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Abstract15

Partitioning evapotranspiration (ET) into its primary components, i.e., evaporation (E)16

and plant transpiration (T), is needed in a range of hydrometeorological applications.17

Using vegetation index (VI) to obtain spatially resolved T:ET ratio over large areas has18

emerged as a promising approach in this regard. Here, we assess the effectiveness of this19

approach in differently managed wheat systems. Results show a weak relation between20

T:ET and VI in disturbed (i.e., grazed) systems. Flux partitions based on a canonical21

T:ET vs. VI relation or one derived in a neighboring undisturbed wheat system intro-22

duce large errors in disturbed systems, thus underscoring the limits on the transferabil-23

ity of the VI-based ET partitioning approach. The effectiveness of the VI-based approach24

is found to be related to the strength of correlation between VI and vapor pressure deficit25

and/or radiation. This correlation metric can help identify settings where the approach26

is likely to be effective.27

Plain Language Summary28

Evapotranspiration (ET) plays a significant role in water and climate cycles by af-29

fecting the energy and water balance over the land surface which in turn mediates the30

land-atmosphere interactions. ET is composed of two primary components i.e., direct31

evaporation (E) and plant transpiration (T). Partitioning total ET into its individual32

components (E and T) is of significant importance for better assessment of both regional33

and global water budgets. One of the primary approaches to partition ET over large ar-34

eas is by using vegetation indices (VI), which indirectly capture plants’ biophysical state.35

This approach has been used to partition ET in different landscapes, but its efficacy has36

not been tested in disturbed ecosystems, which cover a large fraction of earth’s vegetated37

area. Here, we assess the effectiveness of this VI-based ET partitioning approach in dis-38

turbed (i.e., grazed) ecosystems. We find that the VI-based ET partitioning introduces39

large errors in disturbed systems. Further investigation identifies conditions that can be40

used to filter-out regions where the VI-based partition is likely to be more (or less) ef-41

fective.42

1 Introduction43

Around 60% of the precipitated water is returned to the atmosphere by evapotran-44

spiration (ET) (Oki & Kanae, 2006). Unsurprisingly, ET plays a major role in influenc-45

ing the water and climate cycles components at both local and global scales (Jung et al.,46

2010; Zhang et al., 2016; Condon & Maxwell, 2019; R. Wang et al., 2013; Oishi et al.,47

2010; Bonetti et al., 2015). To assess these influences, it is crucial to partition ET into48

its components, viz. evaporation (E) from bare soil and wet plant surfaces, and plant49

transpiration (T). This is especially needed as relative contributions of E and T vary in50

space and time, in part due to the varied controls on E and T (Ritchie & Burnett, 1971;51

Unkovich et al., 2018). For instance, in addition to the meteorological, soil, and plant52

morphometric properties that influence E, T is also majorly influenced by plant phys-53

iology (H. Wang & Liu, 2007; X. Sun et al., 2019; Liu et al., 2017, 2020). Partitioning54

of ET can facilitate understanding of plants’ water use strategies and their responses to55

environmental forcings, help assess the role of changes in land cover on ET, and improve56

predictions of hydrological responses as moisture used for E and T are usually derived57

from different soil stores (Perez-Priego et al., 2018; Zeng et al., 2017; Alkama & Cescatti,58

2016; X. Chen et al., 2015).59

Over the past years, several methods have been developed for ET partitioning to60

improve our understanding of the dynamics of T over ET (T:ET hereafter). Details on61

the various methods of partitioning of eddy covariance (EC) measured ET and their chal-62

lenges are well documented elsewhere (Kool et al., 2014; Stoy et al., 2019). Majority of63

the methods provide T:ET estimates at the gauging sites (e.g., (Zhou et al., 2016; Scan-64
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lon & Sahu, 2008; Perez-Priego et al., 2018; Nelson et al., 2020; Scott & Biederman, 2017;65

Li et al., 2019; Paul-Limoges et al., 2020; Black et al., 1969)) or over its flow contribu-66

tion area (e.g., (Jasechko et al., 2013; Good et al., 2015)). To obtain spatially-explicit67

estimates of T:ET, numerous alternative methods have been developed. For example,68

Long and Singh (2012) and Zhang et al. (2019) used a remote sensing approach to par-69

tition ET. Land surface modeling (e.g., (Dirmeyer et al., 2006; Haddeland et al., 2011;70

Fatichi & Pappas, 2017; Paschalis et al., 2018; Lian et al., 2018)) and hybrid approaches71

(e.g., (Miralles et al., 2011; Martens et al., 2017)) have also been used to obtain T:ET72

estimates over large areas. Recently, parsimonious models that only use widely available73

vegetation indices to obtain T:ET at multiple temporal scales (e.g., weekly, monthly, sea-74

sonal) has received significant attention (e.g., (Berkelhammer et al., 2016; Fatichi & Pap-75

pas, 2017; L. Wang et al., 2014; Wei et al., 2015, 2017; S. Kang et al., 2003)). These mod-76

els are able to explain a significant fraction of variability in T:ET using vegetation in-77

dices such as Leaf Area Index (LAI) and Enhanced Vegetation Index (EVI). For exam-78

ple, based on a meta-analysis, Wei et al. (2017) reported that T:ET can be well repre-79

sented as a function of LAI (R2 = 0.87) in cropland settings. Zhou et al. (2016) showed80

that T:ET is strongly related to EVI (R2 = 0.85) at 8-day scale based on the concept81

of underlying Water Use Efficiency (uWUE). S. Kang et al. (2003) also reported a close82

relation between T:ET and LAI (R2 = 0.97) in a winter wheat system based on lysime-83

ter data. L. Wang et al. (2014) concluded that LAI and growth stage function can be84

used to obtain global T:ET estimates.85

Notably, the efficacy of this approach has not been tested in disturbed ecosystems86

or ecosystems that experience impulse alterations in canopy cover, such as due to graz-87

ing management, thinning, hurricanes, and wildfires. Here, we furnish this gap by eval-88

uating the relation between T:ET and vegetation index in both undisturbed and disturbed89

wheat systems. Here, the disturbance is introduced due to grazing management. In ad-90

dition, we assess the conditions that facilitate a stronger correlation between T:ET and91

vegetation index. The paper is organized as follows: Section 2 provides a detailed de-92

scription on the materials and methods used in this study. Results on the flux partition-93

ing are presented in section 3.1. Section 3.2 presents the results on the relationships be-94

tween T:ET and EVI. The errors statistics in the prediction of T:ET using EVI at dif-95

ferent time scales are presented in section 3.3. Section 4.4 evaluates the controls on T:ET96

vs. vegetation index relation.97

2 Materials and Methods98

2.1 Study Sites99

Two years of data from three neighboring, but differently managed, winter wheat100

cropping fields (Sites 1-3 hereafter) were used (Figures 1 and S1). Each field (cropped101

area ranging from ∼13 ha - 22 ha) had identical soil type, experienced similar climatol-102

ogy, and the wheat seeds were sown at about 19 cm row spacing in each field. These fields103

are part of the United States Department of Agriculture, Agricultural Research Service,104

Grazinglands Research Laboratory’s flux network (GRL-FLUXNET), which is a dense105

network of 16 Eddy Covariance (EC) towers in central Oklahoma (El Reno), USA. Dur-106

ing the 2016-17 growing season (October 2016 - May 2017), grain-only and graze-grain107

wheat were grown at sites 1 and 3, respectively. Grain-only wheat has a single purpose108

to produce wheat grains, while graze-grain wheat has a dual purpose as it serves as a109

pasture for grazing cattle from November to February and is used for producing wheat110

grains thereafter. As data of differently managed configurations are only available for111

wheat, we restrict this study to wheat crops. Hence, 2016-17 data from site 2, where Canola112

was grown, was not considered. In the 2017-18 growing season, site 1 had graze-grain113

wheat, site 2 had grain-only wheat, and site 3 had graze-out wheat. Graze-out is also114

a single purpose crop that is grown to solely serve as a pasture for the grazing cattle. The115

2017-18 growing season data from all three sites were used for analyses.116
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2.2 Data117

2.2.1 Eddy Covariance and Ancillary Hydro-meteorological Data118

Water vapor and carbon dioxide fluxes were measured in all three wheat fields for119

the 2016-17 and 2017-18 growing seasons using eddy covariance (EC) systems. The data120

were recorded at 10 Hz frequency (i.e., 10 measurements per second) and then processed121

in the EddyPro software to get good quality estimates of latent heat fluxes at 30 minute122

intervals. More details on the EC data collection and processing can be found in Wagle123

et al. (2018, 2019).124

Ancillary hydro-meteorological variables such as net radiation, soil water content125

(∼5 cm depth), air temperature, soil heat flux, soil temperature, relative humidity, in-126

coming photosynthetic photon flux density, and infrared surface temperature were also127

measured at the sites. We obtained rainfall data from the Oklahoma El Reno Mesonet128

station (located within 1-1.5 km from the study sites).129

2.2.2 Remote-sensing data130

The EVI for the three differently managed wheat systems, i.e., grain-only, graze-131

grain, and graze-out, were derived (Figure S2) using the Landsat surface reflectance im-132

ages obtained from the U.S. Geological Survey (USGS) Earth Explorer. The average EVI133

for each field was calculated following Jiang et al. (2008):134

EV I =
G · (NIR−R)

NIR+ C1 ·R− C2 ·B + L
(1)

where G (=2.5) is a gain factor. C1 (=6) and C2 (=7.5) are band-specific correction co-135

efficients of aerosol resistance term. L (=1) is background brightness correction factor.136

NIR, R, and B are the near-infrared, red, and blue bands, respectively.137

2.3 ET Partitioning138

Total ET was partitioned into T and E based on three methods using the EC data139

sets: Flux Variance Similarity (FVS) theory-based method (Scanlon & Sahu, 2008), the140

underlying Water Use Efficiency (uWUE) method (Zhou et al., 2016), and the Transpi-141

ration Estimation Algorithm (TEA) method (Nelson et al., 2018). Consideration of mul-142

tiple methods for this study was driven by the fact that estimates from no one method143

is generally considered perfect, and each of them are affected by inherent assumptions144

in them.145

The FVS method can simultaneously partition ET and net ecosystem CO2 exchange146

(NEE) into their primary components, i.e., T and E for ET, and photosynthesis and res-147

piration for NEE, based on the correlation between high-frequency EC measurements148

of carbon dioxide and water vapor fluxes along with measured or estimated leaf-scale Wa-149

ter Use Efficiency (WUE) (Scanlon & Sahu, 2008; Scanlon & Kustas, 2010, 2012; Scan-150

lon et al., 2019). Readers may refer to Text S1 in Supplementary Information and ref-151

erences therein for the mathematical formulation of FVS theory. The method has shown152

promising results in different land cover settings (Wagle et al., 2020; Wagle, Gowda, et153

al., 2021; Sulman et al., 2016; Scanlon & Kustas, 2012; L. Wang et al., 2010; W. Wang154

et al., 2016; Rana et al., 2018; Peddinti & Kambhammettu, 2019), including cropped sys-155

tems such as rainfed alfalfa field (Wagle et al., 2020), Mediterranean cropping system156

(Rana et al., 2018), wheat (a C3 crop) (Scanlon & Sahu, 2008), corn (a C4 crop) (Scanlon157

& Kustas, 2010), and several others (Wagle, Skaggs, et al., 2021). One of the critical in-158

puts to FVS method is the leaf-scale WUE. In the absence of direct measurements, leaf-159

scale WUE can be estimated as below:160

WUE =

(
1

DR

)
·
(
ca − ci
qa − qi

)
(2)
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where DR (=1.6) is the ratio of molecular diffusivities for water and carbon concentra-161

tions through the stomatal aperture (Massman, 1998). ca (qa ) and ci (qi) are the am-162

bient and intercellular concentrations of carbon (water), respectively. Here, ca and qa163

can be derived by extrapolating the logarithmic mean profile of EC measurements of car-164

bon dioxide and water vapor fluxes with stability correction to zero displacement height165

(Scanlon & Sahu, 2008; Brutsaert, 2013). qi is usually estimated assuming 100% rela-166

tive humidity at leaf temperature (approximated as ±2 ◦C of the air temperature). ci167

can be modeled in different ways in Fluxpart (Wagle, Skaggs, et al., 2021). Based on the168

findings of Wagle, Skaggs, et al. (2021) for wheat, we choose a constant ratio method where169

ci/ca is assumed to be constant (K); with K = 0.7 for C3 plants (Sinclair et al., 1984)170

and K = 0.44 for C4 plants (Kim et al., 2006).171

Water flux partitioning based on uWUE concept was proposed by Zhou et al. (2016).172

Here in, partitioning is performed based on uWUE, which is obtained using Gross Pri-173

mary Productivity (GPP) and Vapor Pressure Deficit (VPD) based on Zhou et al. (2014):174

uWUE =
GPP ·

√
V PD

ET
(3)

T:ET is estimated as:175

T

ET
=

uWUEa

uWUEp
(4)

where uWUEa is the apparent uWUE and uWUEp is the potential uWUE. uWUEa176

is estimated directly from Equation 3 if partitioning needs to be obtained at half-hour177

resolution. For estimates at coarser resolution (say a week or coarser), a linear regres-178

sion between GPP ·
√
V PD and ET is obtained using data derived through averaging179

of participating variables using a moving window approach. uWUEp represents the max-180

imum carbon gain to water loss and is estimated using 95th quantile regression between181

GPP ·
√
V PD and ET for a given year or season. The key assumption of uWUE-based182

method is that uWUEp is constant for a given year or season and calculation of uWUEp183

is based on periods when T ≈ ET or E ≈ 0. uWUE-based method is very straight-184

forward in nature and easy to use. This approach has been used to partition water fluxes185

in different biomes (Zhou et al., 2016; Bai et al., 2019; Zhou et al., 2018; Xu et al., 2021;186

J.-y. Sun et al., 2020; H. Hu et al., 2018; Nelson et al., 2020).187

TEA method is a nonlinear machine learning method for water flux partitioning188

Nelson et al. (2018). TEA method predicts the T using a Random Forest (RF) regres-189

sor which is trained for ecosystem WUE (= GPP/ET ) during dry periods of growing190

season i.e., during periods when E ≈ 0 or in other words the RF model is trained for191

GPP/T . The dry periods are selected by filtering out the wet periods from the time se-192

ries based on rainfall and ET inputs. To ensure the good quality data for training the193

model, various quality control steps are performed, as detailed in Nelson et al. (2018).194

The trained model on the filtered data is then used to predict GPP/T for the full time195

series. TEA method has been shown to perform well across different ecosystems (Nelson196

et al., 2018, 2020; Räsänen et al., 2020; X. Hu & Lei, 2021; Migliavacca et al., 2021).197

2.4 Modeling T:ET ratio198

Partitioning using all three methods was performed for two growing seasons (2016-199

17 and 2017-18) at three wheat sites. The three partitioning methods have different data200

requirements to model T:ET. Partitioning from FVS method was performed using 10201

Hz frequency EC data using Fluxpart version 0.2.10 (Skaggs et al., 2018). Partitioning202

from uWUE and TEA methods were done using the 30 minute interval flux data, which203

was obtained by processing high frequency EC data in EddyPro software (Wagle et al.,204

2018). The flux data was also processed with CO2 flux partitioning (i.e., NEE to GPP205

and ecosystem respiration (Reco)) and gap filling using REddyProc package in R (Wutzler206

et al., 2018; Reichstein et al., 2005). Partition estimates were obtained at 30 minute in-207
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terval using all three methods. Fluxpart may fail to produce outputs for a certain in-208

tervals because of various physical constraints (Scanlon et al., 2019; Palatella et al., 2014;209

Wagle, Skaggs, et al., 2021). Other two methods may also produce erroneous values of210

T:ET for certain time periods. We only used reliable estimates of T:ET, and filtered out211

the bad quality estimates following the rubric detailed in (Zhou et al., 2016; Nelson et212

al., 2018). Also, the hours with rainfall were removed from the analysis as partitioning213

estimates during it are expected to be unreliable. To obtain T:ET at weekly and monthly214

scales, weekly mean diurnal cycles were used. For example, to calculate the T:ET for a215

particular week, mean diurnal variations of T and ET at half-hour resolution were gen-216

erated for the week, and then T:ET was determined by summing half-hourly binned mean217

T and mean ET. The resultant weekly average T:ET (a constant ratio for a week) was218

used to partition EC-measured daily ET values into daily E and T values.219

3 Results and Discussion220

3.1 Temporal variations in T:ET221

Weekly T:ET ratios were obtained for all three wheat sites for 2016-2018 using the222

three ET partitioning methods (see Figures 1, S3, and S4). ET fluxes were larger dur-223

ing the 2016-17 growing season than the 2017-18 growing season at each site, in part be-224

cause the former received much more rainfall. For example, total seasonal ET, i.e., ET225

during Nov-May in 2016-17 (2017-18) for grain-only and graze-grain wheat were ∼460226

mm (∼345 mm) and ∼367 mm (∼287 mm), respectively. Corresponding precipitation227

totals for the two seasons were 501 mm and 155 mm, respectively. Notably, the change228

in T:ET between the two seasons was modest with its magnitude being 0.71 (0.74) and229

0.70 (0.7) in grain-only and graze-grain wheat in 2016-17 (2017-18) based on FVS method.230

Corresponding seasonal T:ET estimates using uWUE method were 0.58 (0.58) and 0.54231

(0.55) in grain-only and graze-grain wheat. TEA method yielded seasonal T:ET of 0.80232

(0.78) and 0.74 (0.76). The small difference in T:ET across the two years and wheat sys-233

tems is consistent with the findings of past studies (Good et al., 2017; Nelson et al., 2020;234

Wagle, Gowda, et al., 2021), which attribute it to the reduction in canopy cover when235

faced with limiting resources, and to the compensating effect of E from wet canopies (in-236

tercepted rainfall) vs. that from wet soil with changes in canopy cover. The T:ET was,237

however, found to be highly variable within the season (Figure 1) with weekly mean and238

coefficient of variation being 0.63 (0.67) and 13.95% (20.33%), respectively, in 2016-17239

(2017-18) at the grain-only site for T:ET estimates from FVS method. The correspond-240

ing values for the graze-grain site were 0.62 (0.66) and 14.95% (14.45%). The intra-seasonal241

variations are attributable to a variety of hydroclimatic variables (e.g., rainfall, atmo-242

spheric water demand, available energy, and soil moisture). VPD, especially, had a strong243

control on T:ET variations with low T:ET values at low VPD and high values at high244

VPD. For example, average T:ET in grain-only wheat was 0.52 for low VPD values (VPD245

less than 25th percentile) and T:ET was 0.84 for high VPD values (VPD larger than 75th246

percentile). Increased soil wetness, coupled with low VPD, during and right-after the rain247

events also diminishes T:ET (X. Sun et al., 2019). For example, T:ET was around 0.52248

during rainy days as compared to 0.70 during non-rainy days in January 2017 (EVI is249

low during this period) for grain-only system. This is true even for peak wheat growth250

period (Mid-March, 2017 to Mid-April, 2017; EVI is high during this period) when T:ET251

was about 0.64 during rainy days as compared to 0.82 during non-rainy days.252

Intercomparison of all the three methods for ET partitioning shows that there is253

agreement among the methods in regards to capturing the overall temporal pattern of254

T:ET, with a correlation of 0.58 between FVS and TEA, 0.70 between FVS and uWUE,255

and 0.68 between TEA and uWUE (Figure 2). Overall, uWUE method underestimated256

the T:ET (with average T:ET=0.54) as compared to T:ET estimates from FVS method257

(with average T:ET=0.75), while the TEA method was in good agreement (with aver-258

age T:ET=0.76) with FVS method. These results for TEA and uWUE are in agreement259
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with Nelson et al. (2020) where uWUE method also produced lower T:ET estimates as260

compared to the TEA method.261

3.2 Relation between T:ET and EVI262

Following the lead of previous studies that reported a power-law relation between263

T:ET and vegetation indices (Wei et al., 2017; L. Wang et al., 2014; Wei et al., 2015; Lian264

et al., 2018), we derived such a relation T : ET = aEV Ib between Landsat-derived265

EVI and average of weekly T:ET from all the ET partitioning methods in all three wheat266

systems, i.e., grain-only, graze-grain, and graze-out. As also done in the previous study,267

grouping of T:ET based on binning is performed to reduce the effects of confounding vari-268

ables (e.g., rainfall, available energy) on the emergent T:ET-EVI relation during the grow-269

ing period. Best fit parameters a and b for each system were found by performing a non-270

linear regression analysis using Nonlinear Least Squares (NLS) method in R (Bates &271

Watts, 1988; Elzhov et al., 2010). We found that the EVI could explain most of the vari-272

ability (44-78%) in T:ET in grain-only wheat (Figure 3a, 3d, and 3g). This is consistent273

with other studies (Wei et al., 2017; Zhou et al., 2016; S. Kang et al., 2003) that reported274

a very strong positive correlation between vegetation indices and T:ET. However, this275

relationship was not strong for graze-grain and graze-out wheat systems (Figure 3). In276

the following section, we explore this aspect in more detail.277

3.3 Errors in the prediction of T:ET using EVI278

The applicability of previously reported canonical relations between EVI and T:ET279

for crop systems is first assessed in both disturbed (i.e.,grazed) and undisturbed (i.e.,280

non-grazed) systems. To this end, the global crop relation (T : ET = 0.66LAI0.18)281

presented in (Wei et al., 2017) is used. LAI was obtained from EVI based on Y. Kang282

et al. (2016). Results (Figure 4d) show that Mean Absolute Percentage Error (MAPE)283

or the ratio of absolute difference between predicted and observed T:ET, was significantly284

worse for disturbed systems at both weekly and monthly scales. Notably, the errors are285

larger (Figures 4a, 4b, and 4c) even when the T:ET vs. EVI relations derived at the neigh-286

boring undisturbed site is used from all the methods. For example, at weekly scale, MAPE287

was highest (about 20%) for graze-grain case and lowest (about 9%) for grain-only case288

(Figure 4). Similar results were also observed at monthly scales. We also evaluated the289

errors in each wheat system when using T:ET-EVI relations obtained in a differently man-290

aged system (see Table 1). Errors generally increased, with a few exceptions, when the291

T:ET-EVI relation developed for a wheat system is used for other at both weekly and292

monthly scales. Although the three sites are all winter wheat systems that experience293

similar hydroclimatology, the difference in management implementations make them act294

differently in regards to T:ET dynamics vis-a-vis EVI. Among the different temporal scales,295

errors were minimum at the seasonal scale. Smaller error at the seasonal scale is con-296

sistent with other studies which reported that T:ET are uncorrelated with vegetation297

growth across sites (Nelson et al., 2020; Fatichi & Pappas, 2017).298

We further investigated the possible causes for the lack of strong relation between299

T:ET and EVI in graze-grain and graze-out systems. At ecosystem-scale, T rate is con-300

trolled by meteorological conditions, the stomatal conductance (gs), and plant’s biophys-301

ical state (e.g., LAI, EVI, etc.). T is usually proportional to gs×LAI. gs is affected by302

multiple environmental variables, including VPD, soil moisture, radiation, and air tem-303

perature (Jarvis, 1976; Daly et al., 2004). Given our earlier result that showed a strong304

influence of VPD on T:ET (in section 3.1), we started with a hypothesis that the increase305

in T:ET with EVI in undisturbed systems is strongly influenced by the covariation of306

VPD and EVI. Any disturbance or grazing management may, however, disturb the co-307

variation of EVI with VPD, thus also impacting the covariation of T:ET with EVI. To308

test this hypothesis, we obtained relations between EVI and T:ET for 10,000 different309

sample sets of randomly distributed 30 days from the growing season (Figure 5a) in the310
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Figure 1. (a) Daily variations of rainfall and soil water content (SWC) at each site, (b) -(d)

daily variations of total evapotranspiration (ET), transpiration (T), and direct evaporation (E)

based on FVS method at three different sites. Open circles plotted on the secondary Y-axis show

the ratio of weekly T and ET. Notably, all three sites underwent crop rotation. Fallow period and

canola were not considered for analyses in this study.
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Figure 2. Intercomparison of the three ET partitioning methods, viz. T:ET (FVS) to T:ET

(TEA) (a), T:ET (FVS) to T:ET (uWUE) (b), and T:ET (TEA) to T:ET (uWUE) (c), at daily

temporal resolution for the three sites. R represents the Pearson correlation coefficient. The

black dashed lines are the best fit linear lines estimated using orthogonal-least-squares regression

(S. Chen et al., 1989). Notably, the data used for intercomparison only includes the period dur-

ing which T:ET estimates are available for both the intercomparing methods. Colors of the data

points represent the relative point density with warmer colors indicating higher density.

Figure 3. Relations between T:ET and EVI in differently managed winter wheat systems us-

ing the three ET partitioning methods; FVS (a)-(c), TEA (d)-(f), and uWUE (g)-(i). Grey dots

are weekly T:ET, ±3 days around the Landsat image acquisition date, during mid-day (11AM-

2PM). Red triangles are averaged T:ET corresponding to 0.05-bin EVI. The vertical lines are the

error bars of mean T:ET for each bin. The red dash line in each panel is the best nonlinear fit

between triangles and corresponding EVI.
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Figure 4. Mean Absolute Percentage Error (MAPE) of predicted T:ET using the relations

developed in unmanaged system from FVS method (a), TEA method (b), and uWUE method (c)

at weekly, monthly, and seasonal time scales for winter wheat systems with varied management

implementations. An additional evaluation is performed using a relation (hereafter referred as

GC) derived using global data over varied crops Wei et al. (2017) (d) Red dots represent the

average MAPE.

Table 1. Average Mean Absolute Percentage Error (MAPE) (%) when using T:ET-EVI re-

lations obtained in different wheat systems and the global crop relation presented in Wei et al.

(2017). Here, G represents grain-only wheat system, GG represents graze-grain wheat system,

GO represents graze-out wheat system, and GC represents the global crop relation.

T:ET-EVI
relation

MAPE (%)
Weekly Monthly Seasonal

G GG GO G GG GO G GG GO
FVS (G) 11.76 23.84 18.50 9.33 18.12 16.01 4.55 3.42 4.09
FVS (GG) 20 17.67 12.1 15.97 15.53 9.23 2.61 2.04 2.67
FVS (GO) 19.16 32.54 8.96 8.36 20.91 7.92 15.43 13.55 12.75
TEA (G) 9.62 22.36 17.56 3.34 7.66 8.56 3.58 3.70 1.94
TEA (GG) 14.51 21.44 15.62 10.95 8.71 9.33 8.3 5.29 4.29
TEA (GO) 15.26 21.42 14.11 9.94 8.60 6.07 3.16 0.40 1.64
uWUE (G) 20.55 20.27 19.57 8.13 11.59 16.01 0.45 12.23 8.55
uWUE (GG) 27.65 30.13 26.58 29.54 26.98 30.87 29.61 27.54 26.97
uWUE (GO) 23.57 28.88 25.67 26.0 24.13 28.93 26.79 25.08 24.78

GC 14.99 26.84 34.06 7.46 20.00 8.24 10.04 8.47 6.77
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Figure 5. Temporal variations of EVI, T:ET, and VPD for all days (a), sample set 1 (c), and

sample set 2 (e). Scatter of correlation between VPD and EVI and correlation between T:ET and

EVI for 10000 sample sets with each set having randomly selected 30 days (b). Scatter between

T:ET and EVI for sample set 1 (d) and sample set 2 (f). Red solid lines in panels d and f repre-

sent the best-fit nonlinear lines.
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undisturbed system. Each set covers a wide enough range of EVI that is experienced in311

grain-only and graze-grain systems. The orientation of the point cloud along 1:1 direc-312

tion in Figure 5b confirms that the relation between EVI and T:ET is stronger with higher313

correlation between VPD and EVI. To parse this further, we selected two sample sets314

with contrasting correlations between T:ET and EVI. Sample set 1 has ρ(T:ET, EVI)315

of 0.66 and sample set 2 has ρ(T:ET, EVI) of -0.12. Here ρ is the coefficient of corre-316

lation. The results suggest that if EVI is not co-varying closely with VPD (sample set317

2, see Figure 5e), then the relation between T:ET and EVI is not strong (Figure 5f). But318

if EVI co-varies closely with VPD, then the T:ET-EVI relation improves (see Figures319

5c&5d). In fact, at the unmanaged site where a strong T:ET-EVI relation is obtained320

(see Figure 1), the correlation between VPD and EVI until the peak growth period is321

0.60. In contrast, the corresponding value for graze-grain and graze-out cases were 0.15322

and -0.36, respectively. Similar evaluations were also conducted for uWUE (see Figure323

S8 in Supplementary Information) method and TEA method (see Figure S9 in Supple-324

mentary Information). Furthermore, evaluations were also conducted for soil moisture,325

radiation, and air temperature, variables known to affect the stomatal conductance (see326

Figures S5-S7 in Supplementary Information). Results indicate that the covariation of327

solar radiation with EVI also explained the covariation of T:ET with EVI, although the328

relation was less stronger. The influences of air temperature and soil moisture were much329

less (see Figures S6-S7 in Supplementary Information).330

4 Conclusions331

Using T:ET-EVI relations, ET partitioning was performed in winter wheat systems332

with varied grazing management schemes. Comparison with partitioning estimates ob-333

tained based on three ET partitioning methods, viz. flux variance similarity theory, un-334

derlying Water Use Efficiency, and Transpiration Estimation Algorithm, all indicate a335

robust T:ET-EVI relation in a standard undisturbed system. In contrast, the relation336

in disturbed systems, realized by cattle grazing in this case, is weak and do not capture337

the data variance well. The results indicate that the relation between vegetation indices338

and T:ET is affected by canopy alterations, which in this study was due to grazing man-339

agement but could also be a result of other natural (e.g., fire or drought) or anthropogenic340

(e.g., thinning) disturbances. In addition, our results show prediction of T:ET at weekly341

to monthly scale using the T:ET-EVI relation of undisturbed systems in disturbed sys-342

tem introduces large errors. As prediction of T:ET using data from disturbed system in343

an undisturbed system and vice-versa introduces uncertainty in T:ET estimates, the re-344

sults point to limited translatability of the method across systems. Given that more than345

40% of the global land is managed or disturbed (Ellis et al., 2010), the results underscore346

the need for caution while assessing ET partitioning using vegetation indices over man-347

aged or disturbed systems. Notably, the impact of grazing management on T:ET esti-348

mate at the seasonal scale is negligible. This is attributable to plants’ adaptation to the349

given water resources and the compensatory effects of E from wet canopies and wet soil350

surfaces under contrasting (dense and sparse) canopies.351

Investigation on the possible causes of the altered T:ET-EVI relation suggest that352

grazing disturbed the co-variation of EVI and VPD (and of EVI and solar radiation),353

resulting in divergence from the standard T:ET-EVI relation. As the covariation between354

VPD (or solar radiation) and EVI can be easily evaluated using global meteorological355

forcings (Weedon et al., 2014; Xia et al., 2012; Mooney et al., 2011; Warszawski et al.,356

2014) and vegetation (Hatfield & Prueger, 2010; Benedetti & Rossini, 1993; Huete et al.,357

2002, 1994; Jiang et al., 2008; Rocha & Shaver, 2009; Nguyen et al., 2020) data, future358

studies may use this metric, after further assessments in alternative settings, to map re-359

gions where vegetation indices are likely to be effective for ET partitioning.360
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