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Abstract

Mixed-phase clouds (MPCs), which consist of both supercooled cloud droplets and ice crystals, play an important role in the

Earth’s radiative energy budget and hydrological cycle. In particular, the fraction of ice crystals in MPCs determines their

radiative effects, precipitation formation and lifetime. In order for ice crystals to form in MPCs, ice-nucleating particles (INPs)

are required. However, a large-scale relationship between INPs and ice initiation in clouds has yet to be observed. By analyzing

satellite observations of the typical transition temperature (T*) where MPCs become more frequent than liquid clouds, we

constrain the importance of INPs in MPC formation. We find that over the Arctic and Southern Ocean, snow and sea ice cover

significantly reduces T*. This indicates that the availability of INPs is essential in controlling cloud phase evolution and that

local sources of INPs in the high-latitudes play a key role in the formation of MPCs.
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Key Points:5

• Ice-nucleating particles (INPs) control ice formation in high-latitude clouds.6

• Sea ice and snow inhibit the local emission of INPs, which directly influences cloud7

phase in the Arctic and Southern Ocean.8

• This has implications for the predicted negative cloud phase feedback with future9

warming and the associated sea ice and snow cover loss.10
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Abstract11

Mixed-phase clouds (MPCs), which consist of both supercooled cloud droplets and ice12

crystals, play an important role in the Earth’s radiative energy budget and hydrologi-13

cal cycle. In particular, the fraction of ice crystals in MPCs determines their radiative14

effects, precipitation formation and lifetime. In order for ice crystals to form in MPCs,15

ice-nucleating particles (INPs) are required. However, a large-scale relationship between16

INPs and ice initiation in clouds has yet to be observed. By analyzing satellite obser-17

vations of the typical transition temperature (T*) where MPCs become more frequent18

than liquid clouds, we constrain the importance of INPs in MPC formation. We find that19

over the Arctic and Southern Ocean, snow and sea ice cover significantly reduces T*. This20

indicates that the availability of INPs is essential in controlling cloud phase evolution21

and that local sources of INPs in the high-latitudes play a key role in the formation of22

MPCs.23

Plain Language Summary24

Mixed-phase clouds (MPCs), which consist of both liquid droplets and ice crystals,25

play an important role for the Earth’s climate system. For example, the number of ice26

crystals in MPCs determines how much sunlight is reflected by the cloud and how ef-27

ficiently the cloud can form precipitation. The formation of ice crystals in MPCs requires28

a special subset of aerosol particles called ice-nucleating particles (INPs). INPs are re-29

quired for liquid cloud droplets to freeze at temperatures warmer than -36 °C. However,30

a large-scale relationship between INPs and ice formation in clouds has yet to be observed.31

Using satellite observations, we determine the transition temperature (T*) where MPCs32

become more frequent than liquid clouds and find that T* is strongly dependent on snow33

and sea ice cover over the Arctic and Southern Ocean. This indicates that sea ice and34

snow cover act as a lid that inhibits the emission of INPs from the ocean. In a warm-35

ing world with retreating sea ice and snow cover, our results suggest that clouds in these36

regions will contain ice crystal at warmer temperatures than previously estimated and37

thus, have potential implications for future warming predictions.38

1 Introduction39

The amount of liquid and ice within MPCs influences precipitation formation, cloud40

lifetime, and electrification (Cantrell & Heymsfield, 2005). Simultaneously, the thermo-41

dynamic phase composition controls the radiative properties of MPCs due to the differ-42

ent scattering properties between liquid water and ice. In a warming climate, MPCs are43

believed to transition towards a state with more liquid water and a higher albedo, which44

limits future warming (Bjordal et al., 2020; Zelinka et al., 2020). This cloud phase feed-45

back makes the accurate representation of ice crystal concentrations in MPCs in Earth46

System Models (ESMs) essential for correctly predicting the future climate (Tan et al.,47

2016; Forster et al., 2021). But what controls the formation of ice and the thermody-48

namic phase composition in MPCs?49

The importance of INPs for forming ice in MPCs is undisputed. Laboratory ex-50

periments show that pure water does not freeze without the presence of an INP until it51

is supercooled to around -36 °C. Therefore, field measurements including precipitation52

sampling (Vali, 1971; Petters & Wright, 2015), airborne (Borys, 1989; Rogers et al., 2001;53

Pratt et al., 2009; DeMott et al., 2010), ship (Wilson et al., 2015; Welti et al., 2020), and54

mountaintop measurements (Lacher et al., 2017) have been conducted to investigate the55

abundance of INPs, globally. These studies have found that INP concentrations can vary56

by several orders of magnitude at a given temperature. This variability is partially ex-57

plained by the location and type of aerosol acting as INPs (Kanji et al., 2017). Close to58

the Earth’s major deserts, dust is the primary source of INPs, especially at temperatures59

below -15 °C (Atkinson et al., 2013; Murray et al., 2012; Boose et al., 2016). Meanwhile,60
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in more remote regions and at higher temperatures, biological sources such as sea spray61

aerosol are believed to be the most important source of INPs (Burrows et al., 2013; Schnell62

& Vali, 1975; Wilson et al., 2015; C. S. McCluskey et al., 2018; Irish et al., 2019).63

Based on the fundamental importance of INPs for ice crystal formation in MPCs,64

INP parametrizations have been developed to account for different aerosol species and65

the observed variability from field and laboratory studies. When implemented into ESMs,66

different INP parametrizations can have profound effects on both MPC optical proper-67

ties and lifetimes. However, when in situ ice crystal number concentrations are compared68

with INP concentrations, they seldomly agree (Mignani et al., 2019) and ice crystal con-69

centrations often exceed INP concentrations by several orders of magnitude (Ladino et70

al., 2017; Ramelli et al., 2021; Rangno & Hobbs, 2001). This would suggest that INPs71

are not as important for ice crystal formation in MPCs as laboratory studies indicate.72

The main explanation for this discrepancy is secondary ice production (SIP) (Korolev73

& Leisner, 2020; Hallett & Mossop, 1974), which has been shown to rapidly increase the74

concentration of ice crystals in MPCs through what has been described as a cascading75

process. Nevertheless, the occurrence and efficiency of secondary ice processes is still an76

area of open research.77

Another and larger scale approach to assess the influence of INPs on MPCs has been78

through the so-called supercooled liquid fraction (SLF, ratio of supercooled liquid to ice).79

The SLF and ambient aerosol concentration (a proxy for INPs) comparisons show that80

there is a correlation, but a weak dependence between dust aerosols and the SLF of MPCs81

at a given temperature (Choi et al., 2010; Tan et al., 2014). However, the SLF is prone82

to the influence of dynamics (vertical velocities), the Wegener-Bergeron-Findeisen pro-83

cess (Korolev, 2007), and secondary ice processes, thereby masking the importance of84

INPs for the distribution of the cloud phase.85

Therefore, with the exception of laboratory and modeling studies, direct evidence86

of the importance of INPs on MPC formation and subsequent thermodynamic phase com-87

position has yet to be observed or quantified. Here we show that by using the transition88

temperature from supercooled liquid clouds to MPCs, as observed by satellites, the in-89

fluence of INPs on the thermodynamic phase composition in MPCs can be disentangled.90

In particular, we focus this analysis on the high-latitudes, where MPCs are abundant91

(Korolev et al., 2017). Additionally, field studies indicate that local INP emissions have92

a strong seasonal dependence in the Arctic (Wex et al., 2019; Tobo et al., 2019), provid-93

ing a unique opportunity to analyse the influence of differing INP concentrations on MPCs.94

We find that this transition temperature is significantly suppressed over sea ice and snow,95

confirming that INPs play a critical role in the evolution of cloud phase and that the INPs96

in this region are primarily of a local nature.97

2 Materials and Methods98

Here we use satellite observations from CloudSat and the Cloud-Aerosol Lidar and99

Infrared Pathfinder Satellite Observation (CALIPSO, Stephens et al., 2002; Winker et100

al., 2010) to discriminate between single-layer liquid only (LO) and liquid-topped MPCs101

(LTMPCs) and combine them with cloud top temperatures (CTTs) from atmospheric102

reanalysis data to characterize the occurrence of both cloud types as a function of CTT103

(see Figs. 1A and B). The warmest CTT when LTMPCs become more frequent than LO104

clouds, is hereafter referred to as T* (see Fig. 1C). We perform this analysis on a 5°x5°105

grid (see Fig. 1D) for each season over 9 years (2006-2017). In this section, the calcula-106

tion of T*, its significance, and the averaging procedure are described together with the107

processing of the sea ice data used in the interpretation of the results.108
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Figure 1. Frequency of cloud types (in %) with respect to cloud top temperature (bin width:

2 °C) for the 5°x5° grid cell centered at 60°S and 0°E combining 9 austral summer seasons (DJF,

2006-2009 and 2012-2016). (A) for liquid-only clouds, (B) for liquid-top mixed-phase clouds, (C)

The combination of LO and LTMPC frequency distributions yields an exemplary T* of -13’,°C.

2.1 Satellite data and definition of cloud regimes109

For the discrimination between LO clouds and LTMPCs, we use the data product110

2B-CLDCLASS-LIDAR (Sassen et al., 2008), which combines observations from the cloud111

profiling radar (CPR) on CloudSat (Stephens et al., 2002) and the Cloud-Aerosol Lidar112

with Orthogonal Polarization (CALIOP) (Winker et al., 2007) on CALIPSO (Winker113

et al., 2010). The 2B-CLDCLASS-LIDAR product utilizes the different sensitivities of114

the radar and lidar to liquid droplets and ice crystals to determine the phase of a cloud115

layer. The logics of the phase determination algorithm are based on a temperature de-116

pendent radar reflectivity threshold (Zhang et al., 2010), the integrated attenuated li-117

dar backscattering coefficient, and cloud base and top temperatures from atmospheric118

reanalysis (Wang, 2019). This way, each individual cloud layer of the CPR profile gets119

assigned a phase (variable CloudPhase: ’ice’, ’mixed’, or ’water’). Here we restrict our120

analysis to single-layer clouds. The cloud phase information comes with a confidence level121

assigned to the cloud phase (variable CloudPhaseConfidenceLevel). The confidence value122

generally ranges from zero to 10, where 10 indicates the highest confidence level. While123

it is not recommended to use data with a confidence level of five or lower, we further re-124

strict our analysis to cloud phase confidence levels of seven or higher. For each cloudy125

profile, we retrieve the cloud top temperature (CTT) from the ECMWF-AUX dataset126

that contains ancillary European Centre for Medium-Range Weather Forecast (ECMWF)127

state variable data interpolated to each CPR vertical bin. For the definition of the dif-128

ferent cloud types, we include observations with CTTs below 270 K to stay away from129

the temperature limits of the phase determination algorithm. We define LO clouds and130

MPCs based on the CloudPhase variable of ’water’ or ’mixed’, respectively. For the def-131

inition of LTMPCs, we further use the Water layer top variable from the 2B-CLDCLASS-132

LIDAR product, which indicates the location of a possible water layer in MPCs. We de-133

fine LTMPCs as all MPCs where the Water layer top is within 3 vertical radar bins134

(90 m) of the cloud top height (variable CloudLayerTop). The CTT of all LO and LTMPC135

are combined into 5°x5° grid cells over the entire globe. Then the CTTs of the LO and136

LTMPCs are binned into 2°C temperature bins by season for the years 2006 to 2017.137

For each 5°x5° grid cell, the LO and LTMPC observations are normalized by the138

total number of single-layer observations (LO, MPCs, ice-only) in the given cell. Finally,139

T* is then defined as the warmest CTT bin, where LTMPCs are more frequent than LO140

clouds and where at least 10 LTMPCs were observed within that given season summed141

over the nine year period.142
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2.2 Significance of T*143

To test the robustness and significance of T*, its calculation is repeated 100 times144

using random sampling with replacement (bootstrapping) of the original observations145

of both LO and LTMPCs for each grid cell and each season. The significance of T* is146

estimated based on the distribution of the T* values from the bootstrapped calculations147

by calculating the standard error (SE) from the standard deviation σ of the bootstrapped148

T* and the number of bootstrapped T* values (100):149

SE =
σ√
100

(1)

From the SE, the 99% confidence interval (CI) can be calculated as:150

CI = 2.58 · SE (2)

Grid cells are classified as insignificant if the CI is larger than 0.5 °C (corresponding to151

a T* confined to about 1 bin during bootstrapping) and are excluded from the analy-152

sis. Most grid cells analysed within this study show very robust T* values (see Fig. S1).153

For the difference in T* (Summer - Winter) in Fig. 2C and F, the grid cells where154

the sum of the summer and winter CIs is larger than the absolute value of the T* dif-155

ference (min/max error propagation) are treated as insignificant.156

2.3 Sea ice data157

The sea ice concentration data is from the Institute of Environmental Physics (IUP),158

University of Bremen, based on the ARTIST Sea Ice (ASI) algorithm (Spreen et al., 2008).159

The ASI retrieval is applied to microwave radiometer data of the AMSR-E (Advanced160

Microwave Scanning Radiometer for EOS) on the Aqua satellite and AMSR2 (Advanced161

Microwave Scanning Radiometer 2) on GCOM-W1 sensors, which were reprocessed in162

2018 for both platforms with the same parameters. The sea ice edge as visible in Fig. 2163

is calculated using the following steps: (1) Retrieval of the dates for the Arctic/Antarctic164

sea ice maximum/minimum for each year (Grosfeld et al., 2016) and calculation of the165

multi-year average of the sea ice maxima/minima from these days. If the maximum/minimum166

occurred in March/September, we used the last day of the respective season (February/August)167

in the calculation. (2) The sea ice edge is defined where the sea ice concentration is at168

least 15%. (3) Re-gridding of the sea ice data on a regular 0.25°x0.25° grid using bilin-169

ear interpolation.170

2.4 Averaging of T*171

We perform area-weighted averaging of T* for the different regions and seasons based172

on the sea ice concentrations and land/ocean masks (from ASI data set) that we re-gridded173

on the 5°x5° grid of T* using bilinear interpolation. Further, grid cells with insignificant174

T* values are excluded from the averaging. The resulting masks used for the calculation175

of the average T* values in Table 1 are displayed in Figure S2.176

3 Results and discussion177

T* is based on the underlying principle that as the CTT of LO clouds cool, the ini-178

tiation of ice becomes more likely as a larger fraction of aerosols can act as INPs (Fletcher,179

1962; Meyers et al., 1992) and therefore, the probability of observing LTMPCs increases.180

As shown by the exemplary histograms in Fig. 1, the observed frequency of LTMPCs in-181

creases at colder temperatures, as expected, and exceeds that of LO clouds at -13 °C. There-182

fore, in this example the T* of -13 °C represents the typical temperature at which INPs183

act to alter the cloud phase for this region.184
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A Summer (JJA) B Winter (DJF) C Summer - Winter (JJA-DJF)
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Figure 2. Seasonal T* over the Arctic and the Southern Ocean based on observations be-

tween 2006-2017. Grid cells where T* calculations are insignificant (on a 99% confidence

level) are hatched, while dotted areas have no data. The green line shows the average mini-

mum/maximum sea ice edge between 2006-2017, defined as the 15% sea ice concentration line for

the given season. Arctic T* during Summer (JJA), Winter T* (DJF) and the difference between

Summer and Winter (Summer minus Winter) are shown in panel A,B, and C, respectively. Sim-

ilarly, the Southern Ocean T* during Austral Summer (DJF), Winter (JJA) and the difference

between Summer and Winter (Summer minus Winter) are shown in panel D,E and F, respec-

tively.

When calculating T* over the Arctic as a function of sea and land mask (see Tab. 1),185

we find that during the summer time (JJA), T* is -13 °C over the Ocean and -14 °C over186

land (Fig. 2A). At these temperature, biological INPs are expected to be dominant (Kanji187

et al., 2017) and indeed field studies have shown that INPs are primarily biological dur-188

ing the Arctic summer (Tobo et al., 2019; Creamean et al., 2019). T* is homogeneous189

over both the land and the ocean and this suggests that the abundance of INPs and their190

efficiency is rather similar throughout the region. The only exception is over the Green-191

land ice sheet (lower T* values, see Fig. 2A) where due to its high altitude and frequently192

cold temperatures, INPs are expected to be washed out during transport to this area (Stopelli193

et al., 2015) or relatively INP depleted air from the free troposphere (Lacher et al., 2018)194

descends over the ice sheet (Guy et al., 2021). Consistently, field measurements have shown195

that INP concentrations are lower over the Greenland ice sheet than elsewhere during196

the Arctic summertime (Wex et al., 2019).197
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Table 1. Area-weighted averages of significant T* (in °C) for different regions and seasons.

The masks used for averaging are displayed in Fig. S2.

Arctic ocean land sea ice

Summer (JJA) -13 -14 -
Winter (DJF) -16 -23 -24

Antarctica ocean land sea ice

Summer (DJF) -15 - -
Winter (JJA) -17 - -27

In contrast, during the winter months (DJF) the T* over the sea ice region (green198

line in Fig. 2) drops to -24 °C, while over open ocean it slightly decreases to -16 °C (Fig. 2B,199

compare Tab. 1). Similarly, during the winter months snow cover reduces T* to -23 °C200

over land. Thus, the largest seasonal differences in T* are observed in regions covered201

by snow and sea ice during the winter (Fig. 2C). Previous ship (Bigg, 1996; Bigg & Leck,202

2001) and coastal (Creamean et al., 2018) measurements also observed a dependence of203

the INP concentration on the extent of snow and sea ice coverage, with a decrease and204

increase in INP concentration during the Fall freeze up and Spring thaw, respectively.205

A reduction in wintertime INP concentration was also observed at an inland Arctic lo-206

cation in Alaska (Borys, 1983) and a Boreal Forest in Finland (Schneider et al., 2021).207

Similarly, Wex et al. (2019) observed an increase in INPs during the snow-free summer208

months and a decrease during the winter months at four different measurement locations209

in the Arctic. Their back trajectory analysis showed that the highest INP concentrations210

were associated with air mass interaction with snow-free terrain and open water, while211

the lowest concentrations came from the sea ice and snow.212

Airborne Arctic INP measurements (Borys, 1989; Hartmann et al., 2020) also ob-213

served a decrease in INP concentration over sea ice and snow cover. The only exception214

was over open leads in the sea ice (Rogers et al., 2001; Hartmann et al., 2020; Curry et215

al., 2000), which further indicates that sea ice inhibits the emissions of INPs. This lack216

of available biological INPs has also been used to explain the lower temperatures required217

to observe MPCs in the Arctic relative to the midlatitudes and tropics (Costa et al., 2017).218

Furthermore, Griesche et al. (2021) observed a decrease in the frequency of ice contain-219

ing clouds when they were decoupled from the ocean surface, also indicating that ma-220

rine INPs are essential for ice formation in Arctic clouds.221

These studies are in agreement with our findings, that sea ice and snow cover sig-222

nificantly reduce T*. Thus, the combination of previous INP studies with the T* met-223

ric presented here demonstrates the large-scale influence INPs have on the formation of224

MPCs in the Arctic.225

When calculating T* over the Southern Ocean and separating by season (Figs. 2D-226

F, Tab. 1), it is apparent that T* is -15 °C during the Austral summer (DJF) and ho-227

mogeneous over the entire region. This is consistent with summertime ship measurements228

conducted in the Southern Ocean, where INPs were typically observed at temperatures229

above -14 °C (Welti et al., 2020; C. McCluskey et al., 2018) and their concentration only230

varied by about one order of magnitude at -15 °C (Welti et al., 2020). When comparing231

to the Arctic, the summertime T* in the Southern Ocean is about 2 °C cooler. This may232

in part be due to higher biological activity in the Arctic Ocean (McCluskey et al., 2019;233

Irish et al., 2017) and a larger land area where glacial out wash can be emitted and act234

as a local episodic INP source (Sanchez-Marroquin et al., 2020; Tobo et al., 2019; Ri-235

naldi et al., 2021). Meanwhile, during the winter (JJA), a similar relationship between236
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sea ice coverage and T* emerges (Fig. 2E). The T* over the sea ice region drops to -27 °C,237

while over open ocean regions the T* slightly decreases to -17 °C. This indicates that the238

sea ice acts to inhibit the emission of INPs and directly impacts cloud phase over the239

Southern Ocean as well. It is well known that the ocean is an important source of INPs240

in the Southern Ocean (Schnell, 1977; Burrows et al., 2013), which is far from the Earth’s241

deserts (DeMott et al., 2016; C. McCluskey et al., 2018). Indeed, INP observations from242

South Pole were significantly lower than at a coastal site (Belosi et al., 2014) and increased243

when airmass back trajectories originated from the coast (Ardon-Dryer et al., 2011). Mod-244

elling studies have shown that replacing dust-based with marine-based INP parametriza-245

tions greatly improves the representation of clouds over the Southern Ocean (Vergara-246

Temprado et al., 2018; Frey & Kay, 2018). This further provides evidence that the South-247

ern Ocean is the primary source of INPs over this region and when it is covered with sea248

ice, fewer INPs are emitted. Therefore, our results indicate that the decrease in T* over249

the sea ice is a result of the sea ice acting as a lid that inhibits the emission of INPs from250

the Southern Ocean and, in turn, hinders the initiation of MPCs in this region.251

Previous remote sensing observations of cloud phase over the Southern Ocean have252

also observed a spatial pattern in the occurrence of MPCs (e.g., Mace et al., 2020, 2021)253

with a maximum in the vicinity of the so-called Antarctic Polar Front (APF, Freeman254

& Lovenduski, 2016). Mace et al. (2021) attributed this relationship to potentially en-255

hanced vertical updrafts in convective clouds over the APF due to warmer sea surface256

temperatures, which would loft ice crystals from lower layers of clouds to their top where257

a lidar-depolarization based cloud classification algorithm (Mace et al., 2020) would clas-258

sify them as mixed-phase. Additionally, they highlight that these enhanced updrafts would259

act as a production zone for larger cloud droplets, which have been shown to be more260

efficient for SIP (Lauber et al., 2018; Keinert et al., 2020). Although we cannot rule out261

the importance of SIP on the classification of a cloud as LTMPC, through the combined262

use of lidar and radar observations in the 2B-CLDCLASS-LIDAR product we can re-263

duce the importance of ice crystals being lofted to cloud top for the classification of LTM-264

PCs. Regardless of the importance of SIP in producing ice in LTMPCs, primary ice formed265

on INPs is still required and thus, T* is representative of when INPs are responsible for266

controlling the cloud phase over the SO. Furthermore, when comparing T* values with267

the location of the APF in the summertime (see Fig. 3 in Freeman & Lovenduski, 2016)268

there is no clear dependence, indicating that the observed seasonal variability in T* is269

associated with the sea ice extent and its ability to inhibit INP emissions.270

With this in mind, it is important to note that there are well-documented differ-271

ences in high-latitude clouds over the open ocean and sea ice due to differences in sur-272

face fluxes (e.g. heat and moisture) and thermodynamic structure (Palm et al., 2010; Eirund273

et al., 2019; Sotiropoulou et al., 2016; Young et al., 2017). However, to our knowledge274

these differences would not lead to LO clouds occurring more frequently at colder tem-275

peratures over sea ice than over open water as we observe. Furthermore, when compar-276

ing the cloud top heights and occurrence of LO and LTMPCs over the Southern Ocean277

(see Fig. S3), we find that they overlap and occur at the same heights in the troposphere,278

regardless of whether they form over open ocean or sea ice. Therefore, the observed vari-279

ability in T* can only be explained by the variability in the efficiency and concentration280

of INPs present during the onset of ice formation and MPC initiation.281

4 Atmospheric implications282

The apparent relationship between the suppressed T* and sea ice and snow cover283

(Fig. 2), which is well documented as a region with reduced INP concentrations (Wex284

et al., 2019; Bigg & Leck, 2001; Creamean et al., 2019), indicates that INPs play a crit-285

ical role in the initiation of MPCs. Furthermore, this relationship provides additional286

evidence that INPs in the high-latitudes are primarily of a local origin. Ultimately, through287

the use of T*, we highlight the global relevance of INPs on MPC formation, confirming288
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Figure 3. (A) Latitudinal average (line) and standard deviation (fill) of T* during Austral

summer (red) and winter (blue) over the Southern Ocean as a northward cross section from

80°S to 50°S. (B-C) Conceptual overview of how sea ice cover influences INP sources and, conse-

quently, ice formation in MPCs.

laboratory studies dating back to the 1940s (Vonnegut, 1947) that showed the impor-289

tance of INPs for MPC formation.290

Based on these findings, we conclude that differing INP parametrizations are re-291

quired over ice/snow-covered and ice/snow-free portions of the high-latitudes to account292

for the observed seasonal variations in the MPC transition temperature, T*. This is es-293

pecially important for future climate projections, where in a warming climate, sea ice294

and snow cover are projected to decrease (Fox-Kemper et al., 2021) and therefore, al-295

though temperatures will rise, INPs may become more abundant due to newly available296

source regions (i.e. ice and snow free areas).297

An increase in the abundance of high-latitude INPs could have profound effects on298

the cloud-phase feedback (Murray et al., 2021; Prenni et al., 2007), which has so far been299

projected to limit warming over the Southern Ocean (Forster et al., 2021; Zelinka et al.,300

2020; Bjordal et al., 2020; Tan et al., 2016). The warming-induced INP increase could301

weaken, or even reverse, the projected increase in LO clouds with warming. This would302

have major implications for both the magnitude and sign of the Southern Ocean cloud303

feedback, thus shaping the climate evolution of the region itself and ultimately, the fu-304

ture climate of the entire planet. Figure 3 shows the T* averaged by latitude over the305

Southern Ocean. The stark contrast in T* over sea ice and open ocean indicates that306

in a warming world with sea ice retreat, T* over formerly ice covered regions will increase307
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to -15 °C. As the ice covered regions currently have a T* of approximately -25 °C, this308

would suggest that a warming of 10 °C would be required to significantly offset the for-309

mation of MPCs over future ice free regions of the Southern Ocean. Therefore, without310

a detailed quantification of the seasonal nature of INPs in the high-latitudes and sub-311

sequent inclusion in ESMs, the influence of the negative cloud phase-feedback on buffer-312

ing future warming will remain uncertain.313

5 Open Research314

The standard CloudSat (Stephens et al., 2002) and CALIPSO (Winker et al., 2010)315

data products (version R05) used in this study (2B-CLDCLASS-LIDAR, ECMWF-AUX)316

were downloaded from the CloudSat Data Processing Center’s (at Cooperative Institute317

for Research in the Atmosphere, Colorado State University, Fort Collins) website (http://318

www.cloudsat.cira.colostate.edu).319

The sea ice concentration data is from the Institute of Environmental Physics (IUP),320

University of Bremen, based on the ARTIST Sea Ice (ASI) algorithm (Spreen et al., 2008).321

The daily data sets (Melsheimer & Spreen, 2020b, 2020a, 2019b, 2019a) were downloaded322

for the years 2006-2017 from the data publisher PANGAEA. The dates for the Arctic323

and Antarctic sea ice maximum/minimum for each year were retrieved from https://324

www.meereisportal.de (Grosfeld et al., 2016).325

The code used to analyse the satellite data will be made available on a public GitHub326

repository pending final publication of this manuscript.327
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Figure S1. 99% confidence interval (CI) of T* based on bootstrapping (N = 100) for the

Arctic (Panel A: summer JJA, Panel B: winter DJF) and Antarctica (Panel C: summer DJF,

Panel D: winter JJA). Grid cells with an insignificant T* value are hatched in blue (CI ¿ 0.5 °C).

Grid cells with no data are marked with dots.
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Figure S2. Masks for the area-weighted averaging of significant T* values for different regions

and seasons. These masks are used in the calculation of the values in Table S1. For Arctic: (A)

summer (JJA) ocean, (B) summer (JJA) land, (C) winter (DJF) sea ice, (D) winter (DJF) open

ocean, (E) winter (DJF) land. For Antarctica: (F) summer (DJF) ocean, (G) winter (JJA) sea

ice, (H) winter (JJA) open ocean.
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Figure S3. Frequency of occurrence of LO (blue) and LTMPCs (red) as a function of cloud top

height summed over 5°-latitudinal bands with a midpoint at 50°S, 55°S, 60°S, 65°S, and 70°S for

Austral Summer (DJF, panels: A, C, E, G, I) and winter (JJA, panels: B, D, F, H, J) normalized

to all measured single-layer clouds in the given season.
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