Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha'apai Eruption of 15 January 2022

Carr James L¹, Horvath Akos², Wu Dong L.³, and Friberg Mariel D⁴

¹Carr Astronautics Corporation ²University of Hamburg ³NASA/Goddard Space Flight Center ⁴NASA / Georgia Tech

November 16, 2022

Abstract

Stereo methods using GOES-17 and Himawari-8 applied to the Hunga Tonga-Hunga Ha'apai volcanic plume on 15 January 2022 show overshooting tops reaching 50-55 km altitude, a record in the satellite era. Plume height is important to understand dispersal and transport in the stratosphere and climate impacts. Stereo methods, using geostationary satellite pairs, offer the ability to accurately capture the evolution of plume top morphology quasi-continuously over long periods. Manual photogrammetry estimates plume height during the most dynamic early phase of the eruption and a fully automated algorithm retrieves both plume height and advection every 10 minutes during a more frequently sampled and stable phase beginning three hours after the eruption. Stereo heights are confirmed with Global Navigation Satellite System Radio Occultation (GNSS-RO) bending angles, showing that most of the plume was lofted 30-40 km into the atmosphere. Cold bubbles are observed in the stratosphere with brightness temperature of ~173K.

Hosted file

agu_jgrl_suppinfo_hunga_tonga_3d.docx available at https://authorea.com/users/523729/ articles/595304-stereo-plume-height-and-motion-retrievals-for-the-record-setting-hungatonga-hunga-ha-apai-eruption-of-15-january-2022

Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha'apai Eruption of 15 January 2022

5 J. L. Carr^{1*}, Ákos Horváth², Dong L. Wu³, and Mariel D. Friberg^{3,4}

- ⁶ ¹Carr Astronautics, Greenbelt, MD USA.
- ⁷ ²Meteorological Institute, Universität Hamburg, Hamburg, Germany.
- ⁸ ³NASA Goddard Space Flight Center, Greenbelt, MD USA.
- ⁹ ⁴University of Maryland, College Park, MD USA.
- 10 Corresponding author: James Carr (jcarr@carrastro.com)
- ¹¹ *6404 Ivy Lane, Suite 333, Greenbelt, MD 20770 USA.
- 12

13 Key Points:

- The Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022, lofted material above 30 km to record-breaking heights of ~55 km.
- Our stereo-winds code retrieved height and motion vectors from GOES-17 and
 Himawari-8 every 10 minutes immediately after the event.
- Radio Occultation bending angles confirm plume altitudes.
- 19

20 Abstract

Stereo methods using GOES-17 and Himawari-8 applied to the Hunga Tonga-Hunga Ha'apai 21 volcanic plume on 15 January 2022 show overshooting tops reaching 50-55 km altitude, a record 22 in the satellite era. Plume height is important to understand dispersal and transport in the 23 stratosphere and climate impacts. Stereo methods, using geostationary satellite pairs, offer the 24 25 ability to accurately capture the evolution of plume top morphology quasi-continuously over long periods. Manual photogrammetry estimates plume height during the most dynamic early 26 phase of the eruption and a fully automated algorithm retrieves both plume height and advection 27 every 10 minutes during a more frequently sampled and stable phase beginning three hours after 28 the eruption. Stereo heights are confirmed with Global Navigation Satellite System Radio 29 Occultation (GNSS-RO) bending angles, showing that most of the plume was lofted 30-40 km 30 into the atmosphere. Cold bubbles are observed in the stratosphere with brightness temperature 31

32 of ~173K.

33 Plain Language Summary

34 The Hunga Tonga-Hunga Ha'apai volcano in the South Pacific erupted violently on January 15, 35 2022. A volcanic plume from the eruption was lofted into the stratosphere to altitudes that are unprecedented in the era of satellite observations. We observed the highest part of the plume at 36 55 km and tracked the motion of the plume in 3D in the vicinity of the volcano for a seven-hour 37 period, every 10 minutes, using imagery from the geostationary GOES-17 and Himawari-8 38 satellites that are positioned at different locations on the equator. The apparent shift in the plume 39 40 as seen from two different vantage points contains information about the plume height and the apparent movement of the plume as it is repeatedly observed by one satellite contains 41 information about the plume velocity. We confirmed our height observations using radio 42 occultation measurements that NOAA uses to profile the atmosphere. Radio waves are normally 43 bent as they pass through the atmosphere from satellite to satellite, nearly grazing the Earth's 44 surface, but when radio waves pass through the volcanic plume, there is an anomalously large 45 change in bending angle. 46

47 **1 Introduction**

The Hunga Tonga-Hunga Ha'apai eruptions of January 2022 culminated in a dramatic 48 event on 15 January 2022. The plume from this underwater eruption was captured in imagery 49 50 from the geostationary GOES-17 and Himawari-8 satellites beginning just after 04:00Z. Applying stereo methods to this imagery, we show that the 15 January 2022 eruption lofted a 51 volcanic plume well above the tropopause and into the stratosphere, with the highest 52 overshooting tops reaching altitudes of 50–55 km, a record in the satellite era. Determining the 53 height of volcanic plumes has an important implication for their dispersion and transport in the 54 atmosphere as well as their lifetime impacts on Earth's climate. Although other observational 55 techniques exist to estimate volcanic plume heights, including the temperature method, LiDAR 56 (e.g., CALIOP), and UV limb sounding (e.g., OMPS), only stereo methods using geostationary 57 satellite pairs offer the ability to accurately capture the evolution of plume top morphology 58 quasi-continuously over long periods. We use manual photogrammetry to estimate plume height 59 during the most dynamic early phase of the eruption and a fully automated algorithm to retrieve 60 both plume height and advection every 10 minutes during a more frequently sampled and stable 61 phase beginning three hours after the eruption. Global Navigation Satellite System Radio 62

Occultation (GNSS-RO) bending angles similarly show that the bulk of the plume was lofted 30–
 40 km into the atmosphere.

65 2 Materials and Methods

We rely on stereo methods previously developed at NASA for tracking wind tracers from 66 multiple satellites ("stereo winds"). These tools have already been applied to stereo observations 67 from Himawari-8 and MODIS of the 2019 eruption of Raikoke (Horváth et al., 2021a and 68 69 2021b). The stereo-winds code for a geostationary pair is fully described in Carr et al. (2020). It offers the ability to retrieve both the height and the motion of a volcanic plume automatically and 70 nearly continuously until the eruption dies down and the plume becomes too tenuous to track 71 effectively. A similar approach has been applied to the study of an eruption of Mt. Etna in 2013 72 using a pair of Meteosat satellites (Merucci et al., 2016). 73

74 We use geostationary satellite imagery from GOES-17 nominally stationed at 137.2°W and Himawari-8 nominally stationed at 140.7°E. Both satellites have nearly identical 16-channel 75 imagers and capture the Earth's Full Disk (FD) every 10 minutes. Both imagers have similar 76 77 capabilities to acquire smaller sectors with shorter refresh times. In particular, GOES can acquire an approximately 1000×1000 km² Mesoscale (MESO) scene every 1 minute. NOAA centered a 78 MESO scene over the eruption at 07:05Z to begin covering the volcano every minute. Before 79 07:05Z, the volcano was only covered in the FD scenes repeating every 10 minutes. Stereo-80 winds feature tracking works better when the time between scene repetitions is shorter. At the 81 beginning of this eruption, as the radius of the plume top expanded at a mean radial speed of ~50 82 m s⁻¹ from ~20 km at 04:10Z to ~55 km at 04:20Z and to ~80 km at 04:30Z, features that 83 otherwise could be tracked morphed quickly in the billowing and rapidly expanding plume. This 84 made automated feature tracking more difficult using the 10-minute GOES-17 FD scenes. 85 Therefore, we focused our use of the stereo-winds code on GOES-17 MESO scenes paired with a 86 single near-simultaneous Himawari FD and used manual photogrammetry (stereo and shadow 87 analysis) with FD pairs before 07:05Z. For example, the Himawari FD beginning at 07:00Z, 88 starts above the North Pole and progresses towards the south, reaching the volcano around 89 07:06Z; therefore, we pair GOES MESO scenes at 07:05Z, 07:06Z, and 07:07Z with the single 90 07:00Z Himawari FD scene. This pattern repeats every 10 minutes. The sun has already set at 91 the volcanic site by 07:00Z, so we use the long-wave Band 14 (B14) with a center wavelength at 92 11.2 µm and spatial resolution of 2 km for both satellites. 93

94 Simultaneous stereo pairs are not required by the stereo-winds code as pixel acquisition 95 times are used in the retrieval model. In our case, the 07:06Z GOES-17 MESO and the 07:00Z 96 Himawari FD differ from exact simultaneity by either ~10 s, ~40 s, or ~70 s across the mesoscale 97 domain depending on which of the three 30-s swaths of the Himawari FD that cover the 98 mesoscale domain contain the pixel. The apparent displacement of a feature between images 99 represents a combination of motion and geometric parallax that the model separates knowing the 9100 pixel times.

101 Our manual photogrammetry relies on the highest resolution (0.5 km) GOES and 102 Himawari red band (0.64 μ m) FD pairs with a typical non-simultaneity of ~30 s in each 10-103 minute slot. Prata and Grant (2001) and Horváth et al. (2021a) give a detailed description of the 104 method. In short, the height of a feature visually matched in the two images is determined from 105 the ellipsoid-projected parallax between the match points and the corresponding satellite 106 view/azimuth angles. The method can also be applied to apparent shadows observed in a single image. The second satellite view is effectively replaced by the solar-projected location of the
feature, i.e., the shadow terminus. Note that the method can estimate the height but not the
motion of a feature. The shadow variant has the advantage of only requiring a single image.
Still, sampling is limited to shadowed areas, and it can be challenging to pinpoint the exact
location of the shadow terminus due to the blurring effect of a penumbra.

Manual feature matching between two satellite images of the plume is relatively 112 straightforward; however, the horizontal and vertical motion of the feature introduces a height 113 error due to any non-simultaneity between views. In our case, the GOES-17 and Himawari-8 114 view zenith/azimuth angles are around 50°/66° and 55°/-71°, respectively. This stereo geometry 115 leads to a parallax almost precisely in the east-west direction, and a height error of ~ 0.4 km for 116 every 1 km parallax error (see Eq. 8 in Horváth et al., 2021a)—the corresponding height error 117 sensitivity for our shadow geometry is ~0.3 km per 1 km parallax. In the early phases of the 118 eruption, the velocity of the fastest moving plume element is $\sim 50 \text{ m s}^{-1}$ in both the horizontal and 119 vertical directions. During the 30 s between the satellite views, this results in a ~1.5 km 120 horizontal movement and a ~ 1.5 km vertical rise, the latter of which translates to a ~ 3.7 km 121 parallax increase. In the worst case, when these motion parallax errors add up, the total parallax 122 error is ~5.2 km, amounting to a ~2 km height overestimation. Vertical velocity can be negative 123 (but smaller in magnitude) when overshooting tops collapse. There can also be partial 124 125 cancellation between the motion parallax errors, depending on the direction of the horizontal velocity. Therefore, a ± 2 km height uncertainty is expected for the most dynamic plume features 126 (although overestimation is more likely than underestimation), which is acceptable considering 127 the extreme heights encountered. Both manual photogrammetry and stereo-winds methods are 128 most accurate when the motion is predominantly perpendicular to the local vertical and stereo 129

130 pairings are nearly simultaneous.

131 **3 Results**

132 3.1 Manual Photogrammetry

Figure 1 shows the maximum height estimates found at 04:30Z. The plume resembled a 133 stack of pancakes with several identifiable layers, capped by a large central dome (see the 134 contrast-enhanced Supplementary Exhibit S1). Heights were calculated for thirty plume 135 retrievals and one low-level cloud at 2 km altitude serving as a reference. The stereo retrievals 136 137 indicate layers at 20-21 km, 26-27 km, and the massive topmost ring of ~80 km radius at 38-40 km. There are significant km-scale variations within this rugged topmost ring, demonstrating the 138 sheer dynamism of the explosive rise. Most remarkably, the central dome reached an altitude of 139 \sim 55 km. The retrievals show a systematic increase in height as sampling ascends from the base 140 to the dome's peak. A rough estimate of peak height from applying the side view method of 141 Horváth et al. (2021a) to the corresponding GEO-KOMPSAT-2A image is in Supplementary 142 Exhibit S2. The GOES-17 view was favorable for applying the shadow method and is unaffected 143 by motion effects. The long white arrow marks the apparent shadow of a local peak in the 144 topmost ring, cast on the ocean surface. For a solar zenith/azimuth angle of 68°/-108°, the 145.7 145 km shadow length corresponds to a plume edge height of ~40 km, in good agreement with the 146 nearby GOES-17-Himawari-8 stereo estimates. The shorter white arrow indicates the shadow of 147 a dome feature cast on the ring. This 61.7 km long shadow corresponds to an ~18 km height 148 differential relative to the ~38 km altitude of the ring feature at the shadow terminus, consistent 149

- 150 with a peak dome altitude of ~55 km within the expected tolerance of ± 2 km. Shadow-based
- plume height estimates for the 04:50–05:00Z time slots are also in Supplementary Exhibit S3.

152

153	Figure 1.	Image of the plume on	15 January 2022 at 04:30Z from (a) GOES-17 and (b)	
-----	-----------	-----------------------	--	--

Himawari-8. Colored dots mark manual stereo height estimates (in km), and the triangle shows
the volcano's location. The white arrows in panel (a) depict the shadow of a plume edge feature

and a dome feature, with the shadow length and the derived height given above/below the arrow.

157 Arrows in the lower right of each panel indicate the sun-to-pixel and satellite-to-pixel azimuths.

158 3.2 Automated Stereo-Winds Method

The stereo-winds method was applied after 07:05Z when NOAA placed the GOES-17 159 MESO1 scene on the volcano. The 1-minute cadence of the MESO scenes is nearly ideal as it 160 allows enough time for motion to be observed but leaves feature shapes sufficiently invariant to 161 be accurately tracked with subpixel precision. Figure 2a shows the jointly retrieved stereo 162 heights, and advection vectors for 08:06Z (uses GOES-17 MESO scenes at 08:05Z, 08:06Z, 163 08:07Z) paired with the Himawari 08:00Z FD. Smaller tracking templates allow for a higher 164 resolution characterization of the plume geometry and dynamics, but this must be balanced 165 against tracking accuracy. We selected 16x16 pixel templates (32 km feature spatial resolution) 166 and oversampled the scene 4:1 (8 km sampling). A lofted stratospheric plume mostly above 30 167 km is seen over a lower cold umbrella at ~18 km near the tropopause. The expansion and 168 westward drift of the plume is evident from the advection vectors. Accompanying temperature 169 assignments have been made according to the Effective Blackbody Temperature (EBBT) of the 170 tracking templates taken from the 08:06Z MESO scene. Templates lower than 22 km (cold 171 umbrella and troposphere) are presumed to be cold targets over warmer backgrounds and are 172 assigned the mean temperature of the 20% coldest pixels. Templates 22 km and above are 173 expected to be warmer than the cold umbrella and are assigned the mean temperature of the 20% 174 warmest pixels because of the negative stratospheric lapse rate. However, where the plume 175 becomes optically thin (effectively semi-transparent) near its edges, heat from the troposphere 176 below makes the templates appear warmer than expected in the stratosphere up to 35 km (> 240 177 K). In such cases, a colder pattern is being tracked over a warm background, and the 20% 178 coldest pixels are averaged to be more representative of the plume temperature. This approach to 179

180 temperature assignment is similar in concept to that proposed by Borde, et al. (2014) where the 181 assignment is being made based on the pixels that are most important for feature tracking.

ERA5 and GNSS-RO temperature profiles are provided in Figure 2b for context, which 182 may not be entirely accurate in the presence of volcanic ash; however, the EBBTs of both the 183 plume and tropospheric clouds broadly follow and cluster near both profiles. Deviations from 184 the profiles are indicative of challenges with temperature-based height assignment, which in 185 general is complicated by inversions, semitransparency, undercooling, temperature assignment 186 uncertainty, and targets with emissivity less than one. Additional confidence in the stereo 187 retrievals is gained by noting that the field of marine stratocumulus (Sc) clouds in the SW 188 quadrant of the mesoscale domain has stereo heights between 500 m and 1.5 km. These are 189 within expectations for such clouds and match well with the NOAA temperature-based cloud top 190 height product for this scene. 191

Figure 2. Panel (a) shows the jointly retrieved heights and horizontal advection vectors at their
 parallax corrected locations centered on the volcano (20.536°S, 175.382°W). The vector scale at
 the upper right indicates a 50 m s⁻¹ wind in each direction. Panel (b) shows the assigned
 temperatures for each retrieval and the associated advection speed. Temperature profiles from
 ERA5 at 08:00Z and COSMIC-2 RO at 07:11Z have been added for context.

The 08:06Z scene was selected for Figure 2 as an interesting case because it clearly 198 shows an eruption of volcanic ash overshooting the plume top centered over the marked volcanic 199 site (Global Volcanism Program, 2013). All stereo-winds product files are found in the 200 supplement, along with animations of the IR imagery, height-coded advection fields, and height 201 versus temperature profiles for the complete set (Exhibits S4ff). At 08:41Z, an overshooting 202 plume core reached the upper stratosphere with an EBBT of ~173K, significantly colder than the 203 surrounding stratospheric plume. This cold bubble has an EBBT ~15K colder than the lower 204 umbrella near the tropopause, which can be explained by adiabatic cooling during plume 205 convection (Woods and Self, 1992). Atmospheric gravity waves are also evident in the 206 animations. 207

The evolution of the mesoscale plume height statistics from 07:06Z to 13:46Z for 15 208 January 2022 is detailed in Figure 3. At each time, this density plot presents the distribution of 209 retrieved heights. Optically thick parts of the plume at a higher altitude can block the view of 210 elements underneath, which explains the lower number density in the cold umbrella when the 211 upper-level plume has a higher number density. If the upper volcanic plume were a mix of 212 optically thin and thick layers, the height retrieval count profile would indicate an approximate 213 upper-plume thickness of 4-5 km. However, as noted, optically thick parts will obscure material 214 below. From 07:06Z to 10:06Z, the upper volcanic plume obscures the lower cold umbrella, 215 decreasing its retrieval numbers, but as the upper volcanic plume moves out of the mesoscale 216 domain, retrievals increase for the slower evolving cold umbrella. Subsequent activity is seen in 217 the volcanic plume retrieval peaks between 07:00Z and 09:00Z that do not surpass height of the 218 initial eruption, for which earlier plume material has advected out of the mesoscale domain. This 219 interpretation is supported by the animation of the stereo retrievals provided in the supplemental 220 material. Overall, the plume ceiling within the mesoscale domain is observed to fall nearly 221 linearly at a rate of ~ 1.7 km/h. 222

223

Figure 3. A time series of the distribution of plume height retrievals shows the evolution over a nearly 7-hour period. Advection out of the mesoscale domain and thinning of the higher-level plume causes more of the cold umbrella near the tropopause to be revealed as time progresses.

4.3 Radio Occultation Results

The GNSS-RO technique has been used operationally in numerical weather prediction to provide temperature information in the lower stratosphere and upper troposphere through the bending induced by atmospheric refractivity (Healy et al., 2005). Bending Angle (BA) is the critical parameter used to profile atmospheric variability from GNSS-RO and increases exponentially as the surface approaches. This study uses near real-time data from the Constellation Observing System for Meteorology, Ionosphere and Climate-2 (COSMIC-2), and
 Spire under NOAA's Commercial Weather Data Pilot (CWDP) program.

To detect volcano-induced BA perturbations on January 15, we first derive a BA reference profile for the latitude band (15°S to 25°S) using all BA profiles from January 14 and 16. Then, we take the difference between individual profiles from January 15 and the reference BA to find anomalies near the Tonga eruption region. The BA perturbation is measured in percentage from the difference divided by the reference BA. Typically, a BA profile varies

within 10% about the reference at heights between 20-40 km.

As shown in Figure 4, two strong BA perturbations are observed around 05:17:40Z (from 241 COSMIC-2) and 05:12:42Z (from Spire), indicating an ~50% deviation from the reference. The 242 top heights of the BA perturbations are approximately 41 km and 38 km, respectively for these 243 cases. The GNSS-RO technique has a relatively good (< 2 km) vertical but poor (~300 km) 244 horizontal resolution. Thus, the bending is sensitive to the refractivity change induced by a large 245 volcanic plume like that of the Tonga eruption. The top of the BA perturbation indicates the first 246 height where the RO line-of-sight encounters the volcanic plume. Starting with the average of 247 the two RO measurements, 39.5 km at 05:15Z, and extrapolating forward with the fall rate of 1.7 248 km/h (identified in Figure 3) until 07:06Z predicts a maximum plume top of 36.4 km. This 249

- agrees with the highest retrievals in the 07:06Z histogram to the expected vertical resolution of
- the RO observations.

252

- **Figure 4.** Perturbations of the Bending Angle (BA) profile observed by COSMIC-2 and Spire
- GNSS-RO from 15 January 2022 with respect to the reference profile. The sharp BA change in
- the stratosphere indicates the impact of the volcanic plume on radio-wave propagation. The plot
- 256 indicates the locations and times of the RO profiles.

257 4 Conclusions

- We used GOES-17 and Himawari-8 geostationary satellite imagery to study the 15 January 2022
- eruption of the Hunga Tonga-Hunga Ha'apai volcano shortly after 04:00Z. Manually measured
- 260 parallaxes between near-simultaneous visible images from each satellite and the lengths of
- shadows cast by the plume provided information about plume structure in the earliest phases of

- the eruption. We applied a stereo-winds tracking method starting at 07:06Z to automatically
- 263 generate a high-density representation of plume advection jointly retrieved with plume height.
- 264 This powerful method provided a detailed mesoscale description of advection and vertical
- structure for nearly seven hours every 10 minutes.

Our results show that the Hunga Tonga-Hunga Ha'apai volcano ejected material as high as 55

267 km, with a substantial amount of material injected above 30 km. Such peak altitudes exceed the

maximum column altitudes of 40 km reported for the 1991 Mount Pinatubo eruption by Holasek

- et al. (1996). As the eruption progressed and later died down, advection carried much of the
- injected stratospheric plume outside the mesoscale domain studied. The plume remaining in the
- 271 mesoscale domain would have thinned or collapsed to render it untrackable in the IR imagery.
- Our analysis of GNSS-RO bending angles confirms that material was lofted between 30 km and 40 km approximately one hour after the initial eruption.
- 274 Acknowledgments
- The authors thank Andrew Heidinger and Jaime Daniels, at NOAA, and Steve Wanzong, at the University of Wisconsin, for valuable discussions.
- The work of J. Carr was supported by NASA Goddard Space Flight Center under the NINC17HP01C contract through Support for Atmospheres. Modeling, and Data Assimilation
- 278 NNG17HP01C contract through Support for Atmospheres, Modeling, and Data Assimilation

279 (SAMDA). The work of Á. Horváth was supported by Deutsche Forschungsgemeinschaft

(DFG) project VolImpact/VolPlume (contract BU 2253/7-1). The work of D. Wu and M.

Friberg was supported by NASA's Terra project and Sun-Climate research. Resources

- supporting the automated stereo wind retrievals were provided by the NASA High-End
- 283 Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at
- 284 Goddard Space Flight Center.

285 **Competing interests**

The authors declare that they have no conflict of interest.

287

288 **Open Research**

- All mesoscale stereo retrievals are included in the supplementary material submitted with this paper. GOES-17, Himawari-8, and GNSS-RO are publicly available at
- 291 https://class.noaa.gov, https://registry.opendata.aws/collab/noaa/, and https://cdaac-
- www.cosmic.ucar.edu/. Stereo method for manual photogrammetry: Fuji (Schindelin, et al.
- 293 2012).
- 294

295 **References**

- Borde, R., M. Doutriaux-Boucher, G. Dew & M. Carranza (2014). A Direct Link between
- 297 Feature Tracking and Height Assignment of Operational EUMETSAT Atmospheric Motion

- 298 Vectors, Journal of Atmospheric and Oceanic Technology, 31, 33–46.
- 299 https://doi.org/10.1175/JTECH-D-13-00126.1.
- Carr, J. L., D. L. Wu, J. Daniels, M. D. Friberg, W. Bresky, & H. Madani. (2020). GEO–GEO
- Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring. *Remote Sensing*, 12, no. 22: 3779. https://doi.org/10.3390/rs12223779.
- Global Volcanism Program (2013). Hunga Tonga-Hunga Ha'apai (243040) in Volcanoes of the
- World, v. 4.10.4 (09 Dec 2021). Venzke, E (ed.). Smithsonian Institution. Downloaded 28 Jan
- 2022 (https://volcano.si.edu/volcano.cfm?vn=243040). https://doi.org/10.5479/si.GVP.VOTW4 2013.
- Healy, S. B., A. M. Jupp, & C. Marquardt (2005). Forecast impact experiment with GPS radio
- 308 occultation measurements, *Geophysical Research Letters*, 32, L03804.
- 309 https://doi.org/10.1029/2004GL020806.
- Holasek, R. E., S. Self, & A. W. Woods (1996), Satellite observations and interpretation of the
- 311 1991 Mount Pinatubo eruption plumes, Journal of Geophysical Research, 101(B12), 27635–
- 312 27655. https://doi.org/10.1029/96JB01179.
- Horváth, Á., J. L. Carr, O. A. Girina, D. L. Wu, A. A. Bril, A. A. Mazurov, D. V. Melnikov, G.
- A. Hoshyaripour, & S. A. Buehler (2021). Geometric estimation of volcanic eruption column
- height from GOES-R near-limb imagery Part 1: Methodology, *Atmospheric Chemistry and*
- 316 *Physics*, 21, 12189–12206. https://doi.org/10.5194/acp-21-12189-2021, 2021.
- Horváth, Á., O. A. Girina, J. L. Carr, D. L. Wu, A. A. Bril, A. A. Mazurov, D. V. Melnikov, G.
- A. Hoshyaripour, & S. A. Buehler (2021). Geometric estimation of volcanic eruption column
- height from GOES-R near-limb imagery Part 2: Case studies, *Atmospheric Chemistry and*
- 320 *Physics*, 21, 12207–12226. https://doi.org/10.5194/acp-21-12207-2021, 2021.
- 321 Merucci, L., K. Zakšek, E. Carboni, & S. Corradini (2016). Stereoscopic Estimation of Volcanic
- Ash Cloud-Top Height from Two Geostationary Satellites, *Remote Sensing*, 8, no. 3: 206.
- 323 https://doi.org/10.3390/rs8030206.
- Prata, A. J., & I. F. Grant (2001). Determination of mass loadings and plume heights of volcanic ash clouds from satellite data, CSIRO Atmospheric Research Technical Paper no. 48, available
- at: http://www.cmar.csiro.au/e-print/open/prata 2001a.pdf (last access: 28 January 2022).
- 327 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C.
- Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P.
- Tomancak, & A. Cardona (2012), Fiji: an open-source platform for biological-image analysis,
- 330 *Nature Methods*, *9*, 676–682. https://doi.org/10.1038/nmeth.2019.
- 331 Woods, A. & S. Self (1992). Thermal disequilibrium at the top of volcanic clouds and its effect
- on estimates of the column height. *Nature*, *355*, 628–630. https://doi.org/10.1038/355628a0.
- 333

Geophysical Research Letters

Supporting Information for

Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Hai'apai Eruption of 15 January 2022

J. L. Carr^{1,*}, Ákos Horváth², Dong L. Wu³, and Mariel D. Friberg^{3,4}

¹Carr Astronautics, Greenbelt, MD USA, ²Meteorological Institute, Universität Hamburg, Hamburg, Germany, ³NASA Goddard Space Flight Center, Greenbelt, MD USA, ⁴University of Maryland, College Park, MD USA, ^{*}Corresponding author: J. L. Carr (jcarr@carrastro.com)

Contents of this file

Figures S1 to S3

Additional Supporting Information (Files uploaded separately)

Captions for Movies S4 to S6 corresponding to files ms01, ms02, and ms03.

Introduction

This supporting information (SI) provides contrast-enhanced versions of the GOES-17 and Himawari-8 visible images in Figure 1 of the article (S1), an independent geometric estimate of the maximum plume height at 04:30Z obtained by applying the side view method to the corresponding GEO-KOMPSAT-2A image (S2), and additional shadow-based height estimates for the 04:50–05:00Z time slots (S3). The SI also provides the following animations on 15 January 2022 of 20-hour GOES-17 Full Disk infrared contrast-enhanced brightness temperature (ms01), 7-hours of jointly retrieved GOES-17 MESO and Himawari-8 heights, horizontal advection vectors (ms02), and assigned temperatures (ms03).

The GEO-KOMPSAT-2A geostationary satellite, stationed at 128.2°E, Advanced Meteorological Imager (AMI), virtually identical to ABI and AHI, observed the plume at a ~67° view zenith angle. Although not ideal, the side view allows a rough estimate of peak height using the method described in Horváth et al., 2021a. In the highest-resolution red band, the vertically projected instantaneous field of view (VIFOV) is ~550 m. The foreshortening due to the deviation from the perfect 90° side view is COS(23°) or ~8%.

Height estimation near the vent can be done by counting the pixel numbers between the known volcano base location and the dome top, assumed to be above the vent along the local vertical. The base-to-top distance is approximately ~95 pixels, corresponding to a foreshortening corrected height of ~57 km. This is consistent with the maximum GOES-17 and Himawari-8 stereo retrievals height presented in the paper.

Figure S1. Image of the plume on 15 January 2022 at 04:30Z from (a) GOES-17 and (b) Himawari-8, enhanced by the Contrast Limited Adaptive Histogram Equalization (CLAHE) plugin of the Fiji package (Schindelin et al., 2012). Compared to Figure 1 of the paper, the enhanced images better reveal the layered plume structure in the shadowed areas.

Figure S2. Red band (0.64 μ m) image of the plume on 15 January 2022 at 04:30Z from GEO-KOMPSAT-2A. The image was rotated by the geodetic colatitude. The yellow triangle and the red dot mark the volcano base and the top of the dome, respectively. The black arrow indicates that the base–top distance is 95 pixels, which corresponds to a height of ~57 km at the GK-2A view zenith angle of 67°.

Figure S3. Plume structure deduced from GOES-17 (a) 04:50Z and (b) 05:00Z red band images (rotated by the geodetic colatitude), showing the development and collapse of an overshooting top (OT) at the center of the plume. From the length of shadows (S) cast on the ocean surface or lower-level plume layers, we identified a lower umbrella spreading near the tropopause at $H_L = 16$ km altitude, an upper umbrella at $H_U = 30$ km altitude, and parts of the collapsing OT at $H_{OT} = 35$ km altitude.

Movie S4. Movie of the GOES-17 Full Disk infrared ABI Band 14 (11.2 μ m) brightness temperature (K) shows the progression of the volcanic plume edge and dome features on 15 January 2022 from 02:50Z through 23:50Z. Darker colors indicate lower brightness temperatures, whereas lighter colors indicate higher brightness temperatures.

Movie S5. Movie panels show the jointly retrieved GOES-17 MESO and Himawari-8 heights and horizontal advection vectors at their parallax corrected locations on 15 January 2022 from 07:06Z through 14:06Z. The retrievals are centered on the volcano (20.536°S, 175.382 °W) indicated by the magenta triangle. The magenta vector scale at the upper right indicates a 50 m s-1 wind in each direction. Arrow color indicated height on the same scale as Figure 2a.

Movie S6. Movie panels show the assigned temperatures for each GOES-17 MESO and Himawari-8 retrieval and the associated advection speed on 15 January 2022 from 07:06Z through 14:06Z. Dot color indicates advection speed on the same scale as Figure 2b.