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Abstract

We investigate numerically the elastic interaction between a dipole and an axisymmetrical vortex in inviscid isochoric two-

dimensional (2D), as well as in three-dimensional (3D) flows under the quasi-geostrophic (QG) approximation. The dipole is a

straight moving Lamb-Chaplygin (L-C) vortex such that the absolute value of either its positive or negative amount of vorticity

equals the vorticity of the axisymmetrical vortex. The results for the 2D and 3D cases show that, when the L-C dipole approaches

the vortex, their respective potential flows interact, the dipole’s trajectory acquires curvature and the dipole’s vorticity poles

separate. In the QG dynamics, the vortices suffer little vertical deformation, being the barotropic effects dominant. At the

moment of highest interaction, the negative vorticity pole elongates, simultaneously, the positive vorticity pole evolves towards

spherical geometry and the axisymmetrical vortex acquires prolate ellipsoidal geometry in the vertically stretched QG space.

Once the L-C dipole moves away from the vortex, its poles close, returning the vortices to their original geometry, and the dipole

continues with a straight trajectory but along a direction different from the initial one. The vortices preserve, to a large extent,

their amount of vorticity and the resulting interaction may be practically qualified as an elastic interaction. The interaction is

sensitive to the initial conditions and, depending on the initial position of the dipole as well as on small changes in the vorticity

distribution of the axisymmetrical vortex, inelastic interactions may instead occur.
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Abstract14

We investigate numerically the elastic interaction between a dipole and an axisymmet-15

rical vortex in inviscid isochoric two-dimensional (2D), as well as in three-dimensional16

(3D) flows under the quasi-geostrophic (QG) approximation. The dipole is a straight17

moving Lamb-Chaplygin (L-C) vortex such that the absolute value of either its positive18

or negative amount of vorticity equals the vorticity of the axisymmetrical vortex. The19

results for the 2D and 3D cases show that, when the L-C dipole approaches the vortex,20

their respective potential flows interact, the dipole’s trajectory acquires curvature and21

the dipole’s vorticity poles separate. In the QG dynamics, the vortices suffer little22

vertical deformation, being the barotropic effects dominant. At the moment of highest23

interaction, the negative vorticity pole elongates, simultaneously, the positive vorticity24

pole evolves towards spherical geometry and the axisymmetrical vortex acquires pro-25

late ellipsoidal geometry in the vertically stretched QG space. Once the L-C dipole26

moves away from the vortex, its poles close, returning the vortices to their original27

geometry, and the dipole continues with a straight trajectory but along a direction28

different from the initial one. The vortices preserve, to a large extent, their amount29

of vorticity and the resulting interaction may be practically qualified as an elastic in-30

teraction. The interaction is sensitive to the initial conditions and, depending on the31

initial position of the dipole as well as on small changes in the vorticity distribution32

of the axisymmetrical vortex, inelastic interactions may instead occur.33

Plain Language Summary34

Ocean swirls, also known as eddies or vortices are ubiquitous in all oceans. Often35

they drift as two vortices together, rotating in opposite directions, known as eddy-pairs.36

The eddy-pair can encounter different structures as well as with other ocean vortices.37

Here we prove that elastic interactions between two vortices are possible, meaning38

that the interaction does not change the vorticity properties of the vortices. We use39

the quasi-geostrophic three-dimensional approximation as well as a two-dimensional40

model. We also describe numerically inelastic interactions, where the dipole (vortex-41

pair) separates or loses part of its vorticity in two-dimensions.42

1 Introduction43

Mesoscale and submesoscale vortical structures are ubiquitous in the oceans and44

atmosphere. In particular, cyclonic and anticylonic vortices are found in different45

configurations, including monopoles, dipoles, and tripoles. Specifically, vortex dipoles,46

also known as vortex pairs or couples, double vortices, modons, or mushroom-like47

vortices have been observed all over the oceans. Some examples include vortex pairs48

of the southern coast of Madagascar (de Ruijter et al., 2004; Ridderinkhof et al., 2013),49

eastern of Australia (Li et al., 2020), the Norwegian coast (Johannessen et al., 1989),50

the Mexican coast (Santiago-Garćıa et al., 2019), California coast (Sheres & Kenyon,51

1989), in the Alaska current (Ahlnäs et al., 1987), in the South China Sea (Huang52

et al., 2017) and along the Canary Islands (Barton et al., 2004). These dipoles are53

generated by different causes, including the instability of baroclinic currents (Carton,54

2001), localized forcing in a viscous stratified fluid (Voropayev & Afanasyev, 1994), or55

coastal interaction (de Ruijter et al., 2004).56

The dipole structure and its stability has been subject of many experimental,57

laboratory, and numerical studies (Couder & Basdevant, 1986; Flór & Van Heijst,58

1994; Rasmussen et al., 1996; Voropayev & Afanasyev, 1994). The dipole possesses59

a propagation speed, and may be considered as the simplest self-induced translating60

vortex structure (Afanasyev, 2003; Carton, 2001). For this reason it can interact with,61

for example, a sloping boundary (Kloosterziel et al., 1993), a submarine mountain62

(Zavala Sansón & Gonzalez, 2021), a coastline (de Ruijter et al., 2004), inertia–gravity63
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waves (Claret & Viúdez, 2010; Huang et al., 2017), other dipoles (Afanasyev, 2003;64

Dubosq & Viúdez, 2007; McWilliams & Zabusky, 1982; Velasco Fuentes & Heijst,65

van, 1995; Voropayev & Afanasyev, 1992) or other multipolar vortices (Besse et al.,66

2014; Viúdez, 2021; Voropayev & Afanasyev, 1992). Most of these interactions seem67

to be inelastic, in the sense that the vorticity dipole suffers irreversible changes during68

the interaction, for example during vortex merging or partial or complete straining69

out processes (Dritschel, 1995; Dritschel & Waugh, 1992; Dubosq & Viúdez, 2007;70

McWilliams & Zabusky, 1982; Voropayev & Afanasyev, 1992). However, in many in-71

stances ocean vortices do not interact strongly with one another for long time periods72

(Carton, 2001). Consequently, elastic interactions, where vorticity exchange does not73

occur, are also possible between ocean vortices. In this study we investigate numeri-74

cally, as a particular kind of elastic dipole-vortex interaction, the interaction between75

a translating dipole and an axisymmetrical vortex.76

In view of the complexity of baroclinic three-dimensional (3D) vortices, it is more77

practical to investigate first the barotropic two-dimensional (2D) case, assuming an78

adiabatic, inviscid, and incompressible fluid, satisfying the Euler equation of motion,79

which in this case reduces to the material conservation of vertical vorticity ζ(x, t) ≡80

k·∇×u(x, t), where u(x, t) is the horizontal velocity field,∇ is the 2D gradient operator81

and k is the vertical unit vector. Many geophysical processes occur on approximately82

horizontal scales, where the vertical, gravity oriented, velocity component is several83

orders of magnitude smaller than the horizontal velocity component (Wayne, 2011).84

For example, in the case of dipole-dipole interactions, Dubosq and Viúdez (2007)85

investigated numerically non-axial frontal collisions of mesoscale baroclinic dipoles as86

well as 2D dipole collisions, and concluded that the 3D inelastic interaction processes87

were qualitatively similar to the 2D interactions, as long as, the vortices had a similar88

vertical extent. In this study, where we deal with elastic interactions, the 2D processes89

are expected to be dominant. Nevertheless, we took a step forward and explored similar90

elastic interactions under the quasi-geaostrophic (QG) 3D approximation of balanced,91

that is in absence of inertia–gravity waves, flows. In the QG balanced geophysical92

flows the geopotential φ(x, t), horizontal geostrophic velocity ugh(x, t) ≡ k ×∇φ(x, t)93

and the materially conserved QG potential vorticity anomaly $q(x, t) = ∇2φ(x, t),94

in the QG 3D space, is equivalent to the role played by the stream function ψ(xh, t),95

horizontal velocity uh(xh, t) ≡ k × ∇ψ(xh, t) and the materially conserved vertical96

vorticity ζ(xh, t) = ∇2ψ(xh, t) in the 2D isochoric flows.97

The basic fluid dynamic equations for the 2D model, leading to the material98

conservation of vertical vorticity, are briefly introduced in section 2, while the basic99

QG equations are introduced in section 3. In the following section 4, the initial vor-100

ticity conditions are explained for the 2D case. The dipole model used is based on the101

Lamb-Chaplygin (L-C) dipole (Chaplygin, 2007), which is an exact theoretical dipole102

model that translates rigid and straight with constant speed. The target vortex has a103

radial vorticity distribution given by the Bessel function of 0-order J0(r). The initial104

conditions for the 3D dynamics are given in section 5. In the next step, section 6, we105

describe numerical results showing that the dipole may be scattered by vortices, chang-106

ing drastically its direction without modifying its vorticity distribution significantly,107

making therefore possible elastic interactions. The 3D simulations show similar results108

to the 2D cases, validating thus the more practical 2D model to describe barotropic109

mesoscale processes in adiabatic, inviscid and incompressible fluid and satisfying the110

Euler equation of motion. Finally concluding remarks are given in section 7.111

2 Basic 2D Equations112

In 2D isochoric flows the stream function ψ(x, t) provides the horizontal velocity113

u(x, t),114

u ≡ −∇× (ψk) , (1)115
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and vertical vorticity ζ(x, t)116

ζ ≡ k · ∇ × u = ∇2ψ , (2)117

where k is the vertical unit vector and ∇ is the 2D gradient operator. The basic118

dynamical equation is the material conservation of vorticity119

dζ

dt
≡ ∂ζ

∂t
+ u · ∇ζ = 0 . (3)120

Equation (3) is numerically integrated (a brief description is given in Appendix A) to121

evolve in time the vorticity field from prescribed initial vorticity conditions ζ(x, t0) in122

the numerical simulations described in the section 6.123

3 Basic QG 3D Equations124

The inviscid adiabatic QG flow is governed, in a way similar to ζ in (3), by125

the conservation of QG potential vorticity anomaly (PVA) $q(x, t), advected by the126

horizontal geostrophic flow127

d$q

dt
≡ ∂$q

∂t
+ ugh · ∇h$

q = 0 , (4)128

where ugh(x, t) ≡ −∇ × (φ ez), is the geostrophic velocity scaled by f−1
0 , where f0 is129

the constant background planetary vorticity, or Coriolis parameter, and φ(x, t) is the130

geopotential anomaly field. The QG PVA $q(x, t) is the sum of the dimensionless131

(scaled by f−1
0 ) vertical component of geostrophic vorticity ζg(x, t) = ∇2

hφ and the132

dimensionless vertical stratification anomaly S(x, t) = ∂D(x, t)/∂z = ∂2φ/∂ẑ2 , where133

D is the vertical displacement of isopycnals, ẑ ≡ (N0/f0)z, and N0 is the constant134

background Brunt–Väisälä frequency. The QG PVA $q(x, t)135

$q ≡ ζg + S = ∇̂2φ (5)136

equals, in the vertically stretched QG space (x, y, ẑ), the Laplacian of the geopotential137

anomaly φ(x, t).138

4 Initial Conditions for the 2D model: Lamb-Chaplygin Dipole and139

Axisymmetrical Vortex140

We use the Lamb-Chaplygin dipole model whose vorticity distribution ζd(r, θ) in141

polar coordinates (r, θ) is a piecewise function given by142

ζd(r, θ) ≡
{
CdJ1(k1r) sin θ 0 ≤ k1r ≤ j1,1

0 j1,1 < k1r
, (6)143

where Cd is a constant vorticity amplitude, Jm(r) is the Bessel radial of order m, jm,n144

is the nth zero of Jm(r) (Figure 1) and k1 is the dipole’s wavenumber. The interior145

and exterior velocity fields ud(r, θ), in polar coordinates, are given by146

ud(r, θ)

Cd/k1
≡


J1(k1r)
k1r

cos θ er − 1
2 (J0(k1r)− J2(k1r)) sin θ eθ 0 ≤ k1r ≤ j1,1

J0(j1,1)

2k21r
2

[
(k21r

2 − j21,1) cos θ er − (k21r
2 + j21,1) sin θ eθ

]
j1,1 < k1r

, (7)147

where er and eθ are the radial and azimuthal unit basis vectors, respectively.148

In order to provide flow solutions with vanishing velocity at infinity we must add149

to the steady piecewise flow (7) a background flow u0(x) ≡ −ud(r→∞, θ), applied to150

the complete spatial domain, such that the new time dependent velocity ūd(r, θ, t)→ 0151

as r →∞. The new solutions are time dependent and in Cartesian coordinates (x, y)152

are153

ūd(x, y, t) ≡ ud(r(x− u0t, y), θ(x− u0t, y)) + u0x , (8)154
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Figure 1. Bessel functions J0(r) (blue) and J1(r) (yellow). The red line stands for the zeroes

j0,1 and j1,1

where ud(r, θ) is the velocity field (7) in the steady state, r(x, y) =
√
x2 + y2 and155

θ(x, y) = arctan(y/x). Thus, the dipole moves, in absence of background velocity,156

straight along the x-axis with a constant speed equal to u0 = −CdJ0(j1,1)/(2k1).157

The vorticity distribution ζv(r, θ) of the axisymmetrical vortex is given by the158

Bessel function of order 0 (Figure 1), truncated at a radius r = j0,1/k2, that is159

ζv(r, θ) ≡
{
CvJ0(k2r) 0 ≤ k2r ≤ j0,1

0 j0,1 < k2r
, (9)160

where Cv is a constant vorticity amplitude and k2 is the vortex’s wavenumber. The161

vortex velocity uv(r) = v(r)eθ is azimuthal and is given by162

v(r)

Cv/k2
≡


J1(k2r) 0 ≤ k2r ≤ j0,1

J1(j0,1)j0,1
k2r

j0,1 < k2r
. (10)163

When both, vortex and dipole, are present they interact due to their exterior164

potential flows. This interaction depends on the vortices amplitudes (Cd, Cv) and165

vortices extension given by the wavenumbers (k1, k2). Since we are interested in inter-166

actions between vortices with equal size and amplitude we therefore set the positive167

circulation of the dipole (Γ+
d ) equal to the circulation of the vortex (Γ+

v ), and the area168

of the vortex (Av) equal to the area of the positive vorticity of the dipole (A+
d ), that169

is,170

Γ+
d = Γ+

v , A+
d = Av . (11)171

The radius of the vortex is Rv = j0,1/k2, which implies Av = π(j0,1/k2)2. Since the172

radius of the dipole is Rd = j1,1/k1, the area is A+
d = π(j1,1/k1)2/2 and applying (11),173

we obtain the wavenumber ratio174

k1
k2

=
1√
2

j1,1
j0,1
' 1.127 . (12)175

–5–
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The amplitudes ratio Cv/Cd is obtained equating the circulation of the vortex176

to the positive circulation of the dipole. The positive circulation of the dipole is177

Γ+
d

Cd
=

∫ π

0

sin θ dθ

∫ j1,1/k1

0

J1(k1r) r dr = − π

k21
j1,1H1(j1,1)J0(j1,1) , (13)178

where H1(x) is the Struve function of order 1. This is consistent with the circulation179

of one-half of the Lamb dipole obtained by (Kloosterziel et al., 1993). The circulation180

of the vortex is181

Γ+
v

Cv
=

∫ 2π

0

dθ

∫ j0,1/k2

0

J0(k2r) r dr =
2π

k22
j0,1J1(j0,1) , (14)182

and therefore applying (11) we obtain the vorticity amplitudes ratio183

Cd
Cv

= − j1,1J1(j0,1)

H1(j1,1)J0(j1,1)j0,1
' 1.889 . (15)184

The initial vorticity distribution is represented in figure 2. The dipole’s poles185

are close together and have the same vorticity contours as the axisymmetrical vortex.186

The initial interaction between both vortices, as inferred from the stream function is187

negligible. This initial vorticity distribution is integrated in time following the steps188

explained in Appendix A and the results are described in section 6.189

5 Initial Conditions for the QG 3D model: Lamb-Chaplygin Dipole190

and Axisymmetrical Vortex191

In the 3D geophysical QG approach, instead of the cylindrical Bessel functions192

of the first kind Jn(r), which are the eigenfunctions of the radial part of the Laplacian193

operator in polar coordinates (r, θ), the relevant modes are the spherical Bessel func-194

tions of the first kind jl(ρ) and the spherical harmonics Ym
l (ϑ, ϕ), of degree l and order195

m, which are the eigenfunctions of the radial part (ρ) and the angular part (ϑ, ϕ), re-196

spectively, of the Laplacian operator in spherical coordinates (ρ, ϑ, ϕ). The QG PVA197

of the dipole $q
d is a piecewise function given by198

$q
d(ρ, ϑ, ϕ) ≡

{ −Bd j1(kdρ) sinϑ cosϕ 0 ≤ kdρ ≤ j 3
2 ,1

0 j 3
2 ,1

< kdρ
, (16)199

where Bd is a constant potential vorticity anomaly amplitude of the dipole and kd is200

the dipole’s wavenumber. The piecewise function of the PVA of the axisymmetrical201

vortex in the QG space is given by202

$q
v(ρ, ϑ, ϕ) ≡

{ −Bv j0(kvρ) 0 ≤ kvρ ≤ j 1
2 ,1

0 j 1
2 ,1

< kvρ
, (17)203

where Bv is the constant amplitude and kv is the wavenumber of the vortex. As it204

happens in the 2D case, the interaction depends on the vortices amplitudes (Bd, Bv)205

and extension given by the wavenumbers (kd, kv). Since we want to investigate in 3D206

QG flows the baroclinic effects of elastic interactions we apply (11), where instead of207

the integrated area, now volume integration applies208

Γ̂+
d = Γ̂+

v , V +
d = Vv . (18)209

The volume of the positive part of the dipole is V +
d = 2πR3

d/3, where Rd is the210

boundary radius of the dipole. While the positive circulation of the dipole in the QG211

space is212

Γ̂+
d

Bd
=

∫ π/2

−π/2
cosϕdϕ

∫ π

0

(sinϑ)2 dϑ

∫ Rd

0

j1(kdρ) ρ2 dρ213

= −2π((k2dR
2
d + 2)j0(kdRd)− 2(kdRdj1(kdRd) + 1))

3k3d
. (19)214
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Figure 2. Vorticity (top) and stream function (bottom) distributions at t = 0.
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The volume of the vortex is Vv = 4πR3
v/3, where Rv is the radius boundary of the215

vortex and the circulation of the vortex is216

Γ̂+
v

Bv
=

∫ 2π

0

dϕ

∫ π

0

sinϑ

∫ Rv

0

j0(kvρ) ρ2 dρ =
4πR2

vj1(kvRv)

kv
. (20)217

From (18) we obtain the wavenumbers ratio218

kd
kv

=
j1(1)

21/3π
' 1.135 (21)219

and the amplitudes ratio220

Bd
Bv
' 4.043. (22)221

This approach has been used recently to investigate three-dimensional baroclinic dipoles222

(Viúdez, 2019). In the next section, we describe the numerical results of the elastic223

interaction between the vortices.224

6 Numerical Results225

In order to describe the numerical results we define the time dependent center226

positions of the positive and negative vorticity parts of the 2D L-C dipole (r+d (t) and227

r−d (t), respectively),228

r±d (t) ≡

∫
A±

d
(x, y) ζ̃(x, y, t) dx dy∫
A±

d
ζ̃(x, y, t) dx dy

, (23)229

where A±
d are the time dependent regions of points (x, y, t) where ±ζ̃(x, y, t) > 0. The230

time dependent center of the whole dipole rd is given by231

rd(t) ≡
r+d (t) + r−d (t)

2
. (24)232

The time dependent center position of the axisymmetrical vortex rv(t) is defined in233

an analogous way to (23).234

Initially the dipole moves with an almost straight trajectory approaching the235

axisymmetrical vortex (Figure 3). As the dipole gets closer to the target vortex, the236

dipole-vortex interaction increases due to the potential background-flows of both vor-237

tices. As a result of this interaction the dipole is attracted by the vortex and its238

trajectory acquires negative curvature (Figure 3). On the other hand, the axisymmet-239

rical vortex is also attracted by the dipole’s potential-flow, and is slightly accelerated240

towards the approaching dipole (Figure 3). The closer the vortices get, the dipole’s241

speed of displacement decreases (Figure 4) due to the fact that the dipole poles open242

up relative to the dipole’s axis (Figures 3 and 5). At the time of highest pole separation243

(t ' 123) the dipole’s speed of displacement reaches a minimum (Figure 4) and the244

two centers of the vortices, as well as the centers of the poles, are completely alligned245

(Figure 3).246

In this case, due to the large north-south initial distance between the dipole247

and the axisymmetrical vortex, there is no vorticity exchange between the vortices.248

After the time of largest interaction (t ' 123, Figure 5), the dipole’s poles close and249

the dipole acquires a rigid vorticity distribution which is similar to its initial one but250

rotated positively (Figure 3).251

The mechanism of the dipole’s trajectory change, due to the interaction between252

the potential flows, involves a very small exchange of vorticity between the positive and253

negative poles and also a small vorticity leakage, of both positive and negative vorticity,254

to the background field. While a L-C dipole consisting only on the first vorticity255

–8–
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Figure 3. Trajectories of the center of the dipole poles r−(t) (blue), r+(t) (orange), the center

of the whole dipole rd(t) (green), and the center of the axisymmetrical vortex rv(t) (red) for the

2D case. The gray lines connect the + and − pole centers and the center of the dipole with the

center of the vortex at seven different times.
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Figure 4. Dipole’s speed of displacement vd(t) ≡ |drd(t)/dt| for the 2D case. The dashed red

line marks the speed of displacement of the last point.
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Figure 5. Vorticity (top) and stream function (bottom) distributions at the time of maximum

poles separation (t = 123) for the 2D case.
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mode J1(k1r), dipolar antisymmetrical mode, moves along a straight trajectory, the256

presence of the zero mode J0(k2r), or rotational symmetrical mode, provides a constant257

curvature to the dipole’s trajectory. In this numerical experiment the dipole, consisting258

initially of only the first vorticity mode J1(k1r), develops a small rotational mode via259

vorticity exchange between the poles while approaching the axisymmetrical vortex.260

The direction of this vorticity exchange is reversed as the dipoles leaves the vortex,261

in such a way that the mode-0 vanishes and the poles recover their antisymmetrical262

vorticity distribution. On the other side, the axisymmetrical vortex decelerates towards263

a new position very close to its initial location (Figure 3). The same interaction264

occurs in the 3D QG approximation with barotropic effects. At the beginning of265

the simulation the axisymmetrical vortex is spherical and both circulation parts of266

the dipole have an ellipsoidal antisymmetric geometry, while they translate straight267

forward approaching the rotating axisymmetrical vortex (Figure 6). When the dipole268

approaches the axisymmetrical vortex, the dipole changes its trajectory and geometry,269

loosing its initial vorticity antisymmetry. The negative vorticity isosurfaces form larger270

ellipsoids, while the positive vorticity isosurfaces acquire an almost spherical geometry271

(Figure 6). The axisymmetrical vortex which originally is a rotating sphere, in presence272

of the first spherical Bessel mode (j1) suffers a small displacement and acquires an273

ellipsoidal geometry reaching its maximum deformation at the highest interaction (t '274

45) (Figure 6). After the interaction the vortices return to its original geometry, with275

different position and displacement direction in the case of the dipole similar to the276

2D case. The whole interaction process is shown for the 2D and 3D cases in the277

videos referenced in Figure 7 and Figure 8. Since the 2D and the 3D cases show278

similar results, for the initial conditions given here, we describe with more detail the279

interaction in 2D.280

The dipole’s speed of displacement after the interaction is very close to its orig-281

inal value (Figure 4). This interaction, practically involving no net vorticity change282

between initial and final dipole vorticity distributions, may be classified as an elastic283

scattering of a vortex dipole by an axisymmetrical vortex. Nevertheless, it is important284

to underline that changes in the initial vorticity distribution of the axisymmetrical vor-285

tex this interaction may lose its elastic behaviour. For example, if the vortex vorticity286

boundary Rv is extended to the first zero j1,1/k2, in such a way that the vortex vortic-287

ity distribution is ζ(r)/Cv = J0(k2r)−J0(j1,1), so that there is no vorticity jump at the288

vortex boundary ζ(j1,1/k2) = 0, the interaction is fully inelastic. In this case it occurs289

an exchange of the negative vorticity pole between the dipole and the axisymmetrical290

vortex. This example is described in more detail in Appendix B. Furthermore, if the291

amplitude of the axisymmetrical vortex is large enough, its potential flow may break292

the approaching dipole even before any vorticity interaction can take place.293

We have also analyzed 2D interactions similar to the one described before but294

changing the initial positions of the dipole along the y-axis (video referenced in Figure295

9). In this video, the dipole with green vorticity contours at the top simulates the296

elastic interaction described above. The dipole with black vorticity contours is located297

half the way of the green dipole. This interaction is really similar to the interaction298

described in Appendix B where the dipole is scattered by the axisymmetrical vortex299

and the dipole’s poles separate. When the negative pole is close to the positive ax-300

isymmetrical vortex, these two vortices join together, giving rise to partner exchange301

and formation of a new dipole (video in Figure 9). The positive vorticity pole is left302

behind and evolves towards an axisymmetrical vortex close to the initial position of303

the initial axisymmetrical vortex.304

The next dipole, with yellow vorticity contours, is located at the same y-coordinate305

as the axisymmetrical vortex (y = 0). In this case the vortices collide and merging306

occurs (video in Figure 9). The next two dipoles, with white and red vorticity con-307

tours, are situated at the same distance as the vortices black and green, respectively,308
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Figure 6. Potential vorticity anomaly distribution at the beginning of the simulation (t = 15,

top), at the time of maximum poles separation (t = 45, middle) and close to the end of the sim-

ulation (t = 75, bottom) for the 3D geophysical flow under the quasi-geostrophic approximation.

Point of view Top-down (left) and from the z-axis (right).
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Figure 7. Video of the elastic interaction between the dipole and the axisymmetrical vortex

in isochoric two-dimensional flows. The colour scale is saturated for a better visualization of the

small vorticity changes. Blue and red colors mean negative and positive vorticity, respectively.

Vorticity contour lines (black) and stream function contour lines (white) are included.

Figure 8. Video of the elastic interaction between the dipole and the axisymmetrical vortex

in the quasi-geostrophic three-dimensional space. Blue and red colors mean negative and positive

potential vorticity anomaly (PVA), respectively.
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Figure 9. Video of the superposition of five different simulations, represented with different

vorticity contour line colors, of the interaction between the dipole and the axisymmetrical vortex.

Each dipole starts at a different y-axis position. The axisymmetrical vortex is always placed at

the position (0, 0).

but with reversed sign, so that the positive pole of the dipole is the closest pole to309

the axisymmetrical vortex. In these cases a positive-positive pole interaction occurs.310

The white dipole, closer to the axisymmetrical vortex, suffers straining out vorticity311

processes, while the red dipole, far from the axisymmetrical vortex, experiences also312

an elastic interaction but weaker than the one experienced by the green dipole (video313

in Figure 9). In this case the red dipole is slightly repelled, instead of being attracted,314

by the axisymmetrical vortex, in such a way that the dipole changes only slightly its315

direction during the interaction time, to afterwards return to a straight trajectory with316

the same initial direction. The axisymmetrical vortex behaves similar to the dipole,317

it is repelled by the potential flow of the dipole and describes an almost semi-circular318

trajectory with a small radius δr ' 0.6 (too small to be appreciated in Figure 10) and319

returns, after the interaction time, to a new location very close to the initial one.320

7 Concluding Remarks321

In this work we have proved, using numerical simulations, that fully elastic322

interactions between a vortex dipole and an axisymmetrical vortex are possible in323

three-dimensional geophysical flows. The elastic interactions described here occur in324

inviscid incompressible flows, both under the three-dimensional quasi-geostrophic ap-325

proximation, where the potential vorticity anomaly is materially conserved, and in326

two-dimensional flows where the vertical vorticity is materially conserved. In the par-327

ticular example described in detail in this work, a Lamb-Chaplygin dipole is elastically328

scattered by an axisymmetrical vortex. When the initially straight moving L-C dipole329

approaches the target vortex they interact due to their corresponding potential flows.330

A barotropic effect of the interaction is that the dipole’s trajectory acquires curvature331

–14–
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Figure 10. Trajectories of the center of the dipole poles r−(t) (blue), r+(t) (orange), the

center of the whole dipole rd(t) (green), and the center of the axisymmetrical vortex rv(t) (red).

and the dipole’s vorticity poles open up. Once the L-C dipole moves away from the332

target vortex, the dipole’s poles close and the dipole continues with a straight trajec-333

tory but with a direction different from the initial one. Under the QG approximation,334

no vertical changes to the vortices occur along the z-axis, noteworthy barotropic effects335

are even more evident. As the dipole approaches the vortex, the negative vorticity pole,336

which gets closer to the vortex, develops a banana-shape in the vertically stretched337

QG space, while, simultaneously, the positive vorticity pole evolves towards spherical338

geometry and the axisymmetrical vortex acquires prolate elliposidal geometry. After339

the interaction both vortices return to their original geometry. No significant vorticity340

exchange between the dipole and the axisymmetrical vortex occurs, though there is a341

very small vorticity exchange between the poles and a small vorticity leakage to the342

background field, so that the vortex interaction is practically elastic.343

This description of an elastic interaction contributes to several previous stud-344

ies involving dipoles interactions, including interactions of dipoles with solid bound-345

aries (de Ruijter et al., 2004; Kloosterziel et al., 1993; Voropayev & Afanasyev, 1992;346

Zavala Sansón & Gonzalez, 2021), interactions of dipoles with inertia–gravity waves347

(Claret & Viúdez, 2010; Huang et al., 2017), and dipole-dipole interactions (Dubosq348

& Viúdez, 2007; McWilliams & Zabusky, 1982; Velasco Fuentes & Heijst, van, 1995;349

Voropayev & Afanasyev, 1992). In the cases of dipole-dipole and dipole-vortex in-350

teractions both elastic and inelastic processes are possible depending on the initial351

vorticity distribution, which includes the location, orientation and vorticity distribu-352

tions of the vortices. In the main example shown in this work, due to the particular353

initial conditions chosen, inelastic interactions do not occur.354

Our future work is to investigate the stability of neutral (that is, with vanishing355

amount of potential vorticity anomaly) geophysical vortices, including also vortex in-356

teractions, extending the approach of Viúdez (2021) in 2D to three-dimensional QG357

flows.358

Appendix A Scheme of the Numerical Algorithm359

Given an initial vorticity field ζ(x, y, t0) the vorticity time integration is done in360

four steps.361
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1. The stream function ψ(x, y, t0) is obtained by solving (2) espectrally.362

2. The velocity u(x, y, t0) is computed from ψ(x, y, t0) using (1).363

3. The vorticity advection −u · ∇ζ is computed in the physical space.364

4. The vorticity at the next time-step ζ(x, y, t0 + δt) is obtained from (3) as365

ζ(x, y, t0 + δt) = −δtu · ∇ζ + ζ(x, y, t0) .366

After the step 4 the loop returns to step 1 for the next time integration (t0 + δt).367

The numerical simulations were carried out using a 2D pseudospectral code where the368

vorticity field ζ(x, y, t) is numerically integrated, following the steps described above,369

in a doubly periodic domain using an explicit leap-frog time-stepping method, together370

with a weak Robert-Asselin time filter to avoid the decoupling of even and odd time371

levels. The numerical domain was discretized in 20482 grid points.372

Appendix B Dependence with the Radial Vorticity Profile of the Ax-373

isymmetrical Vortex374

In this case the axisymmetrical vortex boundary Rv is extended to the first zero375

Rv = j1,1/k2, instead of j0,1/k2 (Figure 1), and its vorticity distribution is given by376

ζ(r)/Cv = J0(k2r)−J0(j1,1) so that ζ(j1,1/k2) = 0 with no vorticity jump at the vortex377

boundary. The other initial conditions described in section 4 remain unchanged. In378

the general case where the vortex boundary is taken at k2r = jm,n the external flow379

u0(r), is given by380

u0(r)

Cv/k2
=

[
J0(jm,n)

2

j2m,n
k2r

− J1(jm,n)
jm,n
k2r

]
eθ .381

If the vortex boundary is taken at k2r = j1,1 the external flow decays as Cv(J0(j1,1)j21,1/(2k
2
2r)) '382

−2.9/(k22r), while if the vortex boundary is taken at k2r = j0,1, as in section 4,383

the external flow decays as −Cv(J1(j0,1)j0,1/(k
2
2r)) ' −1.2/(k22r), the ratio been384

J0(j1,1)j21,1/(2J1(j0,1)j0,1) ' 2.4, indicates that the external flow in this example de-385

cays faster than the exterior flow in section 4.386

In this case, the dipole moves initially with a straight trajectory approaching the387

axisymmetrical vortex. Then, the vortices are attracted by their potential flows and388

the poles of the dipole separate. The difference with the case studied in section 6 is389

that, in this case, while the poles open up the axisymmetrical vortex is pushed away390

from the dipole, and the negative pole of the dipole separates from the positive pole391

and joins the axisymmetrical vortex, giving rise to a new dipole (Figure B1). The392

positive pole of the dipole is left behind and remains as an axisymmetrical vortex close393

to the position of the original one.394
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the Canary Islands area of filament-eddy exchanges. Progress in Oceanography ,408

62 (2), 71-94. (The Canary Islands Coastal Transition Zone - Upwelling, Eddies409

and Filaments) doi: https://doi.org/10.1016/j.pocean.2004.07.003410

Besse, V., Leblond, H., Mihalache, D., & Malomed, B. (2014). Building patterns411

by traveling dipoles and vortices in two-dimensional periodic dissipative me-412

dia. Optics Communications, 332 , 279-291. doi: https://doi.org/10.1016/413

j.optcom.2014.07.029414

Carton, X. (2001, 05). Hydrodynamical modeling of oceanic vortices. Surveys in415

Geophysics, 22 , 179-263. doi: 10.1023/A:1013779219578416

Chaplygin, S. (2007, 04). One case of vortex motion in fluid. Regul. Chaot. Dyn., 12 ,417

219-232. doi: 10.1134/S1560354707020074418
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