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Abstract

Extreme wind-driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic

autumn wildfires in the western United States co-occurred with record- or near-record autumn fire weather indices that are a

byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution

analysis to investigate anthropogenic influence on recent extreme autumn fire weather events. We show that while present-day

anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the

likelihood of extreme fire weather indices by 40%, primarily through increased autumn fuel aridity and warmer temperatures

during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather

extremes that contribute to high-impact catastrophic fires in populated regions of the western US.
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Key Points: 15 

• Anthropogenic climate change has already increased the likelihood of autumn wind-16 

driven extreme fire weather conditions in the western US. 17 

• Increased autumn fuel aridity and warmer temperatures during dry wind events increased 18 

the likelihood of extreme fire weather in 2017 and 2018 indices by 40%. 19 

• Present-day anthropogenic climate change has slightly decreased the prevalence of strong 20 

offshore downslope winds. 21 

 22 

Abstract 23 

 24 

Extreme wind-driven autumn wildfires are hazardous to life and property, due to their rapid rate 25 

of spread. Recent catastrophic autumn wildfires in the western United States co-occurred with 26 

record- or near-record autumn fire weather indices that are a byproduct of extreme fuel dryness 27 

and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution 28 

analysis to investigate anthropogenic influence on extreme autumn fire weather events in 2017 29 

and 2018. We show that while present-day anthropogenic climate change has slightly decreased 30 

the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme 31 

fire weather indices by 40% in areas where recent autumn wind-driven fires have occurred in 32 

northern California and Oregon.  The increase was primarily through increased autumn fuel 33 

aridity and warmer temperatures during dry wind events. These findings illustrate that 34 

anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to 35 

high-impact catastrophic fires in populated regions of the western US.  36 
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 39 

Plain Language Summary 40 

 41 

Over the last several years, California and western Oregon have seen their largest and most 42 

destructive wildfires on record. The rapid and extensive growth of many of these fires that 43 

invaded populated areas was driven by strong, dry, offshore, downslope autumn winds over fuels 44 

that had become exceedingly dry over the summer and remained dry into autumn. We used 45 

simulations of both the modern-era climate and a climate that could have been, absent human 46 

influence, to investigate the effect of anthropogenic climate change on the likelihood of extreme 47 

fire weather conditions (warm, very dry, and very windy) that were present during recent 48 

catosphrophic wildfires. Despite a small decrease in the frequency of strong offshore winds, 49 

anthropogenic climate change has already increased the likelihood of extreme autumn fire 50 

weather across most of the west coast of the US through higher temperature and drier fuels, 51 

heightening the risk to life and property. 52 

 53 

1  Introduction 54 

 55 

Widespread increases in burned area over the past half-century are evident across the western 56 

United States (US) despite decreases in the number of ignitions (Bowman et al., 2020; Keeley 57 

and Syphard 2018). Several factors are suspected to have contributed to long-term increases in 58 

fire activity including the legacy of aggressive and successful fire suppression that has increased 59 

aboveground biomass (Rogers et al., 2020), increased human settlement in fire prone lands 60 

(Syphard et al., 2007), and climate change that increases fuel dryness and extends the fire season 61 

length (e.g., Abatzoglou and Williams, 2016). Extreme wildfires often occur during fire weather 62 

extremes (Stavros et al., 2014). This is particularly true in autumn in California and the Pacific 63 

Northwest US as a byproduct of chronically dry fuels prior to the onset of the rain season, which 64 

creates a flammable landscape, and strong offshore, downslope winds that drive rapid rates of 65 

fire spread (Williams et al., 2019; Nauslar et al., 2018). For example, the 2020 Labor Day fires in 66 

western Oregon spread rapidly under conditions of near record downslope winds and near 67 

record-breaking fire weather (Abatzoglou et al., 2021a). 68 

 69 

Studies have documented increases in autumn fire weather indices and the number of high fire 70 

danger days over the past four decades in California (e.g., Goss et al., 2020; Khorshidi et al., 71 

2020). While such changes are consistent with anthropogenic climate change (ACC), statistically 72 

rare wind-driven fire weather extremes that have been linked with recent catastrophic fires 73 

present a potentially more tenuous link to human-caused climate change given they are a 74 

function of both thermodynamic and dynamic elements (National Academy of Sciences, 2016). 75 

Whereas the thermodynamics effects of ACC through fuel drying and increased vapor pressure 76 

deficit are more straightforward, the dynamic effects of ACC associated with winds are less clear 77 

(Williams et al. 2019). For example, studies on projected changes in offshore Santa Ana winds of 78 

southwestern California provide contradictory results (Miller and Schlegel 2006; Hughes et al. 79 

2011; Yue et al., 2014; Jin et al., 2015), though recent studies indicate projected attenuation of 80 

Santa Ana winds in autumn despite that the ACC influence has been nominal to date (Guzman-81 

Morales and Gershunov 2019; Wang et al., 2020). However, the existing literature does not 82 

address the influence of ACC on autumn offshore winds elsewhere in California and western 83 

Oregon, nor the relative contribution of ACC via thermodynamic and dynamic effects on rare 84 

wind-driven fire weather extremes that may occur once every couple decades. 85 
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 86 

The science of extreme event attribution has experienced major advances over the last decade 87 

and helps provide context for characterizing climate and weather extremes (National Academy of 88 

Science, 2016; Bellprat et al., 2019; Uhe et al. 2021). It has, however, been used sparingly for 89 

wildfire although some studies exist for individual fire seasons (Kirchmeier-Young et al., 2019; 90 

van Oldenborgh et al., 2021) and individual fire events (Tan et al., 2018). While attribution of 91 

wildfire is confounded by multiple complementary factors associated with human influence, 92 

isolating the influence of ACC in top-down atmospheric factors that enable and drive extreme 93 

fires addresses a key aspect of fire risk. Here, we use this attribution framework to determine if, 94 

and by how much, ACC has altered the probability of the rare extreme wind-driven fire weather 95 

conditions during autumn, similar to conditions observed during several recent high-impact fires 96 

in California and Oregon. We specifically focus on offshore wind-driven autumn fire weather 97 

conditions from southwestern California to western Washington as such fires can comprise a 98 

majority of burned area in a given year (Kolden and Abatzoglou, 2018), are often co-located 99 

with human settlement (Jin et al., 2015), and have been associated with secondary impacts such 100 

as downstream air quality and de-energization of electrical grid (Aguilera et al., 2021; 101 

Abatzoglou et al., 2020).  102 

Here we examine how ACC altered the likelihood of extreme autumn fire weather experienced 103 

across the western US using large ensembles of regional climate model simulations. We further 104 

decompose the influence of ACC on the likelihood of the individual components contributing to 105 

fire weather indices. Additionally, we examine the role of offshore wind events and the influence 106 

of ACC on the frequency of such events.  107 

 108 

2  Methods 109 

 110 

2.1 Wind driven fires 111 

 112 

We examine representative regions in the western US where recent large fires have occurred and 113 

were driven by strong offshore winds such as Santa Ana and Diablo winds of California (Jin et 114 

al., 2015; Kolden and Abatzoglou, 2018; Keeley and Syphard, 2019) and East winds of western 115 

Oregon (Abatzoglou et al., 2021a). Within these regions, we focus on several recent large 116 

catastrophic offshore wind-driven autumn wildfires with widespread impacts on communities 117 

including the Wine Country Fires in October 2017, the Camp fire in November 2018, and North 118 

Complex Glass fires in September 2020 (all in Northern California), the Woolsey fire in 119 

November 2018 in Southern California, and the Lionshead fire in September 2020 in western 120 

Oregon. These fires provide archetypes of extreme offshore wind-driven autumn fires and guide 121 

an objective set of criteria for attribution analyses. To characterize the meteorological conditions 122 

associated with each fire relative to a long-term record (1979-2020), a suite of fire weather 123 

metrics were calculated using daily meteorological data from gridMET (Abatzoglou, 2013) at the 124 

centroid of each fire (Figure 1).  125 
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 126 
Figure 1. Recent significant offshore wind-driven wildfires in the western US. Inset map shows 127 

fire perimeters with gray illustrating elevation and black polygons showing the corresponding 128 

Predictive Service Areas. Ranked fire weather variables for each fire event are shown for the 129 

higher value on either the discovery date or day after, for the Fosberg Fire Weather Index 130 

(Fosberg), the Hot-Dry-Windy Index (HDW), the Initial Spread Index (ISI) and the Fire Weather 131 

Index (FWI). Variables are ranked from smallest to largest relative to local September-132 

November maximum daily values during 1979-2020.  133 

 134 

2.2 Climate simulations 135 

 136 

Climate simulations were generated through the volunteer computing platform Weather@home 137 

(Guilliod et al., 2017; Mote et al., 2016). Our configuration of Weather@home nests the Hadley 138 

Centre Regional Climate Model (HadRM3P) at 0.22° × 0.22° horizontal resolution in the Hadley 139 

Centre Atmospheric Model (HadAM3P) with updated global and regional model parameters 140 

(Hawkins et al., 2019; Li et al., 2019).  141 

 142 

We used two large initial condition ensembles of simulations. The first represents modern-era 143 

climate conditions (actualClim) that uses observed concentrations of greenhouse gases, aerosols, 144 

and observed sea surface temperatures (SSTs; Donlon et al., 2012) for September 2016 through 145 

December 2018. The second ensemble represents the climate that would have been without 146 

human influence (naturalClim) over the same time period using pre-industrial concentrations of 147 

greenhouse gases and aerosols, and observed SST’s with the anthropogenic signal removed 148 

(Schaller et al., 2014; Uhe et al., 2016). Each large ensemble consists of 1000 simulations of 149 

September 2016 through December 2018, generated by perturbing the initial potential 150 

temperature field of each ensemble member. We excluded the first year as additional model spin-151 
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up and use 2,000 realizations of autumn weather (September through November (SON), 2017 152 

and 2018) for analysis. Model outputs consisted of daily (precipitation) or instantaneous values 153 

(near-surface wind speed (WS), temperature (TA), relative humidity (RH)) at 21Z (1300 LST) 154 

corresponding to the approximate times used in the daily fire danger rating systems. Similar, 155 

smaller ensembles (402 actualClim and 1,008 naturalClim realizations) were generated with 156 

additional diagnostics to examine prevalence of offshore downslope winds using 21Z wind 157 

velocity, temperature, geopotential height at various pressure levels. See Section S1 for 158 

additional detail. 159 

 160 

2.3 Fire weather indices 161 

 162 

We calculated three fire weather indices influenced by wind speed and associated with difficulty 163 

in fire containment and potential rates of spread given the nature of these wind-driven fires: (1) 164 

the fire weather index (FWI) from the Canadian Forest Fire Danger Rating system (Van Wagner, 165 

1987), (2) the Hot-Dry-Windy (HDW) index (Srock et al., 2018), and (3) the Fosberg fire 166 

weather index (FFWI; Fosberg, 1978). Notably, FFWI and HDW do not consider fuel moisture 167 

or antecedent conditions. Furthermore, we considered two subcomponents of the FWI as 168 

diagnostics: the initial spread index (ISI) and the build-up index (BUI). The ISI weakly considers 169 

antecedent information through fine fuel moisture content and is strongly influenced by wind 170 

speed while the BUI is a measure of longer-term antecedent build-up of fuel drying that does 171 

account for the combined influence of temperature, humidity, and precipitation but excludes the 172 

influence of wind speed. Finally, we included vapor pressure deficit (VPD) given that it has been 173 

shown to be the leading control of fire activity in California (Chen et al., 2021) and observed 174 

increases in VPD during autumn have increased the number of high fire potential days in 175 

California (Williams et al., 2019). We consider this suite of fire weather metrics given their 176 

different formulations, sensitivities to meteorological inputs, and role of antecedent conditions in 177 

the resultant metric.  178 

 179 

2.4 Attribution 180 

We estimated the change in likelihood of extreme fire weather metrics attributable to ACC by 181 

comparing the frequency of occurrence of extremes between the actualClim and naturalClim 182 

ensembles. We specifically examined all extreme fire weather metrics and associated 183 

meteorological variables (temperature, relative humidity, windspeed, and VPD) corresponding to 184 

the day of the maximum FWI (FWImax) in SON of each simulation year. This harmonization 185 

allows us to focus on the most extreme autumn fire weather conditions each year as defined by 186 

the widely used FWI, rather than disparate days from different metrics which impedes inter-187 

metric comparisons.   188 

Extreme fire weather conditions were defined as the gridcell 95th percentile of autumn maximum 189 

daily FWI in the naturalClim ensemble, i.e., 1-in-20 year autumn event under pre-industrial 190 

climate conditions. This threshold was based on the magnitude of fire weather extremes 191 

coincident with the recent representative fires (see Section 3.1 below). Similarly, we defined 192 

gridcell extremes in other fire weather indices or meteorological variables using the same 193 

protocol. We defined the risk ratio as in the Pactual/Pnatural where Pactual and Pnatural are the 194 

probabilities of the extreme event occurring in the actualClim ensemble and the naturalClim 195 

ensemble respectively. A risk ratio of two means that the 1-in-20 year event is two times more 196 

likely to occur in the actualClim ensemble than in the naturalClim ensemble. We estimated 197 

confidence intervals for the risk ratio by bootstrap using n =10,000 iterations and sampling 198 
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ensemble members with replacement. Changes were considered statistically significantly where 199 

the 95% confidence interval excluded zero. For regional analyses, we calculated the risk ratio for 200 

each grid cell then averaged over the four Predictive Service Area (PSA) boundaries – a 201 

management unit used by the US fire agencies – covering regions with recent large wind-driven 202 

fires (Figure 1). 203 

 204 

2.5 Winds 205 

 206 

We explicitly examined anthropogenic-forced changes in offshore downslope winds to 207 

accompany the fire weather analyses. Due to increased complexity relative to the fire weather 208 

index analysis, we limited the spatial extent to regions with well-known offshore downslope 209 

winds focusing on East winds along the Oregon Cascades, Diablo winds along the Sierras of 210 

northern California, and Santa Ana winds in the Transverse Range of southern California.  211 

 212 

We adapted the method of Abatzoglou et al. (2021b) to identify conditions suitable for offshore, 213 

downslope winds based on the cross-barrier 700-hPa horizontal wind speed u ≥ 13 m s-1 and the 214 

700-hPa vertical wind speed ω ≥ 0.6 Pa s-1. We added the criterion that near-surface relative 215 

humidity ≤ 30% (e.g., Edinger et al., 1964; Smith et al., 2018) to constrain wind events to those 216 

that yield elevated fire weather potential (for more detail, see Section S2). We found that 217 

HadRM3p showed credible winds and downslope wind climatologies to those seen with 218 

ECMWF ReAnalysis 5 (ERA5; Hersbach et al. 2020) including extremes similar to those present 219 

in recent major wildfires (see Section S2-S3; Figures S1-S6). We calculated the change in SON 220 

frequency of offshore, downslope wind conditions between the naturalClim and actualClim 221 

ensembles for each region and investigated if an ACC signal could be detected on near-surface 222 

meteorological variables (VPD, RH, and WS), conditional on the presence of these conditions. 223 

Note that unlike our fire weather index analysis focused on very-rare extremes, the analyses of 224 

winds considered all offshore downslope winds, rather than 1-in-20 year events. 225 

  226 

3 Results  227 

 228 

3.1 Extreme fire weather  229 

 230 

Each of the six representative downslope wind-driven autumn fires occurred during fire weather 231 

extremes (Figure 1). All fire events had at least one fire weather index that ranked in the 95th 232 

percentile for autumn maximum daily values between 1979 and 2020 (40th out of 42 years), 233 

including several that coincided with the most extreme autumn fire weather metrics on record.  234 

 235 

We found that ACC increased the frequency of autumn fire weather extremes across portions of 236 

the western US (Figure 2) relative to pre-industrial levels (Figure S7). Extreme FWImax were, on 237 

average, 40% more likely due to ACC across the western US (regional mean risk ratio of 1.40) 238 

with significant increases detected across 65% of the domain including along the west coast of 239 

Washington, Oregon and northern California, although notably not in southern coastal California 240 

(Table S1). In simulations where the FWImax was above the 95th percentile, the regional average 241 

temperature was 1.15°C warmer in the actualClim ensemble than in the naturalClim ensemble 242 

(Table S2). Similarly, the relative humidity was 0.1% higher, the VPD was 1.52hPa higher, and 243 

the wind speed was 0.17m/s lower in the actualClim ensemble, averaged over the domain.  244 

 245 

Large increases in the frequency of extreme BUI and HDW were detected across the region 246 

(Figure 2c,d), whereas changes in the FFWI index were not significant (Figure 2e). Differences 247 
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in the response of ACC across fire weather metrics are posited to be a consequence of the 248 

sensitivity of each metric to simulated changes in climate. For example, the HDW index is 249 

highly sensitive to VPD, which has increased in SON across the western US (Ficklin et al., 250 

2017), and increased significantly on extreme FWImax days in actualClim simulations (Table S1; 251 

Figure S8). Similarly, increased temperature coincident with FWImax days in the actualClim 252 

simulations facilitates an increase in fire weather indices absent changes in wind speed itself. By 253 

contrast, the FFWI is most sensitive to wind speed and relative humidity, and only weakly 254 

sensitive to temperature. No significant decreases in any of the fire weather indices were 255 

detected within the domain. 256 

 257 

 258 
Figure 2.  Simulated risk ratio of extreme autumn fire weather metrics in modern-era 259 

simluations relative to preindustrial simulations. Hatching represents regions where changes 260 
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were not significant in bootstrapped 95% confidence intervals. PSA regions are outlined in 261 

black.  262 

 263 
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 264 
Figure 3. Risk ratio of maximum autumn fire weather metrics above the naturalClim 95th 265 

percentile (1-in-20 year return interval) in modern-era climate simulations relative to 266 



10 

 

preindustrial simulations for the Central Western Oregon (a), North Sierras (b), Mid Coast to 267 

Mendocino (c), and South Coast (d) PSA regions (depicted in Figure 1) with bootstrapped 95% 268 

confidence intervals. Right hand axes show the return period (years) in the actualClim ensemble 269 

corresponding to the naturalClim 1-in-20 year event. Horizontal dashed line represents no 270 

change in risk.  271 

 272 

The risk ratio of extreme fire weather varied among the four PSA regions (Figure 3). In the 273 

Central Western Oregon region, ACC increased the risk of extreme FWImax by 49% (risk ratio of 274 

1.49). This increase was most strongly linked to increases in fuel dryness which manifest through 275 

the BUI, with smaller contributions from ISI. On days when FWImax occurs, the risk ratio of 276 

temperature and VPD were 1.72 and 1.61, respectively. The increase in VPD influenced the risk 277 

of extreme HDW, which increased by 73% despite slight decrease in the likelihood of extreme 278 

wind speed. 279 

 280 

In PSA regions in northern California all fire weather metrics (excluding relative humidity) 281 

showed significant increases in the likelihood of extremes. In the northern Sierra region, the risk 282 

ratio of the HDW index was 2.06. This indicates that ACC has made extreme autumn HDW 283 

conditions twice as likely, i.e., ACC has made a 1-in-20 year HDW event a 1-in-10 year event. 284 

The increase in likelihood is primarily driven by an increase in aridity rather than a change in 285 

wind speed.  286 

 287 

Along the southern California coast we did not detect a significant increase in the frequency of 288 

FWI, ISI, or FFWI. This is primarily due to the slight decline in extreme wind speed during 289 

extreme fire weather days in this region. The South Coast PSA region did show an increase in 290 

aridity with risk ratios extreme temperature and VPD of 1.82 and 1.80, respectively. The increase 291 

in aridity lead to detectable increases in the risk of extreme BUI and HDW which had risk ratios 292 

of 1.48 and 1.75, respectively. Notably, the influence of BUI on FWI extremes in southern 293 

California was negligible given the region’s exceptionally long dry season and formulation of the 294 

index which make changes in FWI extremes more sensitive to changes in ISI when the BUI is 295 

high. 296 

 297 

3.2 Offshore winds analysis 298 

 299 

Offshore, downslope wind frequency decreased from the naturalClim to the actualClim scenario 300 

in all regions (Figure 4b; Table S3), though the only statistically robust decrease was seen in 301 

Santa Ana wind frequency (region CAd). These results suggest that ACC may already be 302 

reducing Santa Ana frequency, consistent with projected changes under global warming through 303 

the 21st century (Guzman-Morales and Gershunov, 2019; Wang et al., 2020). Similarly, extreme 304 

offshore downslope wind frequency decreased in all regions (Table S3). The consistency in the 305 

sign of the changes across all regions also suggests that an anthropogenically forced decrease in 306 

the prevalence of such offshore downslope winds is a general consequence of ACC across 307 

western US mountain ranges and not limited to Santa Ana winds. 308 

 309 

When offshore, downslope conditions did occur, VPD was 5 to 9% higher in the actualClim 310 

scenario across the six regions (Figure 4c), driven primarily by a 0.8-1.4°C warming (Table S4). 311 

Non-significant decreases in relative humidity were found in all regions (Figure 4c). Similarly, 312 

during extreme offshore downslope wind conditions temperatures were 0.7-2.4°C warmer in the 313 

actualClim scenario (Table S5). Finally, we found no regionally consistent nor statistically 314 

significant changes in near-surface wind speed accompanying downslope wind days (Figure 4c). 315 
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 316 

Figure 4. Anthropogenic influence on characteristics of autumn (September through November) 317 

downslope wind events at 21Z by region. (a) Simulated ensemble mean frequency of downslope 318 

wind events under modern era forcing (circa 2018); (b) change in frequency of events from 319 

preindustrial to modern era forcing; (c) relative change from preindustrial to modern era forcing 320 

in 2-m vapor pressure deficit (VPD), 2-m relative humidity (RH), and 10-m wind speed (Wind) 321 

during downslope wind events; (d) surface elevation map of the west coast US showing the 322 

regions analyzed. The highlighted 4 x 4 grids show the cells used to identify cross-barrier and 323 

downward winds at 700 hPa. The black and white circles mark the locations where 10-m winds 324 

(black) and 2-m VPD and RH (white) were extracted.  325 

  326 

4  Discussion and Conclusions 327 

 328 

Our regional modeling experiment demonstrates that human-caused climate change substantially 329 

increased the likelihood of extreme fire weather metrics in 2017 and 2018 that have been linked 330 

with recent catastrophic wind-driven autumn fires from California to Oregon. Across several 331 

regions that have experienced high-impact autumn wind-driven fires, we estimate that 332 

anthropogenic climate change increased the likelihood of fire weather extremes viewed through 333 

metrics like FWI and HDW by at least 50% in 2017 and 2018 (Figure 3). Likewise, while the 334 

direction of trends in fire weather indices concur with previous studies (e.g., Goss et al., 2020; 335 

McEvoy et al., 2020), our findings are unique given that we isolate the anthropogenic influences 336 

for extreme fire weather conditions across a host of fire weather indices. By contrast, decreased 337 
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frequency in autumn dry, offshore, downslope fire-spreading winds appears to be an emergent 338 

anthropogenic signal along the western US from southern California to northwest Oregon, 339 

expanding on the findings of Guzman-Morales and Gershunov (2019) for southern California. 340 

Increased likelihood of autumn fire weather extremes with anthropogenic climate change appears 341 

to be primarily driven by thermodynamic responses that facilitate increased fuel aridity and 342 

increased VPD and temperature during fire weather extremes.  343 

 344 

Attribution science has rarely been applied to wildfire events given the complex interactions 345 

among ignitions, land management, and weather conditions. While we stop short of attributing 346 

fire behavior characteristics (e.g., fire spread rate, total burned area) to anthropogenic climate 347 

change, distillation of changing likelihoods of extreme fire weather aid in overall risk modeling 348 

efforts. We note that our findings are specific to the geography, season, and wind-driven fire 349 

archetype, and cannot be compared directly to the attribution of extreme summer fire seasons in 350 

previous studies (Kirchmeier-Young et al, 2019; Lewis et al., 2020). Observed and projected 351 

delayed onset of autumn precipitation in California hasten the potential for compound fuel 352 

aridity-offshore wind extremes that yield fire weather extremes (Luković et al., 2021; Swain et 353 

al., 2018). We examined the anthropogenic influence on the timing and magnitude of autumn 354 

rains but results were inconclusive, compeling further investigation into the interactions between 355 

thermodynamic and dynamic drivers of anthropogenic-driven changes in fire weather conditions.  356 

 357 

This study demonstrates that anthropogenic climate change has already increased the likelihood 358 

of autumn wind-driven extreme fire weather conditions in the western US. In concert with non-359 

climatic factors such as biomass accumulation and enchroachment of settlement in fire-prone 360 

lands, this has increased overall fire risk motivating the adoption of fire-adaptation systems that 361 

may ameliorate fire potential and are ecologically appropriate for the landscape (e.g., Moritz et 362 

al., 2014; Kolden and Henson, 2018). Finally, the approaches used here can guide near-term fire 363 

risk assessments towards directing appropriate adaptation efforts, and better elucidate the how 364 

different fire typologies are directly influenced by anthropogenic climate change. 365 

 366 
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Section S1. Experimental design 

The analyses of this study are based on two sets of attribution experiments, one using modelled 
outputs to calculate fire weather indices (fire weather experiment) and the other using modelled 
outputs to perform the wind analysis (wind experiment). Each set of experiments consisted of an 
ensemble of simulations representing modern-era climate conditions, referred to as actualClim, 
and an ensemble of simulations representing pre-industrial climate (i.e. without anthropogenic 
influence), referred to as naturalClim. The actualClim and naturalClim ensembles covered the 
same time period, with the actualClim ensembles using observed concentrations of greenhouse 
gases and observation-based SSTs and sea ice fractions (SIC) from the Operational Sea Surface 
Temperature and Sea Ice Analysis (OSTIA; Donlon et al. 2012). Whereas the naturalClim 
ensembles used pre-industrial level greenhouse gases and pre-industrial SST and SIC, 
constructed by removing anthropogenic signals from the OSTIA observed values. Thirteen 
estimates of anthropogenic SST (deltaSST) warming patterns were used, 12 from CMIP5 models, 
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and 1 from the multi-model mean constructed from these 12 models. The deltaSST calculations 
are detailed in Schaller et al. (2014).  

The fire weather experiment covered Sep2016-Dec2018, with Sep through Nov 2016 excluded 
from the analysis due to the lack of antecedent information needed for calculating fuel moisture in 
autumn 2016. The wind experiment covered Sep2017-Dec2018. Model outputs consisted of daily 
values (precipitation) or instantaneous values (10-m wind speed, 2-m temperature, 2-m relative 
humidity from the fire weather experiment and wind velocity, temperature, geopotential height at 
various pressure levels from the wind experiment) at 21Z (1300 LST) corresponding to the 
approximate times used in calculating daily fire danger rating systems. 

 S2. Comparison of 700-hPa wind climatology from HadAM-RM3p and reanalysis 

We compared wind climatology between the HadAM-RM3p ensemble and ECMWF ReAnalysis 5 
(ERA5; Hersbach et al., 2020) because ERA5 has a similar horizontal resolution (30 km) to 
HadRM3p (~25 km) and is the state-of-the-art reanalysis. We used the years 1979-2019 from 
ERA5. From the HadAM-RM3p ensemble, the distribution of winds represents internal 
atmospheric variability in the year 2018 only, so it is expected that the distribution is narrower 
than it would be if the SSTs from 1979 to 2019 were used as the boundary conditions to HadAM-
RM3p. 

From the wind experiment with HadAM-RM3p, winds on several pressure levels were saved daily 
at 21 Z for 402 initial condition ensemble members; the sample size = 12,060 wind fields per 
pressure level per month (402 ensemble members × 30 days per month).   

Figures S1-S3 show frequency distributions of wind speed and direction, as wind roses, for the 
months of autumn (September, October, and November) at 700-hPa for example locations in 
Regions ORa, CAa, and CAd, respectively. The precise locations are shown in Fig. 4d and 
identified by the solid black circle in each region.  

S3. Identification and examination of offshore downslope winds in the HadAM-RM3p 
ensemble 

In the HadAM-RM3p ensemble, we identified conditions suitable for offshore, downslope winds 
(ODWs) in six regions from northern Oregon to southern California, with each region consisting of 
16 model grid cells in a 4x4 matrix (See region locations in Fig. 4d). We adapted the method of 
Abatzoglou et al. (2021b) to identify instances of such conditions based on the cross-barrier 700-
hPa horizontal wind speed u ≥ 13 m s-1 and the 700-hPa vertical wind speed ω ≥ 0.6 Pa s-1 at 
21 Z in a grid cell. Within a region, the u and ω criteria did not have to be met in the same grid 
cell for the instance to qualify. The cross-barrier wind direction varied by region to accommodate 

the primary direction of offshore flow and orientation of orography: 90, 60, and 45 for the 

Cascades, Sierras, and Transverse Ranges, respectively. We added the criterion of near-surface 
RH ≤ 30% (e.g., Edinger et al., 1964; Smith et al., 2018) to further constrain focus on wind events 
that yield elevated fire weather potential.  

We further determined if the climate model would simulate lower troposphere and near-surface 
conditions associated with ODWs as, or more, extreme as those during several of the recent 
large autumn wildfires in California and Oregon. We used the same general method for identifying 
ODWs described above but considered extreme ODW using more stringent criteria: Cross-barrier 
700-hPa wind speed > 18 m s-1, 700-hPa ω > 1.5 Pa s-1, and near-surface RH < 20%. 

Simulated ODW frequency in autumn varied regionally from < 1 day per autumn in the Oregon 
Cascades (ORa and ORb) to nearly 3 days per autumn in Transverse Ranges (CAd) (Table S1). 
Along the Sierra Nevada, frequencies decreased from north to south, consistent with diagnostics 
from ERA5 (Abatzolgou et al., 2021b). However, frequencies were sensitive to the selected 
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cross-barrier wind direction and the exact locations of the analysis regions, so precise 
comparisons between regions should not be made based on these results. 

The HadAM-RM3p actualClim ensemble contained instances of extreme ODWs in all regions in 
autumn (Table S1). Extreme ODWs were rarest in the Oregon Cascades (0.09 instances per 
autumn on average), and most frequent in Transverse Ranges (0.96 instances per autumn).  

Figures S4-S6 show latitudinal profiles of wind velocity and air temperature in the lower 
troposphere during examples of extreme ODWs in Regions ORa, CAa, and CAd, respectively. 
The figures show one snapshot of extreme ODWs for each region from three unique model 
simulations to illustrate the signature of ODWs. In the Oregon Cascades example (ORa; Fig. S4), 
the ODW criteria were met on three consecutive days at 21 Z and the maximum 700-hPa cross-
barrier wind speed and ω were 21.0 m s-1 and 2.2 Pa s-1, respectively while the minimum surface 
RH was 6.1%. In the Sierras example (CAa; Fig. S5), the criteria were met on two consecutive 
days at 21 Z and the maximum 700-hPa cross-barrier wind speed and ω were 34.6 m s-1 and 5.3 
Pa s-1, respectively, while the minimum surface RH was 9.9%.  Fig. S5 also shows the 
characteristic temperature inversion that can develop during these events (e.g., Abatzoglou et al. 
2021b) persisting into the afternoon. For the Transverse Ranges example (CAd; Fig. S6), the 
criteria were met on two consecutive days at 21 Z and the maximum 700-hPa cross-barrier wind 
speed and ω were 29.8 m s-1 and 5.1 Pa s-1, respectively while the minimum surface RH was 
9.2%. 
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Figure S1. Frequency distribution of 700-hPa wind speed and wind direction at 21 Z for a location 
in Region ORa in (a, b) September, (c, d) October, and (e, f) November from (a, c, e) ERA5, 
1979-2019 (-122.25°E, 44.75°N) and (b, d, f) and the HadAM-RM3p 402-member ensemble (-
122.3733°E, 44.8175°N).   
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Figure S2. Fame as Figure S2 but for a location in Region CAa from ERA5 (-121.75°E, 40.00°N) 
and HadAM-RM3p (-121.7413°E, 39.9799°N).   
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Figure S3. Same as Figure S2 but for a location in Region CAd from ERA5 (-118.50°E, 34.50°N) 
and HadAM-RM3p (-118.5516°E, 34.4359°N).   
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Figure S4. Example of simulated temperature and winds along 4 latitudinal transects at 21 Z 
meeting criteria for extreme downslope wind conditions on an autumn day in Region ORa (see 
Figure 4d). Gray shading shows land. The two vertical gray lines mark the east and west 
boundaries of the 4 x 4 grid used when determining extreme downslope wind conditions. 
Temperature was bilinearly interpolated from points at the 925, 850 and 700-hPa pressure levels. 
Latitude designations are approximate for each panel because the regional model grid is not 
oriented along lines of global latitude and longitude. 
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Figure S5. Same as Fig. S4 but for Region CAa.  
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Figure S6. Same as Fig. S4 but for Region CAd.   
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Figure S7. ActualClim ensemble 95th percentile of autumn (SON) maximum FWI and the 
concurrent fire weather indices and meteorological conditions by grid cell. For RH, the 5th 
percentile is shown. 

 



 

 

11 

 

 
 
Figure S8. Relative change in frequency of extreme high (>95th percentile) autumn (SON) 21Z 
temperature (a) vapor pressure deficit (c) wind speed (d) and extreme low (<5th percentile) 21Z 
relative humidity (b) concurrent with the FWImax between naturalClim and actualClim simulations. 
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Table S1. Summary of the simulated change in frequency (%) of fire weather indices and 
meteorological variables between actualClim and naturalClim ensembles, averaged over 
western US domain (approximately 35.2N–48.8N, 124W–109W). 

 

Variable Percent of domain with 
significant increases 

Regional mean change in frequency 

FWI 65% +39% 

ISI 52% +27% 

BUI 86% +60% 

HDW 99% +105% 

FFWI 20% +9% 

TA 99% +117% 

RH 18% 0% 

VPD 99% +105% 

WS 11% +4% 

 
 
 
 
 
 
 
 

Table S2. Summary of the differences in meteorological variables in simulations where fire 
weather indices above the respective 95th percentile in actualClim and naturalClim ensembles, 
averaged over western US domain (approximately 35.2N–48.8N, 124W–109W). 

 

Variable Temperature (C) Relative Humidity (%) VPD (hPa) Wind Speed (m/s) 

FWI 1.15 0.10 1.52 -0.17 

ISI 1.13 0.01 1.51 -0.08 

BUI 0.97 0.11 1.21 0.25 

HDW 1.11 -0.04 2.16 -0.07 

FFWI 1.09 0.13 1.22 -0.04 
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Table S3. Difference (and fractional difference) in frequency between naturalClim and 
actualClim of Offshore Downslope Winds and Extreme Offshore Downslope Winds at 21 Z in 
the Autumn Fire Season (September-November).   

Region Variable 
Natural 
forcings 

All 
forcings 

Anthropogenic 
effect 

C.I.c 

Offshore Downslope Winds 

ORa 
Days per season 0.72 0.66 -0.06a (-0.16,0.05) 

Probability 0.0080 0.0074 -0.08b (-0.21,0.07) 

ORb 
Days per season 0.77 0.69 -0.08a (-0.19,0.03) 

Probability 0.0086 0.0077 -0.10b (-0.23,0.04) 

CAa 
Days per season 2.77 2.57 -0.19a (-0.41,0.01) 

Probability 0.0308 0.0286 -0.07b (-0.14,0.01) 

CAb 
Days per season 2.65 2.46 -0.19a (-0.39,0.02) 

Probability 0.0294 0.0274 -0.07b (-0.14,0.01) 

CAc 
Days per season 1.24 1.16 -0.09a (-0.23,0.06) 

Probability 0.0138 0.0129 -0.07b (-0.18,0.05) 

CAd 
Days per season 2.88 2.67 -0.21a (-0.42,-0.01) 

Probability 0.0320 0.0297 -0.07b (-0.14,-0.00) 

Extreme Offshore Downslope Winds 

ORa 
Days per season 0.09 0.09 0.00a (-0.03,0.03) 

Probability 0.0010 0.0010 -0.01b (-0.54,0.29) 

ORb 
Days per season 0.14 0.11 -0.03a (-0.06,0.01) 

Probability 0.0015 0.0012 -0.19b (-0.74,0.08) 

CAa 
Days per season 0.71 0.68 -0.03a (-0.13,0.07) 

Probability 0.0079 0.0076 -0.04b (-0.21,0.09) 

CAb 
Days per season 0.80 0.65 -0.14a (-0.24,-0.04) 

Probability 0.0089 0.0073 -0.18b (-0.40,-0.06) 

CAc 
Days per season 0.32 0.34 0.02a (-0.05,0.09) 

Probability 0.0036 0.0038 0.06b (-0.17,0.22) 

CAd 
Days per season 0.96 0.92 -0.04a (-0.16,0.07) 

Probability 0.0107 0.0102 -0.05b (-0.19,0.07) 

aDifference: actualClim – naturalClim. 
bFractional difference: (actualClim – naturalClim) / naturalClim. 
a.bBold-faced values have confidence intervals that do not include 0. 
c95% confidence interval (C.I.) 
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Table S4. Difference (and fractional difference) between naturalClim and actualClim Near-Surface 
Conditions during Offshore Downslope Winds at 21 Z in the Autumn Fire Season (September-
November). 

Region Variable 
Natural

Clim 

Actual 

Clim 

Anthropogenic 
effect 

C.I.c 

ORa 

2-m temperature anomaly (°C) -0.80 0.63 1.43a (0.85,2.01) 

2-m relative humidity (%) 21.13 20.33 -0.04b (-0.07,0.00) 

2-m vapor pressure deficit (kPa) 1.560 1.698 0.09b (0.03,0.15) 

10-m wind speed (m s-1) 22.79 22.61 -0.01b (-0.03,0.01) 

ORa 

2-m temperature anomaly (°C) -0.09 0.90 0.99a (0.42,1.54) 

2-m relative humidity (%) 18.26 17.86 -0.02b (-0.06,0.02) 

2-m vapor pressure deficit (kPa) 1.903 2.016 0.06b (0.00,0.12) 

10-m wind speed (m s-1) 16.29 16.40 0.01b (-0.02,0.03) 

CAa 

2-m temperature anomaly (°C) -1.57 -0.48 1.09a (0.85,1.33) 

2-m relative humidity (%) 16.68 16.28 -0.02b (-0.05,0.00) 

2-m vapor pressure deficit (kPa) 1.872 1.963 0.05b (0.01,0.09) 

10-m wind speed (m s-1) 15.85 16.26 0.03b (0.00,0.05) 

CAb 

2-m temperature anomaly (°C) -1.24 -0.39 0.85a (0.58,1.12) 

2-m relative humidity (%) 16.59 16.47 -0.01b (-0.03,0.02) 

2-m vapor pressure deficit (kPa) 2.159 2.273 0.05b (0.03,0.08) 

10-m wind speed (m s-1) 21.48 21.63 0.01b (-0.01,0.03) 

CAc 

2-m temperature anomaly (°C) -1.51 -0.68 0.84a (0.49,1.18) 

2-m relative humidity (%) 17.48 17.19 -0.02b (-0.05,0.02) 

2-m vapor pressure deficit (kPa) 1.872 1.963 0.05b (0.01,0.09) 

10-m wind speed (m s-1) 16.92 16.94 0.00b (-0.03,0.04) 

CAd 

2-m temperature anomaly (°C) -1.44 -0.61 0.83a (0.60,1.06) 

2-m relative humidity (%) 12.25 12.23 0.00b (-0.03,0.03) 

2-m vapor pressure deficit (kPa) 2.374 2.486 0.05b (0.02,0.07) 

10-m wind speed (m s-1) 29.56 29.73 0.01b (0.00,0.02) 

aDifference: all forcings – natural forcings. 
bFractional difference: (all forcings – natural forcings) / natural forcings. 
a,bBold-faced values have confidence intervals that do not include 0. 
c95% confidence interval (C.I.) 
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Table S5. Difference (or fractional difference) between naturalClim and actualClim Near-Surface 
Conditions during Extreme Offshore Downslope Winds at 21 Z in the Autumn Fire Season 
(September-November). 

Region Variable 
Natural 

Clim 
Actual 
Clim 

Anthropogenic 
effect 

C.I.c 

ORa 

2-m temperature anomaly (°C) -3.34 -0.98 2.36a (0.60,4.03) 

2-m relative humidity (%) 15.67 13.89 -0.11b (-0.18,-0.04) 

2-m vapor pressure deficit (kPa) 1.384 1.731 0.25b (0.08,0.44) 

10-m wind speed (m s-1) 26.32 25.22 -0.04b (-0.08,0.00) 

ORa 

2-m temperature anomaly (°C) -1.98 -0.63 1.35a (-0.18,2.82) 

2-m relative humidity (%) 14.0 13.31 -0.05b (-0.13,0.03) 

2-m vapor pressure deficit (kPa) 1.653 1.878 0.14b (-0.01,0.30) 

10-m wind speed (m s-1) 19.04 19.77 0.04b (-0.01,0.09) 

CAa 

2-m temperature anomaly (°C) -2.26 -0.87 1.39a (0.98,1.79) 

2-m relative humidity (%) 12.96 13.01 0.00b (-0.03,0.04) 

2-m vapor pressure deficit (kPa) 2.297 2.452 0.07b (0.02,0.11) 

10-m wind speed (m s-1) 18.41 19.13 0.04b (0.00,0.08) 

CAb 

2-m temperature anomaly (°C) -1.77 -1.00 0.77a (0.30,1.25) 

2-m relative humidity (%) 12.61 12.93 0.03b (-0.01,0.06) 

2-m vapor pressure deficit (kPa) 2.194 2.223 0.01b (-0.03,0.06) 

10-m wind speed (m s-1) 26.37 26.93 0.02b (0.00,0.05) 

CAc 

2-m temperature anomaly (°C) -1.51 -0.51 0.99a (0.34,1.66) 

2-m relative humidity (%) 12.49 12.19 -0.02b (-0.08,0.03) 

2-m vapor pressure deficit (kPa) 1.921 1.952 0.02b (-0.04,0.08) 

10-m wind speed (m s-1) 22.19 22.33 0.01b (-0.04,0.06) 

CAd 

2-m temperature anomaly (°C) -2.87 -2.16 0.71a (0.37,1.06) 

2-m relative humidity (%) 10.37 10.36 0.00b (-0.04,0.04) 

2-m vapor pressure deficit (kPa) 2.144 2.213 0.03b (0.00,0.07) 

10-m wind speed (m s-1) 32.75 33.15 0.01b (0.00,0.03) 

aDifference: all forcings – natural forcings. 
bFractional difference: (all forcings – natural forcings) / natural forcings. 
a,bBold-faced values have confidence intervals that do not include 0. 
c95% confidence interval (C.I.) 
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