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Abstract

The early Eocene (˜56-48 million years ago) is characterised by high CO2 estimates (1200-2500 ppmv) and elevated global

temperatures (˜10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is

poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate

during the early Eocene, as simulated by an ensemble of state-of-the-art climate models in the Deep-time Model Intercomparison

Project (DeepMIP). A comparison between the DeepMIP pre-industrial simulations and modern observations suggests that

model biases are model- and geographically dependent, however these biases are reduced in the model ensemble mean. A

comparison between the Eocene simulations and the pre-industrial suggests that there is no obvious wetting or drying trend as

the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible

for the simulated increases in precipitation to the north of Eocene Africa, whereas it is likely that changes in vegetation in the

models are responsible for the simulated region of drying over equatorial Eocene Africa. There is an increase in precipitation

over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical
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changes, with evidence that anticyclonic low-level circulation is replaced by increased south-westerly flow at high CO2 levels.

Lastly, a model-data comparison using newly-compiled quantitative climate estimates from palaeobotanical proxy data suggests

a marginally better fit with the reconstructions at lower levels of CO2.
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KEY POINTS  35 

1) State-of-the-art climate models are used to study African hydroclimate during the early 36 

Eocene (approximately 50 million years ago). 37 

2) With increasing levels of CO2, there are changes to African precipitation, due to dynamical 38 

changes such as low level circulation. 39 

3) A comparison between the models and newly-compiled climate estimates shows a marginally 40 

better match at lower levels of CO2. 41 

 42 

ABSTRACT 43 

The early Eocene (~56-48 million years ago) is characterised by high CO2 estimates (1200-2500 44 

ppmv) and elevated global temperatures (~10 to 16°C higher than modern).   However, the response 45 

of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with 46 

sparse data coverage (e.g. Africa).  Here we present a study of African hydroclimate during the early 47 

Eocene, as simulated by an ensemble of state-of-the-art climate models in the Deep-time Model 48 

Intercomparison Project (DeepMIP).  A comparison between the DeepMIP pre-industrial simulations 49 

and modern observations suggests that model biases are model- and geographically dependent, 50 

however these biases are reduced in the model ensemble mean.  A comparison between the Eocene 51 

simulations and the pre-industrial suggests that there is no obvious wetting or drying trend as the CO2 52 

increases.  The results suggest that changes to the land sea mask (relative to modern) in the models 53 

may be responsible for the simulated increases in precipitation to the north of Eocene Africa, whereas 54 

it is likely that changes in vegetation in the models are responsible for the simulated region of drying 55 

over equatorial Eocene Africa.  There is an increase in precipitation over equatorial and West Africa 56 

and associated drying over northern Africa as CO2 rises.  There are also important dynamical changes, 57 

with evidence that anticyclonic low-level circulation is replaced by increased south-westerly flow at 58 

high CO2 levels.  Lastly, a model-data comparison using newly-compiled quantitative climate 59 

estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at 60 

lower levels of CO2. 61 

 62 

  63 
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1.  INTRODUCTION 64 

One of the ways to better understand future anthropogenic-induced climate change is to simulate past 65 

climates, using these as partial analogues for the future and allowing the testing of climate models to 66 

simulate climates very different from today (Braconnot et al. 2011, Tierney et al. 2020).  Simulating 67 

past climates allows not only an interrogation of the mechanisms of past climate change (Haywood et 68 

al. 2020, Lunt et al. 2021), but if a robust comparison with available proxy data can be produced, this 69 

allows confidence in future climate change projections that are often based on models tuned to a 70 

modern climate state (Harrison et al. 2014, Taylor et al. 2011, Williams et al. 2020, Williams et al. 71 

2021, Zhu et al. 2020). 72 

 73 

It has long been known that African precipitation, and in particular that of the West African monsoon, 74 

is of vital importance to the more than one billion people in sub-Saharan Africa who survive 75 

predominantly on rain-fed agriculture and, concurrently, are highly vulnerable to extreme 76 

precipitation events causing both flooding and drought (Williams and Kniveton 2011).  However, a 77 

lack of weather and climate data across much of the continent has resulted in a high level of 78 

uncertainty concerning both present day and future climate trends (Salerno et al. 2019), and although 79 

it is expected that both average temperature and precipitation will increase across Africa along with 80 

the rest of the world (IPCC 2021), regional variation is particularly high across Africa. 81 

 82 

Due to their particular relevance to African monsoon precipitation, two Quaternary time periods have 83 

recently been investigated by Williams et al. (2020) under the Palaeoclimate Modelling 84 

Intercomparison Project (PMIP, Braconnot et al. 2007), now in its 4th phase and itself under the 85 

umbrella of the Coupled Model Intercomparison Project, now in its 6th phase (CMIP6, Eyring et al. 86 

2016).  These time periods are the mid-Holocene (6000 years ago, 6 ka) and Last Interglacial (127 87 

ka).  However, excess warmth and enhancement of Northern Hemisphere monsoons during these 88 

periods is caused primarily by changes to the orbital configuration of Earth, rather than elevated 89 

greenhouse gases (Kageyama et al. 2018).  To investigate substantial greenhouse gas-induced 90 

warming, and its result on monsoon systems such as across Africa, periods further back in time are 91 

needed, and two such candidates in the context of PMIP are the mid-Pliocene (~3 million years ago, 3 92 

Ma) and the early Eocene (~56.05-47.8 Ma, hereafter referred to as the Eocene).  However, with CO2 93 

levels ranging from 316-420 ppmv during the mid-Pliocene (Martínez-Botí et al. 2015), this is more 94 

similar to modern levels rather than being a suitable analogue for future projections by the end of the 95 

21st century; using the previous RCP 8.5 scenario, this could be over 1000 ppmv (IPCC 2013).  The 96 

Eocene, with CO2 levels ranging between 1200-2500 ppmv (Anagnostou et al. 2016, Anagnostou et 97 

al. 2020, Lunt et al. 2021), is comparable to the current future projections, and in particular for the 98 

extended high-emissions scenarios such as in the year 2300 under SSP5-8.5 (Arias et al. 2021).  As a 99 

result of this high CO2, the early Eocene was a period characterised by temperatures ~5°C higher than 100 
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today in the tropics (e.g., Inglis et al,.2020 Pearson et al. 2007), and much greater polar amplification 101 

with temperatures reaching ~20°C warmer than today at terrestrial high latitudes (e.g. Huber and 102 

Caballero 2011, Naafs et al. 2018, van Dijk et al. 2020). 103 

 104 

Despite being a partial analogue for future climate change, until the last few years climate model 105 

simulations of high CO2 periods such as the Eocene have not been evaluated within a consistent 106 

framework (Lunt et al. 2017); the closest to this was an informal model-data comparison, considering 107 

four climate models, known as the Eocene Model Intercomparison Project (EoMIP), undertaken by 108 

Lunt et al. (2012).  This work focused on temperature-based metrics, however another study by 109 

Carmichael et al. (2016) used the same EoMIP ensemble to look at the hydrological cycle and 110 

hydroclimate changes in response to the elevated CO2 levels in the Eocene.  The results focusing 111 

specifically on Africa are discussed in more detail below but, globally, when compared to proxy data 112 

it was found that the models generally underestimated precipitation over high latitudes, and those 113 

models showing the most warming in these regions gave the best match to the data (Carmichael et al. 114 

2016).  Concerning the impact of elevated CO2, it was found that all Eocene simulations showed a 115 

more intense hydrological cycle (relative to the pre-industrial era, hereafter PI), with enhanced global 116 

precipitation and evaporation, and that this was generally directly related to the elevated temperatures 117 

resulting from higher CO2 (Carmichael et al. 2016).  At any given level of CO2, global precipitation 118 

changes varied widely between models, and certain regions (such as tropical Africa, discussed further 119 

below) were found to be sensitive to which model was assessed (Carmichael et al. 2016). 120 

 121 

However, a disadvantage (albeit unavoidable) to EoMIP was that there was no consistent framework 122 

to the models' experimental design; each used different boundary conditions (e.g. palaeogeography) 123 

and different levels of CO2 (Lunt et al. 2012).  To resolve this problem, therefore, more recently the 124 

Deep Time Model Intercomparison Project (DeepMIP) was envisaged and conducted, using CMIP3 125 

and CMIP5 models as well as some of the most recent state-of-the-art CMIP6-class models (Lunt et 126 

al. 2017).  The large-scale features coming out of the simulations are discussed in Lunt et al. (2021), 127 

with several conclusions being drawn.  Firstly, boundary conditions other than CO2, discussed in 128 

Section 2.1, contributed between 3-5°C of the global mean Eocene warming, relative to the PI (Lunt 129 

et al. 2021).  Secondly, the DeepMIP simulations showed less of a temperature spread than the 130 

models in EoMIP, and an increase in climate sensitivity (Lunt et al. 2021).  Lastly, when compared to 131 

proxy SST data, most models reproduced the large-scale spatial patterns of the reconstructions but 132 

still struggled at the regional scale, such as in the south-west Pacific (Lunt et al. 2021). 133 

 134 

Similar to Lunt et al. (2012), Lunt et al. (2021) only focused on temperature and CO2-based metrics.  135 

The majority of recent studies looking at Eocene hydroclimate have focused on reconstructing 136 

evidence for the Asian monsoon (e.g. Farnsworth et al. 2019, Ma et al. 2019, Quan et al. 2012, Xie et 137 



 

5 

 

al. 2019).  There are very few studies, and in particular modelling studies, focusing on Africa.  The 138 

aforementioned study by Carmichael et al. (2016) using the EoMIP ensemble found that tropical 139 

Africa was particularly sensitive to the model in question, and that the models varied in skill (when 140 

reproducing precipitation, relative to observations) in regions of relatively low precipitation such as 141 

over northern Africa’s Sahel region.  Moreover, although some models showed similar PI 142 

precipitation over tropical Africa, under Eocene conditions they were quite different (Carmichael et 143 

al. 2016).   It should be noted, however, that this study did not actually include any early Eocene 144 

mean annual precipitation (MAP) reconstructions from Africa, only some Lutetian samples.  More 145 

recently, Carmichael et al. (2018) ran several CO2 simulations using just the UK Met Office Hadley 146 

Centre model HadCM3L, finding an increase in both the size and frequency of extreme precipitation 147 

events over equatorial and East Africa.  Although MAP changes were relatively small, extreme 148 

rainfall increased by up to 70% over parts of tropical Africa, with summer precipitation events 149 

dominating the regime over southern Africa (Carmichael et al. 2018).  Another example of Eocene 150 

African work is that of Liu et al. (2019), who looked at the Asian, African and Australian monsoons 151 

across five different time periods and found that the African monsoon existed as early as the mid-152 

Paleocene.  Keery et al. (2018) found the variability of the Asian and African monsoons during the 153 

Eocene was predominantly accounted for by orbital configuration changes such as the precession and 154 

obliquity; in DeepMIP, however, these were kept at PI values and so, here, the impact on the African 155 

monsoon will only be down to the CO2 or the other boundary condition changes. 156 

 157 

In this paper four main questions are addressed: 158 

1) How well do the DeepMIP models’ PI simulations reproduce modern observations of the 159 

African monsoon? 160 

2) What is the impact of CO2 and other Eocene boundary conditions on the African monsoon in 161 

the DeepMIP models’ Eocene simulations? 162 

3) What are the physical mechanisms behind this precipitation response? 163 

4) How do the DeepMIP models’ Eocene simulations compare with proxy data of the African 164 

monsoon? 165 

 166 

Section 2 of this paper briefly describes the experimental design followed by the DeepMIP models, 167 

gives a brief introduction to the models themselves, and describes the observational and proxy data 168 

used for comparative purposes.  Section 3 presents the results, addressing each of the above questions.  169 

Section 4 summarises and concludes. 170 

 171 

2. EXPERIMENT DESIGN, MODELS, AND PROXY DATA  172 

2.1.  Experiment design 173 
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The full experimental design, which all DeepMIP modelling groups were required to follow as closely 174 

as possible, is detailed extensively in Lunt et al. (2017) and so will only be briefly outlined here.  In 175 

addition to the various CO2 experiments, all modelling groups were required to carry out a PI 176 

simulation for comparison purposes, which was to be as close as possible to the CMIP6 standard 177 

piControl simulation (Eyring et al. 2016). 178 

 179 

For the Eocene simulations, a number of boundary conditions needed to be changed, the key ones for 180 

the African region of which are shown in fig_ancils.   181 

 182 

 183 

Figure 1 – Main boundary conditions changed in DeepMIP simulations, where top row = PI and bottom row = 184 

Eocene: a) Land sea mask; b) Topography/bathymetry; c) Vegetation, expressed as megabiomes according to 185 

Harrison and Prentice 2003 (where 1 = Tropical, 2 = Warm-temperate, 3 = Temperate, 4 = Boreal, 5 = Savanna, 186 

6 = Grassland and 7 = Desert).  The PI topography/bathymetry is taken from ETOPO5, re-gridded to 1°x1° 187 

resolution, whereas the other fields are from Herold et al. (2014) 188 

 189 

Firstly, the land sea mask (LSM) was based on the palaeogeographic heights (discussed further 190 

below), with possible manual manipulation required in some models to maintain the various gateways 191 

(Lunt et al. 2017).  The new LSM produced a geographically smaller Africa relative to the PI, with 192 

much of the present-day landmass north of 20°N being ocean in the Eocene due to the increased sea 193 
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level (Figure 1a).  Secondly, the palaeogeography (including topography and bathymetry) was based 194 

on the digital reconstruction of the early Eocene from Herold et al. (2014), with the topography (and 195 

sub-grid scale topography) being applied as an absolute value rather than as an anomaly (Lunt et al. 196 

2017).  Over Africa, the most pronounced changes were over southern and eastern Africa, with 197 

generally larger areas of raised topography in the Eocene, relative to the PI (Figure 1b).  This can be 198 

seen more clearly in the Supplementary Material, where the differences in topography are shown; 199 

there is clearly a large increase in elevation over western Africa where there is land in the Eocene but 200 

ocean in the PI, but apart from this (where the landmasses coincide) the largest changes are over 201 

southern and eastern Africa (Figure S1).  Thirdly, concerning the land surface, vegetation and river 202 

run-off routing was also based on the dataset of Herold et al. (2014), using an appropriate lookup 203 

table to convert the vegetation megabiomes into whatever format was required by the model (Lunt et 204 

al. 2017).  The Eocene vegetation was created by running the dynamic vegetation model BIOME4 205 

(Kaplan et al. 2003), itself forced by Eocene atmospheric conditions from another climate model run 206 

and, as Herold et al. (2014) note, although the simulated vegetation compares well with 207 

reconstructions, over certain regions such as South Africa a lack of records meant validation was not 208 

possible.  When compared to the PI, over Africa the new vegetation resulted in: i) a loss of the desert 209 

regions over the present-day Sahara, primarily because this is ocean in the Eocene; ii) a latitudinal 210 

expansion (relative to the PI) of tropical rainforest across central Africa; and iii) an addition of a large 211 

area of tropical rainforest over southern Africa, which is savanna or grassland in the PI (Figure 1c).  212 

However, some features remained similar in the Eocene relative to the PI, such as the region of 213 

tropical rainforest across central Africa being bordered by savannah to the north and south, and the 214 

Namib Desert (Figure 1c).  The impact on precipitation of these three boundary condition changes is 215 

discussed below.  Soil parameters, including soil dust fields, were given a globally constant value, and 216 

(given the lack of palaeodata) no lakes were prescribed unless dynamically predicted (Lunt et al. 217 

2017).  Concerning greenhouse gas concentrations, the CO2 experiments were divided into a set of 218 

standard experiments (which all modelling groups should ideally have conducted) and a set of 219 

sensitivity experiments (which were optional).  All of these were expressed as multiples of the PI 220 

simulation, typically with a CO2 of 280 ppmv, and were as follows: 3x and 6x the PI for the standard 221 

experiments, and 1x, 1.5x, 2x, 4x and 9x the PI for the sensitivity experiments (Lunt et al. 2017).  See 222 

Table 1 for which modelling groups conducted which experiments.  All other greenhouse gases were 223 

kept as PI, the justification for which is given in Lunt et al. (2017).  Concerning aerosols, given the 224 

rapid development of representation of aerosols in models the experimental design was flexible here 225 

and allowed modelling groups to either leave these as PI, treat aerosols interactively (if possible), 226 

prescribe aerosols from Herold et al. (2014), or a combination of the above (Lunt et al. 2017).  The 227 

solar constant and astronomical parameters were kept identical to the PI, the justification for which is 228 

again given in Lunt et al. (2017). 229 

 230 
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Modelling 

group 

responsible 

 

Model 

Atmospheric 

resolution  

(lon x lat) 

CO2 

experiments 

undertaken 

Run 

length 

(years) 

 

References 

University of 

Michigan, US 
CESM1.2_CAM5 2.5° x 1.89° 1x, 3x, 6x, 9x 2000 

Hurrell et 

al. 2013 

Polish Academy 

of Sciences, 

Poland 

COSMOS-

landveg_r2413 
3.75° x 3.71° 1x, 3x, 4x 9500 

Roeckner et 

al. 2003 

Stockholm 

University, 

Sweden 

GFDL_CM2.1 3.75° x 3.05° 
1x, 2x, 3x, 

4x, 6x 
6000 

Delworth et 

al. 2006 

University of 

Bristol, UK 
HadCM3B_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7800 

Valdes et al. 

(2017) 

University of 

Bristol, UK 
HadCM3BL_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7800 

Valdes et al. 

(2017) 

National 

Academy of 

Sciences, Russia 

INM-CM4-8 2° x 1.5° 6x 1050 
Volodin et 

al. (2018) 

Laboratoire des 

Sciences du 

Climat et de 

l'Environnement, 

France 

IPSLCM5A2 3.75° x 1.89° 1.5x, 3x 4000 
Sepulchre et 

al. (2020) 

University of 

Tokyo, Japan 
MIROC4m 

2.8125° x 

2.79° 
1x, 2x, 3x 5000 

Chan et al. 

(2011) 

University of 

Bergen, Norway 
NorESM1_F 2.5° x 1.89° 2x, 4x 2100 

Guo et al. 

(2019) 
 231 

Table 1 - Models taking part in DeepMIP, including relevant details and references 232 

 233 

Lastly, the experimental design provided some advice on practical matters such as simulation length 234 

and output format.  The simulations varied in length (see Table 1) but were all at least 1000 years in 235 

length, with the climatologies, comprising the results discussed here, being calculated over the final 236 

100 years.  At that point, all simulations should have had a global mean top-of-the-atmosphere (TOA) 237 

net radiation balance of less than 0.3 W m-2 (or a similar balance to that of the PI) and an SST trend of 238 

less than 0.1°C century-1 (Lunt et al. 2017).   All of the output, details of which are given in Lunt et al. 239 

(2017), were uploaded to a centralised DeepMIP database. 240 

 241 

2.2.  Models 242 

Extensive details on each model, and how the experimental design was implemented in their 243 

simulations, are given in Lunt et al. (2021) and references therein and will therefore only briefly be 244 

discussed here; those aspects likely to affect monsoon precipitation (e.g. convection and land-surface 245 

schemes) will be focused upon here.  In total, nine models were included in DeepMIP, although it 246 

should be noted that two of these are different configurations of the same model.  See Table 1 for a 247 

list of the models, along with their atmospheric spatial resolutions and appropriate references 248 
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(particularly relating to the atmospheric component of the models and elements relating to 249 

hydroclimate, where available).  In detail, these are as follows. 250 

 251 

• CESM1.2_CAM5: The Community Earth System Model version 1.2 (CESM1.2) is comprised 252 

of the Community Atmosphere Model version 5.3 (CAM5), the Community Land Model 253 

version 4.0, the Community Ice Code version 4.0 and the Parallel Ocean Program version 2 254 

(Hurrell et al. 2013).  CAM5 uses the finite-volume dynamical core and physical 255 

parameterizations of deep convection (Zhang and McFarlane 1995), shallow convection and 256 

moist turbulence (Park and Bretherton 2009), and cloud microphysics (Morrison and 257 

Gettelman 2008).  This version contains new physical parameterisations in the atmosphere, 258 

such as the cloud microphysics, which is critical for the simulation of the large-scale climate 259 

features of the early Eocene (Liu et al. 2017) 260 

• COSMOS-landveg_r2413: For an atmospheric general circulation model, ECHAM5 (the 261 

European Centre Hamburg Model) is used (Roeckner et al. 2003), and this is coupled to the 262 

Max-Planck-Institute for Meteorology Ocean Model (MPIOM) (Marsland et al. 2003); the 263 

coupled model is described by Jungclaus et al. (2006).  COSMOS-landveg_r2413 simulates 264 

cumulus convection using a mass flux scheme.  The orography is represented in spectral 265 

domain by surface geopotential (see Stepanek and Lohmann 2012 for more details regarding 266 

model description).  The land surface conditions for each biome are based on Hagemann 267 

(2002); additionally, parameters with a seasonal cycle (i.e. leaf area index and vegetation 268 

ratio) in the latitude belt of ~20°S-20°N were smoothed and an annual average for each biome 269 

was prescribed. 270 

• GFDL_CM2.1: This uses the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model 271 

(Delworth et al. 2006), with modifications as described in Hutchinson et al. (2018), and 272 

comprising the Atmosphere Model 2, Land Model 2 and the Sea Ice Simulator 1, coupled to 273 

the ocean component from the modular ocean model version 5.1 (MOM5.1).  The atmosphere 274 

uses a finite-volume discretisation, and a 3° latitude x 3.75° longitude resolution with 24 275 

vertical levels, following the configuration of CM2Mc (Galbraith et al. 2011).  Convection is 276 

parameterised by the relaxed Arakawa-Schubert scheme of Moorthi and Suarez (1992), with a 277 

lower-bound on entrainment as specified in Tokioka et al. (1988).  Cloud microphysics are 278 

parameterised using the scheme of Rotstayn (1997), while cloud macrophysics use the 279 

parameterisation of Tiedtke (1993).  Full details of the convection and cloud 280 

parameterisations are given in Delworth et al. (2006).  Of possible relevance to the simulation 281 

of precipitation, the topography is smoothed using a three-point mean filter to allow a 282 

smoother interaction with the wind field (Lunt et al. 2021). 283 
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• HadCM3B_M2.1aN: This Hadley Centre Climate Model (HadCM3) version is documented 284 

extensively in Valdes et al. (2017).  In particular, the model uses a single ‘bulk’ cloud model 285 

to parameterise dry as well as shallow and deep moist convection (Grant 1998). The cloud 286 

scheme uses a statistical parametrization via a probability density function over the grid-box 287 

total water content (Bushell 1998).  Six short-wave and eight long-wave radiation bands are 288 

represented by the scheme of Edwards and Slingo (1996).  Static fields for the nine surface 289 

types of the MOSES2.1 land surface scheme (Cox et al. 1999) are derived from the ten 290 

megabiomes of the DeepMIP vegetation boundary conditions (Herold et al. 2014) via a 291 

lookup table.  The atmosphere uses a Cartesian grid with a horizontal resolution of 3.75 x 2.5° 292 

(longitude x latitude) and 19 hybrid vertical levels.   293 

• HadCM3BL_M2.1aN: The only difference between this version of HadCM3 and the one 294 

described above is the horizontal resolution of the ocean component (Cox 1984), at 1.25° x 295 

1.25° for HadCM3B_M2.1aN and 3.75° x 2.5° for HadCM3BL_M2.1aN, and associated 296 

diffusion parameters (Valdes et al. 2017).  Both versions use 20 unequally spaced vertical 297 

levels in the ocean ranging between 10 and 616 m.   298 

• INM-CM4-8: This version of the Institute of Numerical Mathematics (INM) model is 299 

described in Volodin et al. (2018), but the parameterisations of physical processes are the 300 

same as in the previous version, INM-CM5, and described more detail in Volodin et al. 301 

(2017).  Parameterization of condensation and cloud formation follows Tiedtke (1993), and 302 

cloud water is a prognostic variable.  Parameterization of cloud fraction follows Smagorinsky 303 

(1963); cloud fraction is a diagnostic variable, independent of the calculation of condensation, 304 

and depended on the relative humidity.  Deep and shallow convection is parameterized by 305 

Bets (1986).  The surface, soil and vegetation scheme follow Volodin and Lykossov (1998), 306 

with the evolution of the equations for temperature, soil water and soil ice being solved at 23 307 

levels from the surface to 10 meters depth (Volodin et al. 2018).  The fractional area of 13 308 

types of potential vegetation is specified, and actual vegetation as well as LAI is calculated 309 

according to the soil water content in the root zone and soil temperature (Volodin et al. 2018). 310 

• IPSLCM5A2: The IPSL-CM5A2 Earth system model from the Institut Pierre Simon Laplace 311 

(IPSL) is documented by Sepulchre et al. (2020), and is based on the previous generation 312 

IPSL Earth system model (IPSLCM5A, Dufresne et al. 2013) but with new revisions such as 313 

a re-tuning of global temperature.  It comprises the LMDZ5 (Laboratoire de Météorologie 314 

Dynamique Zoom) atmosphere model, the Organising Carbon and Hydrology In Dynamic 315 

Ecosystems (ORCHIDEE) land surface and vegetation model and the Nucleus for European 316 

Modeling of the Ocean (NEMOv3.6) ocean model, which includes the LIM2 sea ice model 317 

and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCESv2) 318 

biogeochemical model (Lunt et al. 2021).  LMDZ5 runs at a horizontal resolution of 1.9° × 319 
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2.5° (latitude × longitude) with 39 hybrid sigma-pressure levels.  The LMDZ5 radiation 320 

scheme is inherited from the European Center for Medium-Range Weather Forecasts 321 

(Fouquart and Bonnel 1980, Morcrette et al. 1986), and the dynamical effects of the subgrid-322 

scale orography are parameterized according to Lott (1999).  Turbulent transport in the 323 

planetary boundary layer is treated as a vertical eddy diffusion (Laval et al. 1981), with 324 

counter-gradient correction and dry convective adjustment, and the surface boundary layer is 325 

treated according to Louis (1979).  Cloud cover and cloud water content are computed using a 326 

statistical scheme (Bony and Emanuel 2001).  For deep convection, the LMDZ5A version 327 

uses the “episodic mixing and buoyancy sorting” scheme originally developed by Emanuel 328 

(1991). 329 

• MIROC4m: This version of the Model for Interdisciplinary Research on Climate (MIROC) is 330 

documented by K-1 model developers (2004) and summarized in Chan et al. (2011).  In the 331 

atmosphere model, cumulus parameterization is based on Arakawa and Schubert (1974), with 332 

some simplifications and the cloud base mass flux is treated as a prognostic variable.  333 

Cumulus convection is suppressed when the cloud-mean ambient relative humidity is less 334 

than the critical value of 0.8.  The land surface model (Minimal Advanced Treatments of 335 

Surface Interaction and Runoff, MATSIRO) is documented by Takata et al. (2003), where 336 

prognostic variables include canopy temperature, canopy water content, snow amount, soil 337 

moisture content and frozen soil moisture content.  Fixed vegetation types are specified over 338 

ice-sheet-free.  The ocean component is version 3.4 of the CCSR (Center for Climate System 339 

Research) Ocean Component Model (COCO), documented in Hasumi (2000).   340 

• NorESM1_F: This version of the Norwegian Earth System Model (NorESM) is described in 341 

detail in Guo et al. (2019) and Li et al. (2020), and differs from the previous version 342 

(NorESM1-M) in that while it has the same atmosphere-land grid, the ocean and sea ice 343 

components use a tripolar grid (rather than the bipolar grid in NorESM1-M), resulting in a 344 

more realistic Atlantic Meridional Overturning Circulation (Lunt et al. 2021).  NorESM1_F 345 

couples the Miami Isopycnic Coordinate Ocean Model (MICOM) and the spectral 346 

Community Atmosphere Model (CAM4) (Eaton 2010, Neale et al. 2008, Neale et al. 2013).  347 

CAM4 includes the Zhang and McFarlane (1995) deep convection scheme, the Hack (1994) 348 

shallow convection scheme, the nonlocal boundary layer scheme of Holtslag and Boville 349 

(1993) and the representation of cloud microphysics and macrophysics by Rasch and 350 

Kristjánsson (1998) and Zhang et al. (2003).  Instead of using the undiluted convective 351 

available potential energy (CAPE) in the original deep convection scheme, the diluted CAPE 352 

through an explicit representation of entrainment has been used to close the cumulus 353 

parameterization (Neale et al. 2008).  The convective momentum transport has also been 354 

included in the parameterization of deep convection (Richter and Rasch 2008).  Additionally, 355 
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NorESM1_F adopts energy updates and energy conservation.  Compared to NorESM1-M, 356 

NorESM1_F has several important improvements on how precipitation is simulated, such as 357 

improvements in seasonality, a reduced wet bias and mitigation of the common double 358 

intertropical convergence zone (ITCZ) problem (Li et al. 2020). 359 

 360 

2.3.  Observational and proxy data 361 

Here the observational and proxy data are described; firstly there is a description of the modern, 362 

satellite-derived data used to assess and evaluate the PI simulations, and secondly there is a 363 

description of the Eocene proxy data used to evaluate the Eocene simulations. 364 

 365 

2.3.1. Satellite-derived rainfall estimates from the modern period 366 

Even in the 21st century, there is a severe lack of in-situ rain gauge data over Africa; South Africa is 367 

probably the best populated in terms of rainfall measurements, but in other countries such as Angola 368 

or Namibia rain gauge data are sparse or non-existent (e.g. Williams et al. 2007, Williams et al. 2008, 369 

Williams et al. 2010).  The CenTrends precipitation dataset (Funk et al. 2015) contains measurements 370 

going back to 1900, but only for a small number of countries in East Africa.  Likewise, although the 371 

Global Historical Climate Network (GHCN) database (Durre et al. 2008, Durre et al. 2010, Menne et 372 

al. 2012) does contain temperature measurements going back to 1861, precipitation measurements do 373 

not begin until the 1950s and are again relatively sparse in Africa.  Therefore, a possible solution to 374 

the problem of data unavailability is to use satellite-derived rainfall estimates (SREs), which offer 375 

near-uniform coverage at relatively high spatial resolution from the 1980s onwards. 376 

 377 

Several datasets of SREs currently exist, but here the Tropical Applications of Meteorology using 378 

SATellite data and ground-based observations (TAMSAT) is used.  TAMSAT (version 3.1) provides 379 

daily, 10-daily, monthly and seasonal precipitation estimates over Africa at 4 km resolution, and 380 

extends from 1983 to the present-day.  The data are publicly available; please see Data Availability 381 

and Maidment et al. (2014), Maidment et al. (2017) and Tarnavsky et al. (2014) for details.  Here, 382 

TAMSAT is used as a comparative tool for evaluating the PI simulations of the DeepMIP models.  A 383 

caveat here is that the models are showing precipitation simulated under PI boundary conditions, 384 

whereas TAMSAT is showing precipitation from the late 20th and early 21st century (referred to here 385 

as modern) and will therefore contain an anthropogenic signal; this, however, is unavoidable given the 386 

lack of PI precipitation observations.  It is expected that the biases between comparing the models to 387 

PI precipitation versus comparing them to modern precipitation will be less than the biases between 388 

the models themselves (i.e. the inter-model spread), and indeed much less than the uncertainty 389 

associated with the Eocene reconstructions.   390 

 391 

2.3.2. Palaeobotanical Eocene precipitation estimates 392 
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The distribution and physiognomy of land plants are sensitive to precipitation (Wright et al. 2017).  393 

Therefore, the taxonomic affinity and the morphology of leaf fossils can be used to generate palaeo-394 

precipitation estimates (e.g. Utescher et al. 2014, Wilf et al. 1998).  For this study, previously 395 

established Paleocene-Eocene palaeobotanical records from Africa were compiled (see 396 

Supplementary Material, Table S1).  The distribution of the nearest living relatives (NLR) of these 397 

taxa was then analyzed using the bioclimatic analysis approach to find the highest probability 398 

precipitation range in which all taxa could co-occur (e.g. West et al. 2020, Willard et al. 2019).   399 

 400 

Geodetic coordinates of occurrences were obtained for the NLR of each plant group from the Global 401 

Biodiversity Information Facility (GBIF) (see Supplementary Material, Table S2).  These occurrence 402 

datasets were then filtered for uncertain, exotic and superfluous occurrences, as well as subjected to a 403 

random resampling to avoid regional overrepresentation of densely sampled areas.  A climatic 404 

envelope for each plant group (see Table S2) was then generated by extracting precipitation data 405 

(mean annual precipitation (MAP), wettest month (WMP), driest month (DMP), warmest and coldest 406 

quarter precipitation (WQP and CQP, respectively) and the precipitation seasonality coefficient (PS)) 407 

using the DISMO package in R (Hijmans et al. 2005).  A probability density function was then 408 

generated for each co-occurring plant group by testing the likelihood of the plant group occurring at 409 

100,000 unique extant combination of MAP, WMP, DMP, PS, WQP and CQP.  As shown in 410 

Equation 1, the product of probabilities (f) was calculated for each plant group (t) at each climatic 411 

combination (x), using the means (μ) and standard deviations (σ) of their modern-day bioclimatic 412 

envelope, for each climatic variable (c). 413 

 414 

𝑓(𝑡𝑛) =∏
1

√2𝜎𝑐
2 × 𝜋

𝑒𝑥𝑐−𝜇𝑐 2𝜎𝑐
2⁄

6

𝑖=1

 415 

Equation 1 416 

 417 

A combined likelihood for all plant groups in the assemblage combined can then be calculated with 418 

the product of all likelihoods (n), shown in Equation 2. 419 

 420 

𝑓(𝑧) =∏𝑡𝑛

𝑛

𝑖=1

 421 

Equation 2 422 

 423 

The combination of MAP, WMP, DMP, PS, WQP and CQP with the highest likelihood is the value 424 

reported here as most representative for the assemblage, and the highest and lowest values of the 425 
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metrics with f(z) ≥ 5% of the maximum f(z) is represented as the uncertainty (using the 95% 426 

confidence interval).  427 

 428 

Eleven plant assemblages from South Africa, Tanzania, South Sudan, Cameroon, Côte d’Ivoire, 429 

Ghana and Nigeria were analyzed with the bioclimatic analysis NLR method (Adeonipekun et al. 430 

2012, Atta-Peters and Salami 2004, Cantrill et al. 2013, Chiaghanam et al. 2017, de Villiers 1997, 431 

Eisawi and Schrank 2008, Goha et al. 2016, Okeke and Umeji 2016, Salami 1984, Salard-Cheboldaeff 432 

1979, Uzodimma 2013).  433 

 434 

The NLR generated precipitation values were supplemented with an additional value based on leaf 435 

area analysis (LAA) derived data by Jacobs and Herendeen (2004) and Kaiser et al. (2006), also from 436 

Tanzania.  In locations where the final results are in the same geographical location, the 437 

reconstructions were averaged.  The final results of this analysis are shown in Table 2, with Eocene 438 

MAP expressed as ranges and modern MAP taken from TAMSAT. 439 

 440 

Site name Latitude (°N) Longitude (°E) 
MAP (mm year-1) 

Eocene range Modern 

Koningsnaas, 

South Africa 
-30.2 17.3 1318-1738 101 

Shagamu, 

Nigeria 
6.7 3.7 1148-2089 1762 

Melut Basin, 

South Sudan 
10 33 1175-1905 757 

Kwakwa, 

Cameroon 
4.5 9.1 1175-1905 2524 

Mwadui, 

Tanzania 
-3.9 33.5 813-1738 754 

Tano,  

Ghana 
4.7 -3 1514-2344 - 

Nanka,  

Nigeria 
6.12 7 1380-2291 1683 

Abidjan margin, 

Côte d’Ivoire 
5 -4.1 1660-1950 - 

Okigwe,  

Nigeria 
5.82 7.34 1175-1862 2311 

Bende - 

Umuahia, Nigeria 
5.47 7.45 1514-2291 2311 

Araromi,  

Nigeria 
7.7 3.5 1072-1738 1179 

Mahenge, 

Tanzania 
-4.79 34.26 720-800 707 

Mahenge, 

Tanzania 
-4.79 34.26 630-690 707 

Mahenge, 

Tanzania 
-4.79 34.26 737-815 707 
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Mahenge, 

Tanzania 
-4.79 34.26 644-708 707 

Mahenge, 

Tanzania 
-4.79 34.26 710-790 707 

Mahenge, 

Tanzania 
-4.79 34.26 610-680 707 

Mahenge, 

Tanzania 
-4.79 34.26 610-680 707 

Mahenge, 

Tanzania 
-4.79 34.26 740-820 707 

 441 

Table 2 - Locations and mean annual precipitation (MAP) from Eocene palaeobotanical records from Africa, 442 

and modern values.  Eocene ranges of MAP are expressed as the 95% confidence interval for all locations 443 

except Mahenge, where ranges are expressed as +/- 1 standard deviation.   Modern values of MAP taken from 444 

TAMSAT; missing values indicate ocean regions, as TAMSAT MAP is land only 445 

 446 

3. RESULTS 447 

Here the results of different comparisons are described: i) a model validation exercise, where the 448 

models’ PI simulations are compared to modern observations (Section 3.1); ii) a simulation 449 

comparison, where precipitation from the models’ Eocene simulations, at varying levels of CO2, is 450 

compared (Section 3.2); iii) a simulation comparison, where the physical mechanisms behind the 451 

precipitation response are investigated (Section 3.3); and iv) a model-data comparison, where 452 

precipitation from the models’ Eocene simulations is compared to available proxy data (Section 3.4). 453 

 454 

3.1.  DeepMIP models’ preindustrial simulations versus modern observations 455 

Here the focus is on mean precipitation differences between the various DeepMIP PI simulations 456 

(including the multi-model ensemble mean, MME) and precipitation observations from TAMSAT 457 

(see Section 2.3.1).  Precipitation anomalies (PI simulations - TAMSAT) during the core West 458 

African monsoon period (June-August, JJA) are shown in Figure 2, where the models have been 459 

ordered according to the root mean square error (RMSE), relative to TAMSAT.  Two observations are 460 

noteworthy.  Firstly, the MME is showing by far the closest agreement to TAMSAT, with a much 461 

lower RMSE (by ~10 mm month-1 less than even the next lowest individual model), highlighting the 462 

importance of using the MME to counterbalance individual models’ biases (whether they be under or 463 

overestimating).  The MME will therefore subsequently be used when discussing the various Eocene 464 

simulations.  Secondly, there appears to be a divide between: a) models such as IPSLCM5A2, INM-465 

CM4-8 and COSMOS-landveg_r2413 that are underestimating African precipitation (i.e. are showing 466 

drier conditions across West Africa at ~10°N), which have relatively low RMS error compared with 467 

TAMSAT; and b) models such as HadCM3BL_M2.1aN, MIROC4m and GFDL_CM2.1 that are 468 

overestimating African precipitation, which have relatively high RMS error compared with 469 
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TAMSAT.  For example, the model with the least agreement (GFDL_CM2.1, RMSE = 70.6 mm 470 

month-1) is overestimating precipitation over West Africa by more than 100 mm month-1.   471 

 472 

 473 

Figure 2 - JJA precipitation climatology differences (PI simulations - TAMSAT), re-gridded to lowest common 474 

spatial resolution (that of COSMOS-landveg_r2413) and ordered according to Root Mean Squared Error 475 

(RMSE, in mm month-1, see insert).  RMSE calculated over 20°W-50°E, 40°N-40°S, land points only 476 

 477 

Concerning the seasonal and latitudinal distribution of African precipitation, Figure 3 shows the 478 

annual cycle of West African (defined here as land points only encompassing 20°W-15°E, 0-20°N) 479 

precipitation and the zonal mean of JJA West African precipitation (Figure 3a and b, respectively).  480 

Outside of the JJA monsoon season, the majority of models are overestimating precipitation 481 

throughout the year (Figure 3a), with the model closest to TAMSAT (in terms of the seasonal cycle 482 

i.e. precipitation timings) being CESM1.2_CAM5, although even this model overestimates 483 

precipitation during the first half of the year.  When averaged over this region, only one model (INM-484 

CM4-8) underestimates precipitation throughout the year, but is nevertheless closer to TAMSAT than 485 

those which overestimate, in agreement with that discussed above and shown in Figure 2.  One model 486 

(GFDL_CM2.1) greatly overestimates precipitation especially during the monsoon season, and others 487 

(such as INM-CM4-8) underestimate precipitation during the monsoon season and therefore do not 488 

correctly reproduce the strong seasonality (i.e. the precipitation curve is flatter); for example, the 489 
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difference between the wettest and driest month in this model is 136 mm month-1, whereas it is 161 490 

mm month-1 in TAMSAT and 181 mm month-1 in the MME (Figure 3a).  The MME also 491 

overestimates precipitation throughout the year but is nevertheless closer to TAMSAT in terms of 492 

seasonality than many of the wetter models (Figure 3a).  Latitudinally, most models are showing a 493 

much wider (in terms of latitudinal extent) rain belt relative to TAMSAT, with GFDL_CM2.1 and the 494 

HadCM3 family in particular not reproducing the observed rapid drop-off in precipitation either near 495 

the Equator or north of 15°N (Figure 3b).  In part due to some drier models approaching the Equator 496 

(such as CESM1.2_CAM5 and INM-CM4-8), the MME is showing a similar latitudinal extent of 497 

precipitation compared to TAMSAT, and while it is still too wet at low latitudes it does correctly drop 498 

off north of 15°N (Figure 3b). 499 

 500 
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 501 

Figure 3 - Precipitation climatology from TAMSAT and PI simulations, averaged over West Africa (20°W-502 

15°E, 0-20°N - land points only): a) Mean seasonal cycle, at each model’s individual spatial resolution; b) Zonal 503 

mean of JJA precipitation, re-gridded to lowest common spatial resolution 504 

 505 

 506 

3.2.  DeepMIP models’ Eocene simulations relative to preindustrial simulations and each other 507 

Here the focus is on mean precipitation differences between various DeepMIP Eocene CO2 sensitivity 508 

experiments, in which all boundary conditions other than CO2 were kept identical.  The focus is not 509 
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only on the precipitation response to varying CO2 concentrations relative to the PI simulations, but 510 

also from each CO2 experiment individually (relative to each other).  Precipitation anomalies of all the 511 

CO2 experiments versus PI are firstly briefly presented (Section 3.2.1), and then the experiment 512 

results are divided into a non-CO2 component (i.e. the impact of the other boundary condition 513 

changes, Section 3.2.2) and a CO2 component (Section 3.2.3). 514 

 515 

3.2.1. All CO2 experiments versus preindustrial 516 

The precipitation anomalies (Eocene - PI), for each CO2 experiment and for each model during JJA 517 

are shown in Figure 4.  This is only briefly presented, because the combination of a palaeogeographic 518 

forcing and a CO2 forcing makes interpretation difficult; this is why the results are broken down into a 519 

non-CO2 component and CO2 component below.  It should be noted that when the MME is discussed 520 

below (see Sections 3.2.2 and 3.2.3), only models that participated in the particular experiment are 521 

included. 522 

 523 

 524 

Figure 4 - JJA precipitation climatology differences (Eocene - PI), for each CO2 simulation from each model 525 

 526 
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There is no clear linear trend in either wetting or drying across Eocene Africa as the CO2 527 

concentrations increase (Figure 4).  Although many models show drying (relative to the PI) of up to 528 

~180 mm month-1 across northern and western Africa in the 1x, 2x and 3x experiments, this gradually 529 

disappears as higher CO2 concentrations are applied, with some models showing precipitation 530 

increases of over 200 mm month-1 (Figure 4).  Some models disagree regardless of experiment, such 531 

as GFDL_CM2.1 which shows drying over northern Africa in all CO2 experiments contrasting with 532 

IPSLCM5A2 which shows wetting over northern Africa in all CO2 experiments.  Further south, none 533 

of the models in any of the experiments are showing a large precipitation response.  In very general 534 

terms, however, at the lower levels of CO2 concentrations (i.e. up to 4x) the majority of models are 535 

showing the same region of drying over northern and western Africa. 536 

 537 

3.2.2. 1x CO2 experiment versus preindustrial: impact of non-CO2 boundary conditions 538 

The 1x CO2 experiment versus PI is of particular interest, because this shows the impact of the other 539 

boundary conditions rather than that from CO2 concentrations.  When CO2 concentrations are kept as 540 

PI (as in the 1x experiment), the boundary conditions (see Section 2.1) likely to have the largest 541 

impact on regional precipitation are the LSM, topography and vegetation (see Figure 1).  Although 542 

land ice changes, the largest of which during the Eocene were over the Antarctic Ice Sheet (AIS), do 543 

cause a precipitation response (e.g. Kennedy-Asser et al. 2019), this is thought to be a mainly local 544 

signal and further afield, such as over northern and western Africa during JJA, there is little or no 545 

precipitation change when the AIS is either imposed or removed (Kennedy-Asser, pers. comm.). 546 

 547 

The MME precipitation anomaly for this experiment is shown in Figure 5a; it should be noted that, 548 

although six models conducted this experiment (CESM1.2_CAM5, COSMOS-landveg_r2413, 549 

GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m), only the latter four are 550 

included here in the MME, to be consistent with the analysis of the CO2 component (Section 3.2.3).  551 

From the available DeepMIP results, it is impossible to disentangle the boundary conditions and 552 

ascertain which is dominant in causing the precipitation response; in an ideal world, sensitivity 553 

experiments would be conducted to introduce each boundary condition individually, but this is not 554 

possible with the results currently available on the DeepMIP database.  Nevertheless, based on the 555 

results it is possible to theorise which of these boundary conditions might be causing this MME 556 

precipitation response.  The largest precipitation changes relative to the PI are a small increase in 557 

precipitation to the north of Eocene Africa and in the western Indian Ocean, and a decrease in 558 

precipitation over western and northern equatorial Eocene Africa (Figure 5a).  It is likely that the 559 

northern increases are caused by the change in the LSM (Figure 1a) as this region comprises the 560 

preindustrial (and modern) Sahara but is ocean in the Eocene and therefore would have been a much 561 

greater moisture source.  Likewise, the increase over the western Indian Ocean is likely because 562 

preindustrial Africa extends much further East than during the Eocene, again giving much less of a 563 
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moisture source during the PI (Figure 1a).  Moreover, an examination of SST from the Eocene and PI 564 

simulations (from each individual model and the MME) shows that these exposed regions of ocean 565 

are characterised by warmer SSTs in the Eocene; for example, in the Indian Ocean absolute values are 566 

up to 32°C in the Eocene MME compared to up to 28°C in the PI MME, thereby providing a greater 567 

source of evaporation during the Eocene see (see Supplementary Material, Figure S2).  Concerning 568 

the drying over equatorial Eocene Africa, this is likely less related to the LSM (because the region 569 

was land during both time periods), and more likely related to the change in vegetation (Figure 1c).  570 

In these regions, at approximately 10°N, what is tropical rainforest during the PI is rather a mixture of 571 

savanna, grassland and desert during the Eocene (Figure 1c) and would therefore likely explain the 572 

reduction in precipitation because of the reduced evapotranspiration.  Finally, although there is a large 573 

increase in orographic heights (of over 1000 m) over southern Africa during the Eocene (Figure 1b 574 

and Figure S1 in the Supplementary Material), this does not appear to be having a large impact on the 575 

West African monsoon, with minimal precipitation differences further south (Figure 5a). 576 

 577 

Figure 5 – JJA precipitation multi-model ensemble mean (MME) climatology differences (Eocene - PI) for the 578 

1x CO2 experiment (comprising the four models that conducted this experiment, in addition to the others 579 

considered here: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m): a) Original (i.e. 580 

unrotated) differences; b) Rotated differences i.e. Eocene precipitation rotated forward to where it is in the PI.  581 

Note that in a), solid lines show the PI mask and dashed lines show the Eocene mask 582 

 583 

However, a caveat of the above analysis is that, because of the plate rotation differences during the 584 

Eocene, Figure 5a is showing precipitation anomalies that may simply be due to differing 585 

geographical locations, rather than any change to the climate state.  Therefore, Figure 5b shows the 586 

same results, but this time with the Eocene precipitation rotated forwards (based on the rotations 587 
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supplied in the Herold et al. 2014 Supplementary Material) to where it is in the PI.  However, despite 588 

these rotational differences, the overall picture remains the same (i.e. increases in precipitation over 589 

northern Africa and a decrease in precipitation over western and equatorial Africa) but much more 590 

pronounced (Figure 5b).  The increases and decreases in precipitation exceed 200 mm month-1 in 591 

some places, suggesting a northward displacement of the Atlantic ITCZ; this difference between the 592 

Eocene and the PI is in contrast to when the Eocene CO2 experiments are compared with each other, 593 

to assess the impact of increasing CO2 (discussed further below in Section 3.2.3 and Section 4). 594 

 595 

3.2.3.  Lower and higher CO2 experiments: impact of CO2 596 

To investigate the impact of increasing CO2 on precipitation, when all other boundary conditions are 597 

constant, the experiments have been divided into two samples, each containing a different number of 598 

models going into the MME: i) “lower-level CO2”, namely the 1x, 2x and 3x experiments, comprising 599 

four models (GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m); and ii) 600 

“higher-level CO2”, namely the 3x and 6x experiments, comprising two models (CESM1.2_CAM5 601 

and GFDL_CM2.1); see Table 1.  Note that the MMEs for the two 3x experiments are slightly 602 

different because they contain a different number of models.  Here, both absolute precipitation values 603 

and anomalies are shown, where the anomalies are of a certain CO2 experiment versus another CO2 604 

experiment, rather than Eocene versus PI. 605 

 606 

The MME absolute precipitation and anomalies for the lower-level sample of CO2 experiments, are 607 

shown in Figure 6a.  When the absolute values are considered (Figure 6a, top row), all experiments 608 

show regions of precipitation maxima over the equatorial Atlantic (north of the Equator) and West 609 

Africa.  Over the same West African region as described above (20°W-15°E, 0-20°N, land points 610 

only), mean JJA precipitation is 192 mm month-1, 201 mm month-1 and 207 mm month-1 for the 1x, 2x 611 

and 3x experiments, respectively, implying a small increase as CO2 increases.  This becomes more 612 

evident when the anomalies are considered (Figure 6a, second row).  If the 1x and 2x experiments are 613 

compared, the largest change is over the equatorial Atlantic, with a small increase in precipitation of 614 

up to 50 mm month-1 over the Equator and a decrease of over 50 mm month-1 further north, suggesting 615 

a southward displacement of the Atlantic ITCZ.  Precipitation is also increased over western Africa.  616 

The same pattern is evident when the 1x and 3x experiments are compared, but more pronounced, 617 

with both the increases and decreases approaching 100 mm month-1 in their respective areas.   618 

 619 
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 620 

Figure 6 – JJA precipitation multi-model ensemble mean (MME) climatology absolutes and anomalies for the 621 

1x, 2x, 3x and 6x CO2 experiments, using both samples: a) Lower-level sample of CO2 experiments (comprising 622 

the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and 623 

MIROC4m), absolutes (top row) and anomalies (second row); b) Higher-level sample of CO2 experiments 624 

(comprising the two models that conducted these: CESM1.2_CAM5 and GFDL_CM2.1), absolutes (top row) 625 

and anomalies (second row) 626 

 627 

The MME absolute precipitation and anomalies for the higher-level sample of CO2 experiments are 628 

shown in Figure 6b.  When the absolute values are considered (Figure 6b, top row), the region of 629 

precipitation maxima in the equatorial Atlantic is larger in the 6x experiment.  Over the same West 630 

African region, mean JJA precipitation is 186 mm month-1 and 232 mm month-1 for the 3x and 6x 631 

experiments, respectively, implying a large mean increase as CO2 increases, and this is further 632 

confirmed when the anomalies are considered (Figure 6b, second row).  Precipitation increases of 633 

over 100 mm month-1 are shown over the equatorial Atlantic (north of the Equator) and West Africa 634 
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in the 6x relative to the 3x experiment, but the large region of drying seen at the lower levels of CO2 635 

is less evident (Figure 6b, second row).  This suggests that, whilst West African precipitation is still 636 

(and more so here) enhanced as CO2 rises, it is perhaps less related to Atlantic ITCZ displacement and 637 

more related to an increase in south-westerly flow (discussed below). 638 

 639 

3.3.  Physical mechanisms behind the precipitation response 640 

Here the focus is on the possible dynamic and thermodynamic mechanisms causing the observed 641 

precipitation responses, again using the MME absolute values and anomalies from the aforementioned 642 

lower-and higher level samples of CO2 experiments.   643 

 644 

The MME absolute 1.5 m surface air temperature (SAT) and anomalies for the lower- and higher-645 

level sample of CO2 experiments are shown in Figure 7.  In line with general understanding there is a 646 

clear increase in absolute SAT, everywhere, as the CO2 increases, with the largest signal (of up to 647 

40°C in the 3x experiment) occurring over the main landmass of central and northern Africa (Figure 648 

7a, top row).  This is more obvious when the anomalies are considered, although the largest increases 649 

are occurring further south (Figure 7a, second row).  This is even more pronounced in the higher-level 650 

sample of CO2 experiments (Figure 7b), and in all experiments the largest increase in SAT, either 651 

between the 3x and 1x experiments or the 6x and 3x the experiments, is occurring over southern 652 

Africa, away from the largest precipitation changes discussed above.  The Precipitation - Evaporation 653 

(P-E) balance (Figure 8) is positive over West Africa in all experiments regardless of sample, 654 

corresponding well with the region of increased precipitation (Figure 6), as does cloud cover which is 655 

also increasing with CO2 over these regions (not shown).  Further south, over the Atlantic, the balance 656 

is negative implying increased evaporation corresponding to the increased oceanic SAT.  Concerning 657 

low level circulation, as shown by 850 mb vector winds (Figure 9), when the anomalies are 658 

considered (and in particular the 3x versus 1x), there is a small (of up to 5 ms-1) increase in northerly 659 

and westerly winds (i.e. clockwise flow) in the equatorial Atlantic north of the Equator (Figure 9a, 660 

second row).  However, in the higher-level CO2 sample (and in particular the anomalies of 6x versus 661 

3x, Figure 9b, second row), this increase in anticyclonic flow is less evident and is instead replaced by 662 

a widespread area of increased southwesterly flow across most of the equatorial Atlantic and central 663 

Africa.  For SAT, P-E and 850 vector winds from each individual model, rather than the MME, see 664 

the Supplementary Material (Figure S3a, b, and c, respectively); here, similar to Figure 4, there is no 665 

obvious linear change in either P-E or low level circulation as CO2 increases, but a clear increase in 666 

SAT from all models, in line with current understanding (Figure S3a). 667 

 668 
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 669 

Figure 7 – Same as Figure 6 but for JJA 1.5 m surface air temperature  670 

 671 
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 672 

Figure 8 – JJA P-E multi-model ensemble mean (MME) climatology absolutes for the 1x, 2x, 3x and 6x CO2 673 

experiments, using both samples: a) Lower-level sample of CO2 experiments (comprising the four models that 674 

conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m), PI (top row) and 675 

Eocene (bottom row); b) Higher-level sample of CO2 experiments (comprising the two models that conducted 676 

these: CESM1.2_CAM5 and GFDL_CM2.1), PI (top row) and Eocene (bottom row).  Note that the PI panels 677 

are identical in each sample because they contain the same models, but are simply replicated here for ease of 678 

comparison 679 

 680 
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 681 

Figure 9 – Same as Figure 6 but for JJA 850 mb wind  682 

 683 

3.4.  DeepMIP models’ Eocene simulations versus proxy data 684 

In this final section, the focus is on comparing precipitation from selected DeepMIP Eocene 685 

simulations (using the MME from the same two samples as discussed above) with newly-available 686 

precipitation reconstructions (described in Section 2.3.2).  Before the results are presented, however, 687 

several sources of uncertainty in the proxies and models must be noted, aside from analytical 688 

uncertainty that is expressed in the reconstructed confidence intervals.  Firstly, the fossil plant 689 

assemblages analysed here have broad age constraints.  Palaeofloral assemblages may capture a 690 

snapshot within those age constraints that deviated climatically from the average climatic conditions 691 

of a specific age that the model was calibrated on.  In addition, fossil plant assemblages tend to 692 

preserve better in wetter climates, with drier climates lacking the water bodies needed to preserve 693 

plant fossils.  Secondly, the DeepMIP models are calibrated on atmospheric CO2 proxy 694 

reconstructions to cover the uncertainty of the entire Eocene; the lower CO2 levels may be more 695 
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representative of the late Eocene, but that was not the purpose or interpretation when it came to 696 

deciding the experiments.  Independent proxies within those ages produce widely variable 697 

atmospheric CO2 reconstructions (e.g. Rae et al. 2021), with <500 ppmv from some palaeosol and 698 

stomatal reconstructions (Beerling et al. 2009; Hyland et al. 2013) to >2000 ppmv from boron 699 

isotopes and alkenone δ13C (e.g. Bijl et al. 2010; Anagnostou et al. 2020).  It should be noted, 700 

however, that there is high uncertainty in these reconstructions; see Hollis et al. 2019 for a full 701 

discussion.  For example, based on a variety of reconstructions compiled as part of the Palaeo-CO2 702 

project (including phytoplankton, boron proxies, leaf gas exchange, liverworts and nahcolite), 703 

atmospheric CO2 during 55-50 Ma ranges from 500-2000 ppmv (Anagnostou et al. 2020, Hollis et al. 704 

2019, Westerhold et al. 2020).  Potentially, these differences in reconstructed atmospheric CO2 reflect 705 

transient climate states (e.g. Reichgelt et al. 2016), but regardless, the disagreement between proxy 706 

reconstructions makes it problematic to associate a single atmospheric CO2 level for model-data 707 

comparison (Hollis et al. 2019).  Lastly, a major source of uncertainty is the paucity of proxy data 708 

across Africa; as mentioned above, even today there is a lack of long-term climate data over much of 709 

Africa, and the same is true for palaeofloras.  This sparsity, therefore, is likely responsible for some of 710 

the results discussed below. 711 

 712 

With these caveats in mind, MME MAP at each of the individual locations is shown in Figure 10, 713 

ordered according to the reconstructions’ values, including uncertainty estimates for the 714 

reconstructions (as measured by +/- 1 standard deviation for the locations in Mahenge, Tanzania and 715 

the 95% confidence interval for the other 11 locations; see Table 2 for details).  The approximate 716 

geographical locations can be seen in the Supplementary Material (Figure S4).  Firstly it is worth 717 

noting that for the majority of reconstructions, uncertainty is high, with a range of up to +/- 1000 mm 718 

yr-1 at some of the locations such as Mwadui, Tanzania (Figure 10).  Secondly, whether or not the 719 

CO2 experiments over- or underestimate MAP appears to depend heavily on geographical location, 720 

with none of the CO2 experiments (not even the 6x experiment) reproducing the precipitation amounts 721 

of the proxy reconstructions in some locations, such as Koningsnaas, South Africa, Okigwe, Nigeria 722 

or Tano, Ghana (Figure 10).  Elsewhere, the simulations lie within the uncertainty range of the 723 

reconstructions (such as Sagamu or Bende-Umuahia, both in Nigeria), and yet in other places (such as 724 

across Kwakwa, Cameroon, and all of the locations at Mahenge, Tanzania) all of the simulations are 725 

too wet, by between ~760-1040 mm year-1 depending on location and CO2 experiment (Figure 10).   726 

 727 
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 728 

Figure 10 – Annual mean precipitation from reconstructions (black) and CO2 experiments multi-model 729 

ensemble mean (MME, colours) at each individual location.  Uncertainty in reconstructions is measured by 95% 730 

confidence interval for all sites except Mahenge, where they show +/- 1 standard deviation.   Locations have 731 

been ordered according to the reconstructions’ values, lowest to highest.  Note that locations 1-4 and 6-8 are all 732 

in the same location, but from different stages during the Lutetian (~41-47 Ma), and so have been re-sampled 733 

and averaged into one overall mean (location 5) 734 

 735 

Spatially, MME MAP is shown in Figure 11 (see Figure S5 in the Supplementary Material for each 736 

individual model), showing the uncertainty estimates as concentric circles.  As already discussed, the 737 

simulations’ precipitation is clearly too high or too low compared to proxy reconstructions in different 738 

parts of Africa.  Qualitatively, in very general terms all of the CO2 experiments are showing wetter 739 

conditions over Western Eocene Africa (relative to elsewhere), agreeing with Figure 10 where in 740 

many of these locations the models are either within, or at the higher end of, the reconstructions’ 741 

uncertainty ranges (Figure 11).  Importantly, simulated precipitation over West Africa appears to be 742 

increasing as the CO2 concentration increases and, in particular for the 6x experiment (Figure 11e), in 743 

this region simulated precipitation exceeds even the upper range of uncertainty of the reconstructions.   744 
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 745 

Figure 11 – Annual mean precipitation from reconstructions (circles) and CO2 experiments multi-model 746 

ensemble mean (MME, background gridded data): a) 1x; b) 2x; c) 3x (lower-level CO2 sample); d) 3x (higher 747 

level CO2 sample); e) 6x. Concentric circles show 95% confidence interval for all sites except Mahenge, where 748 

they show +/- 1 standard deviation: outer circle = lower range (or -1 standard deviation), middle circle = average 749 

(or, for Mahenge, mode) and inner circle = upper range (or +1 standard deviation).   Reconstructions have been 750 

rotated forwards to where they are in the PI. Solid lines show the PI mask and dashed lines show the Eocene 751 

mask. Note that, using the common spatial resolution of the MME, 3 reconstructions are all in the same location 752 

in West Africa (even though they are in different locations in reality); here, therefore, only the top-most 753 

reconstruction is shown 754 

 755 

Quantitatively, the root mean squared error (RMSE) between each model (as well as the MME) and 756 

the reconstructions at every location is shown in Table 3 and, similar to the anomalies from each 757 

model as discussed above, there is no clear relationship between changing CO2 and a better match to 758 

the reconstructions.  Most models suggest a better fit to the reconstructions at lower levels of CO2, 759 

such as CESM1.2_CAM5 where there is a general increase in RMSE as the CO2 increases; however, 760 

this is not the case for every model, with for example GFDL_CM2.1 showing a better fit with 761 

reconstructions at 2x and 4x CO2, rather than higher or lower levels (Table 3).  For many of the 762 

models and the MME, the 3x CO2 experiments are showing the least fit with reconstructions.  The 763 

MME, from the lower-level (but not in the higher-level) CO2 sample, agrees with this conclusion that 764 
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lower CO2 is giving a slightly better match to the reconstructions, with RMSE values of 758 mm year-765 

1, 831 mm year-1, 1385 mm year-1, 889 mm year-1 and 839 mm year-1 for the 1x, 2x, 3x (lower-level 766 

CO2 sample), 3x (higher-level CO2 sample) and 6x experiments, respectively (Table 3).   767 

 768 

 
1x CO2 

1.5x 

CO2 
2x CO2 3x CO2 4x CO2 6x CO2 9x CO2 

CESM1.2_CAM5 681   750  704 822 

COSMOS-

landveg_r2413 
699   1424 713  

 

GFDL_CM2.1 803  762 1027 786 975  

HadCM3B_M2.1aN 796  884 1988    

HadCM3BL_M2.1aN 816  1018 1742    

INM-CM4-8      966  

IPSLCM5A2  744  669    

MIROC4m 614  662 785    

NorESM1_F   1149  1522   

        

MME (lower-level 

CO2 sample) 
758  831 1385    

MME (higher-level 

CO2 sample) 
   889  839  

 769 

Table 3 - Root Mean Squared Error (RMSE) for mean annual precipitation (MAP) between each model (and 770 

multi-model ensemble mean, MME, using both samples) and reconstructions, for each CO2 experiment 771 

 772 

4.  DISCUSSION AND CONCLUSIONS 773 

This study has investigated African precipitation during the early Eocene, as simulated by the 774 

DeepMIP models.  This study is novel, because it investigates the relatively little-studied subject of 775 

African hydroclimate during the early Eocene.  The results of this study have been divided into four 776 

separate sections, corresponding to the four questions posed in Section 1.  Firstly, in Section 3.1 the 777 

DeepMIP models’ PI simulations have been compared to satellite-derived estimates of precipitation, 778 

to ascertain how well the models are able to reproduce African precipitation under ‘modern’ 779 

conditions (please see Section 2.3.1 for a discussion of the caveat that here the term ‘modern’ is 780 

actually a combination of both pre-industrial and 20th-21st century).  Secondly, in Section 3.2 the 781 

DeepMIP models’ Eocene simulations have been compared to both the PI simulations and each other, 782 

to investigate the impact of non-CO2 components (i.e. other boundary condition changes, such as to 783 

the LSM) and CO2 components (i.e. increasing CO2) on African precipitation.  Thirdly, in Section 3.3 784 

the CO2 driven response has been investigated further by looking at a number of dynamic and 785 

thermodynamic fields simulated by the models, to ascertain possible physical mechanisms behind the 786 

observed precipitation response.  Lastly, in Section 3.4 the DeepMIP models’ Eocene simulations 787 

have been compared to newly-available proxy data, to indicate how well the models agree with 788 

current best precipitation estimates from the Eocene. 789 



 

32 

 

 790 

The comparison between the DeepMIP PI simulations and modern observations (from TAMSAT) 791 

suggest that individual models are both underestimating or overestimating the spatial patterns of 792 

African precipitation; this is consistent with Monerie et al. (2020), who analysed a number of 793 

historical simulations from both CMIP5 and CMIP6 and found that the models' ability to reproduce 794 

observations was firstly model dependent and secondly geographically dependent, with many models 795 

underestimating precipitation over the Sahel and overestimating it over the Guinea coast and tropical 796 

Atlantic.  However, here the MME is reducing these biases and is showing the best agreement with 797 

TAMSAT in terms of precipitation spatial patterns, highlighting the utility of the MME as a best 798 

estimate of the actual precipitation.  This has been found elsewhere, such as by Ayugi et al. (2021) 799 

who looked at East African precipitation in both CMIP5 and CMIP6 models and again found a better 800 

performance of the MME relative to individual models, due to systematic errors in individual models 801 

being cancelled out.  Moreover, Rougier et al. (2013) show that it is actually a statistical property of 802 

this type of analysis that the ensemble mean will always provide the best match to the data e.g. have 803 

the lowest RMSE.  Concerning the latitudinal extent and seasonal timings of African precipitation, 804 

most models show a much wider (latitudinally) West African rain belt compared to TAMSAT and are 805 

not reproducing the rapid drop-off in precipitation near the Equator or north of 15°N.  This is 806 

somewhat in contrast to Monerie et al. (2020), who noted that the majority of CMIP5 and CMIP6 807 

models did not have the monsoon extending far enough to the north and were instead showing a 808 

southward displacement of precipitation maxima, relative to observations; however, that particular 809 

study used the models’ historical simulations (as well as a different MME), not pre-industrial as 810 

shown here, which may explain the discrepancy.  Outside of the JJA West African monsoon season 811 

most models are too wet, but within the monsoon season the results suggest that the drier models (i.e. 812 

those underestimating West African precipitation) are closer to modern observations than those that 813 

are too wet (i.e. overestimating West African precipitation). 814 

 815 

The comparison between the DeepMIP Eocene simulations and the PI suggests that, when all 816 

individual models are considered separately, there is no obvious wetting or drying trend (relative to 817 

the PI) as the CO2 increases.  This is another reason to focus on the MME, which allows easier 818 

interpretation as the large model spread is removed.  Concerning the non-CO2 component of 819 

precipitation change (i.e. the impact of other boundary conditions when CO2 is kept at PI levels), the 820 

results suggest that changes to the LSM may be responsible for the increases in precipitation (relative 821 

to the PI) to the north of Eocene Africa and the western Indian Ocean, given that these are ‘newly 822 

exposed’ regions of ocean in the Eocene, thereby providing a larger moisture source.  In contrast, it is 823 

likely that changes in vegetation are responsible for the region of drying (relative to the PI) over 824 

equatorial Eocene Africa, because regions of tropical rainforest during the PI were instead savanna 825 

and desert during the Eocene, thereby reducing the amount of evapotranspiration and evaporation.  It 826 
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should be noted, though, that validation of the Eocene vegetation over certain regions of Africa was 827 

not possible when creating this boundary condition (Herold et al. 2014), therefore there is a level of 828 

uncertainty here.  When the Eocene precipitation is rotated forwards in time to where it is in the PI, a 829 

similar pattern is shown but is more pronounced, and suggests a northward displacement of the 830 

primary rain belt (relative to today), which is consistent with previous work (e.g. Carmichael et al. 831 

2016).  However, this is in contrast to when CO2 is increased in the Eocene simulations.  Concerning 832 

this CO2 component of precipitation change, at the lower levels of increased CO2 (such as 2x and 3x 833 

that of the PI) precipitation over the equatorial Atlantic and West Africa appears to be increasing in 834 

response to rising CO2, with the concomitant decrease in precipitation north of the equator suggesting 835 

a possible displacement of the Atlantic ITCZ towards the south.  This therefore suggests that the 836 

boundary condition changes imposed for the Eocene are resulting in a northward displacement of the 837 

primary rain belt, but increasing CO2 (with the same boundary conditions) is resulting in a southward 838 

displacement of the primary rain belt.  At even higher levels of CO2 (such as 6x that of the PI), 839 

precipitation over West Africa is more enhanced relative to the lower levels, but the region of drying 840 

is less evident.  The enhancement of Northern Hemisphere summer West African precipitation at the 841 

highest levels of CO2 is again consistent with previous work, such as that of Carmichael et al. (2016) 842 

who showed a generally more intense hydrological cycle at higher CO2 levels and that of Carmichael 843 

et al. (2018) who demonstrated an increase in precipitation extremes over tropical Africa at higher 844 

CO2 levels. 845 

 846 

Consistent with Carmichael et al. (2016), the precipitation increases over West Africa as CO2 847 

concentrations rise are associated with increased SAT, a strongly positive the P-E balance and cloud 848 

cover increases and, concerning temperature, as such are consistent with the idea that a generally 849 

warmer world results in a generally wetter world; the ‘wet-gets-wetter and dry-gets-drier’ hypothesis 850 

(e.g. Held and Soden 2006).  However, the largest increases in SAT shown here are over southern 851 

Africa, not where the largest precipitation increases are seen, suggesting factors other than a generally 852 

warming world (i.e. dynamical changes) are responsible for the localised precipitation response.  Both 853 

the region of enhanced precipitation over West Africa, and the region of drying in the equatorial 854 

Atlantic around 10°N, may be explained by low-level circulation changes.  Up to 3x that of the PI 855 

CO2, clockwise low-level circulation increases with CO2, drawing in more moisture from the 856 

equatorial Atlantic and causing a relative drying further north, hence the appearance of a southward 857 

displacement of the Atlantic ITCZ.  At higher levels of CO2, however, where increases in West 858 

African precipitation are shown but the region of drying around 10°N is not, the increased clockwise 859 

low-level circulation is replaced by increased south-westerly flow; here, therefore, precipitation is 860 

being enhanced by more moisture being drawn in by this south-westerly flow from the warm South 861 

Atlantic.   862 

 863 
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Lastly, the results from the model-data comparison suggests that whether the Eocene simulations 864 

(regardless of CO2 experiment) over- or underestimate African precipitation is highly geographically 865 

dependent, with some of the CO2 experiments at some of the locations lying within the uncertainty 866 

range of the reconstructions but others being too wet or too dry.  There is some suggestion of a 867 

latitudinal relationship, with the simulations overestimating precipitation near the Equator and 868 

underestimating precipitation in high latitude regions, such as South Africa; this latter point is 869 

consistent with the findings of Carmichael et al. (2016).  Whether the models are considered 870 

independently or whether the MME is used, the results suggest a marginally better fit with the 871 

reconstructions at lower levels of CO2, and this is in contrast (indirectly) to the findings of Carmichael 872 

et al. (2016) who suggested the warmest models in the regions of increased precipitation best matched 873 

the data; it should be noted, however, that this was a global study.  There is no evidence for this here, 874 

and indeed the finding of a better match at lower levels of CO2 is in contrast to that of Reichgelt et al. 875 

(2021, in prep) who focused on Australia and found that the higher, 6x CO2 experiment was the best 876 

match to reconstructions.  However, given the uncertainties associated with both the reconstructions 877 

(discussed above) and the boundary conditions used to force the models, it is difficult to draw firm 878 

conclusions from a model-data comparison of this type.  Moreover, a particularly big problem here is 879 

that, despite the newly-compiled reconstructions presented here, there is still a lack of data across 880 

Africa, hindering any firm conclusions. 881 

 882 

In conclusion, therefore, this study has shown that the DeepMIP models are able to approximately 883 

reproduce the modern African precipitation and, in response to rising CO2, suggest an enhancement of 884 

precipitation in this region associated with increasing temperatures and changes to low-level 885 

circulation.  At very high levels of CO2 the models may be too wet, relative to reconstructions.   886 

However, this might be because the NLR proxy approach has difficulty generating MAP values above 887 

modern, or connected to the relatively few data points within the reconstructions.  Using the MME 888 

provides the clearest suggestion of this, but the large amount of model spread means that when 889 

individual models are considered, either relative to their corresponding PI simulations or 890 

reconstructions, no clear relationship is shown. 891 

 892 

DATA AVAILABILITY 893 

TAMSAT data are publicly available to download at https://www.tamsat.org.uk/.  The 894 

palaeobotanical precipitation estimates compiled here are available as a spreadsheet included in the 895 

Supplementary Material.  The DeepMIP PI and Eocene simulations are available by following the 896 

instructions at https://www.deepmip.org/data-eocene/. 897 
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Squared Error (RMSE, in mm month-1, see insert).  RMSE calculated over 20°W-50°E, 40°N-40°S, 967 

land points only 968 

 969 

Figure 3 - Precipitation climatology from TAMSAT and PI simulations, averaged over West Africa 970 

(20°W-15°E, 0-20°N - land points only): a) Mean seasonal cycle, at each model’s individual spatial 971 

resolution; b) Zonal mean of JJA precipitation, re-gridded to lowest common spatial resolution 972 

 973 

Figure 4 - JJA precipitation climatology differences (Eocene - PI), for each CO2 simulation from each 974 

model 975 

 976 

Figure 5 – JJA precipitation multi-model ensemble mean (MME) climatology differences (Eocene - 977 

PI) for the 1x CO2 experiment (comprising the four models that conducted this experiment, in 978 

addition to the others considered here: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN 979 

and MIROC4m): a) Original (i.e. unrotated) differences; b) Rotated differences i.e. Eocene 980 
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precipitation rotated forward to where it is in the PI.  Note that in a), solid lines show the PI mask and 981 

dashed lines show the Eocene mask 982 

 983 

Figure 6 – JJA precipitation multi-model ensemble mean (MME) climatology absolutes and 984 

anomalies for the 1x, 2x, 3x and 6x CO2 experiments, using both samples: a) Lower-level sample of 985 

CO2 experiments (comprising the four models that conducted these: GFDL_CM2.1, 986 

HadCM3B_M2.1aN, HadCM3BL_M2.1aN and MIROC4m), absolutes (top row) and anomalies 987 

(second row); b) Higher-level sample of CO2 experiments (comprising the two models that conducted 988 

these: CESM1.2_CAM5 and GFDL_CM2.1), absolutes (top row) and anomalies (second row) 989 

 990 

Figure 7 – Same as Figure 6 but for JJA 1.5 m surface air temperature  991 

 992 

Figure 8 – JJA P-E multi-model ensemble mean (MME) climatology absolutes for the 1x, 2x, 3x and 993 

6x CO2 experiments, using both samples: a) Lower-level sample of CO2 experiments (comprising the 994 

four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN and 995 

MIROC4m), PI (top row) and Eocene (bottom row); b) Higher-level sample of CO2 experiments 996 

(comprising the two models that conducted these: CESM1.2_CAM5 and GFDL_CM2.1), PI (top row) 997 

and Eocene (bottom row).  Note that the PI panels are identical in each sample because they contain 998 

the same models, but are simply replicated here for ease of comparison 999 

 1000 

Figure 9 – Same as Figure 6 but for JJA 850 mb wind  1001 

 1002 

Figure 10 – Annual mean precipitation from reconstructions (black) and CO2 experiments multi-1003 

model ensemble mean (MME, colours) at each individual location.  Uncertainty in reconstructions is 1004 

measured by 95% confidence interval for all sites except Mahenge, where they show +/- 1 standard 1005 

deviation.   Locations have been ordered according to the reconstructions’ values, lowest to highest.  1006 

Note that locations 1-4 and 6-8 are all in the same location, but from different stages during the 1007 

Lutetian (~41-47 Ma), and so have been re-sampled and averaged into one overall mean (location 5) 1008 

 1009 

Figure 11 – Annual mean precipitation from reconstructions (circles) and CO2 experiments multi-1010 

model ensemble mean (MME, background gridded data): a) 1x; b) 2x; c) 3x (lower-level CO2 1011 

sample); d) 3x (higher level CO2 sample); e) 6x. Concentric circles show 95% confidence interval for 1012 

all sites except Mahenge, where they show +/- 1 standard deviation: outer circle = lower range (or -1 1013 

standard deviation), middle circle = average (or, for Mahenge, mode) and inner circle = upper range 1014 

(or +1 standard deviation).   Reconstructions have been rotated forwards to where they are in the PI. 1015 

Solid lines show the PI mask and dashed lines show the Eocene mask. Note that, using the common 1016 

spatial resolution of the MME, 3 reconstructions are all in the same location in West Africa (even 1017 
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though they are in different locations in reality); here, therefore, only the top-most reconstruction is 1018 

shown 1019 

 1020 

LIST OF SUPPLEMENTARY TABLES/FIGURES 1021 

Table S1 - Paleocene-Eocene palaeobotanical records from Africa.  Note that the eight sites at 1022 

Mahenge are from slightly different time-slices within the Lutetian, and have therefore been averaged 1023 

when making the model-data comparison.  Moreover, these sites were generated by Leaf Area 1024 

Analysis (LAA), not Nearest Living Relative (NLR) estimates, therefore do not have associated taxa.  1025 

Note also that the exact ages of each site, and which best overlap with the DeepMIP simulations, is 1026 

uncertain; the simulations represent ~50 Ma, whereas the Ypresian sites span ~47-56 Ma, the Lutetian 1027 

sites span ~41-47 Ma and the Paleocene sites are generally ~56 Ma and earlier. 1028 

 1029 

Table S2 - Geodetic coordinates of occurrences from the Global Biodiversity Information Facility 1030 

(GBIF) 1031 

 1032 

Figure S1 – Topography/bathymetry changes in DeepMIP simulations.  Solid line shows PI land sea 1033 

mask, dashed line shows Eocene land sea mask 1034 

 1035 

Figure S2 – JJA sea surface temperature (SST) climatologies from each model conducting the 1x CO2 1036 

experiment, as well as multi-model ensemble mean (MME): a) PI; b) Eocene 1037 

 1038 

Figure S3 - JJA climatologies for each CO2 simulation from each model: a) 1.5 m surface air 1039 

temperature (SAT); b) JJA Precipitation - Evaporation (P-E); c) 850 mb vector winds.  Note that in b), 1040 

evaporation data are missing from NorESM1_F, hence its exclusion here, and likewise in c), wind 1041 

data are missing from INM-CM4-and IPSLCM5A2, hence their exclusion here 1042 

 1043 

Figure S4 – Approximate locations of reconstructions across Africa, ordered according to the 1044 

reconstructions’ values, lowest to highest.  Note that locations 1-9 are all in the same location, but 1045 

from different stages during the Lutetian (~41-47 Ma), and so have been re-sampled and averaged into 1046 

one overall mean (location 5).  Reconstructions have been rotated forwards to where they are in the 1047 

PI.  Solid lines show the PI mask and dashed lines show the Eocene mask. 1048 

 1049 

Figure S5 - Annual mean precipitation from reconstructions (circles) and CO2 experiments 1050 

(background gridded data) for each individual model.  Locations in Mahenge, Tanzania are in the 1051 

same place, so have been averaged.  Reconstructions have been rotated forwards to where they are in 1052 

the PI.  Note that, for the majority of models, the spatial resolution is such that 3 reconstructions are 1053 
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all in the same location in West Africa (even though they are in different locations in reality); here, 1054 

therefore, only the top-most reconstruction is shown  1055 
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