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Abstract

Permafrost plays an important role in the hydrology of arctic/subarctic regions. However, permafrost thaw/degradation has been

observed over recent decades in the Northern Hemisphere and is projected to accelerate. Hence, understanding the evolution

of permafrost areas is urgently needed. Land surface models (LSMs) are well-suited for predicting permafrost dynamics due

to their physical basis and large-scale applicability. However, LSM application is challenging because of the large number

of model parameters and the complex memory of state variables. Significant interactions among the underlying processes

and the paucity of observations of thermal/hydraulic regimes add further difficulty. This study addresses the challenges of

LSM application by evaluating the uncertainty due to meteorological forcing, assessing the sensitivity of simulated permafrost

dynamics to LSM parameters, and highlighting issues of parameter identifiability. Modelling experiments are implemented

using the MESH-CLASS framework. The VARS sensitivity analysis and traditional threshold-based identifiability analysis are

used to assess various aspects of permafrost dynamics for three regions within the Mackenzie River Basin. The study shows

that the modeller may face significant trade-offs when choosing a forcing dataset as some datasets enable the representation

of some aspects of permafrost dynamics, while being inadequate for others. The results also emphasize the high sensitivity of

various aspects of permafrost simulation to parameters controlling surface insulation and soil texture; a detailed list of influential

parameters is presented. Identifiability analysis reveals that many of the most influential parameters for permafrost simulation

are unidentifiable. These conclusions will hopefully inform future efforts in data collection and model parametrization.
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Abstract  28 

Permafrost plays an important role in the hydrology of arctic/subarctic regions. However, 29 

permafrost thaw/degradation has been observed over recent decades in the Northern Hemisphere 30 

and is projected to accelerate. Hence, understanding the evolution of permafrost areas is urgently 31 

needed. Land surface models (LSMs) are well-suited for predicting permafrost dynamics due to 32 

their physical basis and large-scale applicability. However, LSM application is challenging 33 

because of the large number of model parameters and the complex memory of state variables. 34 

Significant interactions among the underlying processes and the paucity of observations of 35 

thermal/hydraulic regimes add further difficulty. This study addresses the challenges of LSM 36 

application by evaluating the uncertainty due to meteorological forcing, assessing the sensitivity 37 

of simulated permafrost dynamics to LSM parameters, and highlighting issues of parameter 38 

identifiability. Modelling experiments are implemented using the MESH-CLASS framework. 39 

The VARS sensitivity analysis and traditional threshold-based identifiability analysis are used to 40 

assess various aspects of permafrost dynamics for three regions within the Mackenzie River 41 

Basin. The study shows that the modeller may face significant trade-offs when choosing a 42 

forcing dataset as some datasets enable the representation of some aspects of permafrost 43 

dynamics, while being inadequate for others. The results also emphasize the high sensitivity of 44 

various aspects of permafrost simulation to parameters controlling surface insulation and soil 45 

texture; a detailed list of influential parameters is presented. Identifiability analysis reveals that 46 

many of the most influential parameters for permafrost simulation are unidentifiable. These 47 

conclusions will hopefully inform future efforts in data collection and model parametrization.  48 

Plain Language Summary  49 

Permafrost (frozen ground for at least two years) is one of several elements that control the rate and 50 

magnitude of current global warming. Permafrost plays a critical role in the dynamics of water, heat, and 51 

carbon over vast areas globally. For more credible climate/hydrology modelling, it is necessary to assess 52 

the ability of available models to reliably reproduce observed permafrost characteristics before using 53 

them to evaluate future scenarios. Using a land surface model for different permafrost regions in Canada 54 

this study examined three challenges: 1) quantifying the impact of uncertainty in climate forcing data on 55 

permafrost simulation, 2) identifying the key parameters that control the quality of permafrost simulation, 56 

and 3) assessing the appropriateness of current model structures to reproduce observed permafrost 57 

characteristics in the context of parameter uncertainty. In selecting a forcing dataset, permafrost 58 
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characteristics exhibited significant trade-offs. The parameters with a large influence on permafrost 59 

simulation were identified for the different study areas, but due to model complexity, finding unique 60 

values for them was difficult. Several findings were presented to guide further land surface model 61 

development, and hence reduce errors in weather/climate modelling. 62 

1 Introduction  63 

Permafrost, defined as ground that stays at or below 0°C for at least two years (Everdingen, 64 

1998), plays a central role in the hydrology of arctic and subarctic regions (Dobinski, 2011; 65 

Walvoord & Kurylyk, 2016). Permafrost underlies around one-quarter of land in the Northern 66 

Hemisphere and one-half of Canada (Obu et al., 2019; Yinsuo Zhang et al., 2008). Several 67 

studies have reported increased permafrost temperature over recent decades (e.g. Barros et al., 68 

2014; Harris et al., 2009; Meredith et al., 2020; Pan et al., 2016) and projected accelerated 69 

temperature rises by 2100 (Burke et al., 2020; Lawrence et al., 2012; McGuire et al., 2018). Such 70 

significant change has major implications for hydrological and biogeochemical cycles (Schuur et 71 

al., 2015; Walvoord & Kurylyk, 2016). For instance, permafrost thaw can affect the partitioning 72 

of water fluxes and stores, thermokarst formation and land subsidence, wildfire occurrence and 73 

other ecosystem changes, and streamflow seasonality (Andresen et al., 2020; Dobinski, 2011; 74 

Gibson et al., 2018; Hjort et al., 2018; Kokelj & Jorgenson, 2013; Nelson et al., 2002; Schuur et 75 

al., 2015; Walvoord & Kurylyk, 2016). Moreover, permafrost stores twice the amount of carbon 76 

in the atmosphere, and its release (in the form of carbon dioxide and methane) is likely to have a 77 

positive feedback to the global climate and the pace of warming (Burke et al., 2020; McGuire et 78 

al., 2018; Schuur et al., 2015). 79 

Earth system models (ESMs) are valuable tools for investigating the potential impacts of climate 80 

change on hydrologic and atmospheric conditions. They typically represent land surface 81 

processes using a land surface model (LSM), which provides lower boundary conditions to the 82 

atmospheric processes modelled within an ESM framework. LSMs have advanced significantly 83 

over recent decades through extensive improvements in process representation and enhanced 84 

resolution (Prentice et al., 2015; Sellers et al., 1997). The coupled simulation of heat and water 85 

across the soil-vegetation-atmosphere interface is a critical feature for permafrost as it accounts 86 

for heat transfer with phase change (Jafarov et al., 2012; Riseborough et al., 2008). Efforts to 87 

improve permafrost representation have included (but are not limited to) deeper soil 88 

configurations, to eliminate the impact of uncertain lower boundary conditions and provide 89 
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larger thermal memory (Alexeev et al., 2007; Nicolsky et al., 2007), enhanced representation of 90 

snow, canopy, and organic soil (including peat and moss) processes that control/regulate thermal 91 

insulation of permafrost (Chadburn et al., 2015; Lawrence & Slater, 2008; Wu et al., 2016; 92 

Yokohata et al., 2020), and inclusion of vegetation dynamics and carbon-pool processes 93 

(Chadburn et al., 2015; Melton et al., 2019). These have reduced the biases in climate 94 

projections, as shown by Burke et al. (2020). Therefore, LSMs are well-suited for simulating the 95 

major hydrological processes in permafrost regions, having an appropriate physical basis and 96 

being applicable at different assessment scales. 97 

Despite these advances, building a high-fidelity model is challenging. The paucity of 98 

observational data on permafrost hydraulic and thermal regimes limits the representation of 99 

permafrost spatial heterogeneity over large domains (Chadburn et al., 2015; Lamontagne-Hallé 100 

et al., 2020; Obu et al., 2019). Further, initializing the model prognostic states is problematic. 101 

This is commonly achieved by spinning up the models to reach a set of states that are consistent 102 

with the ‘transient’ climate (Abdelhamed et al., 2021; Elshamy et al., 2020; Sapriza-Azuri et al., 103 

2018), or based on realistic field observations (e.g. soil moisture and temperature), if available. 104 

The spin-up involves forcing the model with a single (actual or synthetic) year or multiple years 105 

of meteorological data repeated in a loop many times, or running the model for a long-enough 106 

transient period. Chen and Dudhia (2001) and Rodell et al. (2005) highlighted the biases in 107 

surface energy/water flux partitioning that can be introduced due to the improper initialization of 108 

state variables. 109 

The structural inadequacy/complexity of LSMs introduces an additional simulation burden. 110 

Structural inadequacies of LSMs associated with neglect or oversimplification of permafrost 111 

processes (e.g. taliks,  thermokarst, and aggradation/degradation) complicates model 112 

development for permafrost regions, especially those characterized by high heterogeneity (Aas et 113 

al., 2019; Devoie et al., 2019; Elshamy et al., 2020). Furthermore, current LSMs have many 114 

significant process interactions and contain a large number of free parameters (Prentice et al., 115 

2015). While most of these parameters have a physical meaning, they are usually interpreted and 116 

measured at point-scale. In the model they serve as “effective parameters” intended to represent 117 

the spatial heterogeneity of the system, and therefore, their feasible ranges can be wide and lead 118 

to unrealistic model simulations (Haghnegahdar et al., 2017). In conjunction with the improved 119 
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realism of process representation in LSMs/ESMs, model complexity and dimensionality have 120 

increased considerably, making such models more prone to issues of parameter non-uniqueness 121 

(Beven, 2006; Guillaume et al., 2019; Prentice et al., 2015). In general, the development and 122 

testing of LSMs, including in permafrost regions, have historically focused on streamflows 123 

(more frequently), ET and soil moisture (less frequently) (Yassin et al., 2017). The credible 124 

representation of the thermal dynamics of the soil column in cold regions has received 125 

significantly less attention, while it directly controls those other variables.  126 

Complex LSMs require a wider spectrum of meteorological variables at finer spatial/temporal 127 

scales than simple hydrologic models, which often require limited forcing variables (e.g. 128 

precipitation and temperature/evapotranspiration) at daily and basin-averaged scales. The input 129 

forcing (e.g. hydro-meteorological data) uncertainty is typically in the range of 10%-40% 130 

(McMillan et al., 2018), and failure to consider such critical uncertainty can lead to 131 

unrealistic/biased parameter estimation and misleading water/energy balance calculations. Cold 132 

regions are characterized by sparse observational networks, especially in higher latitudes and 133 

altitudes, and suffer from inaccuracies related to cold-climate processes (Asong et al., 2020; 134 

Wong et al., 2017), which limits the applicability of ground-based observations. On the other 135 

hand, remote sensing and model-based forcing products are prone to different sources of 136 

uncertainty triggered by data acquisition, processing, rescaling, and imprecisions. Bias-137 

correction (e.g. mean-shifting/scaling or quantile mapping) and the number of considered 138 

meteorological variables collectively play a pivotal role in the quality (and maintaining cross-139 

correlation structure) of the candidate grid-based forcing dataset.  140 

Here, we examine the capability of different gridded climate datasets to reproduce observed 141 

permafrost dynamics under model parameter uncertainty, to aid in selection of the best candidate 142 

dataset and highlight the uncertainty propagated due to external forcing. We endorse the formal 143 

application of Global Sensitivity Analysis (GSA) (Razavi et al., 2021) as a cornerstone tool for 144 

model development by presenting its value for understanding model behaviour, identifying 145 

important parameters and characterizing parameter uncertainty. Further, we investigate the 146 

identifiability of model parameters, emphasizing parameters with high sensitivity, to ensure 147 

model fidelity and underscore the associated structural issues in such models regarding 148 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

6 

 

permafrost simulations. Fig. 1 provides a graphical presentation of the employed methods and 149 

expected outcomes of the current study. Our research addresses three specific objectives:  150 

1. Which forcing datasets enable the model to represent important signatures of permafrost 151 

dynamics given the uncertainty in model parameters? And do different signatures impose 152 

trade-offs in the choice of forcing datasets?  153 

2. Which model parameters are primarily responsible for uncertainty in predicting different 154 

signatures of permafrost dynamics? And to what extent will reducing uncertainty in those 155 

parameters lead to a reduction of uncertainty in those predictions?  156 

3. Can existing data reduce the uncertainty in those model parameters of primary 157 

importance? And which parameters should be the target of future research to reduce 158 

uncertainty in predicting permafrost dynamics? 159 

The remainder of the article is organized as follows: Section 2 presents our methods, case study 160 

and model implementation. Section 3 reports the results of the experiments, and the article ends 161 

with a summary and conclusions in Section 4.   162 
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 163 

Fig. 1. A flowchart of the employed methodology and the expected outcomes.   164 
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2 Models, datasets, and methods  165 

 Model description  2.1166 

The Modélisation Environmenntale communautaire – Surface et Hydrology (MESH: Pietroniro 167 

et al., 2007) is selected for this study because it is physically based, suited for large-scale studies, 168 

and includes state-of-the-art representation of the dominant cold regions’ processes (Pomeroy et 169 

al., 2016). MESH is a semi-distributed, grid-based modelling framework consisting of a land 170 

surface component that quantifies vertical energy/water fluxes (CLASS: Verseghy, 1991, 2000; 171 

SVS: Husain et al., 2016),  algorithms for lateral movement of surface/subsurface flow 172 

(WATROF: Soulis et al., 2000; PDMROF: Mekonnen et al., 2014) and a grid-to-grid hydrologic 173 

river routing module (WATFLOOD: Kouwen et al., 1993b). The spatial heterogeneity within 174 

each cell is represented by subdividing it into tiles based on land cover, soil type, or slope and 175 

aspects. Using the Grouped Response Unit concept (GRU: Kouwen et al., 1993a), tiles with the 176 

same characteristics (e.g. needleleaf forest on sandy soil) in different grid cells share the same 177 

physiographic attributes, which reduces the parameterization burden and facilitates parameter 178 

transferability across space (Pietroniro & Soulis, 2003). Fluxes are typically calculated at a half-179 

hourly time step at the tile-level and aggregated for each cell based on a weighted average of 180 

GRU fractions. MESH is driven by seven meteorological forcing variables: precipitation, air 181 

temperature, specific humidity, barometric pressure, incoming shortwave radiation, incoming 182 

longwave radiation, and wind speed. Interested readers are referred to Wheater et al. (2021) for a 183 

recent account on model developments and applications. 184 

For the current study, CLASS version 3.6 is used as the LSM and WATROF as the runoff 185 

generation algorithm. CLASS solves the coupled water and energy balances for a user-specified 186 

soil column (the default is a three-layer with thicknesses of 0.1m, 0.25m and 3.75m) generalized 187 

across the modelled watershed. We used a deeper soil column with a power-function-based 188 

discretization of layers (see Section 2.4.1). In CLASS, soil parameters, which determine the 189 

thermal and hydraulic regimes, are typically tied to soil texture using pedotransfer functions. 190 

Each soil layer’s temperature and moisture content evolve at each time step based on the solution 191 

of coupled water and energy balance equations. The upper boundary condition of CLASS is 192 

determined through solving the surface energy and water balance considering overlaying 193 

vegetation and snowcover, and the lower boundary condition as either a zero heat flux or a user-194 

specified geothermal flux at the bottom of the soil column, with free drainage. No lateral 195 
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migration of heat or moisture between adjacent cells is currently implemented except through 196 

surface routing. CLASS requires 17 prognostic variables for each tile covering different model 197 

initial states above the ground (i.e. snowpack, canopy) and underground (i.e. soil moisture (liquid 198 

and frozen) and temperature for each layer). Further details are provided in the CLASS manual 199 

(Verseghy, 2012).  200 

The following permafrost characteristics were extracted from the continuously simulated soil 201 

temperature profiles to describe permafrost dynamics (Fig. 2);  202 

1) Temperature envelopes (Tmax and Tmin), calculated as the maximum and minimum soil 203 

temperature profiles over the year. 204 

2) Active Layer Thickness (ALT), which is the maximum depth of the 0°C isotherm over 205 

the year, taken from the Tmax envelope (i.e. thaw only).   206 

3) Mean Annual Ground Temperature (MAGTp) at the top of permafrost (permafrost 207 

table). 208 

4) The Depth of the Zero Annual Amplitude (DZAA), where the Tmax and Tmin envelopes 209 

meet within a tolerance of 0.1°C. 210 

5) The depth to Permafrost Base (PB), where the Tmax and Tmin envelopes intersect with 211 

the 0°C isotherm, noting that the model does not simulate the freezing point depression. 212 

6) Thermal offset, which is the difference between the mean annual temperature at the 213 

ground surface and the permafrost table. 214 

7) Surface offset, which is the difference between the mean annual temperature at the 215 

ground surface and mean annual air temperature (MAAT) – divided into a winter offset 216 

(Dec to Feb) and a summer offset (June to August). 217 

8) Date of maximum thaw, which is calculated from the evolution of the daily temperature 218 

profile of each year and is used to indicate the inter-annual variability of thawing/freezing 219 

cycles. 220 
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  221 

Fig. 2. Schematic of the soil column showing variables used to represent permafrost dynamics, modified 222 

after Abdelhamed et al. (2021). 223 

 Area of study  2.2224 

Three representative permafrost sites with distinctive hydroclimatic conditions in Canada are 225 

used in this study (Fig. 3): Jean Marie Creek (JMC) underlain by sporadic permafrost, Bosworth 226 

Creek (BWC) underlain by discontinuous permafrost, and Havikpak Creek (HPC) underlain by 227 

continuous permafrost. The sites are located along the main-stem of the Mackenzie River, 228 

Northwest Territories, Canada (Fig. 3). The Mackenzie River Basin (MRB) has a drainage area 229 

of 1.78 million km
2
 and partially covers the Yukon, British Columbia, Alberta, Saskatchewan, 230 

and the Northwest Territories. More than 75% of the basin is underlain by permafrost based on 231 

the permafrost Map of Canada (Hegginbottom et al., 1995), with 16% continuous permafrost in 232 

the far north and northwest, 27% discontinuous permafrost covering the central east-to-west part 233 

of the basin, 26% sporadic permafrost to the south of discontinuous permafrost regions, and 10% 234 

isolated patches of alpine permafrost in the southwest of the basin in Alberta and British 235 

Columbia. The current climate of the basin is characterized as subarctic (i.e. cold, no dry season, 236 
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cold summer) according to the Köppen-Geiger classification (Peel et al., 2007), with warmer 237 

summers projected in the south under the RCP8.5 climate change scenario (2071-2100) (Beck et 238 

al., 2018). The discontinuous and sporadic permafrost regions are characterized by warm ground 239 

temperatures (-2 to 0 °C) and the limit of permafrost is expected to shift northward under climate 240 

change (DeBeer et al., 2016; Yu Zhang et al., 2008).  241 

The JMC site is dominated by boreal forest (needleleaf) and scattered shrubs on peat plateaux 242 

where the permafrost is relatively warm (MAGTp of -0.1°C) with a limited thickness (~ 4m) and 243 

relatively shallow active layer (~ 1.5m thick). The available data from the 85-12B borehole (to 244 

9.7m depth) spans the period 1986 to 2000, with no records available in the 21
st
 century. The 245 

BWC site is mainly covered by boreal forest (needleleaf and broadleaf) with a thickness of 10-246 

50m (MAGTp of -1.5°C) and an active layer thickness of about 2m on average. The available 247 

observations (Norman Wells pump station (84-1) to 13.6m depth) cover 1985 to 2001, 2012, and 248 

2015-2016. The HPC site is covered by taiga forest and shrubs where permafrost is cold 249 

(MAGTp of -4°C) with a considerable thickness (> 300m) and an active layer less than 1m thick. 250 

Temperatures at Inuvik Airport (site 01TC02) borehole (data to 10m depth) were used for HPC, 251 

with data available from 2008 to 2016. Fig. 4 shows the temperature profiles used here for model 252 

evaluation. The sites have different climate conditions with an average annual daily air 253 

temperature between -2°C and -9°C and average annual precipitation between 250 and 400 mm 254 

yr
-1

 among the three sites over the 1979-2016 period (Table 1). Thermal and geological data are 255 

available from various Geological Survey of Canada (GSC) reports (Ednie et al., 2013; Smith et 256 

al., 2004, 2009, 2010; Smith, Chartrand, Duchesne, & Ednie, 2016; Smith, Chartrand, Duchesne, 257 

Ednie, et al., 2016). Further information on the selected experimental sites is available in 258 

Elshamy et al. (2020). 259 
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 260 

 261 

Fig. 3. Location of the study area, temperature boreholes, and permafrost classification. 262 
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 263 

Fig. 4. Observed temperature envelopes at A) JMC, B) BWC, and C) HPC sites. 264 

Table 1. Comparison of air temperature and precipitation for the three sites using the available 265 

meteorological stations for the period (1979-2016) – refer to Table 3 for further information on the 266 

utilized meteorological stations. 267 

Site Station ID 
Mean annual air temperature (°C) Total annual precipitation (mm) 

Mean Standard deviation Mean Standard deviation 

JMC 2202570 & 2202578 -2.63 1.03 376.69 88.22 

BWC 2202800 & 2202801 -5.04 1.02 295.07 64.73 

HPC 2202101 & 2202102 -7.80 1.44 235.68 42.88 

 268 

 Climate forcing  2.3269 

As mentioned earlier, seven meteorological variables are required at a sub-daily time step to 270 

drive MESH. The ground-based stations in the neighbourhood of the study area provide hourly 271 

observations for air temperature, relative humidity, wind speed and barometric pressure, while 272 

total precipitation is provided daily, and longwave/shortwave radiations are not observed. 273 

Therefore, ground-based observations are not fully available and a model-based product is 274 

needed for the current study. Forcing dataset selection is constrained by the quality of the 275 

meteorological estimates and the overlap with the permafrost experimental datasets. As 276 

mentioned earlier, the available records are 1985-2016, 1986-2000, and 2008-2016 for BWC, 277 

A) B) C)
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JMC, and HPC, respectively; thus, the selected forcing dataset should begin before 1985 to 278 

enable model initialization and performance assessment. A few widely-used forcing datasets start 279 

prior to the 1980s, such as WFD (WATer and global CHange (WATCH) Forcing data), available 280 

from 1901 (Weedon et al., 2011), the Princeton dataset, available from 1901 (Sheffield et al., 281 

2006), WFDEI (WFD with the ERA-Interim analysis), available from 1979 (Weedon et al., 282 

2014), WFDEI-GEM-CaPA (WFD with the ERA-Interim analysis bias-corrected by GEM-283 

CaPA), available from 1979 (Asong et al., 2020), and WFDE5 (bias-corrected WFD with the 284 

ERA5 reanalysis), available from 1979 (Cucchi et al., 2020). However, the WFD and Princeton 285 

datasets were discontinued in 2001 and 2012, respectively. The combined product of the Global 286 

Environmental Model (GEM; Côté et al., 1998), atmospheric forecasts and the Canadian 287 

Precipitation Analysis (CaPA; Mahfouf et al., 2007) showed considerable agreement with 288 

ground observations for the precipitation (Wong et al., 2017), but GEM-CaPA is not available 289 

prior to 2002 and the most recent version, the Regional Deterministic Reanalysis System (RDRS 290 

v2), is currently only available from 2000 to 2017 (Gasset et al., 2021).  291 

Three forcing datasets are used in this study: WFDEI, WFDEI-GEM-CaPA (denoted WFDEI-292 

GC hereafter), and WFDE5. Given that reasonable estimates of precipitation fields were obtained 293 

from WFDEI, as shown by Wong et al. (2017) for Canada, and the fact that it is available from 294 

1979 with adequate temporal resolution (3 hours), WFDEI has an advantage. However, it has 295 

been found to be slightly biased relative to observation over Northern Canada (above 60°N) 296 

(Asong et al., 2020; Wong et al., 2017). It was therefore bias-corrected with the relatively short 297 

but more accurate GEM-CaPA product. However, the 40m estimates of GEM-CaPA (for 298 

temperature, humidity and wind speed) were used to bias-correct the surface-based estimates of 299 

WFDEI, yielding the WFDEI-GC dataset at a non-surface reference height (40m) that limits its 300 

applicability for some hydrologic models (Asong et al., 2020) but not MESH. Additionally, the 301 

WATCH Forcing Data methodology was applied to the ERA5 reanalysis data derived using the 302 

sequential elevation and monthly basis correction method in Weedon et al. (2011) for ERA5 303 

reanalysis. WFDE5 was multi-variate bias-corrected for a limited number of meteorological 304 

variables (precipitation, temperature, and shortwave radiation) using the simple approach of 305 

rescaling the monthly average CRU ‘Climate Research Unit’ (and/or GPCC ‘Global 306 

Precipitation Climatology Center’) estimates (Weedon et al., 2014), unlike Asong et al. (2020) 307 

who used multi-variate quantile-mapping to correct the bias for the seven meteorological 308 
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variables (conserving cross-correlations amongst them). Monte-Carlo (MC) simulations 309 

incorporating the three forcing datasets (i.e. WFDEI, WFDE5, and WFDEI-GC) and under the 310 

full range of parameter uncertainty was used to aid in selecting the best performing 311 

meteorological dataset for MESH/CLASS simulations for the period 1979-2016 (refer to Fig. 1 312 

and Section 2.4.3). 313 

 Experimental design and implementation  2.4314 

Experiments were designed to assess input uncertainty, model sensitivity and parameter 315 

identifiability of MESH in reproducing the observed permafrost conditions at the three sites with 316 

distinct climatic and geological conditions (Fig. 1). We conducted these comprehensive analyses 317 

using the MESH model (Pietroniro et al., 2007; Wheater et al., 2021) for the full set of LSM (i.e. 318 

CLASS) parameters, various model configurations, multiple permafrost variables/performance 319 

criteria, for three sites in Canada. We use two lenses for parameter analysis: GSA using the 320 

variogram Analysis of Response Surfaces (VARS: Razavi and Gupta, 2016a) and traditional 321 

threshold-based identifiability analysis. The point-scale experiments are adopted from Elshamy 322 

et al. (2020) and Abdelhamed et al. (2021), where MESH was utilized for investigating 323 

permafrost initialization in LSMs. We employed the soil layering scheme proposed by Elshamy 324 

et al. (2020) (Table A1), which extends to a depth of 51.24 m and has a fine discretization for 325 

the upper 2 meters of the soil (9 layers), in line with the observed ALT for the selected sites (Fig. 326 

4). The lower boundary condition of the soil column (i.e. Neumann-type flux boundary 327 

condition), known as the geothermal flux, was set to zero since several studies underscored its 328 

limited/negligible impact on the simulated temperatures on a centennial timescale (Hermoso de 329 

Mendoza et al., 2020; Lawrence et al., 2008; Nicolsky et al., 2007; Sapriza-Azuri et al., 2018). 330 

Initializing MESH state variables (i.e. soil temperature and liquid/frozen contents) was achieved 331 

by spinning the first year of the climate record (i.e. Oct 1
st
, 1979 - Sep 30

th
, 1980) for 1000 332 

cycles for each sampled set of parameters, as recommended by Abdelhamed et al. (2021). 333 

2.4.1 Selection of parameters, variables, and metrics  334 

Regarding MESH parameters, six groups of parameters representing canopy, soil texture, soil 335 

permeable depth, drainage, ponding, and snow cover processes were perturbed within their 336 

physical ranges to assess their influence on the permafrost dynamics (Table 2). The range of the 337 

canopy parameters was based on the lookup tables from the CLASS manual (Verseghy, 2012); 338 
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note that the three sites were parameterized as needleleaf forest, and hence, their canopy 339 

parameters have the same ranges of variation. Ponding, drainage, and snow cover parameters are 340 

identical across the three setups, with ranges taken from previous studies with the same model 341 

(e.g. Davison et al., 2016; Haghnegahdar et al., 2017) and textbook values (Dingman, 2015). 342 

Regarding SDEP (depth to the bedrock), we used the gridded bedrock depth dataset by 343 

Shangguan et al. (2017) to identify the upper limit, while the maximum root depth is used to 344 

define the lower limit. Although runoff generation processes (i.e. interflow, surface runoff and 345 

drainage from the soil column) are treated as vertical processes, they allow water to exit the 346 

system via the lateral horizons, which influences water stores and hence the hydraulic and 347 

thermal regime of the system. The last parameter group defines soil texture as sand, clay, and 348 

organic matter percentages. Since each soil layer has three descriptive parameters, and each 349 

model configuration has 25 soil layers, we grouped layers as appropriate and assigned the same 350 

values to each group’s parameters. A new parameter, ODEP defining the depth of organic soil 351 

layers is introduced to reduce the number of parameters considered in the analysis, reduce 352 

computational cost, and facilitate a more straightforward analysis. ODEP is sampled over the 353 

given range and nudged to layer boundaries. It is used to divide the soil column into two 354 

horizons: horizon i with high organic content ‘ORGMi’ for all layers above ODEP, and horizon j 355 

with mineral soil texture and no organic content below it. This also prevents unrealistic 356 

combinations that could lead to model crashes and strange behaviour. The range of soil texture 357 

parameters (Sand % and Clay %) is determined from the Soil Landscapes of Canada (SLC) v2.2 358 

(Keshav et al., 2019) after the U.S. Department of Agriculture (U.S. Department of Agriculture, 359 

1951), while the range of soil organic content ‘ORGMi’ is identified from the available 360 

geological boreholes at each site.  361 
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Table 2. Parameters and their corresponding ranges for the model GSA for each site. Id (1:13) refers to 362 

canopy parameters, Id (14) refers to permeable soil depth, Id (15:20) refers to drainage/runoff parameters, 363 

Id (21:26) refers to soil texture/hydraulic parameters, Id (27) refers to snow-cover parameter, and Id 364 

(28:29) refers to ponding parameters. 365 

Id Group Parameter Unit Description 
JMC/BWC/HPC 

Lower limit Upper limit 

1 

C
an

o
p

y
 

LAMX - Annual maximum leaf area index 1.5 2.5 

2 LAMN - Annual minimum leaf area index 0.5 1.5 

3 LNZ0 - Natural logarithm of the roughness length 2 3 

4 ALVC  - Average visible albedo when fully leafed 0.02 0.04 

5 ALIC - Average near‐infrared albedo when fully leafed 0.15 0.23 

6 CMAS  kg/m
2
 Annual maximum canopy mass  10 30 

7 ROOT  m Annual maximum rooting  0.5 2 

8 RSMN s/m Minimum stomatal resistance 150 250 

9 QA50 W/m
2
 

Reference value of incoming shortwave radiation for stomatal  

resistance formula 
20 40 

10 VPDA - Vapor pressure deficit coefficient for stomatal resistance formula 0.4 0.9 

11 VPDB - Vapor pressure deficit coefficient for stomatal resistance formula 0.8 1.3 

12 PSGA - Soil moisture suction coefficient for stomatal resistance formula 75 125 

13 PSGB - Soil moisture suction coefficient for stomatal resistance formula 2 8 

14 
Permeable 

depth 
SDEP m Soil permeable depth  2 7.06/15.21/20.24 

15 

D
ra

in
ag

e/
ru

n
o
ff

 GRKF - 

The fraction of (horizontal) saturated soil conductivity moving in 

the  

horizontal direction 

0.001 1 

16 KSAT m/s (Horizontal) saturated surface soil hydraulic conductivity 0.0001 0.5 

17 DRN - 
Drainage index controls water seepage from the bottom of  

the soil column 
0 1 

18 DD km/km
2
 Drainage density 2 100 

19 XSLP - Estimated average slope of the tile/GRU 0.0001 0.4 

20 MANN - Manning’s roughness coefficient for overland flow generation “n” 0.01 0.15 

21 

S
o
il

 t
ex

tu
re

 

SANDi % Percent sand in the soil of layers i  0/13/0 12/30/32 

22 CLAYi % Percent clay in the soil of layers i  8/18/28 12/27/42 

23 ORGMi % Percent organic matter in the soil of layers i 0 60/30/15 

24 SANDj % Percent sand in the soil of layers j  0/13/0 12/30/32 

25 CLAYj % Percent clay in the soil of layers j  8/18/28 12/27/42 

26 ODEP m Depth of the organic soil  0.1 7/1/1 

27 
Snow 

cover 
ZSNL m Min depth to consider 100% cover of snow on the ground surface 0.05 0.5 

28 

P
o

n
d

in
g

 

ZPLS m 
Max depth of water allowed to be stored on ground surface for  

snow-covered area 
0.05 0.5 

29 ZPLG m 
Max depth of water allowed to be stored on ground surface for  

snow-free area 
0.05 0.5 

 366 

ALT, Tmin and Tmax (refer to Section 2.1 for definitions) were employed to assess the impact 367 

of parameter uncertainty on simulated permafrost dynamics under different forcing datasets, 368 

model sensitivities, and parameters identifiability. These three variables shed light upon the 369 

overall thermal regime using the annual envelopes (Tmax and Tmin), as well as a specific focus 370 
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on ALT as the most critical and direct aspect used to describe permafrost dynamics. The BIAS 371 

and the Mean Absolute Error (MAE) of Tmin, Tmax and ALT were used to assess the quality of 372 

permafrost simulation at the annual time-scale. The error metrics were averaged over time (i.e. 373 

the record length) and vertical space (i.e. column depth for Tmax and Tmin). Although both 374 

metrics quantify the direct bias in the model residual, MAE avoids the bias compensation that 375 

can happen when one year has a positive bias and another a negative bias. Further, in a detailed 376 

case study on model performance assessment of behavioural parameter sets (Section 3.5), we 377 

considered additional permafrost characteristics (i.e. DZAA, PB, thermal offset, surface offset, 378 

date of maximum thaw) to ALT, Tmax, Tmin (refer to Section2.1 for definitions). 379 

2.4.2 Global sensitivity analysis  380 

Sensitivity analysis of model parameters (SA) can be beneficial in identifying the main factors 381 

(e.g. boundary/initial conditions, driving forcing and model parameters) controlling permafrost 382 

dynamics and overall model performance. According to Saltelli and Annoni (2010) and Razavi 383 

and Gupta (2015), SA traditionally serves three primary purposes: 1) ranking parameters’ 384 

contribution to output variance, 2) filtering parameters with a negligible influence on output 385 

variance, and 3) mapping parameters’ space to locate the regions with a satisfactory performance 386 

– exploring causalities between different processes/hypotheses and supporting decision-making 387 

are among the other benefits of SA (Razavi et al., 2021). Local sensitivity analysis (LSA) and 388 

global sensitivity analysis (GSA) are the main categories of SA. LSA explores output variability 389 

around a single reference point, which, regardless of its high simplicity and intuitiveness, is not 390 

appropriate for complex environmental models due to their non‐linearity and significant 391 

parameter interactions (Saltelli & Annoni, 2010). In contrast, GSA evaluates model output 392 

variability over the entire feasible factor space, where a  large sample of input factors is 393 

generated and output variation is analyzed (Saltelli & Annoni, 2010).  394 

Controlled model experiments (often LSA with discrete factor space) have been integral for 395 

diagnosing model structure and validating potential modifications to enhance permafrost 396 

simulation in several LSM studies. For instance, Alexeev et al. (2007), Nicolsky et al. (2007), 397 

and Lawrence et al. (2008) improved simulated permafrost dynamics in CLM3 by assessing the 398 

sensitivity to soil layer geometries and textures. Sapriza-Azuri et al. (2018) also examined the 399 

sensitivity of soil column depth to parameters using CLASS LSM. Chadburn et al. (2015), 400 
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Paquin and Sushama (2015) and Melton et al. (2019) examined the sensitivity of permafrost to 401 

various snow parameterizations, which improved the simulated permafrost extent for JULES and 402 

CLASS LSMs. Sapriza-Azuri et al. (2018) and Hermoso de Mendoza et al. (2020) also 403 

investigated the sensitivity of the evolution of soil temperatures to the geothermal heat flux. 404 

Chadburn et al. (2015), Melton et al. (2019) and Elshamy et al. (2020) explored the impact of the 405 

depth to bedrock on permafrost thermal/hydraulic regimes. Further, sensitivity to major input 406 

variables and parameters was necessary for developing and diagnosing the NEST model, which 407 

integrates the strength of permafrost models with LSMs (Yu Zhang et al., 2003). Lastly, the 408 

analysis of permafrost sensitivity to external forcing was central to quantifying the impact of 409 

input uncertainty and proposing methodological improvements for LSMs (Burke et al., 2020; 410 

McGuire et al., 2018; Paquin & Sushama, 2015; Slater & Lawrence, 2013). It is noteworthy that 411 

all the abovementioned studies employed SA informally, which has contributed to a variety of 412 

LSM diagnosis/development, but the used ‘what-if-scenario-based’ LSA has often been 413 

criticized for not being thorough enough to yield sound decisions/sensitivities (Saltelli & 414 

Annoni, 2010). 415 

This study utilized the variogram analysis of response surfaces framework (VARS: Razavi and 416 

Gupta, 2016a). This provides a comprehensive spectrum of sensitivity information as it bridges 417 

the variance- and derivative-based approaches. For example, it produces sensitivity indices of the 418 

two most common GSA approaches, the derivative-based (Morris, 1991) and the variance-based 419 

methods (Sobol, 2001), while being more computationally efficient and statistically robust 420 

(Becker, 2020; Puy et al., 2021). To summarize global sensitivities, VARS integrates the 421 

directional variograms over a given perturbation scale (e.g. 10 %, 30%, and 50%) and produces a 422 

set of sensitivity indices called IVARS (Integrated Variograms Across a Range of Scales) 423 

(Razavi & Gupta, 2016a).  424 

The STAR-VARS implementation (Razavi & Gupta, 2016b) is used here. This sampling strategy 425 

first generates star centers randomly using, e.g. Latin hypercube sampling, and then using a 426 

structured sampling approach generates the points on the star wings. Sampling is implemented 427 

with a resolution of Δh = 0.1 and with 100 star centers, as recommended by Razavi and Gupta 428 

(2016b), where star centers were selected using Progressive Latin Hypercube Sampling 429 

(Sheikholeslami and Razavi, 2017). This resulted in a total of 26,200 model evaluations (for 29 430 
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parameters) for each permafrost site (see Section 2.4.1). The normalized values of IVARS50 431 

(adds up to 100% to a “Ratio of Sensitivity”) are used to outline GSA results. This allows 432 

straightforward interpretation of sensitivity indices in terms of parameter importance and 433 

facilitates a consistent comparison across different metrics and cases. Model crashes due to 434 

infeasible combination of sampled parameters were handled by applying a data-filling strategy 435 

for the response surface following Sheikholeslami et al. (2019).  436 

2.4.3 Uncertainty and identifiability analyses  437 

The study employed the Monte-Carlo (MC) procedure (Fig. 1) to assess the impact of parameter 438 

uncertainty on simulated permafrost dynamics, represented by ALT, Tmin and Tmax. The MC 439 

approach has been integral to various model analysis methodologies, such as the Generalized 440 

Likelihood Uncertainty Estimation Framework (GLUE: Beven and Binley, 1992), Regional 441 

Sensitivity Analysis (RSA: Spear and Hornberger, 1980), and Dynamic identifiability analysis 442 

(DYNIA: Wagener et al., 2003). MC analysis was also used for multi-objective calibration of an 443 

LSM (e.g., (Houser et al., 2001)). Commonly, the MC procedure is based on sampling from 444 

uniformly distributed input spaces (i.e. model parameters). However, the high dimensionality of 445 

LSMs and the non-linearity of their response require a large number of samples, with high 446 

computational cost, especially as we also explore different meteorological forcing sets. To 447 

reduce the computational burden, a sampling strategy was used that conveys the maximum 448 

information from the model-output space with a minimal sample size (Sheikholeslami et al., 449 

2021), based on the semi-structured parameter sampling scheme of STAR. Thus the STAR-based 450 

samples used for sensitivity analysis are also used to propagate the uncertainty of parameters to 451 

the simulated permafrost characteristics and to study their identifiability. 452 

Parameter identifiability analysis investigates whether it is theoretically possible to have a unique 453 

parameter set for a given model structure, forcing data, observations, and response surface 454 

(objective function). Such analysis is vital to pinpoint sources of uncertainty and reduce them, 455 

leading to more credible model simulations (Guillaume et al., 2019). However, traditional 456 

applications of parameter identifiability analysis (via dotty plots or boxplots) involve a degree of 457 

subjectivity inherent in defining a behavioural threshold (e.g. acceptable performance accuracy 458 

as represented by a goodness of fit metric) and commonly do not account for parameter 459 

interactions. However, the concurrent application of both sensitivity analysis (forward problem) 460 
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and identifiability analysis (inverse problem) in this case provides more insights into the 461 

parameter estimation over the whole response surface and at the global optimum (Gupta & 462 

Razavi, 2018). In other words, parameter estimation is examined by two different lenses to 463 

allocate and rule out various sources of uncertainty 464 

The sampled parameter sets for each permafrost site were used for uncertainty and identifiability 465 

analyses to ensure consistency of explored input/output spaces. The uncertainty analysis was 466 

implemented to assess the combined impact of input forcing (i.e. meteorological data) and model 467 

parameters. The primary purpose of such analysis is to select the most appropriate forcing 468 

dataset that can encapsulate the observations, which can be achieved by examining the 469 

cumulative distribution function of the performance metrics. Parameter identifiability analysis 470 

was implemented for parameter sets that collectively fulfilled the three behavioural constraints 471 

(refer to Section 3.4 and Table 6 for a discussion on the selected behavioural thresholds used for 472 

identifiability analysis). In other words, the proposed method aims to assess model simulations 473 

that satisfy all criteria (ALT, Tmin and Tmax) at once, i.e. using a multi-objective identifiability 474 

analysis. 475 

3 Results and discussion  476 

 Gridded data sets assessment  3.1477 

A basic comparison of the three forcing data sets versus ground truth observation for the mean 478 

annual air temperature and total annual precipitation is provided in Fig. 5. The meteorological 479 

stations used for the comparison are listed in Table 3. Records at 2 stations at each site had to be 480 

merged to obtain a record for the analysis period and the overlap was assessed to ensure 481 

consistency. To facilitate the comparison of WFDEI-GC to other datasets, including ground 482 

observations, we applied an adiabatic lapse rate correction since the air temperature is provided 483 

at 40m and the ground observation is measured at ~2m height (the blue shading in Fig. 5). 484 

WFDE5 and WFDEI yielded similar mean annual air temperatures at HPC and JMC sites, noting 485 

that the two data sets outperformed WFDEI-GC at JMC and partially at HPC (1979-2005). The 486 

interannual variability was perfectly replicated at the JMC site (with a consistent overestimation 487 

of 1.25°C), but not at BWC and HPC, while the HPC site has a significant bias prior to 2004 488 

(between 1-2 °C). Further, WFDEI-GC provides the warmest air temperature with an average 489 

bias of 2°C, 0.2°C, and 1.25°C for the HPC, BWC, and JMC sites, respectively. However, 490 
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WFDE5 and WFDEI-GC deliver better estimates for the air temperature at BWC, while WFDEI 491 

persistently underestimates temperature values by 1-2°C. It is noteworthy that no single data 492 

product outperforms the others for the three sites collectively for the annual air temperature and 493 

similarly for monthly/daily temporal levels (figures not shown). 494 

In general, the observed interannual variability for air temperature is better captured than 495 

precipitation among the three datasets for the whole period of comparison (1979-2016). The 496 

comparison of total annual precipitation sheds more light upon the issues/problems associated 497 

with these grid-based products. WFDEI-GC systematically overestimates the precipitation at the 498 

three sites, as does WFDE5 with a lesser magnitude but higher inter-annual variability. On the 499 

other hand, WFDEI displays a constant total annual precipitation value at HPC and BWC sites 500 

for several consecutive years, between 2008-2015 and 2006-2016, respectively. This could be 501 

attributed to the fact that CRU (which was used to constrain WFDEI) reverts to the monthly 502 

climatology when there is no data (Weedon et al., 2014). Even with the good match between 503 

WFDEI and ground observations, on average, the lack of interannual variability (repeated years) 504 

is critical in assessing permafrost initialization and dynamics, and thus it might not be advisable 505 

to use WFDEI in the current analysis. Lastly, both WFDE5 and WFDEI-GC offer similar results 506 

for the precipitation with no clear outperformance at the three sites and throughout the window 507 

of comparison. 508 

Table 3. List of meteorological stations used for evaluating gridded data sets. 509 

Site Station ID Latitude Longitude Data Availability 

HPC 
2202570 68.30 -133.48 1957-2013  

2202578 68.32 -133.52 2003-2021  

BWC 
2202800 65.28 -126.80 1953-2012  

2202801 65.28 -126.80  2003-2021 

JMC 
2202101 61.76 -121.24  1963-2014 

2202102 61.76 -121.24  2003-2021 
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 510 

Fig. 5. Comparison of WFDE5, WFDEI, and WFDEI-GC to ground truth observations for mean annual air temperature (left column) and total 511 

annual precipitation (right panel) at A) HPC site, B) BWC site, and C) JMC site. The range of adiabatic lapse rate correction for WFDEI-GC air 512 

temperatures is displayed via the light blue shading.    513 
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 Uncertainty analysis  3.2514 

The overarching goal of this section is to select the dataset that behaves well for most metrics 515 

and sites, and to investigate the associated uncertainty range. The impact of parameter 516 

uncertainty under different external forcing datasets is assessed by aggregating each modelled 517 

permafrost variable into a single error metric. This provides a general perspective on the effect of 518 

using (imperfect) forcing datasets on the quality/accuracy of model predictions. A summary of 519 

statistical measures of the cumulative frequency distributions (CDFs) for all experiments across 520 

the 26,200 model evaluations (Table 4) shows the best-performing dataset for each site and error-521 

criterion in terms of distribution mean and range. The candidate forcing dataset should fulfill 522 

minimal mean (CDF at a frequency of 0.5) and minimal envelope (range) of variability, noting 523 

that having the mean of the CDF around zero is an additional criterion for BIAS-based 524 

assessments. Entries in bold font in Table 4 correspond to the best climate datasets to replicate 525 

permafrost ground observations. It is clear that WFDEI-GC can reproduce observations using the 526 

BIAS and MAE error criterion at the three sites, except for Tmax BIAS at the three sites and 527 

ALT at the BWC site. Since the Tmax envelopes similarly encapsulate the observations (among 528 

the three datasets), with a slight advantage for WFDEI over WFDEI-GC, and ALT is simply a 529 

point on the Tmax envelope, the forcing dataset that has superior estimates for Tmin is selected 530 

for the rest of the study. Besides, forcing the three sites with the same climate facilitates a 531 

meaningful/comprehensive analysis and interpretation of results; using different input data 532 

products could yield misleading sensitivity and identifiability results. Thereby, we opted to use 533 

WFDEI-GC for the detailed analysis of parameter sensitivity and identification.  534 
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Table 4. Summary of PDFs statistical measures (mean [range]) for two performance metrics, three 535 

permafrost sites, three permafrost variables, and three climate datasets. Entries in bold indicate datasets 536 

that yield the best model performance. 537 

Site Criterion 
WFDE5 WFDEI WFDEI-GC 

BIAS MAE BIAS MAE BIAS MAE 

HPC 

Tmin -7.2 [-8.8:-1.9] 7.5 [1.5:9.3] -8.2 [-11:-5] 8.8 [4.5:11] 0.8 [-6:-5.5] 2.2 [1:5.8] 

Tmax 2.6 [0.9 :3.5] 3.9 [1.3:4.5] 1.4 [-4:2.2] 3.6 [1.6:4.4] 1.8 [-2:4] 1.7 [0.8:4.2] 

ALT -1.2 [-1.6:-0.5] 1.3 [0.5:1.8] -0.9 [-1.2:-0.2] 0.7 [0.2:1.3] -0.5 [-3:0.5] 0.5 [0.1:3] 

BWC 

Tmin -2.9 [-4.5:0.75] 3.4 [1:5.2] -4.8 [-6.2:2] 5.5 [2.5:7] 0.8 [-3.5:2.5] 2.3 [0.8:3.6] 

Tmax 1.2 [0:2.25] 1.7 [0.7:2.3] 0 [-1.1:0.9] 1.8 [0.8:3.2] 1.6 [-0.7:3.9] 1.5 [0.3:4] 

ALT -1.5 [-4.2:-0.5] 1.5 [0.4:4] -1 [-1.4:-0.3] 0.9 [0.3:1.5] -1.9 [-13:2] 2.1 [0:11] 

JMC 

Tmin -2.3 [-3.5:0] 1.4 [0.8:3.3] -2.2 [-4.2:1.7] 2.3 [0.8:4.2] 0.1 [-3.2:2.4] 0.9 [0.5:2.7] 

Tmax 2 [0.5:4] 2 [1.2:3.9] 1.4 [0.4:3.7] 1.8 [1:4] 2.6 [-0.5:5.7] 2.7 [0.8:5.2] 

ALT -1.1 [-8:0] 1 [0.2:8] -0.9 [-6.1:0.5] 0.8 [0:6] 0.2 [-2:1] 0.2 [0:2.4] 

 538 

To gain insight into the associated uncertainty range under different datasets, the CDFs for the 539 

averaged BIAS of Tmin are presented in Fig. 6, and the CDFs for the averaged MAE of ALT are 540 

shown in Fig. 7 (refer to Fig. A1 for the CDFs of the averaged BIAS of Tmax). Several points 541 

can be observed: 542 

 WFDEI-GC outperforms the other datasets in simulating Tmin at the three sites. A 543 

considerable number of parameter sets can replicate the observed Tmin without any bias. 544 

Still, the range of uncertainty is relatively large at the HPC site (range ~ ±5°C) compared 545 

to the other sites (range ~ ±2°C) forced by the same climate dataset. This can be 546 

attributed to an unsuccessful bias removal at HPC site and/or incorporating a 547 

wider/unfeasible range for model parameters,  548 

 Both WFDE5 and WFDEI produce cooler Tmin (i.e. CDF mean < 0°C) at the three sites, 549 

noting that the site furthest north (HPC) experiences the coldest bias (~ -7°C on average) 550 

compared to the -4°C and -2°C biases at the other southern sites,  551 

 WFDE5 provides better estimates of Tmin at the three sites compared to the original 552 

WFDEI; still, WFDE5 is inferior to WFDEI-GC, 553 

 The range of uncertainty of Tmin for BWC and JMC forced by different climate datasets 554 

is almost identical, of the order of ~4°C. On the other hand, HPC does not depict the 555 

same behaviour, as both WFDEI and WFDE5 have a range of uncertainty of ~6°C 556 

compared to 10°C for WFDEI-GC, 557 
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 For ALT, WFDEI-GC offers relatively better estimates (MAE) at the HPC and JMC 558 

sites. Yet, WFDEI improves the identification of ALT for BWC site (MAE of 0.9m on 559 

average that varies around 0.3m and 1.5m) with respect to WFDEI-GC that does not yield 560 

better estimates of ALT (MAE 2.1m on average with a large range of variability between 561 

0 and 11m), 562 

 Unlike Tmin, WFDE5 could not improve the ALT simulation compared to the WFDEI; 563 

both give a biased estimate with a slight advantage for WFDEI (~ 0.3m improvement in 564 

the MAE of ALT), 565 

 The distribution shape for ALT is not consistent among the three sites, even under the 566 

same forcing dataset, highlighting the model’s non-linearity. On the other hand, unimodal 567 

and bimodal normal distribution characterize the Tmin case, 568 

 No single dataset can collectively provide satisfactory model simulations (i.e. CDF 569 

encapsulate the observations with a mean of zero) for ALT and Tmin at the three sites. 570 
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 571 

Fig. 6. Histograms (red bars) and cumulative frequency distributions (black lines) for the BIAS in 572 

simulated minimum annual temperature envelope (Tmin) at A) HPC site, B) BWC site, and C) JMC site 573 

under WFDE5 (left column), WFDEI (middle column), and WFDEI-GC (right column; the Count (left 574 

axis of each subplot) refers to the number of model evolutions.  575 
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 576 

Fig. 7. Same as Fig. 6, but showing the MAE in simulated active layer thickness (ALT). 577 

 Sensitivity analysis  3.3578 

This section discusses GSA results based on the ratio of sensitivity (normalized IVARS50). GSA 579 

response surfaces were constructed for both the BIAS and MAE of Tmax, Tmin, and ALT. 580 

Unfeasible parameter combinations that violate the numerical stability conditions triggered 581 

crashes of 6%, 1%, and 10% of the model runs for HPC, BWC and JMC, respectively. As noted 582 

above, a model emulation-based substitution technique handled these crashes (Sheikholeslami et 583 

al., 2019). Bootstrapping was enabled for all GSA experiments, facilitating the assessment of the 584 

confidence in GSA results, ensuring the stability of the GSA algorithm, and accounting for 585 

randomness in sampling variability (refer to Fig. A2 for the reliability of sensitivity indices). 586 
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Fig. 8 shows that both the BIAS and MAE experiments yield consistent GSA results. For each 587 

permafrost variable, the experiments have similar sets of most sensitive parameters in terms of 588 

their relative ranking, with a minor impact on each parameter’s absolute contribution. JMC is an 589 

exception in this regard, as the order of the two most influential parameters to ALT switches; the 590 

BIAS is dominated by ZSNL (26%) followed by SDEP (16%), while the MAE is controlled by 591 

SDEP (24%) and ZSNL (21%). Further, some parameters with moderate influence exhibit 592 

different behaviour/contribution as per the used metric. For instance, the contributions of XSLP 593 

and LAMN to BIAS[ALT] at JMC are 10% and 9%, which become 7% and 8% while 594 

considering MAE[ALT]. Such slight variation in parameter sensitivity ratio is amplified when 595 

calculating the cumulative influence for each family of parameters (Fig. 9 for BIAS experiments 596 

and for Fig. A3 MAE experiments). For example, the ponding and snow-cover parameters 597 

contribute 57% of the variability of Tmin BIAS for HPC site, altering to 47% for MAE, noting 598 

that the difference is distributed among the other parameter groups. Besides, the two metrics 599 

identify the same insensitive parameters throughout all experiments. Thus, we will focus on 600 

reporting the detailed sensitivity results for one metric, i.e. BIAS. 601 

ZSNL has generally the most influence (~20%-55%) on ALT, Tmin, and Tmax sensitivities at 602 

the three sites, except Tmax of HPC site, for which ZSNL becomes the third most important 603 

parameter (~12%). Evidently, the clear agreement among the three sites stresses the importance 604 

of surface insulation (represented by ZSNL) in controlling the thawing and freezing fronts’ depth 605 

and its annual temperature value. However, XSLP is the most influential parameter on Tmax 606 

sensitivities at the HPC site, contributing ~20% to BIAS[Tmax] variability. Although XSLP is 607 

recognized as a hydraulic parameter with no implicit impact on the thermal system, XSLP is 608 

crucial in the current 1-D (vertical) simulation because it determines the amount of water exiting 609 

the soil column via inter/surface flow mechanisms, which (as noted above) updates water stores 610 

and hence the hydraulic and thermal regime of the system. 611 

Overall, Tmin is primarily dominated by three parameters, ZSNL, XSLP, and DD, contributing 612 

~70% of the BIAS. The varying contribution of the three parameters is attributed to the 613 

combined impact of external forcing and parameter interactions among the sites. For example, 614 

compared to the HPC and JMC sites, the influence of ZSNL reduces (from ≥40% to 30%) at the 615 

cost of increasing the effect of DD and XSLP (~15% collectively) at the BWC site. Besides, the 616 
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cold and dry conditions at HPC make the aerial snow coverage specification more pivotal to the 617 

insulation against heat loss in winter, which controls around half of the variability in Tmin. 618 

Further, the limited precipitation at HPC (247 mm/year) combined with shallower organic depth 619 

(ODEP<1m), little organic content (<15%), and less porosity (higher sand and clay contents) 620 

resulted in damping the impact of drainage and runoff parameters (XSLP and DD). 621 

Tmax is highly affected by the amount and extent of accumulated snow (represented by ZSNL) 622 

in the previous winter. The magnitude of influence is similar for BWC and JMC sites (~35%), 623 

while the impact decreases at the colder HPC site to ~10%. This discrepancy is mainly driven by 624 

the external climate variables and the range of soil texture parameters, as highlighted earlier. 625 

Further, LNZ0 (implicitly the vegetation height) controls the simulation of Tmax, most intensely 626 

at HPC (~15%) compared to the other sites (~5% BWC and ~2% JMC), noting that LNZ0 affects 627 

canopy storage, interception, and latent/sensible heat flux partitioning. On the other hand, 628 

ORGMi has the utmost impact on Tmax at the JMC site, with a contribution of ~ 45% of the 629 

BIAS, noting that the other two sites showed less sensitivity to ORGMi (HPC ~ 1% and BWC 630 

~7%). JMC site has a boarder range of perturbation for ORGMi (0-60%) compared to (0-30% 631 

BWC and 0-15% HPC) and for ODEP (0.1-7m) compared to (0.1-1m for both BWC and HPC) 632 

that match the site characteristics (Ednie et al., 2013; Smith et al., 2004, 2009, 2010; Smith, 633 

Chartrand, Duchesne, & Ednie, 2016; Smith, Chartrand, Duchesne, Ednie, et al., 2016). In 634 

contrast, the opposite case is associated with SDEP, as the upper limit for the JMC site is ~7m, 635 

which is significantly shallower than BWC (15.2m) and HPC (20.2m). The three sites share the 636 

same lower perturbation limit for SDEP of 2 m, defined from the maximum possible root depth. 637 

Although ALT is extracted from Tmax, it does not depict the same sensitivities for all model 638 

parameters. For instance, SDEP is surprisingly crucial only for ALT, with a relatively negligible 639 

impact on Tmin and Tmax. On average, SDEP contributes ~14% of BIAS[ALT] variability at 640 

the three sites. Still, ZSNL exerts the most influence on ALT, with a ratio of sensitivity varying 641 

between 20% and 28% at the three sites. The other high-to-moderate parameters among ALT and 642 

Tmax experiments are identical in ranking but differ in individual contributions, including DD, 643 

XSLP, and ORGMi parameters. Notably, both LAMN and LNZ0 play a moderate role in the 644 

variability of the ALT, which collectively accounts for 10%-15% at the three sites. These two 645 

parameters have an almost similar magnitude of contribution for Tmax, with a slightly lower 646 
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effect on Tmin (<9%). In general, the outcome of these comprehensive analyses reinforces the 647 

importance of surface insulation (LNZ0, LAMN and ZSNL) and subsurface regulation of heat by 648 

soil texture (ODEP and ORGMi), SDEP, and the drainage efficiency of the system (DD and 649 

XSLP). 650 
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 651 

Fig. 8. Ratio of sensitivity of IVARS50 for each parameter in all experiments for A) BIAS[Tmin], B) MAE[Tmin], C) BIAS[Tmax], D) 652 

MAE[Tmax], E) BIAS[ALT], and F) MAE[ALT]. Ratio of sensitivity of a parameter is calculated as the ratio of its respective sensitivity 653 

(IVARS50) to the sum of the sensitivity indices of all model parameters (the ratios of sensitivity for the 29 parameter sum to one). 654 

A) BIAS[Tmin]

E) BIAS[ALT]

C) BIAS[Tmax]

B) MAE[Tmin]

F) MAE[ALT]

D) MAE[Tmax]
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The study shows that a limited number of model parameters dominates the majority of the 655 

response surface variation across the selected error metrics and permafrost variables. Thus, in 656 

order to reduce the uncertainty in model predictions, it is crucial to identify/fine-tune these few 657 

but highly influential model parameters. Field observations and gridded remotely-sensed 658 

products provide a feasible approach in this regard (e.g. LAI, ORGM, SDEP), but this is not 659 

directly applicable/practical for all model parameters (e.g. ZSNL). Inference could be needed to 660 

relate some parameters to measured ones.  661 

A substantial reduction in the number of free parameters (for model calibration) is achievable by 662 

fixing the values of insensitive parameters (e.g. to the median of a priori distribution), which 663 

reduces model dimensionality and computational cost of model calibration runs. Accordingly, a 664 

list of the most influential parameters for different permafrost aspects in MESH/CLASS is 665 

provided in Table 5. We report the ‘very’ important parameters, which have a ratio of sensitivity 666 

larger than 10% (similar to Haghnegahdar et al., 2017). Since there are 18 GSA experiments (i.e. 667 

three sites x three permafrost variables x two performance metrics), the parameters listed in 668 

Table 5 summarize the experiments’ union at the HPC, BWC, and JMC sites. There are six ‘very 669 

important’ model parameters, namely ZSNL, ORGMi, XSLP, DD, SDEP, and LNZ0. Further, as 670 

a secondary goal of the sensitivity analysis, the following model parameters are entirely 671 

insensitive (<1% contribution): ALVC, ALIC, CMAS, GRKF, MANN, DRN, PSGA and PSGB. 672 
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Table 5. List of important parameters (ratio of sensitivity ≥1%) of the MESH model based on the global 673 

sensitivity analysis for different variables (and error metrics) and overall (union of all). Very important 674 

parameters (ratio of sensitivity ≥10%) are highlighted in bold. 675 

Rank Tmin Tmax ALT Overall 

1 ZSNL ORGMi  ZSNL ZSNL 

2 XSLP ZSNL XSLP ORGMi 

3 DD XSLP SDEP XSLP 

4 LNZ0 LNZ0 ORGMi DD 

5 ORGMi DD LAMN SDEP 

6 ROOT LAMN DD LNZ0 

7 LAMN SANDi SANDi LAMN 

8 VPDA ODEP ODEP SANDi 

9 KSAT SDEP LNZ0 ODEP 

10 
 

ROOT ROOT ROOT 

11 
 

KSAT SANDj SANDj 

12 
 

CLAYi VPDA VPDA 

13 
 

SANDj 
 

KSAT 

14 
   

CLAYi 

 676 

In order to better understand the similarities and differences of GSA results across all BIAS 677 

experiments, the cumulative impact of each group/family of parameters (see Table 2 and Section 678 

2.4.1) is presented by pie-charts in Fig. 9 (refer to Fig. A3 for MAE results). This reveals that 679 

model performance at both JMC and HPC sites is mainly dominated by snow cover and 680 

drainage/runoff parameters, which collectively contribute ~72% to the variability in 681 

BIAS[Tmin], noting that the snow cover group has an absolute higher influence (55% for HPC 682 

and 45% for JMC). On the other hand, performance at the BWC site is primarily dominated by 683 

the same two parameter groups (75%), with a different proportional impact since the 684 

drainage/runoff group has more influence (43%) on the simulation of BIAS[ALT]. The ponding 685 

and permeable depth groups have minimal impact on Tmin throughout all the experiments, 686 

contributing to a maximum of 4% of Tmax variability. Unlike Tmin, the three sites depict a very 687 

different behaviour for Tmax in terms of the controlling group of parameters. For example, HPC 688 

is highly sensitive to drainage/runoff and canopy groups (37%+27%), which is not the case for 689 
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BWC that is dominated by snow cover and drainage/runoff group (35%+25%), nor for the JMC 690 

site that is controlled by soil texture and snow cover (50%+33%). The ponding and permeable 691 

depth groups have a minimal impact on Tmax for all experiments, with a maximum contribution 692 

of 5%. Lastly, the ALT GSA experiments yield relatively identical partitioning of parameters 693 

since no single group dominates more than 30% of the BIAS[ALT] variability. The ponding 694 

group of parameters has the most negligible impact on ALT (≤2%), while the permeable soil 695 

depth becomes more influential to ALT than Tmax and Tmin.  696 

 697 

Fig. 9. Total ratio of sensitivity (based on IVARS50) for each group of parameters (as indicated in Table 698 

2) for the BIAS across all experiments. 699 

 Parameter identifiability  3.4700 

This section explores the degree of identifiability of MESH parameters in simulating ALT, 701 

Tmin, and Tmax. Instead of presenting identifiability results for each permafrost variable 702 

separately, we show parameter sets that simultaneously fulfil the behavioural threshold for the 703 

three permafrost variables. This reduces the explored response space and focuses on the global 704 

maxima regions. Further, instead of screening/selecting the best model runs based on an arbitrary 705 

percentage or number of the total simulations (e.g. 10% as in Wagener et al. (2003) or the best 706 

five parameter sets as in Houser et al. (2001)), we opted for the traditional approach in which the 707 

screening follows predefined thresholds of performance metrics. Employing this technique is not 708 
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free of subjectivity in defining these thresholds; but we believe that filtering by a performance 709 

metric is relatively less subjective, which was applied for the MAE experiments as follows: 710 

≤0.3m for MAE[ALT], and ≤1°C for MAE[Tmax/Tmin]. However, the experiments depicted a 711 

high discrepancy among sites for the BIAS case, making identifying and unifying these 712 

thresholds challenging; having a reasonable number of parameter sets was the other criterion in 713 

this assessment. Thereby, each site has a set of distinctive behavioural thresholds used for the 714 

identifiability analysis of its model parameters, as summarized in Table 6.  715 

Table 6. Summary of behavioural thresholds per site and performance metric and the total number of 716 

parameter sets that fulfill such constraints. 717 

Site Criterion 
BIAS MAE 

Range No. of sets Range No. of sets 

HPC 
Tmin & Tmax ±0.5°C 

9 
≤1°C 

7 
ALT ±0.25m ≤0.3m 

BWC 
Tmin & Tmax ±0.15°C 

34 
≤1°C 

89 
ALT ±0.05m ≤0.3m 

JMC 
Tmin & Tmax ±0.25°C 

75 
≤1°C 

13 
ALT ±0.1m ≤0.3m 

 718 

The range of behavioural parameter sets for all sites, scaled between zero and one, is shown in 719 

Fig. 10 (BIAS case) and Fig. 11 (MAE case). ZSNL, the most influential parameter in most GSA 720 

experiments (see Fig. 9), is broadly identifiable (more constrained) among sites with a slightly 721 

different setting within its feasible range for each site. For instance, employing the MAE as the 722 

performance metric, the HPC model has an identifiable range for ZSNL of 0.6-0.8, while BWC 723 

and JMC have identifiable ranges of 0.45-0.7 and 0.55-0.95, respectively (Fig. 11). The three 724 

sites share the same identified normalized ZSNL value of ~0.7 (i.e. equivalent to ZSNL of 725 

0.35m) with a high probability of occurrence (i.e. darker dots in Fig. 11). However, the analysis 726 

at JMC via the BIAS (Fig. 10) reveals a potential issue as the identifiable normalized value for 727 

the ZSNL was one (i.e. upper end of the range), probably highlighting an inadequately defined 728 

parameter range and/or other structural non-identifiability for the JMC model setup. Other 729 

experiments show similar behaviour of having an identifiable parameter value at the lower or 730 

upper limit of the feasible range (e.g. ORGMi of BWC with MAE); still, the proportion of such 731 

problematic parameters is insignificant among all experiments.  732 
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Irrespective of the employed performance metric, highly sensitive parameters (shaded in light 733 

red in Fig. 10 and Fig. 11) other than ZSNL do not always depict clear identifiability. For 734 

example, the range of SDEP for the BWC setup covers almost the whole feasible space; 0.1-0.9 735 

via BIAS and 0.1-0.75 via MAE. The HPC setup sustains the same issue of poorly identified 736 

SDEP, while it is relatively identifiable for JMC. The inability to determine such a critical 737 

parameter affects both the thermal and hydrologic simulation of MESH (Elshamy et al., 2020; 738 

Haghnegahdar et al., 2017). Further, the highly sensitive hydraulic parameters, XSLP and DD, 739 

are not well identified, especially the DD parameter for the BWC setup; XSLP is moderately 740 

constrained for HPC and JMC via MAE and BIAS, respectively. Further, the range of LNZ0 741 

parameter for HPC differs depending on the utilized performance metric; MAE reduces the 742 

identifiability range (from 0.2-0.9 to 0.3-0.55). Lastly, a negligible impact of the employed 743 

metric on the well-identified ORGMi at the JMC site is observed.  744 

Similarly, moderately influential parameters (shaded in light blue in Fig. 10 and Fig. 11) do not 745 

depict a consistent response to the employed performance metric. For example, the identifiable 746 

range of LNZ0 for BWC is 0.5-1.0 and 0.05-0.35 for MAE and BIAS, respectively, highlighting 747 

the significant impact of the selected metric on the estimated parameter value. However, the 748 

behavioural value for the DD parameter for JMC setup does not change with the selected metric. 749 

Noting that a clear improvement on parameter identification for the JMC site is achieved when 750 

employing the MAE for the filtering/selecting behavioural solutions, including sensitive and 751 

insensitive parameters. This site shares the same behavioural solutions among BIAS and MAE 752 

experiments (i.e. same darker dots in Fig. 10 and Fig. 11), which is not the case for the other two 753 

sites. Besides, the rest of the moderately influential parameters are less identified at HPC and 754 

BWC, especially LAMN, VPDB, and KSAT. Therefore, not every highly/moderately influential 755 

parameter is identifiable for all experiments/sites, underlining the potential parameter interaction 756 

and non-uniqueness of fluxes/states partitioning, hence the simulated permafrost.  757 
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 758 

Fig. 10. Summary of parameter identifiability that simultaneously satisfies the ALT, Tmax, and Tmin 759 

performance criteria at A) HPC, B) BWC, and C) JMC sites. The behavioural parameter sets are filtered 760 

by BIAS performance error, where the number of parameter sets is 9, 34, and 75 for HPC, BWC and JMC 761 

sites, respectively; Light red shade refers to a high influential parameter (ratio of sensitivity ≥10%); Light 762 

blue shade refers to moderate influential parameter (10%> ratio of sensitivity ≥1%); Transparent 763 

markers/points are used that get darker when coinciding or overlapping.  764 

 765 

A) HPC (9 parameter set)

B) BWC (34 parameter set)

C) JMC (75 parameter set)
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 766 

Fig. 11. Same as Fig. 10, but showing the MAE-based identifiability results, where the number of 767 

behavioural parameter sets is 7, 89, and 13 for HPC, BWC and JMC sites, respectively. 768 

 Model performance assessment  3.5769 

This section examines different facets of permafrost dynamics for the selected behavioural 770 

solutions based on the MAE metric at the JMC site (i.e. 13 parameter sets shown in Fig. 11C). 771 

This model experiment has long permafrost observations (1985-2000) and reasonably 772 

A) HPC (7 parameter set)

B) BWC (89 parameter set)

C) JMC (13 parameter set)
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identifiable model parameters. In detail, Fig. 12A-D compare the uncertainty envelopes of ALT, 773 

MAGTp, PB and DZAA (refer to Section 2.1 for definitions) with respect to their observed 774 

counterparts, extracted mainly from available temperature profiles. Although the maximum 775 

allowable average deviation from observed ALT was specified as 0.3m, as highlighted in Table 776 

6, the envelope of variability corresponding to parameter sets that fulfill such conditions 777 

fluctuates between 0.3m-1m, broadly encapsulating the observations. The considerable range of 778 

variability is attributed to employing an aggregated performance metric (MAE in this case) that 779 

compresses the dynamical response of the system in time into a single objective function. One 780 

way to address such loss of information is by utilizing non-equal weights (or a form of penalty 781 

function) while performing the aggregation to constrain the filtering and ensure a behavioural 782 

solution replicates the observed behaviour. Another solution can be found in studying the 783 

identification of model parameters with finer temporal resolution using, e.g., the DYNamic 784 

Identifiability Analysis (DYNIA: (Wagener et al., 2003)). However, even such a thorough 785 

approach is challenged by the unique nature of permafrost, as most of its descriptive variables 786 

are annual-based which limits the number of points used to calculate the metrics and are 787 

regulated by complicated interactions between surficial, sub-surficial and meteorological drivers.  788 

The selected behavioural solutions produced warmer and thinner permafrost, as depicted in Fig. 789 

12B&C. The simulated MAGTp is consistently higher than observations by around 1°C 790 

(uncertainty range: 0.25°C-1.75°C), except for 1996 and 1997, where few parameter sets could 791 

capture observed temperatures, noticing that warmer Tmin and/or Tmax reflect such 792 

overestimation in permafrost temperature. Similarly, but to a lesser extent, simulated PB is 793 

continually underestimated (e.g. two-folds during the 1990s onset) over the simulation period, 794 

with an exception at the beginning (1986-1988) and near the end (1995-2000). The envelope of 795 

PB depicts high interannual variability that is not shown by observations. Lastly, the DZAA is 796 

closely captured with an average variance of 1.5m, as shown in Fig. 12D. Noting that DZAA 797 

plays a pivotal role in simulating permafrost as it assesses the suitability of the selected soil 798 

column depth and identifies the presence of permafrost via calculating its corresponding soil 799 

temperature (TZAA) (Burke et al., 2020; Sapriza-Azuri et al., 2018).  800 

Fig. 12E&F provide the temporal evolution of the BIAS and MAE of Tmax and Tmin, which 801 

were aggregated above to assess model uncertainty, sensitivity, and identifiability. Three 802 
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distinctive remarks could be drawn for these figures. First, Tmin tends to be mostly colder than 803 

observed as indicated by the BIAS sign, while Tmax envelope is generally warmer. Secondly, 804 

Tmin depicts a higher uncertainty range and interannual variability compared to Tmax. Lastly, 805 

no clear trade-off between Tmax and Tmin was observed while using MAE or BIAS 806 

performance criteria due to error compensation. Although ALT is extracted from Tmax, it does 807 

not depict identical variance for behavioural model parameters compared to Tmax, which is 808 

compatible with sensitivity analysis results in this regard (Section 3.3).  809 

Fig. 12G presents the temporal evolution of the date of maximum thaw. Remarkably, there is a 810 

wide range of uncertainty (100-150 days) for the date, driven by two distinctive clusters of 811 

simulations as shown by the solid lines (each one corresponds to a single parameter set) in Fig. 812 

12G. Noting that four parameter sets yielded an earlier (questionable to happen) date between 813 

May (DOY-130) and June (DOY-180) throughout the simulation period, which cannot be 814 

verified or falsified due to the unavailability of thaw timing data. In contrast, the other cluster 815 

simulated the date of maximum thaw more reasonably, with values varying between DOY-250 816 

and DOY-300; the years 1992 and 1993 were an exception as most of the cluster’s members had 817 

earlier max thawing date (~DOY-200). Such a major discrepancy in maximum thaw timing 818 

highlights a potential challenge in LSM applications, even under a constrained parameterization 819 

for ALT and temperature envelopes, accentuating the need for additional constraint(s) for a 820 

better simulation of the freeze/thaw cycles.  821 

Fig. 12H displays the envelopes of surface and thermal offsets (refer to Section 2.1 for 822 

definitions). The figure reveals high variability for the surface offset above the ground, 823 

dominated by snow accumulation in winter and the shading effect of the canopy in summer. The 824 

envelope of surface offset has positive values with a varying mean of 5°C-10°C and interannual 825 

variability between of 2.2°C-5.5°C. Besides, the surface offset is the summation of winter and 826 

summer offsets, that when apportioned, highlights the significant influence of snow on keeping 827 

permafrost from losing heat in winter over the impact of canopy shading in summer. Winter 828 

offset could vary by up to ~10°C with an enormous interannual variability similar to that of 829 

MAGTp (Fig. 12B), while summer offset has a weaker variance of ~5°C and a smaller 830 

interannual variability, as shown in Fig. A4. On the other hand, the thermal offset, occurring in 831 

the soil above the permafrost’s horizon, displays a confined uncertainty in order of 0.1°C-1°C, 832 
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noting that the thermal properties of soil texture above the permafrost table do exert the primary 833 

influence on the thermal offset and JMC is characterized by the presence of organic soil – 834 

ORGMi was well-identified according to the identifiability analysis for the JMC site based on 835 

MAE (Fig. 11C). 836 

 837 

Fig. 12. Temporal evolution and the associated range of uncertainty for A) ALT, B) Mean Annual 838 

Ground Temperature at the top of permafrost (MAGTp), C) depth to the Base of Permafrost (BP), D) 839 

A) B)

C) D)

E)

F)

G) H)
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Depth to the Zero Annual Amplitude (DZAA), E) BIAS of simulated ALT, F) MAE of simulated ALT, 840 

G) Date of Maximum thawing, and H) Surface and Thermal Offset. All presented variables correspond to 841 

the identifiable JMC experiments via the MAE (13 parameter set); refer to Fig. 2 for a brief description of 842 

permafrost variables; shading denotes the range of uncertainty, while red marks denote the available 843 

observation; each solid line in subplot G corresponds to a single model evaluation (parameter set).  844 

Fig. 13 compares three different simulated temperature profiles for 1993, 1997, and 2000 at the 845 

JMC site for the behavioural parameter sets filtered by the MAE. The year 1993 (Fig. 12 and 846 

Fig. 13A) has sound results for the ALT, DZAA, Tmax, and thermal offset at the cost of having 847 

warmer permafrost (overestimated MAGTp and Tmin by ~1°C), shallower permafrost thickness 848 

(underestimated PB by 2m), and highly divergent surface offset. On the other hand, the year 849 

1997 (Fig. 12 and Fig. 13B) gives good agreement for ALT, MAGTp, PB, DZAA, and a smaller 850 

uncertainty range for the maximum thaw date in exchange for the highest observed 851 

underestimation of Tmin by 2°C in addition to a considerable variation of surface offset by 5°C. 852 

Lastly, the year 2000 (Fig. 12 and Fig. 13C) has balanced results for ALT, DZAA, Tmin, and 853 

Tmax, producing warmer (MAGTp overestimated by 1.2°C) and shallower permafrost thickness 854 

(PB underestimated by 2m) in addition to the immersive variability for the date of maximum 855 

thaw (DOY130-DOY290). Such comparison highlights the difficulty/complexity that modellers 856 

encounter while employing LSMs for permafrost-based applications, either investigative or 857 

predictive, regardless of the assessment scale.  858 

 859 

Fig. 13. The observed and simulated envelopes of temperature profiles (Tmin and Tmax) at the JMC site 860 

using identifiable parameters for MAE criteria at A) 1993, B) 1996, and C) 2000. 861 

A) B) C)
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4 Summary and conclusions  862 

Following extensive efforts to improve the realism of process representation in land surface 863 

models (LSMs), their complexity and dimensionality has increased remarkably, complicating 864 

model/parameter identification. Moreover, simulating the dynamics of perennially frozen soil, or 865 

permafrost, is further challenged by the significant thermal/hydraulic memories of a deep soil 866 

column and the limited availability of ground observations. We note that the simulation of the 867 

thermal regime dynamics of the soil column in cold regions directly influences the partitioning of 868 

water and energy fluxes, which, if not well constrained, could yield deceptive future projections 869 

for climate and hydrology. We inspected three interrelated issues regarding permafrost 870 

simulation in the MESH-CLASS LSM; the impact of input uncertainty (forcing data), the 871 

sensitivity of simulations to model parameters, and the identifiability of model parameters. Three 872 

experimental sites within the Canadian Mackenzie River Basin (MRB) were employed in the 873 

current study, characterized by various climatic conditions and permafrost zonation. We finally 874 

assessed model performance at one of the sites using a large set of permafrost characteristics 875 

versus observations as available. 876 

The combined impact of climate forcing and parameter uncertainty on permafrost dynamics was 877 

assessed for various climate forcing data sets, characterized by different temporal/spatial 878 

resolutions and forecasting/reanalysis methods. Such characteristics can play a pivotal role in 879 

initializing model states, parameter/model identification/sensitivities, and the subsequent 880 

simulation quality. Three meteorological datasets were considered for the study; WFDEI, 881 

WFDEI-GEM-CaPA, and WFDE5. Comparing the three forcing datasets to ground stations 882 

highlighted the significant uncertainties that could be introduced to permafrost simulation due to 883 

persistent bias in air temperature and precipitation. Besides, it underlined associated issues with 884 

forcing datasets, such as a repeated climatology-based (WFDEI-CRU variant) precipitation when 885 

there are no data available, in addition to the noticeable warm bias of air temperature in the 886 

WFDEI-GEM-CaPA dataset, which exceeded the adiabatic lapse late correction (noting that 887 

dataset provided data at 40m altitude).  888 

The cumulative frequency distributions (CDF) for the averaged BIAS and MAE of Tmin, Tmax, 889 

and ALT were utilized for evaluating the experiments. No single dataset could collectively 890 

provide satisfactory model simulations for the three characteristics at the three sites. For 891 
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instance, WFDEI-GEM-CaPA can reproduce the observations for Tmin and ALT using the 892 

BIAS and MAE criteria at the three sites, except for ALT at BWC, where WFDEI slightly 893 

outperforms. Thereby, the WFDEI-GEM-CaPA dataset was nominated for forcing the models of 894 

the three sites, to avoid inconsistent results for parameter sensitivity and identifiability if 895 

different forcing sets were used for the different sites.     896 

Different global sensitivity analysis (GSA) experiments were implemented using the variogram-897 

based framework (VARS) to study the degree of sensitivity of permafrost variables to the 898 

perturbation of the MESH-CLASS parameters. Understanding, diagnosing, and developing 899 

models for permafrost simulation were the motives for such vital analysis, given the 900 

unavailability of a comprehensive (formal) GSA in the context of land surface modelling of 901 

permafrost. The traditional metric-based time-aggregate GSA was employed for different aspects 902 

of permafrost dynamics, noting that model crashes were handled by a model emulation-based 903 

substitution technique. The experiments accentuated the dominant role of parameters (ratio of 904 

sensitivity ≥10%) that describe heat insulation at the vegetation-soil interface, such as ZSNL, 905 

LNZ0, and ORGMi, and those that control the runoff generation processes, such as SDEP, DD, 906 

and XSLP. The ranking and contribution of these parameters vary among experiments based on 907 

the incorporated response surface variable of the GSA. Further, the study provides a list of the 908 

highly sensitive parameters for different permafrost characteristics. Remarkably, the water 909 

ponding-related parameters possess a limited-to-negligible influence for all GSA experiments. 910 

The study highlights model parameters that should be carefully fine-tuned and those with 911 

negligible impact on output variability that, if fixed (e.g. to the median of parameter range) and 912 

excluded from any subsequent model calibration, could reduce model dimensionality, the 913 

associated computational cost, and enhance parameter identification.   914 

Parameter identifiability was also investigated in a multi-objective fashion to examine model 915 

parameterization and fidelity with a different lens, complimentary to sensitivity and uncertainty 916 

analyses. An approach incorporating additional constraints on permafrost simulations and tight 917 

behavioural thresholds (based on a predefined measure of model performance) yielded a small 918 

number of parameter sets that satisfy the multi-objective criteria (i.e. 7-89 out of 26,200 sets). 919 

The analysis underscored that not all highly and moderately (10%> ratio of sensitivity ≥1%) 920 

sensitive parameters were clearly identifiable among all experiments. Besides, the identifiable 921 
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value/range for sensitive parameters differs among sites, highlighting the massive impact of 922 

external forcing and predefined parameter ranges. 923 

Permafrost dynamics, represented by various facets, were extensively examined for one of the 924 

experiments (i.e. the MAE-based JMC experiment) to explore the uncertainty corresponding to 925 

these designated behavioural solutions. Even though ALT, Tmin, and Tmax are mainly 926 

replicated by the behavioural parameter sets with significant interannual variability, other 927 

descriptive factors of permafrost dynamics were not appropriately reproduced, such as MAGTp, 928 

PB, the date of maximum thaw and the surface offset. Further, a qualitative comparison of the 929 

simulated temperature profiles (at different years) and other permafrost variables highlighted the 930 

challenges that modellers encounter while configuring LSMs for permafrost-related applications.      931 

Despite the fact that the outcomes of this study were specific to the MESH-CLASS model and 932 

limited to the selected evaluation sites and methods, they are practically beneficial for advancing 933 

modelling practices, especially permafrost-related applications. The study highlighted the 934 

complexities and challenges of LSM application in cold regions and shed light upon the possible 935 

approaches to address such obstacles. That being said, a joint multi-objective GSA and multi-936 

objective identifiability analyses promote an improved understanding of LSM structure, reduces 937 

predictive uncertainties, and facilitates efficient model calibration. Further, there is a pressing 938 

need to develop improved forcing datasets that rectify the problems of the current versions of 939 

datasets in terms of systematic biases and lack of interannual variability in air temperature and 940 

precipitation for some datasets; other meteorological variables were not assessed due to data 941 

availability constraints. Besides, additional improvement is required in the MESH-CLASS model 942 

to enhance the realism of permafrost simulation, as reflected by the simulation’s 943 

quality/uncertainty, e.g. producing cooler Tmin and misrepresenting surface/thermal offsets, 944 

possibly due to insufficient insulation. Proposed modifications include the snow component 945 

which is still simulated via a single layer and the surface canopies where no explicit treatment of 946 

canopy litter and moss is available. Lastly, future studies could be directed towards generalizing 947 

the outcomes of these analyses to other observational sites with more data and to other regions, 948 

as well as exploring the extendibility of the work to various regional and global models with 949 

varying complexity in large-scale applications. 950 
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Appendix  1287 

Table A1. Soil profile layering scheme for the two sites, adopted form (Elshamy et al., 2020). 1288 

Layer Thickness Layer Thickness 

1 0.1 14 1.48 

2 0.1 15 1.78 

3 0.11 16 2.11 

4 0.13 17 2.48 

5 0.16 18 2.88 

6 0.21 19 3.33 

7 0.28 20 3.81 

8 0.37 21 4.34 

9 0.48 22 4.9 

10 0.63 23 5.51 

11 0.8 24 6.17 

12 0.99 25 6.87 

13 1.22 

   1289 
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 1290 

Fig. A1. Same as Fig. 6, but showing the BIAS in maximum annual temperature envelope (Tmax).1291 
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 1292 

Fig. A2. Ratio of reliability of IVARS50 for each parameter in all experiments for A) BIAS[Tmin], B) MAE[Tmin], C) BIAS[Tmax], D) 1293 

MAE[Tmax], E) BIAS[ALT], and F) MAE[ALT]. 1294 
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 1295 

Fig. A3. Total ratio of sensitivity (based on IVARS50) for each group of parameters (as indicated in Table 1296 

2) for the MAE across all experiments. 1297 

 1298 

Fig. A4. Temporal evolution and the associated range of uncertainty for A) Winter offset by accumulated 1299 

snow, and B) Summer offset by the canopy’s shading; gray shading denotes the range of uncertainty.   1300 
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