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Abstract

Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements

in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved

process representations in ecosystem models. We compare semi-empirical stomatal models with hydraulic constraints against

more mechanistic representations of stomatal and hydraulic functioning at a semi-arid pine site using a suite of metrics and

analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under

atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water

potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Additionally,

both multilayer canopy and big-leaf models were unable to capture the magnitude of canopy temperature divergence from air

temperature. Lastly, modeled stable carbon isotope fractionation differed under canopy water stress which illustrates the value

of carbon isotopes in helping to characterize ecosystem function and elucidate differences attributable to model structure. This

study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize

ecosystem function and discriminate among model process representations.
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Key Points: 19 

• We evaluate several model formulations for coupling plant hydraulic and stomatal 20 

functioning using functional performance metrics. 21 

 22 

• Information flows from soil water potential and vapor pressure deficit to transpiration 23 

illustrate functional differences among models. 24 

 25 

• Considerable biases in modeled canopy temperature propagate to a 5% offset in 26 

cumulative growing season transpiration.  27 
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Abstract 28 

 29 

Mechanistic representations of biogeochemical processes in ecosystem models are rapidly 30 

advancing, requiring advancements in model evaluation approaches. Here we quantify multiple 31 

aspects of model functional performance to evaluate improved process representations in 32 

ecosystem models. We compare semi-empirical stomatal models with hydraulic constraints 33 

against more mechanistic representations of stomatal and hydraulic functioning at a semi-arid 34 

pine site using a suite of metrics and analytical tools. We find that models generally perform 35 

similarly under unstressed conditions, but performance diverges under atmospheric and soil 36 

drought. The more empirical models better capture synergistic information flows between soil 37 

water potential and vapor pressure deficit to transpiration, while the more mechanistic models 38 

are overly deterministic. Additionally, both multilayer canopy and big-leaf models were unable 39 

to capture the magnitude of canopy temperature divergence from air temperature. Lastly, 40 

modeled stable carbon isotope fractionation differed under canopy water stress which illustrates 41 

the value of carbon isotopes in helping to characterize ecosystem function and elucidate 42 

differences attributable to model structure. This study demonstrates the value of merging 43 

underutilized observational data streams with emerging analytical tools to characterize 44 

ecosystem function and discriminate among model process representations.  45 

 46 

Plain Language Summary 47 

 48 

Earth system models are an essential tool for understanding the consequences of changing 49 

climate conditions on forest ecosystems. Models are rapidly incorporating more realistic 50 

representations of how drought impacts ecosystem carbon and water cycling. These 51 

advancements need to be thoroughly evaluated to ensure that the models adequately capture the 52 

plant functional response to drought stress. Here we merge underutilized measurements with new 53 

analytical tools to evaluate several model representations of plant response to drought. These 54 

tools allow us to both better understand relationships among drought stress and ecosystem 55 

response, as well as quantify model accuracy. We find that models generally perform similarly 56 

under unstressed conditions, but performance diverges under atmospheric and soil drought.  57 

 58 
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1 Introduction 59 

 60 

Climate change mitigation, adaptation, and conservation efforts all leverage ecosystem models to 61 

understand and predict carbon and water cycling at local to global scales. Ecosystem models 62 

have rapidly advanced in recent decades and now incorporate mechanistic representations of 63 

many plant and soil processes (e.g., Kennedy et al., 2019; Sabot et al., 2020; Eller et al., 2020). 64 

Recent developments have focused on the representation of plant hydraulic functioning to 65 

improve mechanistic modeling of water transport through the soil-plant-atmosphere continuum, 66 

but how best to represent the effects of drought stress on plant gas-exchange, especially when 67 

quantifying ecosystem-scale fluxes, is still an open question (Mencuccini et al., 2019). 68 

Evaluating improved plant hydraulic representation in ecosystem models requires more 69 

comprehensive frameworks for quantifying model performance, including both metrics for 70 

evaluating functional relations among processes, and comparisons against underutilized 71 

observational data.  72 

Early land surface models (e.g., Bonan et al., 1995; Cox et al., 1998) implemented an empirical 73 

model for stomatal functioning based on gas-exchange measurements (Ball et al., 1987), which 74 

has been used for decades with strong empirical support (e.g., Damour et al., 2010; Lin et al., 75 

2015). However, a predominant theory of stomatal functioning (Cowan and Farquhar, 1977) 76 

assumes plants optimize stomatal behavior such that the benefit of carbon gained (A) is 77 

equivalent to the respective cost of water loss by way of transpiration (T). As such, stomata 78 

optimize the tradeoff between carbon gain and the carbon cost of transpiration, A − λT, where λ 79 

(mol CO2 / mol H2O) is the carbon cost per unit water used by the plant. This theoretical basis 80 

has been used to develop semi-empirical stomatal models (Medlyn et al., 2011), which have been 81 

shown to be fundamentally based on the same physiological principles as the Ball et al., (1987) 82 

model (Franks et al., 2017).  83 

Many studies have demonstrated that semi-empirical models perform well under well-watered 84 

conditions but do not capture soil drought responses correctly (e.g. Powell et al., 2013; Bonan et 85 

al., 2014; Medlyn et al., 2016; Ukkola et al., 2016). These semi-empirical models are limited by 86 

the need to prescribe a constant value for λ, which does not respond to environmental conditions 87 

and is not based on measurable plant traits (Buckley, 2017). Optimization theory supports the 88 
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conceptual framework of hydraulic limitation on gas exchange since the cost of hydraulic 89 

damage can be incorporated into the cost of water loss. However, there is little consensus on how 90 

best to represent hydraulic costs in models.  91 

To directly couple stomatal conductance to plant hydraulic mechanisms, model formulations of 92 

optimal stomatal behavior have been proposed that assume plants balance carbon gain against 93 

hydraulic risk (e.g. Williams et al., 1996; Sperry et al., 2017; Mencuccini et al., 2019; Wang et 94 

al., 2020). The mechanistic optimization models have the advantage of being parameterized with 95 

measurable plant traits and have been shown to perform well at the plant scale (e.g., Venturas et 96 

al., 2018; Wang et al., 2020). A comparison of different stomatal optimization principles in a 97 

big-leaf framework, indicated that formulations with explicit representation of plant hydraulics 98 

did not substantially improve ecosystem-scale evapotranspiration estimates (Bassiouni and Vico, 99 

2021). At the ecosystem scale, Sabot et al., (2020) found that the Sperry et al., (2017) model 100 

demonstrated improved performance over the Medlyn et al., (2011) model and Bonan et al., 101 

(2014) showed that the Soil-Plant-Atmosphere optimization model (Williams et al., 1996) 102 

demonstrated some improvement over the Ball et al., (1987) model when water availability was 103 

limited. However, both evaluations only compared the more mechanistic models against semi-104 

empirical models without hydraulic constraints. Although there is still much discussion about 105 

how hydraulic functioning should be applied in semi-empirical models (Lin et al., 2015), 106 

hydraulic limitations have been incorporated into semi-empirical stomatal models (Tuzet et al., 107 

2003; Zhou et al., 2013; Wolf et al., 2016; Xu et al., 2016; Yang et al., 2019; Kennedy et al., 108 

2019).  109 

Here we compare semi-empirical models with hydraulic constraints against more mechanistic 110 

optimization models at the ecosystem scale. We implement hydraulic constraints within the Ball 111 

et al., (1987) and Medlyn et al., (2011) models by altering the water use efficiency parameter as 112 

a function of the leaf water potential. We evaluate these hydraulic-modified semi-empirical 113 

models against two mechanistic approaches. One approach was developed by Williams et al., 114 

(1996) in the soil-plant-atmosphere model (SPA) where the stomatal conductance is calculated to 115 

optimize water-use efficiency while avoiding hydraulic failure. This model conceptualizes 116 

hydraulic failure by a simple minimum leaf water potential threshold. Another approach we 117 

evaluate here is the Sperry et al., (2017) model of optimal stomatal behavior which assumes 118 
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plants maximize carbon gain while avoiding hydraulic risk. This model integrates across xylem 119 

elements to determine the hydraulic vulnerability at an instantaneous drop in canopy water 120 

potential.  121 

Model intercomparisons are commonly performed by benchmarking the mean state and 122 

variability of simulated carbon and water fluxes against observations (e.g. Kennedy et al., 2019; 123 

Sabot et al., 2020). But it is particularly important to ensure that the functional relationships 124 

among environmental conditions and ecosystem responses are also adequately captured 125 

(Kirchner, 2006; Ruddell et al., 2019; Bassiouni & Vico, 2021), particularly when models are 126 

intended to make future projections. We leverage ecosystem-scale measurements from a long 127 

running intensively monitored AmeriFlux core site in a seasonally drought stressed ecosystem 128 

and employ a suite of diagnostics designed to disentangle physiological limits on transpiration. 129 

We evaluate the influence of different model process representations on the simulated functional 130 

relationships among meteorological conditions, soil water availability, and transpiration at 131 

diurnal to daily time scales and for a range of atmospheric and/or soil water stressed conditions. 132 

This study demonstrates the value of merging observational data and novel analytical tools to 133 

characterize ecosystem function and discriminate among model representations.   134 

 135 

2 Methods 136 

 137 

2.1 Site and observational data description 138 

 139 

The Metolius forest study site is in a mature coniferous forest in central Oregon at an elevation 140 

of 1253 m asl. The forest is a core research site in the AmeriFlux network (site US-Me2) where 141 

microclimate and eddy-covariance flux measurements are collected from a flux tower. The 142 

canopy is dominated by ponderosa pine trees (Pinus ponderosa) with scattered incense cedars 143 

(Calocedrus decurrens). Trees are evenly distributed with a leaf area index (LAI) of 2.8 (m2 leaf 144 

m-2 ground). Tree height is relatively homogeneous at about 18 m, and the mean tree density is 145 

approximately 339 trees ha-1 (Irvine et al., 2008).  The climate is semi-arid, with warm and dry 146 

summers and cool and wet winters, with most precipitation occurring as snow or rain during the 147 

winter and spring (November through April). Additional descriptions of the study site, as well as 148 

information on site instrumentation and measurements, can be found in Law et al. (2001), Irvine 149 
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et al., (2004), Thomas et al., (2009) and Ruehr et al., (2014). In this study, we examine the period 150 

of 2006-01-01 to 2018-12-31 where the observational records of data streams overlap. We define 151 

the growing season as May 1st to August 31st which coincides with the warmest and driest 152 

months of the year at this site. 153 

 154 

The US-Me2 site is instrumented with a 33m tower measuring above canopy eddy-covariance 155 

fluxes of CO2, H2O, latent and sensible heat. Mature ponderosas have been instrumented with 156 

sapflow probes which are used to estimate whole tree transpiration by scaling with estimates of 157 

sapwood area (see Kwon et al., 2018). We also calculate the canopy conductance per unit ground 158 

area (Gc, mm/s) from the sapflow estimates of transpiration, air temperature (Ta, °C), and vapor 159 

pressure deficit (VPD, kPa) using a simplified form of the Penman-Monteith equation as 160 

suggested by Monteith and Unsworth (1990) as is typically used in ecohydrological studies 161 

(Kwon et al., 2018). Canopy temperature was also measured in 2015 (Kim et al., 2016) using a 162 

thermal camera (FLIR A325sc). The thermal camera measured the temperature of the upper 163 

canopy and we averaged over a selected area of interest to represent only canopy foliage. Soil 164 

probes measure soil water content at 10, 20, 30, 50, 70, 100, 130, 160cm depths (Sentek 165 

Technologies, Stepney, SA, Australia). We calculated the root weighted soil water potential 166 

using the relationship between soil water content and water retention from Ruehr et al., (2014) 167 

and the root profile prescribed in the SPA model (Table 1).  168 

 169 

2.2 SPA multi-layer canopy model description 170 

 171 

The Soil-Plant-Atmosphere model (SPA; Williams et al., 1996, 2001a) is a high vertical 172 

resolution point model (up to 10 canopy layers and 20 soil layers) which simulates exchanges of 173 

carbon, water, and energy between the land surface and atmosphere on sub-hourly timesteps. The 174 

SPA model has been used for a variety of applications including site level analyses of carbon and 175 

water fluxes (Williams et al., 1996, 2001a, 2001b; Ruehr et al., 2014); model intercomparisons 176 

of stomatal and hydraulic functioning (Misson et al., 2004; Bonan et al., 2014); data assimilation 177 

(Williams et al., 2005; Sus et al., 2014); and modeling land-atmosphere feedbacks (Hill et al., 178 

2008; Smallman et al., 2013). In this study, we implemented several model updates including 179 
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those from a recent study which used the SPA model to simulate the carbon cycle at US-Me2 180 

under current and future climate conditions (Ruehr et al., 2014). 181 

 182 

The SPA model includes a detailed radiative transfer scheme for long-wave, near infra-red, and 183 

direct and diffuse photosynthetically active radiation to determine transmittance, reflectance, and 184 

absorption in each canopy layer for sunlit and shaded leaf fractions. Leaf energy balance is 185 

coupled to a widely used biochemical model of photosynthesis (Farquhar and von Caemmerer, 186 

1982) and leaf transpiration through an optimization scheme for stomatal conductance. In this 187 

study’s implementation, rather than using the Penman-Monteith equation for leaf transpiration, 188 

we calculated transpiration directly from Fick’s law as: 189 

T = gw*Dl             (1) 190 

where T is the transpiration rate per unit leaf area (mmol m-2 s-1 ), gw is the two-sided leaf total 191 

conductance (series of stomatal and leaf boundary layer) to water vapor (mmol m-2 s-1 ), and Dl is 192 

the leaf-specific vapor deficit (mol mol-1).  193 

 194 

The SPA model calculates stomatal conductance for each canopy layer based on a hypothesis 195 

that stomatal conductance is regulated to prevent hydraulic failure (Williams et al., 1996, 2001a). 196 

The transport of water through the soil-plant-atmosphere continuum flows down a potential 197 

gradient at a rate proportional to the whole-plant conductance. The plant conductance is a static 198 

function of hydraulic architecture, xylem construction, and leaf conductance and the soil-to-root 199 

conductance is a function of soil hydraulic conductivity and root density. Following Ruehr et al., 200 

(2014), we reduced whole plant conductance in response to declining soil water potential 201 

according to a sigmoid function and reduced the soil tortuosity and soil surface roughness length 202 

to increase soil water evaporation and better match observations.  203 

 204 

In this application, we used six canopy layers, each with equivalent LAI but varied thickness to 205 

approximate canopy structure (Reinhardt et al., 2006). The vertical soil profile was defined by 20 206 

soil layers of 0.1m thickness with soil texture defined as in Law et al., (2001). We modified the 207 

SPA model to run using prescribed soil water content and implemented a site-specific empirical 208 

relationship between soil water content and soil water potential following Ruehr et al., (2014). 209 

Configuration of canopy structure, photosynthesis parameters, and rooting profile can be found 210 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

in Table 1, and we provide more information on model updates in the Supplementary 211 

Information. 212 

 213 

Model Description Units Value Source 

All Leaf area index m2 m-2 2.8 Irvine et al., 2004  

All Leaf carbon per leaf area gC m-2 leaf area 122.4 Ruehr et al., 2014 

All Maximum rooting depth m 1.1 Ruehr et al., 2014 

All Total root biomass g m-2 70 Ruehr et al., 2014  

All Vcmax at 25°C umol m-2 s-1 31.4 Ruehr et al., 2014 

All Jmax at 25°C umol m-2 s-1 52.4 Ruehr et al., 2014 

All Canopy height m 18 Ruehr et al., 2014 

SPA Height of canopy layers m 
18,15.9,15.1,14.

2,13.3,11.8,9 

defined to have equal 

LAI and follow 

canopy structure. 

SPA Average foliar nitrogen gN m-2 leaf area 2.1 Schwarz et al., 2004 

SPA Plant capacitance 
mmolH2O m-2 

leaf area MPa-1 2500 Bonan et al., 2014 

SPA Root resistivity MPa s g mmol-1 20 Ruehr et al., 2014 

Gain-

Risk 
Leaf area:basal area  m2 m-2 878 Irvine et al., 2004 

Gain-

Risk 
Basal area:ground area m2 Ha-1 31.9 Irvine et al., 2004 

Gain-

Risk 
Rhizosphere resistivity  (%) 50 Venturas et al., 2018 

Table 1. Canopy structure, root distribution and photosynthesis parameter values used in models.  214 

 215 

2.3 Stomatal sub-models in SPA 216 

 217 

We compared four sub-models with unique assumptions regarding stomatal behavior within the 218 

SPA model framework, each including explicit hydraulic mechanisms that down regulate 219 

stomatal conductance in response to more negative plant water potential. We implemented 220 

hydraulic constraints to the Ball et al., (1987) model (hereafter referred to as BB-H) and the 221 

Medlyn et al., (2011) model (MED-H); and use two different definitions of stomatal efficiency in 222 
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the SPA optimization scheme based on intrinsic water use efficiency (WUEi) and the ratio of 223 

CO2 assimilation to transpiration (WUE). 224 

 225 

The predominant semi-empirical model for stomatal functioning was developed by Ball et al., 226 

(1987) who defined a simple linear approximation of the relationship between photosynthesis 227 

and stomatal conductance to water (gw; mol H2O m-2 s-1) based on gas exchange data: 228 

      𝑔𝑤 = 𝑔0 + 𝑔1𝐵  (
𝐴∗𝑟ℎ

𝐶𝑎
)              (2) 229 

where A is the net assimilation rate (𝜇mol CO2 m-2 s-1), rh is the relative humidity at the leaf 230 

surface (mol mol-1), Ca is the atmospheric CO2 concentration at the leaf surface (𝜇mol mol-1) and 231 

g0 and g1B are fitted parameters. While g0 and g1B are determined by fitting the equation to leaf-232 

gas exchange data, both represent physiologically meaningful quantities (Franks et al., 2017). 233 

The intercept parameter, g0, is the minimum stomatal conductance and is usually close to zero. 234 

We set g0 to 0.1 as in Franks et al., (2017) throughout this study. The slope parameter, g1B, is 235 

generally representative of gw/A, the reciprocal of the intrinsic water use efficiency, A/gw 236 

(Farquhar, 1989; Feng et al., 1999). The Ball et al., (1987) model assumes that stomata respond 237 

to relative humidity at the leaf level, but it is more likely that stomata sense water fluxes (Aphalo 238 

& Jarvis, 1991) and respond to changes in water status of the leaf tissue (Buckley, 2005; 2019).  239 

 240 

An alternative framework for stomatal function was developed by Cowan and Farquhar (1977) 241 

based on the premise that optimal stomatal behavior maximizes carbon gain minus the carbon 242 

cost of water loss, A – 𝜆𝐸, where 𝜆 is often defined as the water use efficiency. By combining 243 

theory of optimal stomatal control (Cowan & Farquhar, 1977) and photosynthesis (Farquhar et 244 

al., 1980), Medlyn et al., (2011) derived the following expression for stomatal conductance: 245 

𝑔𝑤 = 𝑔0 + 1.6 (1 +
𝑔1𝑀

√𝑉𝑃𝐷
) 

𝐴

𝐶𝑎
           (3) 246 

Where VPD is the vapor pressure deficit (kPa), and g0 and g1M are fit parameters. Despite having 247 

a similar form to the Ball et al., (1987) model, the fit parameter g1M in the Medlyn et al., (2011) 248 

model has a different theoretical interpretation: g1M is proportional to the marginal water cost of 249 

carbon (λ) and the CO2 compensation point (Ⲅ): 250 

𝑔1𝑀  = √
3𝛤𝜆

1.6
               (4) 251 
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In this application, we introduce a hydraulic constraint into the Ball et al., (1987) and Medlyn et 252 

al., (2011) stomatal models similarly to the approach of Wolf et al., (2016). At short time scales, 253 

λ is usually treated as an unknown fitted constant but λ can also be determined from system 254 

boundary conditions and generally follows an exponential function with soil moisture (Cowan 255 

1986, Mäkelä et al., 1986; Manzoni et al., 2013), therefore supporting our semi-empirical model 256 

variations. Specifically, the instantaneous leaf water potential in each canopy layer modifies the 257 

g1 parameter according to a Weibull function based on the leaf hydraulic vulnerability curve as:  258 

        𝑔1 = 𝑔10
∗ 𝑒−(

−𝐿𝑊𝑃

𝑏
)

𝑐
 
                       (5) 259 

Where 𝑔10
 is the value of 𝑔1 when soil water potential is near zero, LWP represents the 260 

instantaneous leaf water potential (MPa), and the Weibull b and c parameters are fitted according 261 

to measurements of ponderosa pine hydraulic leaf hydraulic vulnerability (Figure S1). Hereafter 262 

we refer to the Ball et al., (1987) and Medlyn et al., (2011) models with hydraulic constraints as 263 

BB-H and MED-H, respectively.  264 

 265 

In the default SPA model, stomatal conductance shares some commonalities with theory of 266 

optimal stomatal behavior (Cowan & Farquhar, 1977). Stomatal conductance is calculated to 267 

maximize assimilation, given transport of water from soil-to-leaf, plant water storage, and 268 

hydraulic safety margins (Figure 1). The optimization scheme incrementally increases stomatal 269 

aperture until further opening either: 1) does not increase carbon gain per unit water loss (defined 270 

by the stomatal efficiency parameter); or 2) causes leaf water potential to drop below a pre-set 271 

minimum value (minLWP). The stomatal efficiency is defined as the assimilation divided by the 272 

stomatal conductance to water (A/gw) and we refer to this version of the SPA model as WUEi. 273 

Bonan et al., (2014) introduced an alternate definition of stomatal efficiency into the SPA model, 274 

A/T, which we refer to as WUE. Both implementations can represent conservative to more 275 

intensive plant water use behavior. For example, conservative behavior is achieved by setting a 276 

higher stomatal efficiency value and increasing the amount of appreciable carbon gain per unit 277 

increase in stomatal opening. As a result, excessive transpiration is avoided in the morning when 278 

atmospheric demand is low in order to preserve water to buffer the effects of high mid-day 279 

atmospheric demands (i.e., more isohydric behavior). Low values of stomatal efficiency result in 280 

intensive water use (higher optimal gw and more transpiration).  281 

 282 
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2.4 Gain-Risk big-leaf model description 283 

 284 

We also applied the model of Sperry et al., (2017), a big-leaf model with five soil layers 285 

(hereafter referred to as the Gain-Risk model). Stomatal functioning in the Gain-Risk model is 286 

based on optimization theory and assumes plants maximize carbon gain while minimizing 287 

hydraulic risk (Sperry & Love, 2015; Sperry et al., 2016, 2017; Wolf et al., 2016; Anderegg et 288 

al., 2018). The resulting coordination between stomatal and xylem functioning agrees well with 289 

observations (Meinzer et al., 2009) and more strongly agrees with leaf-level gas exchange data 290 

than the classic Cowan-Farquhar based optimization models (Anderegg et al. 2018; Wang et al. 291 

2020). Carbon gain is calculated as in the SPA model (Farquhar et al., 1980) and the carbon gain 292 

function, 𝛼, is defined at a given value of T as: 293 

 𝛼 =  
𝐴𝑛𝑒𝑡

𝐴𝑚𝑎𝑥
             (6) 294 

Hydraulic risk is defined as the fractional loss of hydraulic conductance. Vulnerability to 295 

cavitation curves (VC’s) for each xylem element (roots, stem, and leaves) are represented by 296 

two-parameter Weibull functions: 297 

𝐾 = 𝐾𝑚𝑎𝑥 ∗ 𝑒−(
−𝑝

𝑏
)

𝑐
 
                                          (7) 298 

 299 

Where K is the hydraulic conductance, Kmax is the maximum hydraulic conductance, p is the 300 

pressure imposed on each xylem element, and b and c are fit parameters (Figure S1). At each 301 

increment in T, the pressure drop across xylem elements (pup – pdown) is calculated and the supply 302 

function is then defined as the relationship between T and canopy water potential (P): 303 

𝑇 =  ∫ 𝐾(𝑃)𝑑𝑝
𝑃𝑑𝑜𝑤𝑛

𝑃𝑢𝑝
                          (8) 304 

The derivative of the supply function (Kc = dT/dP) represents the hydraulic conductivity loss 305 

which is at a maximum (Kcmax) when T=0, and the hydraulic risk function (𝜃) is defined as the 306 

fractional loss in Kc at a given value of T: 307 

𝜃 = 1 −
𝐾𝑐

𝐾𝑐𝑚𝑎𝑥
             (9) 308 

The Gain-Risk model finds the optimal stomatal conductance by incrementing T from zero and 309 

calculating the marginal carbon gain, 𝛼, given the environmental conditions at that time step. 310 

The hydraulic risk is calculated from the change in P and the optimal T rate is that which 311 

maximizes the difference between the carbon gain function and the hydraulic risk function. The 312 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

stomatal conductance is then calculated from the optimal T and the VPD at that time step as in 313 

the SPA model. Fluxes are then scaled from leaf area to basal area to ground area using 314 

measurements from Irvine et al., (2004) (Table 1). We ran the Gain-Risk model without xylem 315 

refilling to capture permanent losses in hydraulic conductivity that lead to reductions in 316 

transpiration and assimilation after a drought. To ensure that soil water stress was identical 317 

across models we prescribed soil water potential in the Gain-Risk model from measurements of 318 

soil water content and measured soil water retention curves as with the SPA model. 319 

 320 

2.5 Parameterization of stomatal sub-models and hydraulic function 321 

 322 

We prescribed model parameter values based on plant trait measurements available in the 323 

literature rather than best-fit calibrations in order to reflect how formulations may be used in 324 

Earth System Models. Additionally, our goal was to ensure that all parameters with the same 325 

mechanistic meaning were equivalent. Therefore, differences in model performances better 326 

reflect adequacy of model structures versus differences due to varying parameter calibrations. 327 

 328 

Franks et al., (2017) demonstrated that equivalent g1 parameter values for the Ball et al., (1987) 329 

and Medlyn et al., (2011) models can be derived as: 330 

    𝑔1𝐵 ≈
1.6

𝑟ℎ
∗ (1 +

𝑔1𝑀

√𝑣𝑝𝑑
)     (10) 331 

Additionally, the WUE stomatal efficiency parameter (𝜄) in the SPA model is equivalent to 1/𝜆 332 

thus equations 3 and 4 can be used to determine the equivalent value of 𝜄 for a given value of the 333 

g1M parameter. In this application we set the Medlyn et al., (2011) g1M parameter to 2.35, 334 

determined from gas-exchange data in Lin et al., (2015) representing needleleaf plant functional 335 

types. We determined g1B and 𝜄 from equations 10 and 4, respectively, with air temperature = 336 

25°C, rh = 0.45, and 𝛤 = 40 𝜇𝑚𝑜𝑙/𝑚𝑜𝑙 (Table 2). The Gain-Risk model does not have an 337 

equivalent parameter since the water use efficiency is diagnosed from the relationship between 338 

carbon gain and hydraulic risk.  339 

 340 

The Gain-Risk, WUEi and WUE models all use the leaf specific conductance, which was set to 341 

8.2 mmol m-2 s-1 MPa-1 for a Ponderosa pine as per Johnson et al., (2009). The leaf and root 342 
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hydraulic vulnerability curves used in the Gain-Risk model were from previous studies of 343 

ponderosa pine (Sperry et al., 2019), while the stem VC was measured at the site but agrees well 344 

with literature values used by Sperry et al., (2019). Although the BB-H and MED-H approaches 345 

impose hydraulic limitation on stomatal functioning differently than the Gain-Risk model, we 346 

used consistent Weibull b and c parameters from the leaf VC in equation 6 (Figure S1).  347 

 348 

BB-H Parameter Unit Value Range 

g1B Fit parameter unitless 14.2  (6, 14) 

Weibull b VC parameter -MPa 2.8  (1, 5) 

Weibull c VC parameter unitless 3.7 (1, 5) 

 

MED-H 

 

g1M Fit parameter kPa0.5 2.35 (1, 5) 

Weibull b VC parameter -MPa 2.8 (1, 5) 

Weibull c VC parameter unitless 3.7 (1, 5) 

 

WUEi/WUE 

 

gplant Leaf specific 

conductance 

Mmol m-2 s-1 

MPa-1 

8.2 (3, 30) 

minLWP Minimum leaf 

water potential 

MPa -2 (-5, -1.7) 

 𝜄 stomatal 

efficiency 

(WUEi: dA/dgs, 

WUE: dA/dE) 

(umol CO2 

/molH2O) 

0.0135 / 1350  (0.00375,0.03) 

(375, 3000) 

 

 

Gain-Risk 

    

Kmax Maximum 

conductivity  

Kg h-1 MPa-1 m-2 120 (43, 424) 

LSC Leaf specific 

conductance 

Mmol m-2 s-1 

MPa-1 

8.2 (3, 30) 

Weibull b VC parameter -MPa 

(root/stem/leaf) 

1.56 / 4 / 2.8 (0.8, 2.2) 

Weibull c VC parameter unitless 

(root/stem/leaf) 

1.4 / 3.4 / 3.7 (2, 3.5) 

     

Table 2. Stomatal conductance model parameter definitions, values, and perturbation ranges for 349 

sensitivity analysis.  350 

 351 

In this study we always assumed plants modify stomatal function instantaneously. The original 352 

formulations of WUEi, WUE, and Gain-Risk models modify the water use efficiency in response 353 
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to hydraulic constraints on instantaneous timescales. For consistency, we made the same 354 

assumption in the BB-H and MED-H models by modifying the g1 parameter based on 355 

instantaneous LWP. Though there is insufficient observational evidence to indicate whether 356 

stomata respond instantaneously to stimuli, we tested our assumption by comparing simulated 357 

canopy conductance using the predawn versus instantaneous LWP to represent slower versus 358 

faster responses of water use efficiency to hydraulic stress. We found that the simulated canopy 359 

conductance better matched the diurnal shape of the observed canopy conductance when the 360 

instantaneous LWP was used (Figure S2). Continuous measurements of canopy water potential 361 

are needed to help constrain these processes and inform model representation. Additionally, all 362 

models used in this study assumed hydraulic stress only modified stomatal function, but there is 363 

ongoing debate on how non-stomatal responses to hydraulic stress should be implemented in 364 

ecosystem models (Zhou et al., 2013). 365 

 366 

 367 

Figure 1. Schematic of leaf flux calculations using the BB-H and MED-H models in the SPA 368 

model (left), the WUEi and WUE optimizations in the SPA model (center), and the Gain-Risk 369 

model (right).  370 

 371 
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Increment T

Calculate leaf temperature

Calculate leaf VPD

Determine diffusive conductance

Calculate net assimilation

and gain function

Calculate hydraulic risk 

Does T = Tcrit ?

Yes No

Gain-Risk WUEi & WUEBB-H & MED-H

Increment gs

Calculate leaf temperature

Calculate metabolic parameters 

Vcmax & Jmax

Calculate Transpiration 
T = gw VPD

Calculate change in LWP

Is dA/dgs > iota or LWP > minLWP

No Yes

Yes

Did ci converge?

Calculate gw and ci

Calculate assimilation
Metabolic model = Diffusion model

No

Increment ci

Increment leaf temperature

Calculate metabolic parameters 
Vcmax & Jmax

Did leaf temperature converge?

NoYes

Yes

Calculate transpiration, LWP, 

and leaf temperature

Calculate g1 parameter at given LWP

Did ci converge?

Calculate gw and ci

Calculate assimilation
Metabolic model = Diffusion model

No

Increment ci



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

To elucidate model parameter sensitivity and parameterization uncertainty across models we 372 

performed a perturbed parameter experiment. Parameters related to hydraulic and stomatal 373 

functioning were modified simultaneously within ranges defined by literature or expert 374 

solicitation (Table 2). We performed a Fourier amplitude sensitivity test (FAST; Saltelli and 375 

Bolado, 1998) to quantify the contribution of each parameter to the total variance in T. See 376 

supplementary information for further description (Text S2, Figures S3, S4).  377 

 378 

2.6 Functional performance evaluation  379 

 380 

We performed a series of diagnostics to quantify and compare model functional performance 381 

under conditions spanning well-watered to atmospheric and/or soil drought stressed. We 382 

employed three evaluation strategies, including the analysis of (i) diurnal processes individually; 383 

(ii) effective functional relations between processes and an environmental driver; (iii) joint 384 

causal relations and functional performance metrics based on information theory. We grouped 385 

the data (June–August of 2006–2018) according to inter-quartile ranges of SWP and VPD to 386 

examine varying degrees to atmospheric and/or soil water stress. We aggregated SPA leaf-level 387 

process simulations over all canopy layers, scaled by the assimilation in the sunlit and shaded 388 

fraction of each layer to compare to the ecosystem-scale observations and to maintain 389 

consistency with the Gain-Risk model that takes a big-leaf approach (with sunlit and shaded 390 

fractions).  391 

 392 

We first explored modeled ecosystem-scale processes on diurnal time scales to understand how 393 

model assumptions manifest. We compared models in terms of diurnal simulations of 394 

transpiration (T); canopy conductance (Gc); canopy water potential (P); gross primary production 395 

(GPP); the ratio of internal to external partial pressure of CO2 (Ci/Ca); and the difference between 396 

canopy and air temperature (Tcan - Tair). We then compared the simulated diurnal cycle of T under 397 

four different levels of atmospheric and/or soil water drought stress to examine how model 398 

assumptions affect the diurnal cycle of T in response to environmental stress. We also focused on 399 

differences between observed and modeled canopy temperature (Tcan) because it plays a critical 400 

role in the calculation of photosynthetic rates and in the optimization of stomatal conductance. 401 

Tcan can diverge from the air temperature by several degrees, particularly when air temperatures 402 
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are high (Kim et al., 2016) which can have large consequences for leaf metabolic processes (Still 403 

et al., 2019). To illustrate the consequences of Tcan biases we performed simulations with the 404 

MED-H model where we prescribed model leaf temperature as the measured canopy 405 

temperature. 406 

 407 

We then evaluated how different model representations influence the sensitivity of Gc to VPD 408 

under both low and high soil water stress following Novick et al., (2016). We derived Gc 409 

empirically from sapflow and meteorological data and scaled the empirical and modeled Gc 410 

estimates by their respective seasonal maximum. We fit an exponential decay function to the 411 

rescaled data and compared Gc sensitivity to VPD in observations and models during low water 412 

stress days (SWP > 75th percentile) high water stress days (SWP < 25th percentile) separately. 413 

We quantified uncertainty in the empirical pattern by modifying the sapflow-derived 414 

transpiration by ±40% and re-calculating Gc. 415 

 416 

We also examined differences in model relations between water use efficiency and water 417 

potential via Ci/Ca. The ratio Ci/Ca is thought to be a balance point between the stomatal supply 418 

and photosynthetic demand for CO2 and therefore is a measure of water-use efficiency and its 419 

response to environmental conditions. Ci/Ca can be inferred from observed ratios of 13C to 12C in 420 

cellulose in leaf tissue or tree rings (13C), which have been previously used to constrain model 421 

uncertainties (Lavergne et al., 2019). We compared estimated 13C from model simulations 422 

using the equation from Farquhar et al., (1982): 423 

∆13C ≈ 𝑎 + (𝑏 − 𝑎)
𝐶𝑖

𝐶𝑎
           (11) 424 

where a and b represent the isotopic fractionations due to diffusion of CO2 in air (4.4‰) and 425 

Rubisco carboxylation (27‰), respectively. Here we exclude the explicit fractionation term for 426 

photorespiration and assume infinite boundary layer and mesophyll conductances and negligible 427 

fractionation during mitochondrial respiration (Evans and von Caemmerer, 2013).  428 

 429 

We used functional performance metrics based on information theory to quantify the ability of 430 

models to reproduce the causal influence of atmospheric water demand and soil water supply 431 

together on T as a mapping of inputs to outputs. We therefore evaluated how models represent 432 

hydraulic function and feedbacks on gas exchange overall with non-parametric metrics, which 433 
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are especially relevant because ecosystem-scale data and processes are highly uncertain 434 

(Bassiouni and Vico, 2021). Information theory is based on Shannon Entropy (Shannon, 1948), a 435 

measure of uncertainty in a random variable or the information required to fully predict that 436 

variable. Additionally, mutual information is a measure of the reduction of uncertainty or shared 437 

information that knowledge of another variable can provide (Cover & Thomas 2012). 438 

Quantifying this shared information among environmental variables, or information flows, has 439 

been proven useful in inferring causal interactions among variables in complex ecohydrological 440 

systems (Ruddell & Kumar, 2009; Goodwell et al., 2020).  441 

 442 

Specifically, we quantified the information VPD and SWP together provide about observed T. 443 

This quantity, the multi-variate mutual information, can be partitioned into four non-negative 444 

components (Goodwell and Kumar, 2017) to measure patterns in plant hydraulic controls: unique 445 

information (𝑈𝑉𝑃𝐷 and 𝑈𝑆𝑊𝑃) that only VPD or SWP provide about T; synergistic information 446 

(𝑆) that is provided only when both variables are known together; and redundant information (𝑅) 447 

that either variable can provide. We therefore evaluated the influence of both VPD and SWP on 448 

T which is otherwise challenging to disentangle with established parametric approaches (e.g., 449 

Novick et al., 2016).  450 

 451 

Each model structure may produce the four types (𝑈𝑉𝑃𝐷, 𝑈𝑆𝑊𝑃, 𝑆, and 𝑅) of information 452 

differently, and here we quantified model functional performance by comparing information 453 

flows in the models to those in the observations at the daily time scale following Bassiouni & 454 

Vico, (2021). As such, we calculated six functional performance metrics as the relative 455 

difference between observed and modeled total mutual information (𝐴𝑓, 𝑇); individual 456 

information partitioning components (𝐴𝑓, 𝑉𝑃𝐷 , 𝐴𝑓, 𝑆𝑊𝑃, 𝐴𝑓, 𝑆. 𝐴𝑓, 𝑅); and the sum of the absolute 457 

values of the partitioning accuracies (𝐴𝑓,𝑃 = |𝐴𝑓,𝑆𝑊𝑃| + |𝐴𝑓,𝑉𝑃𝐷| + |𝐴𝑓,𝑆| + |𝐴𝑓,𝑅|). Additionally, 458 

we quantified predictive performance (𝐴𝑝) in terms of the relative fraction of missing 459 

information about T in the model compared to observations. This metric is calculated as the 460 

relative difference between the entropy of observed T and the mutual information between 461 

observed and modeled T. We estimated uncertainty by re-calculating the functional performance 462 

metrics from 10,000 bootstrapped samples of 80% of the data. For all performance metrics a 463 

value of 0 is a perfect match between models and observations. 464 
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 465 

3 Results 466 

 467 

3.1 Diurnal cycle of ecosystem processes 468 

 469 

We examined simulated processes on hourly timescales to elucidate how model assumptions 470 

manifest in ecological functioning. For illustration, we show simulated days in mid-August 2010 471 

when root-weighted soil water potential was below -1 MPa and daily maximum VPD increased 472 

from 1 to nearly 3 kPa (Figure 2). Generally, observed T peaked in the morning and tapered off 473 

throughout the day. All models adequately represented the diurnal transpiration except the Gain-474 

Risk model which predicted T peaking in the afternoon. Similarly, observed Gc peaked in the 475 

morning and was reduced quickly throughout the day. All models simulated the shape of the 476 

diurnal cycle in Gc well, however the magnitude of Gc in the BB-H, MED-H, WUEi, and WUE 477 

models was lower than the observed estimate. The Gain-Risk model simulates a slight increase 478 

in Gc in the afternoon due to the way Gc is calculated: the model determines the optimal 479 

transpiration rate from the Gain-Risk functions, and then stomatal conductance to water vapor, 480 

gw, is calculated as T=gw*VPD. Thus, as transpiration and VPD increase through the day gw must 481 

decline, and as transpiration declines through the afternoon, gw increases again.  482 

 483 

The simulated canopy water potential, P, illustrates the impact of the minimum LWP threshold 484 

set in the WUEi and WUE models. Once the threshold is reached the gw is reduced to avoid 485 

cavitation and the minimum LWP is maintained throughout the day. Despite using more 486 

sophisticated hydraulic constraint functions, the Gain-Risk model simulates a similar diurnal 487 

shape in P. The hydraulic limitation in the BB-H and MED-H models modifies the g1 parameter 488 

as a function of instantaneous LWP; this implementation reduces GPP and T but there are no 489 

direct constraints on how low the canopy water potential can get and consequentially the mid-490 

day canopy water potential reaches much lower values compared to the other models.  491 

 492 

The magnitude and shape of gross primary productivity (GPP) is well captured by all models; 493 

however, the sub-daily variability is not well simulated. All models simulate a much smoother 494 

and consistent diurnal cycle of GPP whereas the observations are much more variable. The 495 
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simulated ratio of intercellular CO2 concentration to atmospheric CO2 concentration (Ci/Ca) often 496 

reached minimum values around 0.5 by mid-afternoon.   497 

  498 

 499 

Figure 2. Diurnal cycle of measured or model simulated leaf level processes in mid-August 500 

2010. (a) measured above-canopy VPD (kPa) and root-weighted soil water potential (MPa), (b) 501 

transpiration (mm/day) with observations derived from sapflow measurements (black dotted 502 
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lines), shading represents uncertainty of ±40% as per Ruehr et al., (2014), (c) canopy 503 

conductance (mmol/m2/s); observations estimated from sapflow measurements (black dotted 504 

lines) with shading representing uncertainty in sapflow estimates of transpiration, (d) simulated 505 

canopy water potential (MPa); (e) gross primary productivity (umol m-2 s-1); and (f) simulated 506 

ratio of internal leaf CO2 to atmospheric CO2 concentrations. 507 

 508 

All models adequately simulated the annual cycle of T and GPP for 2006-2018 (Figure S5) but to 509 

better understand model functional performance we evaluated model responses in varying 510 

environmental conditions. We assessed how models modify the shape of the diurnal cycle in T in 511 

response to VPD and SWP stress, according to four categories: high VPD and low SWP, high 512 

VPD and high SWP, low VPD and low SWP, and low VPD and high SWP (Figure 3). Low SWP 513 

is more negative and thus indicates higher drought stress. Generally, observed T peaks around 514 

9am and stays relatively constant throughout the day, illustrating the conservative water use 515 

strategies typical of ponderosa pines. On days with high VPD there is a midday depression in T, 516 

but if soil moisture is not limiting transpiration resumes in the afternoon. All models alter the 517 

magnitude and shape of the simulated diurnal cycle in response to VPD and soil water potential, 518 

albeit to differing degrees. When soil water stress is high (Figure 3a,c) all models limit mid-day 519 

T and shift to more conservative water use. Models show this largest divergence from one 520 

another when VPD is high and soil water supply is also high (Figure 3b); high atmospheric 521 

demand increases the simulated T (relative to panel d) by varying amounts. Notably, in all 522 

categories the diurnal cycle simulated with the Gain-Risk model is markedly different from the 523 

observations and the other models. The Gain-Risk model simulates too much T when soil water 524 

supply is high (Figure 3b,d) and simulated T peaks in the late afternoon since the VPD constraint 525 

on T is applied indirectly via the carbon gain function. 526 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

 527 
Figure 3. Average diurnal cycle of observed transpiration (black dashed) and modeled 528 

transpiration (colors) for days in July (2006–2018) with (a) maximum daily VPD above 75th 529 

percentile and root-weighted SWP below 25th percentile (18 days), (b) VPD > 75th percentile and 530 

SWP > 50th percentile (41 days) (c) VPD < 50th percentile and SWP < 25th percentile (28 days) 531 

and (d) VPD < 50th percentile and SWP > 50th percentile (119 days). Uncertainties in sapflow 532 

derived estimates of transpiration are estimated to be 40% (grey shading) as per Ruehr et al., 533 

(2014). 534 

 535 

3.2 Canopy temperature performance 536 

 537 

In August when air temperatures typically peak at this site the observed canopy temperature 538 

(Tcan) diverges from the air temperature (Tair) by mid-morning and can be two or three degrees 539 

warmer than Tair by mid-afternoon (Figure 4a). All models simulate a very slight increase in Tcan 540 

above Tair (<1°C) but fail to capture the large observed divergence of Tcan from Tair. The damped 541 
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response in modeled leaf temperature persists across models despite different representation of 542 

leaf temperature feedback mechanisms. Furthermore, the bias is similar between the multilayer 543 

canopy models (SPA) and the big-leaf model (Gain-Risk), which indicates the bias is not 544 

ameliorated with increased vertical resolution.   545 

 546 

Figure 4. Measured and modeled canopy-air temperature in August 2015. Average diurnal cycle 547 

(a) and measured versus modeled daytime mean canopy-air temperature (b).  548 

 549 

Prescribing observed leaf temperature in the MED-H model results in cooler morning leaf 550 

temperatures and warmer afternoon leaf temperatures (Figure 5a). The cooler morning leaf 551 

temperatures lead to more morning transpiration (Figure 5b). In August of 2015, the cumulative 552 

morning (8am-12pm) transpiration was 9% higher when using the prescribed canopy 553 

temperature. In the afternoons, the prescribed the canopy temperature was warmer than the 554 

modeled canopy temperature, which resulted in lower transpiration rates. The cumulative 555 

afternoon (12pm-4pm) transpiration in August 2015 was 4% lower when using the prescribed 556 

canopy temperature. These results indicate that resolving biases in modeled canopy temperature 557 

would lead to increased morning transpiration and decreased afternoon transpiration. These 558 

changes counteract one another, and the net effect was a 5% increase in total growing season 559 

(JJA) transpiration (not shown). 560 
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 561 

Figure 5. August 2015 canopy temperature (a) and transpiration (b) simulated with the MED-H 562 

model using the modeled canopy temperature (y-axis) or the prescribed canopy temperature (x-563 

axis). Shading represents the hour of day; data is shown on 30min time intervals between 8am 564 

and 4pm.  565 

 566 

3.3 Evaluation of the sensitivity of stomatal conductance to VPD 567 

 568 

When water stress was low (SWP above the 75th percentile) the observed Gc had a strong 569 

sensitivity to increasing VPD (Figure 6a). None of the models captured the sensitivity to VPD 570 

well, all models were less sensitive to VPD than observations. While models were generally 571 

indistinguishable, the WUEi model had the lowest sensitivity to VPD. This was expected given 572 

that the WUEi model optimizes ∆𝐴/∆𝑔𝑠 and thus does not have a direct dependency on VPD. 573 

The WUE optimization has a direct dependency on VPD since stomatal efficiency is defined as  574 

∆𝐴/∆𝑇 and thus Gc is more sensitive to VPD as was shown by Bonan et al., (2014). The BB-H 575 

and MED-H models have similar sensitivities to VPD even though the MED-H model directly 576 

relates gw to VPD whereas in BB-H gw is a function of rh. However, these results agree well with 577 

the findings of Franks et al., (2017) who illustrated that with equivalent parameterizations these 578 

two models have similar performance.  579 

 580 

When water stress was high (SWP < 25th percentile) the observed Gc was reduced and the 581 

sensitivity to VPD was weaker since Gc was already depressed (Figure 6b). The Gain-Risk 582 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

model captured the magnitude of the depression in Gc when VPD was low, illustrating that soil 583 

water potential alone exhibits a strong constraint on Gc in this model. The other models did not 584 

depress Gc sufficiently in response to water stress but were more sensitive to VPD, decreasing Gc 585 

quickly in response to higher VPD.  586 

 587 

 588 
Figure 6. Observed (black) and modeled (color) sensitivity of canopy conductance (Gc/Gcmax) to 589 

VPD when the soil water potential was greater than the 75th percentile (a), and when the soil 590 

water potential was less than the 25th percentile (b). Grey shading represents estimated error in 591 

Gc given 40% uncertainty in sapflow-derived transpiration. 592 

 593 

3.4 Variability in 13C and water stress  594 

 595 

We examined the simulated monthly mean daytime 13C for June through August 2006–2018. 596 

While observational measurements of 13C were not available at this site during the time period 597 

covered in this study, we found that the simulated values generally agreed with reported values 598 

from the literature. Bowling et al., (2002) reported carbon isotopic composition of ecosystem 599 

respiration from a nearby ponderosa site in 1996, 1997 and 2000. Assuming an atmospheric 600 

carbon isotope composition of -8‰ the reported values of 13C from Bowling et al., (2002) 601 

ranged from 16 to 20‰. Furthermore, they found that 13C decreased non-linearly with 602 

increasing VPD. Additionally, Ulrich et al., (2019) determined carbon isotope discrimination at 603 

this site using tree-ring cellulose. The reported annual values of 13C for 1990-2002 ranged from 604 

17 to 19.5‰, again assuming an atmospheric carbon isotope composition of -8‰.  605 
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  606 

We examined simulated 13C to differentiate among model responses to stress. We used the 607 

canopy water potential (P) as a measure of plant water stress and compared the simulated 608 

response in monthly mean daytime 13C across models (Figure 7a). In the BB-H and MED-H 609 

models, 13C decreased linearly with P. The Gain-Risk model also simulated a linear 610 

relationship, but 13C declined more rapidly with P indicating that Ci was reduced more quickly 611 

under stress. The WUEi and WUE models do not allow P to drop below a threshold (-2 MPa in 612 

this study) but the 13C can still be quite low when the minimum P is reached, resulting in an 613 

asymptotic relationship. 13C is inversely related to the water-use efficiency, defined as A/T, and 614 

when P was low all models simulated an increase in water-use efficiency (Figure 7b). The Gain-615 

Risk model had the lowest water-use efficiency under unstressed conditions, likely due to the 616 

lack of constraints on T when the hydraulic risk is low. This is consistent with the overestimation 617 

of T during unstressed conditions seen in previous results. Models clearly simulate distinct 618 

relationships between these measures of water-use efficiency and P during periods of both low 619 

and high environmental stress.  620 

 621 
Figure 7. Simulated relationships between monthly mean daytime canopy water potential, P, and 622 

13C (a) or assimilation/transpiration (A/T) (b) simulated for June, July, and August 2006–2018. 623 

 624 

3.5 Variability in information flows from VPD and SWP to T  625 

 626 
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The influence of VPD and SWP together on T was measured by their multi-variate mutual 627 

information partitioned into redundant, synergistic, and unique information components. When 628 

water stress was low (SWP>75th percentile) the information from SWP and VPD together 629 

reduced 43% of uncertainty (entropy) in daily T (Figure 8). The remaining information about T 630 

can be attributed to the influence of the other environmental factors such as net radiation, which 631 

is a strong control on T in the spring when soil water is most available. The unique information 632 

from VPD reduced 23% of the uncertainty whereas the unique information from SWP and 633 

synergistic information reduced 8 and 10% of the uncertainty, respectively. This indicates that 634 

when water stress was low, VPD was a more influential control on T than SWP. When soil water 635 

stress was high (SWP<25th percentile) the observed SWP and VPD reduced 57% of uncertainty 636 

in T (Figure 8). In the water-stressed late summer months, photosynthetically active radiation 637 

and temperature are usually less limiting and thus VPD and SWP are more influential on T 638 

compared to the early spring months. The unique information from SWP and VPD reduced 17% 639 

and 15% of the uncertainty, respectively, and the synergistic information reduced an additional 640 

23%. In both the cases, the redundant information between VPD and SWP was small.  641 

 642 

 643 

Figure 8. Reduction in uncertainty (mutual information) in daily transpiration rates attributable 644 

to vapor pressure deficit (VPD) and soil water potential (SWP), when SWP is above the 75th 645 

percentile (left) and below the 25th percentile (right). Mutual information is partitioned into 646 

synergistic, unique to VPD, unique to SWP, and redundant (R) information. The total area 647 

represents the entropy of transpiration and percentages are computed as the fraction of 648 
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transpiration entropy. Missing information represents the fraction of transpiration entropy that is 649 

not shared with VPD and SWP. 650 

 651 

We evaluated how well each model represented the functional relationships among daily VPD, 652 

SWP and T by taking the difference between information flows calculated from measurements 653 

and calculated from model simulations. When soil water stress was high (SWP<25th percentile) 654 

the more mechanistic models (WUEi, WUE, Gain-Risk) had higher predictive performance 655 

(lower Ap) than the semi-empirical models (BB-H, MED-H) and WUEi had the most accurate T 656 

estimates (Figure 9a). The WUEi, WUE, and Gain-Risk models most accurately simulated the 657 

total mutual information (Af,t closer to 0; Figure 9b) pointing to consistency in predictive and 658 

functional performance. The BB-H and MED-H models most underestimated the total mutual 659 

information contained in SWP and VPD about T and the Gain-Risk model was the only overly 660 

deterministic model (positive Af, t). In terms of the overall performance of information 661 

partitioning WUE and MED-H were the most accurate (Af, p close to 0) (Figure 9c), despite not 662 

having highest predictive performance. The Gain-Risk model had the poorest partitioning 663 

accuracy (highest Af, p), indicating that it may be reproducing the variability in T accurately but at 664 

the expense of poorer representation of the individual information flows. All models (excluding 665 

BB-H) accurately represented the unique information from SWP (Figure 9d) but the WUEi and 666 

Gain-Risk models overestimated the unique information from VPD (Figure 9e). The BB-H 667 

model overrepresented the synergistic information whereas the Gain-Risk model underestimated 668 

the synergistic information (Figure 9f). All models accurately captured the redundant 669 

information (Figure 9g).  670 

 671 
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 672 
Figure 9. Evaluation of model performance of daily transpiration (T) during growing season 673 

(May-August) of 2006 through 2018 when soil water potential (SWP) was below the 25th 674 

percentile (high soil water stress). (a) Predictive performance (𝐴𝑃, bits bit-1) quantifies the 675 

relative fraction of information missing in the model about T compared to observations. (b) Total 676 

functional performance (𝐴𝑓, 𝑇, bits bit-1) quantifies the relative difference between observed and 677 

modeled total multi-variate mutual information from SWP and VPD about T. (c) Functional 678 

accuracy (𝐴𝑓,𝑃 = |𝐴𝑓,𝑠𝑤𝑝| + |𝐴𝑓,𝑉𝑃𝐷| + |𝐴𝑓,𝑆| + |𝐴𝑓,𝑅|, bits bit-1) quantifies the relative difference 679 

between observed and modeled mutual information partitioning from SWP and VPD about T. 680 

The components of functional accuracy are partitioned into (d) unique from soil water potential 681 

(𝐴𝑓, 𝑠𝑤𝑝, bits bit-1), (e) unique from VPD (𝐴𝑓, 𝑉𝑃𝐷, bits bit-1), (f) synergistic (𝐴𝑓, 𝑆, bits bit-1), and 682 

(g) redundant (𝐴𝑓, 𝑅, bits bit-1) information. Boxes represent the interquartile range of 683 

bootstrapped samples; whiskers represent 5th and 95th percentiles; and white lines represent 684 

medians. For all metrics a value of zero indicates a perfect model-data match. 685 
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 686 

When water is not limiting (SWP>75th percentile) the predictive performance of all models was 687 

indistinguishable (Figure S6). The BB-H had the best total functional performance; all other 688 

models overestimated the strength of the total multi-variate mutual information from SWP and 689 

VPD about T. The functional accuracy of the BB-H model outperformed all other models since 690 

all other models overestimate the functional control of VPD on T and underestimate the 691 

synergistic information.  692 

 693 

4 Discussion 694 

 695 

4.1 Representing plant hydraulic strategies 696 

 697 

Plant water and carbon relations are strongly tied to the ways plants respond to hydrologic stress. 698 

It’s common to generalize plant hydraulic strategies along a continuum between isohydric and 699 

anisohydric behavior. Although this framework is oversimplistic it can be useful (Kannenberg et 700 

al., 2021) when comparing behavior with common environmental forcings such as in this study. 701 

The hydraulic limitation imposed in this study in the BB-H and MED-H models represents more 702 

anisohydric behavior, as the model structure allows the canopy water potential to reach low mid-703 

day levels (Figure 2). At low canopy water potentials, the BB-H and MED-H models increase 704 

the water-use efficiency (Figure 7) and constrain transpiration to peak in the morning (Figure 2 705 

& 3). Given the functional form of the hydraulic limitation we impose, alternate 706 

parameterizations cannot sufficiently represent the isohydric behavior characteristic of ponderosa 707 

pines. A steeper hydraulic vulnerability constraint (achieved by modifying the b and c 708 

parameters in eq. 6) would prevent the canopy water potential from reaching very low values but 709 

only by modifying the g1 parameter and thus reducing assimilation to near zero.  710 

 711 

The structure of the WUEi and WUE models fundamentally represents isohydric water-use 712 

strategies (Fisher et al., 2006). The minimum leaf water potential threshold limits stomatal 713 

conductance at a prescribed canopy water potential which results in conservative water use. The 714 

WUEi and WUE models maintain relatively constant transpiration and canopy water potential 715 

throughout the day (Figure 2). Less conservative water-use behavior can be achieved by setting 716 
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the minimum leaf water potential parameter to very low values (e.g., -6 MPa), then the stomatal 717 

efficiency parameter constrains plant water-use. However, there is a trade-off; the low settings of 718 

stomatal efficiency required to achieve anisohydric behavior also limit carbon assimilation. 719 

Williams et al., (1996) applied the WUEi model to a mixed deciduous broadleaf stand and was 720 

able to capture anisohydric behavior early in the growing season when canopy water potentials 721 

remained above the minLWP (set to -2.5MPa) but in the late growing season when canopy water 722 

potentials were low the model constrained mid-day water-use and was unable to capture the 723 

observed anisohydric behavior.  724 

 725 

The Gain-Risk model constrains the canopy water potential to avoid hydraulic damage. With the 726 

parameterization used in this application the model demonstrates conservative water use, 727 

maintaining relatively constant mid-day canopy water potentials (Figure 2). The Gain-Risk 728 

model can be parameterized to relax constraints on canopy water potential and can capture a 729 

range of water-use strategies as demonstrated by Sabot et al., (2020). However, the 730 

parameterization used here does not adequately capture the timing of water-use throughout the 731 

day (Figure 3). Ponderosa pines maximize canopy conductance and use water early in the day 732 

before the VPD gets too high (Figures 2 & 3), thus avoiding water loss while still maximizing 733 

carbon gain. The Gain-Risk model captures the early morning peak in canopy conductance 734 

(Figure 2), but it simulates transpiration peaking in the late afternoon, even under drought stress 735 

when the hydraulic risk is high. It is possible that alternate plant trait combinations would alter 736 

the diurnal cycle of transpiration. In addition, transpiration in the Gain-Risk model is very 737 

sensitive to soil water potential (see Figure 6 in Venturas et al., 2018) and any error in the diurnal 738 

cycle of soil or rhizosphere water potential propagates to transpiration. Future work is needed to 739 

determine if the Gain-Risk model can capture conservative water-use strategies on sub-daily 740 

temporal scales.  741 

 742 

4.2 Canopy temperature 743 

 744 

Accurately modeling canopy temperatures is critical for representing ecological processes, 745 

particularly as heat waves become more frequent and severe under changing climate conditions. 746 

While the biophysical drivers of canopy temperature vary among ecosystems, canopy 747 
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temperature is often more relevant to biological functioning than air temperature (Still et al., 748 

2019). The observed canopy temperature diverged from the air temperature by several degrees at 749 

this site. At night, canopy temperatures cooled below air temperatures and during the day canopy 750 

temperatures were nearly 3°C warmer than air temperatures (Figure 4). Similar behavior was 751 

shown by Kim et al., (2016) who found canopy temperature to be a strong predictor of net 752 

ecosystem exchange.  753 

 754 

All models examined in this study were unable to capture the divergence of canopy temperature 755 

from air temperature (Figure 4). Other modeling studies have found similar model deficiencies, 756 

for example, Holm et al., (2014) found that the CLM4 was unable to reproduce the range of leaf 757 

temperatures observed at a tropical site. Duursma and Medlyn, (2012) found that the MAESPA 758 

model was unable to capture the vertical profile of canopy temperatures using a multilayer 759 

canopy model. Venturas et al., (2018) compared leaf temperatures of Aspen measured with 760 

thermocouples to leaf temperatures simulated with the Gain-Risk model and found the model 761 

underestimated midday leaf temperatures (mean absolute leaf temperature error of 1.7°C or 762 

5.2%). Biases in leaf temperature influence the calculation of leaf-to-air VPD (used in the 763 

calculation of transpiration) and can propagate through photosynthetic and stomatal optimization 764 

functions. Furthermore, since leaf metabolic processes depend non-linearly on leaf temperature 765 

small biases can manifest into large discrepancies, impacting model performance. When the leaf 766 

temperature was prescribed in the MED-H model using the observed canopy temperature, the 767 

cumulative growing season mean transpiration was 5% higher. The increased morning 768 

transpiration and decreased afternoon transpiration better matched the observed diurnal pattern 769 

of sapflow measurements (Figure 5).  770 

 771 

These findings emphasize the need to address model deficiencies in the representation of canopy 772 

temperature. Big-leaf models have deficiencies in capturing canopy temperatures since the whole 773 

canopy experiences equivalent air temperatures. Multilayer canopy models can capture the 774 

vertical profiles of radiation and within-canopy air temperatures which studies have found to 775 

improve simulated surface fluxes (Chen et al., 2016; Bonan et al., 2018). In the SPA multilayer 776 

canopy model, the above-canopy temperature is applied at all canopy layers, assuming within-777 

canopy air is well-mixed. Bonan et al., (2021) demonstrated that using uniform vertical profiles 778 
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of air temperatures in multilayer canopy models results in nearly identical fluxes as big-leaf 779 

models. When the well-mixed assumption is removed and the vertical profile of air temperatures 780 

are resolved, Bonan et al., (2021) showed considerable improvement in canopy fluxes. This 781 

suggests that a first step toward addressing canopy temperature biases in multilayer models 782 

would be to resolve vertical air temperature profiles. A second step would be to examine the role 783 

of leaf boundary layer processes, which also likely contribute to leaf temperature biases. Finally, 784 

the accuracy of the radiation transfer scheme should be assessed, which requires within canopy 785 

observational data. 786 

 787 

4.3 Water-use efficiency 788 

 789 

Stable carbon isotopes have long been used to provide information on plant water use efficiency 790 

(Farquhar & Richards 1984; Farquhar et al., 1989; Condon, Richards & Farquhar 1993). The 791 

dynamics of isotopic discrimination can be used to evaluate how ecosystem models respond to 792 

environmental drivers on interannual timescales (Lavergne et al., 2019; 2020a; 2020b). Here we 793 

illustrated the value of 13C observations for discerning model behavior. The Gain-Risk model 794 

simulates the strongest reduction in monthly mean 13C in response to reduced canopy water 795 

potential (Figure 7). This is because the Gain-Risk model varies the water use efficiency 796 

optimally to maximize carbon gain while avoiding loss of hydraulic function. The WUEi model 797 

maintains near constant 13C until the minimum canopy water potential (-2 MPa) is reached. The 798 

stomatal efficiency parameter defines the marginal water cost of carbon that constrains the 799 

intrinsic water use efficiency (A/ gs) and thus the 13C. In the WUE model the stomatal 800 

efficiency parameter defines the instantaneous water use efficiency (A/T) and thus modifies 801 

the water use efficiency in response to VPD. Therefore, the decline in 13C with reduced canopy 802 

water potential simulated by the WUE model is likely attributable to the correlation between 803 

VPD and canopy water potential.  804 

 805 
The BB-H and MED-H models originally used a fixed water-use efficiency, defined by the g1 806 

parameter. Here we implemented a hydraulic stress constraint which modifies the g1 parameter in 807 

response to canopy water potential (eq. 5). The result is a linear reduction in 13C with reduced 808 

canopy water potential (Figure 7). Kennedy et al., (2019) implemented a similar constraint in the 809 
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CLM5 model but applied the hydraulic limitation by modifying Vcmax. Whether drought stress 810 

affects the water-use efficiency of plants or acts directly on photosynthetic capacity is still an 811 

open question. Zhou et al., (2013) found that downregulation of the g1 parameter was insufficient 812 

to account for observed changes in GPP in response to water limitation, and thus modification of 813 

Vcmax was required. However, Lin et al., (2018) suggest that the g1 parameter is not sensitive to 814 

water limitations and only the intercept, g0, and GPP are sensitive to soil water availability.  815 

 816 

Observations of 13C would be a valuable tool for better understanding the effects of drought 817 

stress on plant gas exchange and may elucidate differences in model representations of hydraulic 818 

functioning. The National Ecological Observatory Network (NEON) measures atmospheric CO2 819 

isotope ratios across ecosystems at high temporal frequencies (Fiorella et al., 2021). We suggest 820 

that this observational network could serve as a valuable model testbed and encourage future 821 

cross-site model evaluation studies.  822 

 823 

4.4 Information flows 824 

 825 

We took an information theoretical approach to decompose multi-variate mutual information 826 

between transpiration and its key drivers to assess process representation in models 827 

independently of parametric assumptions. Similarly to Bassiouni & Vico, (2021), we found that 828 

all models had high overall functional performance (Figure 9). Generally, the more empirical 829 

models (BB-H & MED-H) had better functional performance when soil water was not limiting 830 

(Figure S6) while models with more mechanistic representations of hydraulic functioning 831 

(WUEi, WUE, Gain-Risk) had better functional performance when soil water availability was 832 

low (Figure 9). It is common for more empirical, multiplicative models (such as MED-H) to 833 

better represent synergistic information while more mechanistic additive models (such as Gain-834 

Risk) can underestimate interactions among processes and thus trade synergistic for unique 835 

information. This result illustrates how semi-empirical models can compensate for incomplete 836 

process representation and capture functional relationships across scales, while incomplete 837 

processes in more mechanistic models are more easily discernible. The WUEi and Gain-Risk 838 

models had larger tradeoffs between predictive performance and functional accuracy compared 839 

to WUE and MED-H, pointing to the possibility that the WUEi and Gain-Risk models accurately 840 
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estimate the variability in transpiration at the expense of poorer process representations. This 841 

finding was clearer from the information metrics than the individual processes diagnostics.  842 

 843 

This study builds upon the work of Bassiouni & Vico, (2021) by implementing stomatal models 844 

within multi-layer canopy (and big-leaf) ecosystem models and solving optimization routines 845 

numerically. The findings of both studies agree; more mechanistic representations of plant 846 

hydraulic functioning did not substantially improve predictive performance or functional 847 

accuracy. Our results indicate that semi-empirical models, in particular MED-H, can be 848 

effectively adapted to incorporate hydraulic constraints based on measurable plant traits. Model 849 

evaluation metrics based on information flows allowed us to go beyond evaluating model 850 

performance based on magnitude and seasonality (e.g. Sabot et al., 2020) and examine the causal 851 

relationships among the physiological controls on transpiration. The performance metrics also 852 

complement the analysis of individual model sensitivities of Gc to VPD and Ci/Ca to P because 853 

they help differentiate between effective functional differences and predictive accuracy. 854 

However, additional analyses are needed to further interpret the mechanisms driving 855 

information-based performance metrics and test whether models with improved functional 856 

accuracy perform better under non-stationary climate conditions. We encourage cross-scale 857 

model evaluations spanning a range of ecosystems and advocate for the use of information 858 

theory to evaluate causal relationships in complex ecological systems. 859 

 860 

5 Conclusions 861 

 862 

As the consequences of model representation of stomatal functioning become apparent at large 863 

scales (e.g., Kala et al., 2016), much effort has gone into updating the representation of hydraulic 864 

functioning in Earth System Models (e.g. Kennedy et al., 2019, Eller et al., 2020, Sabot et al., 865 

2020). To ensure processes are adequately captured across scales, model evaluations must go 866 

beyond mean state and variability of leaf-level gas exchange measurements and find new ways to 867 

diagnose functional performance and leverage new analytical techniques. Here, we compared a 868 

suite of ecosystem models with different representations of hydraulic constraints on stomatal 869 

function and identified model specific strengths and deficiencies at a semi-arid ponderosa pine 870 

site. We found that models generally performed similarly under unstressed conditions, but 871 
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performance diverged under atmospheric and soil drought. The more empirical models over 872 

estimated synergistic information flows between soil water potential and vapor pressure deficit to 873 

transpiration, while the more mechanistic models were overly deterministic. 874 

 875 

This analysis highlights three directions for future ecosystem model development and evaluation: 876 

First, it’s likely that model structure constrains the flexibility of models to represent a broad 877 

spectrum of (an)isohydric behavior. Second, both multilayer canopy and big-leaf models were 878 

unable to capture the magnitude of the divergence of canopy temperature from air temperature 879 

and given the crucial role of canopy temperature in simulating metabolic processes, diagnosing 880 

the causes of model biases should be a priority. Lastly, models diverged in their representation of 881 

13C under stress thus measurements of stable carbon isotopes may help characterize ecosystem 882 

function and elucidate differences attributable to model structure. Future work is needed to 883 

explore model structural constraints on ecosystem functional behavior.  884 
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This supporting information file contains a text describing model updates (Text S1) and 

parameter sensitivity (Text S2), figures supporting the main text (S1 to S6).  
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Text S1. Updates made to the SPA model 

Following Ruehr et al., (2014), we increased soil evaporation in the SPA model by 

lowering the tortuosity from 2.5 to 1.0 which increased soil conductance to water vapor 

diffusion. We further increased the soil conductance to water vapor diffusion by scaling 

the porosity in the top soil layer from 0.37 to 0.9. Lastly, we reduced the soil roughness 

length from 0.13 to 0.01 times the canopy height (18m).  

 

As in Reuhr et al., (2014) a sigmoid function was added to scale aboveground tree 

conductance (gplant) by soil water potential (SWP) (eq. S1). We increased the sensitivity 

of gplant to SWP to improve model performance.  

  

𝑔𝑝𝑙𝑎𝑛𝑡 =  𝑔𝑝𝑙𝑎𝑛𝑡0 (0.2 +
0.8

(1+𝑒𝑥𝑝
(

(𝑆𝑊𝑃+0.784)
0.163⁄ )

)                    (eq. S1) 

 

We also added an option to use site-specific soil water retention equations relating soil 

water content (SWC) to SWP in place of the widely used equations based on soil texture 

from Saxton et al., (1986). In this application, we used the following water retention 

relations from Ruehr et al., (2014): 

𝑆𝑊𝑃 =  −0.04 −  
1.6

1+exp(
𝑆𝑊𝐶−0.096

0.0184
)
                                (eq. S2) 

  

Text S2. Parameter sensitivity analysis 

For each model, 100 unique parameterizations were selected using a Latin 

hypercube sampling design (McKay et al., 1979). Two-year simulations were performed 

beginning January 1st, 2006 and ending December 31st, 2007 using each 

parameterization. The modeled transpiration (T) and gross primary productivity (GPP) 

were averaged over two growing seasons (May-July of 2006 and 2007) for each 

simulation (Figure S3). We performed a Fourier amplitude sensitivity test (FAST; Saltelli 

and Bolado, 1998) to quantify the contribution of each parameter to the total variance in 
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T across the perturbed parameter ensemble. For each parameter, the FAST quantifies the 

main effect as the ratio of an individual parameter’s contribution to the total variance 

(Figure S4). Additionally, the proportion of variance contributed by interactions among 

parameters is quantified.  

 

We identified the parameters most influential on the growing season mean transpiration 

for each model. The WUEi and WUE models were sensitive to the plant conductivity 

(gplant), which represents 39% and 22% of variance in seasonal mean T respectively 

(Figure S4). The minimum leaf water potential (minLWP) was also influential, representing 

45% of variance in the WUEi model and 26% of variance in the WUE model. The WUE 

model was more sensitive to the stomatal efficiency parameter than the WUEi model 

(33% and 9% respectively). The iota parameter determines the plant water use strategy;  

low values of iota allow plants to use water liberally in the mornings which can lead to 

water depletion and stomatal closure in the afternoons. High values of iota represent a 

more conservative water strategy, but often lead to lower total daily carbon gains.  

 

In the Ball-Berry and Medlyn models the g1 parameter is the dominant source of 

variability (Figure S4). The parameters influencing hydraulic limitations on stomatal 

conductance (eq. 6: b and c) have less impact on the variance in seasonal mean T. This is 

because hydraulic limitations only constrain the simulated T when soil water potential is 

low during the late summer (July-August). Transpiration rates during the early growing 

season are much higher and likely dominate the seasonal mean T. The range of values 

for the g1 parameter is much larger (and thus much more influential on T) than the 

degree to which hydraulic limitation modifies g1 for the latter half of the summer.  

 

In the Sperry model, the maximum whole plant conductance parameter (Kmax) is most 

influential on growing season mean T, followed by the b parameter in the leaf hydraulic 

vulnerability curve (eq. 7; Weibullb). The Kmax parameter determines the unstressed rate of 

T, but this parameter can be constrained with measurements (e.g., Love et al., 2018). 
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Given the functional form of the hydraulic vulnerability curve (eq. 7), the Weibullb 

parameter determines the point at which hydraulic conductivity falls to 50%, whereas the 

Weibullc parameter determines the steepness of the curve, i.e., how gradually the 

hydraulic conductivity falls to 50% of maximum conductivity. Given this relationship it is 

expected that perturbations to the Weibullb parameter are more influential on growing 

season mean T since it effectively determines how early in the summer T begins to be 

constrained by water availability. The leaf specific conductivity parameter (LSC) was not 

influential on growing season mean T (Figure S4).   

 

  
Figure S1. Hydraulic vulnerability curves (VC’s) for leaves, stem, and roots used in the 

gain-risk model. The leaf VC is fit to ponderosa pine data from Johnson et al., (2009) as 

used in Sperry et al., (2019). The stem VC was measured at the US-Me2 site and agrees 

well with curves fit to data in Sperry et al., (2019). The root VC was fit to measurements 

from Stout & Sala, 2003, Domec et al., 2004, and Koepke & Kolb, (2013) as used in Sperry 

et al., (2019). The same leaf VC was used in the MED-H and BB-H models. 
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Figure S2. Simulated canopy conductance using the Ball-Berry and Medlyn models with 

hydraulic limitations based on instantaneous leaf water potential (solid) or predawn leaf 

water potential (dashed).   

 

 
Figure S3. Model-simulated GPP (umol/m2/s) and transpiration (mm/day) during 

daytime averaged over the growing season (May-July) in 2006 and 2007 using 100 

unique parameterizations. Observed GPP and T are shown in black with an oval 

representing measurement uncertainty. The non-linear relationship suggests that 

Rubisco limits GPP when transpiration rates are high, as opposed to stomatal limitation.  
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Figure S4. Proportion of the total emulated variance (total=1) in the 2006/2007 growing 

season mean transpiration contributed from perturbations of individual parameters, 

estimated with the Fourier Amplitude Sensitivity Test (FAST), and parsed into main 

effects (colors) and interaction terms among parameters (grey) for each model. 

Parameter sensitivity in the gain-risk model agrees well with previous studies (Venturas 

et al., 2018).  

 
Figure S5. Mean annual cycle (2006–2018) of measured (black) and modeled (color) 

daytime (8am-4pm) transpiration (top; mm/day) derived from sapflow measurements 

and gross primary productivity (bottom; umol/m2/s) from eddy-covariance 

measurements. Grey shading represents the range of observed monthly mean values 

from 2006–2018.  
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Figure S6. Evaluation of model predictive performance and information partitioning of 

daily transpiration (T) during growing season (May-August) of 2006 through 2018 when 

soil water potential (SWP) was above the 75th percentile (i.e., low soil water stress). (a) 

Predictive performance (𝐴𝑃, bits bit-1) quantifies the relative fraction of information 

missing in the model about T compared to observations (a perfect model would have 

zero missing information). Boxes represent the interquartile range of bootstrapped 

samples; whiskers represent 5th and 95th percentiles; and white lines represent medians. 

(b) Functional performance; the relative difference between observed and modeled total 

multi-variate mutual information from SWP and VPD about T (𝐴𝑓, 𝑇, bits bit-1). (c) 

Functional accuracy; the sum of multi-variate mutual information from SWP and VPD 

about T (𝐴𝑓,𝑃 = |𝐴𝑓,𝑠𝑤𝑝| + |𝐴𝑓,𝑉𝑃𝐷| + |𝐴𝑓,𝑆| + |𝐴𝑓,𝑅|, bits bit-1). The components of 

functional accuracy are partitioned into (d) unique from soil water potential (𝐴𝑓, 𝑠𝑤𝑝, bits 

bit-1), (e) unique from VPD (𝐴𝑓, 𝑉𝑃𝐷, bits bit-1), (f) synergistic (𝐴𝑓, 𝑆, bits bit-1), and (g) 

redundant (𝐴𝑓, 𝑅, bits bit-1) information.
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