nudging to approximate errors in model param-81

eterizations, with particular interest in errors in the momentum equations. As nudging82

keeps the host model’s state close to a presumably accurate target state, one might in-83

terpret the nudging tendencies time averaged over, say, a season, to to be the net error84

in total (i.e. dynamical core + all parameterization tendencies) model forcing per unit85

mass (Eq. 1). If one were to further assume dynamical core errors are significantly smaller86

than those introduced by the physical parameterizations and the target state is accu-87

rate, then the nudging tendencies might be interpreted more specifically as the net er-88

ror of all parameterizations. Then, nudging tendencies and physical understanding of rel-89

evant processes at play could be used to attribute errors to particular processes and these90

errors might be quantitatively targeted. Mapes and Bacmeister (2012) use similar ar-91

guments to interpret incremental analysis update tendencies as net error of all physics92

parameterizations.93

However, while evaluating such an approach, it was found that nudging tendencies94

are proportional to the inverse of the nudging time scale (τ−1
ndg) chosen and, therefore,95

cannot be interpreted as total model (dynamics + physics) error or net physics error,96

at least not quantitatively. The sole objective of this article is to present this apparently97

unpublished, if not completely unknown, result. The ubiquity of nudging capabilities and98

their many, frequent uses within weather and climate models motivate presentation of99

this result.100

Here, nudging tendencies required to keep the Community Atmosphere Model, ver-101

sion 6 (CAM6, Gettelman et al. (2019)), close to the ERA5 reanalysis (Hersbach et al.,102

2020) over five recent winters are analyzed, with nudging time scales varied from 3 to103

24 hours. The model configuration and experiments are described in Section 2. The pri-104

mary result that nudging tendencies are proportional to τ−1
ndg is presented in Section 3.105

In Section 4, a heuristic theoretical argument for this result is provided. A summary and106

discussion of the results is given in Section 5.107
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2 Model Configuration and Experiment Design108

The default CAM6 was used to simulate five winters from 2008 to 2012 with spec-109

ified sea surface temperatures and sea ice (i.e. the “FHIST” component set was spec-110

ified) on a ≈1 degree latitude/longitude grid with the finite-volume dynamical core. The111

model was initialized every 1 Dec with ERA5 interpolated onto its grid and integrated112

for three months (i.e. over December, January, and February (DJF)). During the inte-113

grations, CAM was continuously nudged to ERA5 winds, temperatures, and humidities114

at every time step. With a time step of 30 minutes, the target state, φφφ0 = (u0, v0, T0, q0),115

was updated to ERA5 at the top of every hour and to ERA5 linearly interpolated in time116

half-past every hour. Four such simulations of these five winters were completed, each117

with a constant nudging time scale of τndg = 3, 6, 12, and 24 hours.118

All tendencies acting on the zonal and meridional winds were output. Exact bud-119

get closure was verified. Here, generally, the net tendencies by the dynamical core and120

by all physical parameterizations are presented, often referred to as “dynamics” and “physics”121

tendencies. Figure 1 shows the DJF-averaged net dynamics, physics, and nudging ten-122

dencies projected along the DJF-averaged wind horizontal wind vector vertically aver-123

aged over the lowest four levels. For example, the nudging tendencies in Fig. 1d were com-124

puted via125

N =

∫
〈N〉 · 〈̂u〉〈ρ〉 dz∫
〈ρ〉 dz

. (3)

where 〈 . 〉 is a DJF, 2008-2012 time average and 〈̂u〉 is a unit vector pointing in the di-126

rection of of the DJF, 2008-2012 time averaged horizontal wind vectors.127

2.1 Typical DJF Momentum Balances128

Here, the focus is on the lowest four model levels, as an initial interest was low-level129

wind biases that nudging tendencies at these levels highlight. Generally, the dynamical130

core acts to accelerate the low-level flow (Fig. 1a), while the physical parameterizations131

(the turbulence and low-level drag parameterizations in particular) oppose these dynam-132

ics tendencies and act to decelerate the low-level flow (Fig. 1b). The dynamics and physics133

tendencies do not exactly cancel, however (Fig. 1c). The residual of these two tenden-134

cies is almost exactly compensated by the nudging tendencies. This is expected, as ∂tu ≈135

0 after time averaging over DJF, requiring the sum of the dynamics/physics residual ten-136

dencies and the nudging tendencies to be small as well (Eq. 1). The total wind time-averaged137

tendencies are an order of magnitude smaller than those in the bottom row of Fig. 1 (not138

shown).139

3 Do Nudging Tendencies Change with τn?140

To get a sense for how robust nudging-tendency-derived model error estimates were,141

nudging time scales were varied while keeping the model configuration (default except142

for the nudging) unchanged. The momentum nudging tendencies, N , are shown in Fig. 2143

for four runs with τndg varied from 3 to 24 hours.144

Two results are immediately apparent: the spatial structure of the momentum nudg-145

ing tendencies are quite consistent across the four runs and the nudging tendencies in-146

crease with decreasing τndg. These results held when looking at the middle troposphere147

and lower stratosphere as well (not shown). Nudging tendencies tend to exert additional148

drag over regions with significant topography (e.g. the Andes, the Rocky Mountains, the149

Himalayas, the flanks of Antarctica) in all four simulations. These tendencies also ex-150

ert drag on the low-level winds in all four runs over the Southern Ocean, with tenden-151
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Figure 1. DJF-, 2008-2012-averaged horizontal momentum budget components projected

along the similarly averaged horizontal wind and vertically averaged over the lowest four model

levels, computed via Eq. 3, are color shaded. The net dynamics tendencies (D) and net physics

tendencies (P ) are shown in (a) and (b). The sum of dynamics and physics (D + P ) are shown in

(c). Nudging tendencies (N) are shown in (d). Note the different order of magnitude in the color

bars in each row.
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Figure 2. DJF-, 2008-2012-averaged horizontal momentum nudging tendencies projected

along the similarly averaged horizontal wind and vertically averaged over the lowest four model

levels are color shaded. The four panels show maps of these nudging tendencies from four runs

with nudging time scales of (a) 3 hours, (b) 6 hours, (c) 12 hours, and (d) 24 hours.

cies somewhat invariant in longitude at these latitudes. Regions where the model might152

be exerting too much drag and the nudging tendencies tend to accelerate the low-level153

flow also display some consistency across the runs, though, perhaps less so than the re-154

gions of inferred too little drag.155

Scatter plots of time-averaged zonal dynamics, physics, and momentum nudging156

tendencies at individual grid points on the lowest four model levels from one run plot-157

ted versus corresponding tendencies from the run with twice the nudging time scale are158

shown in Fig. 3. Best fit linear regressions and r2 values shown in each panel. Nudging159

tendencies at individual grid points are consistent between runs with τndg changed by160

a factor of two, indicated by the fairly linear relation between the nudging tendencies161

and the high r2 (≥ 0.911) values. Slopes of the linear regressions are significantly larger162

than one, though, a bit less than the expected slope of 2 if nudging tendencies were ex-163

actly proportional to the inverse nudging time scale. However, these regressions are in-164

fluenced by a majority of points with small tendencies. Grid points with the largest ten-165

dencies do track more closely to a 2-to-1 line. Regardless, the nudging tendencies are roughly166

proportional to τ−1
ndg over τndg ranging from 3 to 24 hours even grid-point by grid-point.167

The dynamics and physics tendencies are much more consistent when τndg is changed168

by a factor of 2, falling much closer to a 1-to-1 line.169

Similar maps and scatter plots of temperature nudging tendencies are shown in Figs. 4170

and 5. Temperature nudging tendencies have a similar dependence on τndg, with ten-171

dencies also increasing with decreasing τndg. However, this dependence is less strong than172

that with the momentum nudging tendencies (c.f. Figs. 3 and 5 a-c).173

If nudging tendencies were to give a robust/consistent estimate of model error of174

a model in a particular configuration, one might expect that the difference between the175

–6–
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Figure 3. Scatter plots of (top) nudging, (middle) dynamical core, and (bottom) physics ten-

dencies from a nudging run plotted versus the same quantities from a run with twice the nudging

time scale. Each point represents the DJF, 5-season time averaged tendency on a grid point on

one of the four lowest model levels. Runs with nudging time scales of 3, 6, 12, and 24 hours were

used. Best fit lines and corresponding r2 values are overlaid in red.
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Figure 4. DJF-, 2008-2012-averaged temperature nudging tendencies vertically averaged over

the lowest four model levels are shown in color shading. The four panels show maps of these

nudging tendencies from four runs with nudging time scales of (a) 3 hours, (b) 6 hours, (c) 12

hours, and (d) 24 hours.

Figure 5. Scatter plots of temperature nudging tendencies from a nudging run plotted versus

the same quantities from a run with twice the nudging time scale. Each point represents the

DJF, 5-season time averaged tendency on a grid point on one of the four lowest model levels.

Runs with nudging time scales of 3, 6, 12, and 24 hours were used. Best fit lines and correspond-

ing r2 values are overlaid in red.
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Figure 6. Same as Fig. 2, but with each panel multiplied by its corresponding nudging time

scale. This gives the time-average, level-1-4-average, difference in wind speed between CAM and

ERA5.

3 hr vs 6 hr 6 hr vs 12 hr 12 hr vs 24 hr

Slope 0.87 0.89 0.89

Offset 0.01 0.01 0.00

r2 0.92 0.95 0.96

Table 1. Linear regression coefficients and r2 values from scatter plots of τndg,1〈N〉 · 〈̂u〉 plotted

vs τndg,2〈N〉 · 〈̂u〉, where τndg,1 = 0.5τndg,2. These differences on the lowest four model levels were

used, without the vertical averaging applied in Fig. 6, Eq. 3. Scatter plots not shown.

model state and the target state (i.e. the numerator in Eq. 2) to reduce proportionately176

to the reduction in nudging time scale. Given that nudging tendencies increase, the dif-177

ference between the model state and the target state is not being reduced proportion-178

ately. The DJF-2008-2012-, level-1-4-averaged momentum nudging tendencies, N , in Fig. 2179

are multiplied by the τndg used in each run to illustrate how the time-averaged differ-180

ence between the model and target state varies in Fig. 6. Decreasing the nudging time181

scale by a 50% does bring the model state closer to the target state, but only by ≈ 12%182

(Table 1).183

Because nudging does keep the model state close to the target state (Fig. 6) and184

the DJF-2008-2012-average total wind tendencies are an order of magnitude smaller than185

the nudging tendencies in all runs (∂tu ≈ 0, not shown), the momentum budget (e.g.186

Eq. 1) requires a compensation in model tendencies somewhere. This is hinted at by the187

anti-correlation of the net model tendencies and nudging tendencies in the bottom row188

of Fig. 1, consistent with Bao and Errico (1997) (their Section 4). The changes in dy-189

namics and physics tendencies are plotted versus the changes in nudging tendencies on190

grid points in Fig. 7 for runs with τndg changed by a factor of two. Interestingly, this com-191
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Figure 7. Scatter plots of changes of (top) dynamical core tendencies and (bottom) physics

tendencies plotted versus changes in nudging tendencies when reducing nudging time scales by

a factor of two. Each point represents such differences in DJF, 5-season averaged tendencies at

grids points on one of the lowest four model levels.

pensation occurs primarily in dynamics tendencies, being particularly clear at the smaller192

nudging time scales.193

These results suggest that, at least when the model configuration is not changed,194

the physical processes represented by the dynamical core are primarily responsible for195

compensating these nudging tendencies. In other words, the dynamical core is respon-196

sible for fighting the effect of the nudging and reducing the ability of the nudging term197

to bring the model state closer to the target state. A heuristic theoretical representa-198

tion of the nudged model system is presented in the following section to speculate on how199

the dynamical core is fighting the nudging tendencies and why these tendencies are pro-200

portional to the inverse nudging time scale.201

4 Time Scale Analysis202

Some progress can be made in understanding why nudging tendencies vary with203

τ−1 using a simple time scale analysis. Here, the entire host model (i.e. Dx(φφφ)+Px(φφφ))204

is heuristically represented by a linear relaxation term:205

∂u

∂t
≈ −u− umod

τmod
− u− u0

τndg
(4)

where umod is some zonal wind the model is trying to achieve on some model timescale,206

τmod. A target state for the whole nudged system (us) and system relaxation time scale207

(τs) are defined as208

–10–
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τs =
τndgτmod

τndg + τmod
, (5)

and209

us
τs

=
umod

τmod
+

u0
τndg

. (6)

With these definitions, the state of the nudged model system can be expressed as a weighted210

average of the nudging and model time scales:211

us =
τndg

τndg + τmod
umod +

τmod

τndg + τmod
u0. (7)

Correspondingly, the momentum equation can be written as

∂u

∂t
≈ −u− us

τs
. (8)

In this simple system, the model is trying to achieve its desired state (i.e. the model is212

pulling the nudged system state toward its attractor, umod(x, y, z, t)) while the nudging213

term is trying to pull the nudged model’s state to the target state (u0(x, y, z, t), Eq. 4).214

Alternatively, the nudged model state is essentially being relaxed to a timescale-weighted215

average of the target and model attractor states on the system timescale (Eq. 8).216

Eq. 8 implies that, averaged over sufficient time, the time-averaged nudged model217

state should just be the time-averaged system state:218

〈u〉t = 〈us〉t. (9)

where 〈 . 〉t is a time-average operator. The time-averaged nudging tendencies were pre-219

sented in the previous section. The following expression for the time-averaged nudging220

tendencies follows from Eqs. 2, 7, and 9:221

〈Nx〉t = −〈u〉
t − 〈u0〉t

τndg
= −〈umod〉t − 〈u0〉t

τmod + τndg
(10)

This relation suggests that as long as the state the host model is trying to achieve (i.e.222

its attractor, 〈umod〉t) differs from the target state (〈u0〉t) systematically, there will be223

non-zero time-averaged nudging tendencies. The magnitude of these nudging tendencies224

depends on how different the state the host model is trying to achieve and the target state225

are. The model and nudging time scales also play a role. However, if the model time scale226

is sufficiently small relative to the nudging time scale (τmod << τndg), or it is some-227

how dictated by the imposed nudging time scale (i.e. τmod ∝ τndg), then the time av-228

eraged nudging tendencies will be proportional to the inverse of the nudging time scale,229

consistent with the model result presented above. The model time scale is further dis-230

cussed and estimated from the model output below.231

4.1 Model Time Scales232

What is this model time scale and what values might it have? Nudging tendencies233

likely act to bring the model away from its desired state, while the model (i.e. the dy-234

namical core in particular) tends to oppose these tendencies as it tries to achieve its de-235

sired state. Here, it is speculated that the model relaxation term in Eq. 4 represents the236

host model’s adjustment to imbalances produced by dynamical, physical or nudging ten-237

dencies. A classical, albeit idealized, example of a fluid adjusting from an imbalanced238

state to a balanced one is geostrophic adjustment (Blumen, 1972). In the geostrophic239
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adjustment problem, the time scale of adjustment is usually treated as an order of mag-240

nitude smaller than the time scale of evolution of a fluid in geostrophic balance. In ab-241

solute terms, geostrophic adjustment occurs over a time scale of an inertial period (2π/f ,242

where f is the Coriolis parameter), which depends on latitude, but has values of 12 hours243

at the poles that increase toward the equator. In reality, and within numerical models,244

excess momentum associated with a variety of physical imbalances (e.g. deviations from245

cyclo-geostrophic balance, quasi-geostrophic balance, semi-geostrophic balance, non-linear246

balance) is shed via generation of, and transport by, atmospheric waves (e.g. gravity waves247

(GWs), inertia gravity waves, Kelvin waves, (Plougonven & Zhang, 2014)). Outside of248

the tropics, GWs are emitted from these imbalances, having time scales ranging from249

the buoyancy period (≈ 10 minutes) to the inertial period (≈ 10 hours). If the time250

scale of adjustment to the imbalances produced by the nudging tendencies is similar to251

the time scales of the waves generated by the adjustment process, then τmod would likely252

be in the range of 10 minutes to 10 hours. This range of τmod (10min . τmod . 10hrs)253

is a bit smaller than the range of τndg (3hrs ≤ τndg ≤ 24hrs) used here, and so might254

be consistent with argument above that nudging tendencies are proportional to τ−1
ndg be-255

cause τmod << τndg.256

Here, the model relaxation time scales were estimated from the 3-hourly-averaged257

momentum tendencies by regressing the model tendencies (i.e. Dx+Px) versus the dif-258

ference between the 3-hourly-averaged nudged-system and model attractor states, u−259

umod. This difference is not known because umod is not known. However, if the differ-260

ences between the time-varying target state and the model’s desired state are much smaller261

than the time-varying differences of the nudged model system state from the model’s de-262

sired state or the target state,263

|(u− umod)− (u− u0)| = |u0 − umod| << |u− umod|, |u− u0|,

then u−umod can be approximated by u−u0, which can be easily computed from the264

nudging tendencies multiplied by the corresponding τndg. The model tendencies were re-265

gressed against u−u0 at every grid point on the 4th model level, and the model time266

scales were then computed from the inverse of the regression slopes. These estimates of267

τmod are shown in Fig. 8 in both absolute units and relative to the nudging time scale268

used. Regions color shaded are those where the probability the regression slope is non-269

zero is greater than 99%. An additional consistency check on this approach is provided270

by the correlation coefficients between Dx + Px and u − umod (not shown). Correla-271

tions are modest but generally significant, with values in the range of -0.5 to -0.75 in parts272

of the Southern Ocean and Subtropics.273

The magnitude of the τmod estimate is quite variable across the globe (left column274

of Fig. 8). This might not be so surprising, as time scales of geostrophic adjustment and275

maximum time scales of GWs that can be emitted both decrease with increasing distance276

from the equator. Zonal asymmetry in τmod is also quite apparent, both due to signif-277

icantly smaller τmod over land vs ocean and zonal variability over just ocean as well. Re-278

gions of larger τmod occur in regions with small nudging tendencies and at low latitudes.279

The heuristic analysis above suggested that if τmod is significantly smaller than τndg,280

or proportional to τndg, then the time-averaged nudging tendencies could be expected281

to be proportional to τ−1
ndg. Over the Southern Ocean where additional drag is being ex-282

erted in all nudging runs, both seem to be true to an extent. The τmod estimates increase283

with increasing τndg, but less so than expected if τmod were truly proportional to τndg.284

This is perhaps better seen in the maps of τmod/τndg in Fig. 8e-f. The ratio τmod/τndg285

decreases as τndg is increased from about 1/2 when τndg = 3 hrs to about 1/3 when τndg =286

24 hrs.287

–12–
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Figure 8. Maps of τmod estimated by regressing 3-hr-average Dx + Px vs u − u0 during

the 2008-2009 DJF at each grid point on the fourth model level. Both (left) τm [hr] and (right)

τm/τn [%] are shown. Only regions where the regression slope is statistically significant at the

99% confidence level are shown.
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All this is to say that the model is quite effective at opposing nudging tendencies,288

in part because the model (the dynamical core in particular) can adjust significantly faster289

(50%-70%) than the nudging term can pull the nudged model state toward the target290

state. Interestingly, the model’s adjustment time scales also appear to be dictated, to291

some extent, by the chosen nudging time scale. How the model’s dynamical core increas-292

ingly opposes the increasing nudging tendencies is interesting. Perhaps the dynamical293

core makes more efficient use of/uses more adjustment mechanisms/instabilities at its294

disposal to increasingly oppose nudging tendencies’ pull away from its desired state. The295

model’s response to the nudging tendencies was not investigated further here.296

5 Can Nudging Tendencies Identify Missing/Erroneous Processes?297

Everything presented thus far was based on CAM simulations with the same con-298

figuration, but with nudging time scales varied. However, a more practical use of the nudg-299

ing method might be to change the model configuration (e.g. parameterizations), per-300

haps as part of a model development or tuning process, and use the nudging tendencies301

to evaluate whether or not the fast model processes have been improved. While it’s clear302

nudging tendencies cannot be quantitatively interpreted as the net forcing error of the303

model or all its parameterizations because these tendencies depend strongly on the cho-304

sen nudging time scale, nudging tendencies can still point out problem regions qualita-305

tively. Here, nudging tendencies from two CAM runs, one with the Beljaars low-level oro-306

graphic drag parameterization and one without, nudged to ERA5 are briefly compared.307

This parameterization was chosen as it exerts very strong forces on the low-level flow and308

has an easily recognisable spatial distribution (i.e. it mainly acts over significant moun-309

tain ranges).310

Figure 9 shows the absolute value of changes in DJF-2008-2012-averaged nudging,311

Beljaars, dynamics, and physics tendencies between the two runs. Encouragingly, when312

this parameterization is removed, nudging tendencies act to replace these parameterized313

tendencies (cf. Figs. 9a and b). However, the low-level drag added by the nudging to re-314

place this process is only ≈25% of the tendencies by this process in the run with it en-315

abled. This result further suggests, while nudging tendencies can useful in identifying316

model errors and/or missing processes, they can only be used qualitatively.317
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Figure 9. Absolute changes in zonal wind tendencies between runs with (CAM6) and without

(NoBLJ) the Beljaars turbulent orographic form drag parameterization vertically averaged over

the four lowest model levels. (a) Change in zonal wind nudging tendencies. (b) The Beljaars drag

tendency. (c) The change in zonal wind dynamics tendencies. (d) The change in the total physics

tendency.
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6 Summary318

The primary result of this article is that nudging tendencies that result from nudg-319

ing a model to a target state are proportional to the inverse of the nudging time scale320

chosen (Figs. 2, 3a-c). As momentum nudging tendencies increase, they are increasingly321

compensated by changes in tendencies by the dynamical core (Fig. 7, top row), presum-322

ably to adjust to imbalances introduced by the nudging. A heuristic time scale analy-323

sis suggests that if the model’s imbalance adjustment time scale is significantly smaller324

than, or proportional to, the chosen nudging time scales, this result should be expected325

as long as the target state to which the model is being nudged is different from the state326

the model is trying to achieve, regardless of the type of target state (e.g. a native anal-327

ysis, a non-native analysis, some other model entirely that has not assimilated data). The328

results presented here suggest a model’s imbalance adjustment time scale might be both329

smaller than, and proportional to, the chosen nudging time scale (Fig. 8).330

The consequence of this result is quite important. If nudging tendencies were to331

be interpreted as total model or physics errors, then the errors so inferred would depend332

on the nudging time scale chosen. Still, systematic nudging tendencies represent a ten-333

dency of the model to push its state away from the target state. If the target state is con-334

sidered “correct,” then these tendencies still contain some information on model error,335

even if only qualitatively. However, nudging tendencies cannot be used to, for example,336

quantitatively identify forcing error profiles by a single parameterization known to dom-337

inate forcing in a particular profile.338

The relevance of this result is significant as well. Nudging is a ubiquitous capabil-339

ity of numerical weather and climate models and is used widely in a variety of applica-340

tions. While few have made use of the nudging tendencies themselves, an emerging ap-341

plication is to use methods to predict nudging tendencies of a model given its state in342

order to improve its predictive skill and reduce long-term biases. Watt-Meyer et al. (2021)343

and Bretherton et al. (2021) used machine learning to this, with some success, though344

they differed in the variables nudged and focused on. The results here do not invalidate345

such results, but suggest that they may depend not only on the model and resolution346

used, but also on the nudging time scale chosen.347

The nudging method of data assimilation and model error quantification is likely348

the simplest in a spectrum of such methods. The results here are not expected to have349

any relevance to the initial tendency method or increment tendency methods of model350

error quantification (e.g. Klinker and Sardeshmukh (1992); Rodwell and Palmer (2007);351

Cavallo et al. (2016)). However, there may be some relevance to the incremental anal-352

ysis update (IAU) method (Bloom et al., 1996; Rienecker et al., 2011), which applies anal-353

ysis increment tendencies, held constant over an analysis window (e.g. 6 hours), in gov-354

erning equations to “guide” a model’s state along an analyzed trajectory. While there355

are similarities between the IAU and nudging methods, it is unclear at this point if a sim-356

ilar dependence of analysis increment tendencies on the analysis window chosen might357

exist.358
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