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Abstract

Turbulent mixing at centimetre scales is an essential component of the ocean’s meridional overturning circulation and its

associated global redistribution of heat, carbon, nutrients, pollutants and other tracers. Whereas direct turbulence observations

in the ocean interior are limited to a modest collection of field programs, basic information such as temperature, salinity and

depth ($T,S,Z$) is available globally. Here, we show that supervised (deep) machine learning algorithms, informed by physical

understanding, can be trained on the existing turbulence data to develop skillful predictions of the key properties of turbulence

from $T,S,Z$ and topographic data. This constitutes a promising first step toward a hybrid physics - artificial intelligence

approach to parameterize turbulent mixing in climate-scale ocean models.

1



manuscript submitted to Geophysical Research Letters

Deep ocean learning of small scale turbulence1

Ali Mashayek1, Nick Reynard1, Fangming Zhai1, Kaushik Srinivasan2, Adam2

Jelley3, Alberto Naveira Garabato4, Colm-cille P. Caulfield5
3

1Imperial College London, UK4
2University of Califorina Los Angeles, USA5

3University of Edinburgh, UK6
4University of Southampton, UK7
5University of Cambridge, UK8

Key Points:9

• Machine learning can be used to infer ocean turbulent mixing from basic seawater10

and geometric properties.11
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Abstract16

Turbulent mixing at the sub-meter scale is an essential component of the ocean’s meridional17

overturning circulation and its associated global redistribution of heat, carbon, nutrients,18

pollutants and other tracers. Whereas direct turbulence observations in the ocean interior19

are limited to a modest collection of field programs, basic information such as temperature,20

salinity and depth is available globally. Here, we show that supervised machine learning al-21

gorithms can be trained on the existing turbulence data to develop skillful predictions of the22

key properties of turbulence from T, S, Z and topographic data. This constitutes a promis-23

ing first step toward a hybrid physics-artificial intelligence approach to parameterization of24

turbulent mixing in climate models.25

Plain Language Summary26

Ocean turbulence plays an important role in sustaining the general ocean circulation27

and in the mixing of heat, carbon, nutrients, and other processes within the ocean interior.28

Turbulent mixing is technically challenging to measure and is often inferred from measur-29

able quantities using parameterizations that are based on numerous simplifying assumptions30

about the physics of turbulence. In this study, we show that artificial intelligence (more31

specifically, various machine learning algorithms) can be successfully employed to infer tur-32

bulent mixing from quantities measured routinely by global observational programs.33

Introduction34

Turbulent mixing across density surfaces (i.e. diapycnal mixing) in the ocean inte-35

rior is key to sustaining the meridional overturning circulation and its global regulation36

of heat, carbon and nutrient distributions, as well as other climatically and environmen-37

tally important tracers (Talley et al., 2016). Such turbulence is primarily excited at the38

ocean surface by winds, or at the bottom boundary via flow impingement on topogra-39

phy (Garabato & Meredith, 2022). The spatio-temporal variability of turbulence makes40

its measurement especially challenging. However, turbulence can leave an imprint on ver-41

tical temperature (T ) and salinity (S) profiles obtained from hydrographic surveys. T, S42

and depth (Z) are regularly sampled through global international programs, such as ship-43

based efforts like WOCE (Gouretski & Koltermann, 2004), GO-SHIP (GO-SHIP, 2018),44

GEOTRACES(GEOTRACERS, 2019) or globally-distributed floats deployed by the Argo45

Program (Argo, 2000) (see Supplementary Materials for a visual summary, and Davis et al.46

(2019) for a review (Davis et al., 2019)). While turbulence characteristics may be inferred47

from these T, S, Z data (Polzin et al., 2014; Whalen et al., 2012), such estimates involve48

many assumptions and uncertainties.49

The gold standard in measuring turbulence in the ocean interior is represented by ship-50

deployed microstructure profiler observations, which include concurrent sampling of T , S51

and Z, but are limited in number due to their technical complexity and cost (Shroyer et al.,52

2018). In this study, we train machine learning models on a unique collection of observations53

from microstructure field programs enabling prediction of turbulence characteristics based54

on T, S, Z and topographic data, rendering our approach applicable to major global surveys55

that do not measure turbulence directly. Our aim is to demonstrate that such predictions56

from microstructure-trained physics-inspired machine-learning models yield better estimates57

for dynamically-significant quantities than classical finestructure parameterizations.58

Physics of Turbulence59

A key property of density-stratified ocean turbulence is the significantly enhanced rate60

(as compared to molecular diffusion) at which it mixes density and tracers in the verti-61

cal (Thorpe, 2005). In observations and climate models, such mixing is often encapsulated62
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in a turbulent diffusion coefficient (or diffusivity for short) defined as63

κ = Γ
ε

N2
, (1)

where Γ is a coefficient that determines the fraction of the energy available to turbulence64

that contributes to mixing (Peltier & Caulfield, 2003), ε is the rate of dissipation of turbulent65

kinetic energy (due to viscosity of seawater)1, and N =
√

−[g/ρ0]∂ρ/∂z is the buoyancy66

frequency (Osborn, 1980). While Γ is known to be variable (Mashayek & Peltier, 2013;67

Mashayek et al., 2017; Gregg et al., 2018), for the purpose of this study it suffices to consider68

it a constant, specifically 0.2, in line with operational physical oceanography (Gregg et al.,69

2018; Mashayek et al., 2021). N can be directly inferred from measurements of T, S and Z70

through the construction of the vertical density gradient, a characteristic density ρ0, and the71

gravitational acceleration g. On the other hand, the dissipation rate ε, as it is determined72

from the strain-rate tensor, cannot be inferred from T, S, Z (which are available from global73

observational programs) and is best inferred from microstructure profilers, that measure74

spatial gradients of velocity. In this study, we show that machine learning models can be75

trained on microstructure data to predict ε (or directly predict κ) based on T, S, Z, and76

height above the bottom (Hab). 2 This allows for global inference of κ from observational77

surveys, thereby providing a route for direct application to climate models that assimilate78

data from such surveys (e.g. Forget et al. (2015); Verdy and Mazloff (2017)).79

The Training Dataset80

We employ a global dataset of microstructure profiles compiled by the Climate Process81

Team on internal wave–driven ocean mixing (MacKinnon et al., 2017). Fig. 1 shows the lo-82

cation of the field measurements, spanning a wide range of geographic locations, depths, and83

turbulence-inducing physical processes. A sample microstructure transect from the DIMES84

experiment is shown in panel c (more specifically, transect T1 in Fig. 5a). Fig. 1 also85

provides the list of the field experiments, and the fraction of the total data associated with86

each experiment. The data are available at https://microstructure.ucsd.edu/, and data87

description and relevant references may be found in Waterhouse et al. (2014). The same88

dataset was employed by Cael and Mashayek (2021) to show that the data ‘collapses’ on89

a seemingly universal log-skew-normal statistical distribution. This finding motivated the90

present study by suggesting that such universality might be detectable through data-driven91

methods. Together, the experiments in Fig. 1 contain over 700 full-depth microstructure92

profiles, binned into 10 m vertical bins (amounting to ∼2×105 data points). The concurrent93

measurements of ε, T, S, Z in this dataset allow for the construction of the aforementioned94

predictor list (i.e. the list of features used in training) used to predict ε and κ. More specifi-95

cally, neutral density is calculated from T, S, Z, latitude, and longitude information (Jackett96

& McDougall, 1997), the local depth for each profile is looked up from the global bathymet-97

ric map of Sandwell et al. (2014), and height above is then calculated by subtracting the98

sample depth from the local depth.99

1 More precisely, ε = ν
∂u′

i
∂xj

∂u′
i

∂xj
, where u′

i represent perturbation velocity components (i.e. departures from

the mean flow), xi represents the three Cartesian dimensions, and the overbar represents an ‘appropriate’

averaging.
2 We found that inclusion of both Z and Hab is crucial as they represent the distance from the top and

bottom boundaries, both of which are turbulence generation sites. Knowledge of Hab requires topographic

data, which has become increasingly more accurate in recent decades thanks to advanced satellite-based

gravity measurements and deep-ocean echo-sounding records (Sandwell et al., 2014) (see Supplementary

Materials Fig. S1).
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Machine Learning Models100

Fig. 2 illustrates the overall flowchart for the research presented here: assembling101

the training datasets (as shown in Fig. 1); training two machine learning models with102

distinctly different underlying algorithms; assessing the models’ skills (as shown in Fig.103

3); and independent verification of the models through their application to individual field104

programs (as shown in Figs 4 and 5). This section describes the construction of the two105

machine learning algorithms.106

Classification And Regression Trees (CART)107

We employ CART, one of the most common machine learning predictive models (Wu et108

al., 2008; Breiman et al., 1984). The method uses a decision tree to connect observations of109

a parameter of interest (represented in the branches) to predictions about its value (repre-110

sented in the leaves). When applied to target variables that take continuous values (such as111

ε or κ in this study), such decision trees are referred to as regression trees. Additionally, we112

employ an ensemble method, bootstrap aggregating, to improve the stability and accuracy of113

the decision tree algorithm, reduce variance, and avoid overfitting. Bootstrap aggregated de-114

cision trees (hereafter bagging trees) construct multiple trees by repeatedly re-sampling the115

training data with replacements, and voting the trees for a consensus prediction (Breiman,116

1996).117

Figs 3a,b show the application of the bagging tree to the training microstructure dataset118

(from which log10(ε), our prediction target, is calculated). The model was trained based119

on 10 cross-validation k-folds of all data across 13 field experiments. This method involves120

splitting the dataset into equally sized ‘k’ number of groups, or ‘folds’, and taking it in turn121

to use each group as the test data while the rest of the data is used to train the model,122

with an average of the results being adopted. A k-fold validation approach is useful when123

input data is limited, and ensures that every data point is used within the training and124

test dataset, hence reducing bias when compared to other methods. The fits in Figs 3a,b125

are satisfactory, with a coefficient of determination (R2) of 0.83 for log10(ε) and 0.84 for126

log10(κ).
3 To analyze further the quality of the agreement between predictions and data,127

panels e−h display the cumulative contribution of various predictors to increases in R2 and128

decreases in the mean squared error (MSE).129

We consider two sets of predictors, with nearly equal skills. First we consider T , S, their130

gradients, Z, Hab, and latitude. Secondly, we just use log10(N
2), Z, Hab, and latitude.4131

While the two sets show similar skills, it is worth noting that the former contains more132

raw information about the temperature and salinity structures (which get combined into133

one parameter once N is calculated). It is conceivable that in regions of the ocean where134

salinity structures play a key role in turbulence generating processes (e.g. double diffusion135

in the Arctic Ocean; Middleton et al. (2021)), retaining T , S and their derivatives may prove136

fruitful. We postpone the investigation of application of our methodology to such regions137

to future work.138

It is worth noting that we also tried another standard choice, namely the Least Squares139

Boost (LSBoost) algorithm, as an alternative ensemble learning method. LSBoost is a gradi-140

ent boosting method in which the mean squared error is chosen as the cost function (Breiman141

et al., 1984). While we found LSBoost to outperform bagging tree for a smaller number of142

features (up to 3), bagging tree was superior for the number of features employed herein,143

3 R2 is a statistical metric of how well the regression predictions approximate the real data, and so is a

measure of the goodness of fit of a model.
4 Since quantities like ε, κ, and N vary over orders of magnitude, employing their logarithms renders the

training algorithms more efficient.
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and thus is our method of choice. Finally, we note that application of a linear regression144

model to the dataset proved entirely futile.145

Neural Networks146

As an entirely different approach, we also train neural networks with the same data.147

Specifically, we use a fully-connected feed-forward neural network (FNN), also referred to148

as a Multi-layer Perceptron (MLP) in the broader ML community. Standard FNNs consist149

of an input layer, an output layer and multiple hidden layers in between (Goodfellow et150

al., 2016) but we use a slight modification of this FNN architecture by making the hidden151

layers actually residual layers. Unlike standard hidden layers, which recursively perform152

operations on the previous layer, residual layers are added on to the main input-to-output153

information flow. (Such additions are also referred to as skip connections (He et al., 2016).)154

NNs with predominantly residual layers, or Resnets, have been found to outperform direct155

NNs, not just on the class of problems relevant to this study (Gorishniy et al., 2021), but156

across almost all modalities in AI/ML in general (Drozdzal et al., 2016; Vaswani et al.,157

2017) and hence residual layers are correspondingly ubiquitous features of most modern158

NNs. Each hidden layer combines the (learned) features of the previous layer to build up a159

non-linear transformation of the input predictors to predict turbulence properties (ε and κ)160

in the output layer. Adding additional layers to make the network deeper incorporates more161

parameters to be learned, which allows for a more flexible mapping between the easily mea-162

surable predictors and the less widely available turbulence properties. Typically, adding163

more parameters requires more data to learn an effective generalizable mapping without164

overfitting. However, we use a specific training algorithm called stochastic gradient descent165

with warm restarts (Loshchilov & Hutter, 2016) that provides a strong implicit regulariza-166

tion, essentially eliminating the issue of overfitting, even in low data regimes. A 10-fold167

cross-validation algorithm is used to ensure coverage of the entire dataset using the trained168

NN models. The Supplementary Materials contain more information on the resnet-FNN169

model architecture as well as details of the training and optimization procedure.170

Figs 3c,d show that the deep neural network is also skillful in predicting both ε and171

κ. Deep learning algorithms like neural networks require less human intervention compared172

to more traditional machine learning algorithms (e.g. the bagging tree), and so generally173

have larger data requirements and their performance increases more strongly with the size174

of data. This makes the high R2 values for NNs in Fig 3b particularly promising, given175

the limited nature of the training data compared to data sizes typically employed in deep176

learning. Thus, investment in extending the training data through a community effort177

appears worthwhile. We note that while CART seems to give a slightly higher R2 than NN178

in Fig. 3, as we will show next, NN proves more skillful in capturing the vertical patterns179

of turbulence for individual experiments when they are considered separately.180

Application to Individual Datasets181

Fig. 4 shows the results of separate analyses for each of the 13 different field programs182

listed in Fig 1. Importantly, the data from each experiment are excluded from training183

of the models before the models are applied to it. While both NN and CART show skills184

in predicting the patterns and, in some cases, the order of magnitude adequately, NN is185

clearly superior in both respects. While Fig. 4 shows predictions based on models trained186

to infer κ directly, we have also repeated the exercise based on models trained to predict ε,187

and then inferred κ from that prediction using Eq. 1 with Γ = 0.2. The outcome, shown188

in Supplementary Materials Fig. S2, is qualitatively similar, although, importantly, the189

direct prediction of κ is more skilled at predicting the turbulence-induced diffusivity in the190

vicinity of seafloor. This superiority of ‘direct’ estimation of diffusivity is significant since191

such turbulent mixing is key to the upwelling of the deep waters formed and sunk at high192

–5–
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latitudes, a process necessary for closure of the oceanic meridional overturning circulation (de193

Lavergne et al., 2022).194

Indirect inferences of turbulent mixing from T and S finestructure, practically the only195

alternative when microstructure data is unavailable, can be inaccurate by as much as two196

orders of magnitude (Polzin et al., 2014). Furthermore, such parameterizations are based197

on somewhat restrictive assumptions regarding the nature of the underlying turbulence-198

generating processes. Thus, the accuracy of NN showcased in Fig. 4, in light of its ag-199

nosticism towards the underlying physics, is appealing. To further highlight this point, in200

Fig. 5 we assess the skill of CART and NN for the data sampled along three transects201

(shown in Fig. 5a) as a part of the DIMES experiment. For these transects, both direct202

(from microstructure profilers) and indirect finestructure-based parameterizations of ε and203

κ were reported in Sheen et al. (2013), allowing for testing our models against conventional204

finestructure parameterizations (Figs 5b-g). Both NN and CART outperform the finestruc-205

ture parameterization, particularly for κ (which is ultimately the parameter of interest). It206

is worth noting that the study of Sheen et al. (2013) is one of the more successful appli-207

cations of finestructure parameterization; examples of much larger disagreements between208

finestructure and microstructure estimates abound in the literature.209

Discussion & Outlook210

The primary message of this study is that AI can indeed be successfully employed to211

use data from global observational programs, which lack direct turbulence measurements, to212

predict small scale turbulent mixing in the ocean, and in particular, more accurately than213

conventional finestructure parameterizations. More specifically, this study implies that the214

knowledge of parameters most basic to turbulence, i.e. finescale density stratification, dis-215

tance from turbulence-generating boundaries, and latitude, suffice to leading order to obtain216

an estimate of the turbulence intensity and the associated turbulent (density) diffusivity.217

There are numerous factors that can contribute to the misfits between the predictions218

and the data. Three important ones are: (I) the percentage of the training and validation219

data can vary significantly between the experiments (as shown in Fig. 1); (II) the rele-220

vance of the underlying physics in each experiment to the rest of the data used for training221

might be limited; (III) ocean mixing is not entirely ‘local’ in nature, e.g. waves generated222

thousands of kilometers away can contribute to mixing, and no such information was in-223

cluded in our training by construction (de Lavergne et al., 2019). Factor (I) can only be224

addressed through application of AI to larger datasets. In particular, the success of deep225

learning directly scales with the data size, and what was achieved in this study lies at the226

lower bound of the data volume required. Our analyses show that while the bagging tree227

algorithm converges to the optimal performance once a few hundreds of profiles are con-228

sidered, the NN algorithm does not show such convergence and retains a large standard229

deviation even when all profiles are included. Thus, further community efforts are required230

to pull turbulence datasets together and subject them to the consistent high levels of qual-231

ity control and grid interpolations. Furthermore, adding microstructure sensors to global232

observational endeavors (such as the Argo float program), while ambitious, is within reach233

and conceivable in the coming decades (Roemmich et al., 2019). Factor (II) will naturally234

advance as our physical understanding of ocean turbulence keeps progressing. A conscious235

effort towards connecting such physical understanding to data-driven parameterizations is236

required. Addressing factor (III) is more readily achievable in the near future, as it will237

require inclusion of theoretical estimates of local and non-local energy injected to internal238

waves from various sources (winds, tides, etc.) in training algorithms. In summary, we have239

demonstrated here that AI provides a valuable tool to harness our observational, theoretical240

and statistical knowledge of ocean turbulence to direct the development of a next-generation241

‘smart’ turbulence parameterization for climate models.242
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Figure 1. Direct turbulence measurements can be used to train machine learning

algorithms to predict turbulent mixing where direct measurements are not available.

(a) Location of the field programs that include direct measurements of turbulence (specifically,

turbulent kinetic energy dissipation rate ε from microstructure profilers) along with co-located

temperature, salinity and depth sampling. (b) The experiments’ name and associated contributions

to the total data. More details about the data sources are available at https://microstructure

.ucsd.edu/(Waterhouse et al., 2014) and in the Supplementary Materials. The data contains a

total of ∼700 profiles, with ε binned into 10 m vertical bins. (c) A sample transect of microstructure

data from the DIMES experiment (transect T1 in Fig. 5); from Sheen et al. (2013).
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Figure 2. Two distinctly different machine learning algorithms can successfully re-

produce turbulent mixing estimates in agreement with microstructure data.

A flowchart, illustrating the sequence of data assembly, training, model skill assessment, application

to original data, verification, and fine-tuning. The source for the sample microstructure profiles

shown in the top row is Sheen et al. (2013)– see Fig. 5 for details. The source for the CART

diagram in the top row is https://en.wikipedia.org/wiki/Bootstrap aggregating. Note that

CART and NN are not applied sequentially, but are independent algorithms.
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Figure 3. Machine learning can successfully fit the global microstructure data based

on few predicting features.

(a-d) Bivariate histograms (in the form of a probability density function, PDF) of predicted rate of

dissipation of turbulent kinetic energy (ε; [m2/s3]) and turbulent diffusivity (κ; [m2/s]) based on

use of the Classification And Regression Tree algorithm (CART; panels a,b), and Neural Networks

(NN; panels c,d), versus the actual data. Both CART and NN models are validated using k-fold

validation with 10 folds to avoid overfitting (see main text). (e-f) Cumulative contributions from

each of the training features to the increase in the coefficient of determination (R2) and the decrease

in the mean squared error (MSE). (g-h) same as panels e, f but for a smaller number of features.

All the datasets shown in Fig. 1 are employed in this figure.
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Figure 4. Predictions for individual field programs also show promise.

Comparison of the predictions of the machine learning algorithms (CART and NN) to each of the

13 field programs introduced in Fig 1. For each case, the solid lines represent the mean over all

the profiles in that experiment and the corresponding shadings represent standard deviation. Note

that individual predictions are made for each profile of each experiment, before averaging. For each

experiment, the models were trained based on the data from all other 12 experiments, excluding

the data from the given experiment itself, to avoid overfitting. This figure shows results from

models trained to predict the turbulent diffusivity κ directly. A similar plot, showing qualitatively

the same level of success, is included in the Supplementary Materials in which the models predict

ϵ and κ is constructed using (1). Direct inference of κ seems to be better for predicting turbulence

near the seafloor.
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Figure 5. Machine learning competes well against physics-based parameterizations.

Comparison of the predictions from machine learning against finestructure parameterization for

three transects of the DIMES experiment. (a) The Drake Passage of the Southern Ocean, with the

three cruise transects marked. Each circle represents a sampling. Transect T1 is the most western.

plotted in magenta. Filled circles mark locations where microstructure data was taken, along with

T, S, Z (from which finestructure based estimates of are inferred). The circles with a white filling

do not include microstructure sampling. The means over all profiles for each transect are calculated

for microstructure-based, finestructure-based, and machine learning-based (both CART and NN)

estimates of ε and κ for transect T1 in (b,c), transect T2 in (d,e), and transect T3 in (f,g). The

plots are in height-above-bottom (Hab) coordinate, due to strong bottom-enhanced topographically-

induced turbulence in the Drake Passage. Microstructure and finestructure estimates are from Sheen

et al. (2013).
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S1. Global Observational Surveys Figs S1a-d show the coverage of the global observa-
tional surveys that provide T, S, Z data (in addition to other fields) that can be used to infer
estimates of turbulent mixing either through finescale parameterizations (Polzin et al., 2014)
or through data-driven methods as in this study. These field programs do not contain direct
turbulent measurements. Of relevance to this work is the hydrographic surveying compo-
nent of these experiments, which provide high-quality conductivity-temperature-pressure
profiles to construct a climatological temperature-salinity-depth database. Figs S1e,f show
the high-resolution topography data that are key to turbulence prediction, due to the impor-
tance of the bottom boundary in generating propagating waves as well as non-propagating
boundary turbulence. Gravity data provide coarser topographic information than the direct
echo-sounding surveys, which cover only 30% of the seafloor, but are extending their cov-
erage at an accelerating rate. High-resolution seafloor mapping is also commonly provided
by deep-ocean surveying research cruises, and is integrated in global topographic data (e.g.
https://www.gebco.net/https://www.gebco.net/).

S2. Neural Network Architecture and Training Standard FNNs consist of a series
of ‘layers’ of neurons that are hierarchically modified by matrix multiplication and vector
addition of learned parameters and acted upon by a simple nonlinear function. Thus if
(h0, h1, h2...hL) represent the NN layers, with h0 = x being the input and hL = y the
output, then the NN can be written by the recurrence relation for the ℓth layer as

hℓ = f(Wℓ−1 hℓ−1 + bℓ−1), (1)

where Wℓ−1 and bℓ−1 are the learnable weight matrix and the bias vector acting on the
(ℓ − 1)th hidden layer and f(·) is a simple nonlinear function here chosen to be the Swish
activation function (Ramachandran et al., 2017) [f(x) = xσ(x) where σ(x) is the Sigmoid
function] that is chosen over the standard ReLU activation function owing to its smoothness
and in our case, improved predictive accuracy.

Residual networks have a simple architectural modification in that the layer-wise re-
currence relation now takes the form

hℓ = hℓ−1 + f(Wℓ−1 hℓ−1 + bℓ−1), (2)

so that each neural layer is an add-on onto the previous hidden layer. Resnets have been
shown to have smoother gradient flow during backpropagation allowing for deeper layers.
More importantly, however, Resnets have been demonstrated to be implicitly composed of
ensembles of shallower neural networks (Veit et al., 2016) which can result in substantially
improved expressivity and accuracy compared to standard NNs. The specific choice of the
Resnet used for the results in this manuscript has 7 layers with 120 neurons in each layer for
a total of around 100,000 parameters in the NN. Each hidden layer is also subject to dropout
regularization to prevent overfitting (with a layerwise dropout probability of 0.2) though
the primary regularization in our approach is implicit and due to learning-rate annealing
(see below).

Training is done through the AdamW optimizer (Adam with weight decay) with a
weight decay parameter of 10−4. A cyclical cosine learning rate annealing (Loshchilov &
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Hutter, 2016) is employed with annealing cycle, Tcycle = 5 epochs. In other words the
learning rate changes every 5 epochs starting from its largest value of 0.0035, decreasing
towards 0 as a cosine function, and jumping back suddenly to 0.0035 every sixth epoch.
Training for each run is performed for about 3000 epochs. This rapid decrease of the learning
rate followed by sudden increase (also called a ‘warm restart’) leads to faster learning and
provides a strong regularization. We use a mean-square error loss function but record
the best value of R2 metric on the test data and the corresponding model parameters
during training (because lowest MSE loss does not always correspond to the best R2 value).
The regularization offered by the cyclical rate learning rate annealing with short Tcycle is
sufficiently strong so that overfitting is not observed even as we train for larger epochs (up
to 10,000) with larger NNs (up to 12 layers). This training approach is extremely robust
even in small data regimes and needs minimal hyperparameter search.
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Figure 1. International surveys have provided invaluable hydrographic and bathy-

metric information required to quantify oceanic turbulent processes. (a) WOCE Hydro-

graphic Program survey stations [1985–97](Gouretski & Koltermann, 2004; Davis et al., 2019). (b)

GO-SHIP hydrographic sections [GO-SHIP 2018](GO-SHIP, 2018; Davis et al., 2019). (c) GEO-

TRACES sections [from 2018](GEOTRACERS, 2019; Davis et al., 2019). (d) Global Argo array

coverage [as of 2018](Davis et al., 2019).(e) Satellite-measured marine gravity, revealing the ocean

bathymetric features.(Sandwell et al., 2014) (f) Black regions represent the areas yet to be mea-

sured with echo-sounders, whereas lines represent already sampled regions (∼ 20% as of 2020) [from

NIPPON FOUNDATION-GEBCO SEABED 2030 PROJECT].
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Figure 2. Same as Fig. 4 in the main text, but here the models are trained to predict ϵ and

then κ is inferred from that prediction using Eq. (1) with Γ = 0.2.
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