Fluvial sedimentary response to late Quaternary climate and tectonics at the Himalayan Frontal Thrust, central Nepal

Mari Hamahashi¹, Judith Hubbard², Rafael Almeida³, Samuel Haines⁴, Lewis A Owen⁵, Sanjita Mishra⁶, and Soma Nath Sapkota⁷

¹Kobe University, Kobe Ocean-Bottom Exploration Center
²Nanyang Technological University
³San Diego State University
⁴Earth Observatory of Singapore
⁵North Carolina State University
⁶Department of Mines and Geology, National Seismological Center, Nepal
⁷Department of Mines and Geology

November 24, 2022

Abstract

To investigate the subsurface structure surrounding the Main Frontal Thrust (MFT) in central Nepal, we drilled and cored sediments to depths of 45-100 m at ten sites. Our boreholes were located along previously acquired high-resolution seismic profiles across the MFT imaging the upper 1-2 km of the subsurface, which revealed a beveled erosional surface in the hanging wall above a broad, gentle anticline, as well as growth strata in the footwall. The boreholes exhibit interlayered clays, silts, sands, and gravels, dated with optically stimulated luminescence and radiocarbon to $<72.5\pm4.3$ ka, with a transition from finer to coarser sediments at $~13.5\pm0.1$ ka. Near the fault tip, the sediments exhibit steeper dips and deformation bands. A 25-m-thick section of silt and clay above the south end of the buried anticline is interpreted as a temporary lacustrine depocenter formed due to uplift near the fault tip. Based on the distribution of marker beds and sediment ages, we interpret a shortening rate of 3.1-12.1 mm/a on the MFT. Three major transitions between fluvio-lacustrine and coarse fluvial channel facies are inferred from the boreholes, and the timings of these transitions correlate with Indian monsoonal intensity variations linked to Earth's precession. We infer that strengthened monsoon led to increased river discharge and advance of coarse bedload-dominant braided channels, whereas weak monsoon formed a finer-grained channel environment. These monsoonal climate variations have affected the depositional environment and river base levels in this region, influencing the formation and apparent relative uplift of nearby river terraces.

1	Fluvial sedimentary response to late Quaternary climate and tectonics at the
2	Himalayan Frontal Thrust, central Nepal
3	
4	Mari Hamahashi ^{1†} , Judith A. Hubbard ^{1, 2} , Rafael V. Almeida ³ , Samuel H. Haines ¹ ,
5	Lewis A. Owen ⁴ , Sanjita Mishra ⁵ , and Soma Nath Sapkota ⁵
6	
7	¹ Earth Observatory of Singapore, Nanyang Technological University, Singapore, ² Asian
8	School of the Environment, Nanyang Technological University, Singapore, ³ Department
9	of Geological Sciences, San Diego State University, USA, ⁴ Department of Marine, Earth,
10	and Atmospheric Sciences, North Carolina State University, USA, ⁵ Department of Mines
11	and Geology, National Seismological Center, Nepal
12	
13	Corresponding author: Mari Hamahashi (<u>mhamahashi@aquamarine.kobe-u.ac.jp)</u>
14	[†] Current affiliation: Kobe Ocean-Bottom Exploration Center, Kobe University, Japan
15	

16 Key Points:

17	٠	Boreholes combined with seismic profiles characterize the subsurface structure
18		and stratigraphy across the Main Frontal Thrust
19	•	We document major transitions from fluvio-lacustrine to coarse fluvial channel
20		facies
21	•	Indo-Asian monsoonal fluctuations have likely affected sediment supply and
22		river base levels in the frontal Himalaya of central Nepal
23		
24		
25		
26		
27		
28		
29		
30		

31 Abstract

32 To investigate the subsurface structure surrounding the Main Frontal Thrust (MFT) in 33 central Nepal, we drilled and cored sediments to depths of 45-100 m at ten sites. Our 34 boreholes were located along previously acquired high-resolution seismic profiles across 35 the MFT imaging the upper 1–2 km of the subsurface, which revealed a beveled erosional surface in the hanging wall above a broad, gentle anticline, as well as growth strata in the 36 37 footwall. The boreholes exhibit interlayered clays, silts, sands, and gravels, dated with optically stimulated luminescence and radiocarbon to <72.5±4.3 ka, with a transition from 38 finer to coarser sediments at $\sim 13.5\pm0.1$ ka. Near the fault tip, the sediments exhibit steeper 39 dips and deformation bands. A 25-m-thick section of silt and clay above the south end of 40 41 the buried anticline is interpreted as a temporary lacustrine depocenter formed due to uplift near the fault tip. Based on the distribution of marker beds and sediment ages, we 42 43 interpret a shortening rate of 3.1–12.1 mm/a on the MFT. Three major transitions between fluvio-lacustrine and coarse fluvial channel facies are inferred from the boreholes, and 44 the timings of these transitions correlate with Indian monsoonal intensity variations 45 linked to Earth's precession. We infer that strengthened monsoon led to increased river 46 discharge and advance of coarse bedload-dominant braided channels, whereas weak 47 monsoon formed a finer-grained channel environment. These monsoonal climate 48

49 variations have affected the depositional environment and river base levels in this region,

50 influencing the formation and apparent relative uplift of nearby river terraces.

51

52 Plain Language Summary

53 The Main Frontal Thrust (MFT) is the youngest and most active fault at the foot of the Himalayan mountain belt, posing a major seismic hazard to the dense populations living 54 in the Himalaya and the Indo-Gangetic Plain. To study the recent deformation history of 55 the MFT in central Nepal, we drilled and sampled sediments to depths of 45-100 m at ten 56 57 sites. Our boreholes were located where previous surveys have imaged the structures of the MFT using a seismic technique. The recovered sediments consist of clays, silts, sands, 58 and gravels. The deformation by the MFT is characterized by folding and steeply-dipping 59 sediments at the tip of the fault. We used two different methods to date the ages of the 60 sediments, called optically stimulated luminescence and radiocarbon dating. Based on the 61 62 observed structures and sediment ages, we interpret that the MFT in this region is slipping at a rate of 3.1–12.1 mm/a. Three major transitions from coarse- to fine-grained sediments 63 indicate past changes in the river environment; these correlate with Indian monsoonal 64 65 climate changes. We interpret that monsoonal variations have significantly influenced

sediment deposition and erosion, impacting the geomorphology and relative uplift of theregion.

68

69 1. Introduction

70 Understanding the processes that govern sediment supply and river base levels in 71 an orogenic foreland is important for interpreting depositional processes, incision, and 72 tectonic deformation. River base level, which is the lowest level of erosion or the highest level of sedimentary succession in a river profile, defines the equilibrium surface between 73 deposition and incision (e.g., Blum & Tornqvist, 2000; Catuneanu et al., 2009). In 74 75 tectonically active regions, rock uplift or subsidence is generally considered to be the main driver for local base-level change, leading to river incision or fluvial sediment 76 77 deposition; an example of this interaction is steady-state topography models that assume 78 that erosion balances rock uplift, and thus there is no change in the landscape over time (e.g., Willet & Brandon, 2002). Tectonic uplift plays a major role in the frontal Himalaya, 79 80 where young active faults underlie and deform sediments at the piedmont.

81 Climate can also play an important role in modulating river base levels in foreland 82 systems. In the Himalayan foreland, the Indian summer monsoon is responsible for more

83	than 80% of the annual rainfall, significantly impacting river discharge and sediment flux
84	in both the foreland and downstream in the Indo-Gangetic-Bengal basin (e.g., Bookhagen
85	et al., 2010). Changes in the monsoonal climate are known to affect sedimentation and
86	river base levels over various timescales (e.g., Plink-Björklund, 2015), but their effects in
87	the proximal foreland are not well understood (Fig. 1). While river base levels close to
88	the coast are primarily affected by sea level (e.g., Goodbred et al., 2014), those in the
89	frontal foreland are largely influenced by sediment supply and the combined effects of
90	climate and tectonics (e.g., Bookhagen et al., 2005; Fig. 1). This impact of climate on
91	base level should be taken into account when interpreting tectonic deformation from
92	geomorphology; here, we study this effect in the frontal Himalaya of central Nepal.

95 Figure 1. Variations in river base levels in the Himalayan foreland system in response to strengthened Indian monsoon, from the high mountains to the ocean 96 97 basin. During strong Indian monsoon events, an increase in river discharge and 98 sediment supply are inferred to cause aggradation and base level rise in regions I, II 99 and V, whereas incision and base level fall occur in III and IV, notably variable within the piedmont foreland (regions II and III). An opposite process is inferred 100 101 during weak monsoon periods. Base levels in regions I-IV are likely controlled 102 mainly by sediment supply, whereas region V is controlled by sea level. References for each example in regions I-IV (lower rectangle) are as follows (locations are shown 103

104	in Supporting Information Figure S8). I: Marsyandi river (Pratt et al., 2002), Sutlej
105	river (Bookhagen et al., 2005, 2006). II: Kangra dun (Thakur et al., 2014; Dey et al.,
106	2016), Dehra dun (Densmore et al., 2016), Matiali fan (Kar et al., 2014). III: Ganga
107	valley (Sinha et al., 2009; Ray and Srivastava, 2010), Yamuna valley (Dutta et al.,
108	2012), Subathu sub-basin (Kumar et al., 2007), Pinjaur dun (Suresh et al., 2007). IV:
109	Ganga plain (Srivastava et al., 2003b; Gibling et al., 2005; Sinha et al., 2007). V:
110	Ganges-Brahmaputra fan delta (Goodbred and Kuehl, 2000 a,b; Goodbred et al.,
111	2014; Pickering et al., 2014, 2017).

113 The thrust system at the foot of the Himalaya is composed of a largely right-114 stepping fault system called the Main Frontal Thrust (MFT), which dips 20°-40° to the north before linking with a gently dipping megathrust at 2-5 km depth, the Main 115 Himalayan Thrust (MHT; Almeida et al., 2018). In the Bardibas region of central Nepal, 116 117 this fault system has been imaged by high-resolution seismic profiles that cross two strands of the MFT, locally named the Bardibas and Patu thrusts, constraining both the 118 local deformation and the depositional environment (Almeida et al., 2018; Liu et al., 119 2020; Figs. 2, 3; Supporting Information Fig. S1). These seismic profiles indicate that the 120 southern MFT strand (the Bardibas thrust) at this location is blind (Figs. 3a,b). 121

122	Furthermore, as slip on this fault decreases to the west, the geomorphic signature of the
123	fault decreases, with the westernmost 5 km of fault-related deformation completely erased
124	by surface processes (Fig. 2c). In this tip region, the seismic profiles reveal a ~4-km-wide
125	hanging-wall anticline bevelled by erosion and then later buried by ~100 m of sediments
126	(Almeida et al., 2018; Fig. 3c). This relationship cannot be explained by tectonics alone,
127	and implies that the local river base level was at least ~100 m lower at some point in the
128	past. A scour surface interpreted as an incised valley within the growth strata of the
129	footwall suggests that similar base-level changes may have occurred multiple times
130	(Almeida et al., 2018).

131 To constrain the depositional patterns, rates of deformation, and evolution of 132 inferred incision/aggradation events near the MFT in central Nepal, we drilled and cored 133 the imaged stratigraphy to depths of 45-100 m below the surface (mbs) at ten locations in the hanging wall and footwall of the Bardibas thrust (Figs. 2, 3). Here, we characterize 134 135 the sedimentary facies from recovered cores and report on sediment ages obtained by optically stimulated luminescence (OSL) and radiocarbon (¹⁴C) dating. By combining our 136 observations with previously acquired seismic profiles, our analyses allow us to 1) 137 138 reconstruct the shallow structure and infer the slip rate of the Bardibas thrust, and 2) interpret the evolution of the depositional environment and river base levels in this region 139

140 in relation to past climatic changes.

141

Figure 2. Regional map of study area. (a) Major tectonic plate framework showing
collision of India to Eurasia, and location of study area. Box shows location of (a).
(b) Satellite image showing major Himalayan faults and river systems from high
mountains to foreland basin (Terai plain). The Siwalik Range is located between the

147	Main Frontal Thrust and Main Boundary Thrust. White box marks the location of
148	study area shown in (c). (c) Close-up of study area showing traced geography of the
149	frontal foreland and braided river system. Drill sites are shown by yellow dots
150	labeled P1–P10, along the Lakshmi, Bhabsi, and Ratu rivers. Blue lines show
151	locations of previously acquired seismic reflection profiles along the rivers (Almeida
152	et al., 2018; Liu et al., 2020) (Figure 3). Red lines: approximate locations of the fault
153	strands of the Main Frontal Thrust in this region. Red dashed lines: locations where
154	the fault displacement decreases and are likely terminated. The geomorphological
155	signature of the Bardibas thrust decreases west of the Bhabsi river. No vertical
156	exaggeration.

Figure 3. Sections across the study area. (a) Interpreted Ratu river seismic profile (pre-stack depth-migrated, no vertical exaggeration) by Almeida et al. (2018) (red lines: thrusts; green dashed lines: axial surfaces). Uninterpreted profile is shown in Supporting Information Fig. S1. CDP spacing is 2.5 m. Depth measurements are with respect to sea-level (sl). White vertical bars show locations of borehole sites P6–

164	P10 in this study. US: Upper Siwalik Group. MS: Middle Siwalik Group. Contact
165	between US and MS observed in the field. Magenta tick marks: projected bedding
166	dips measured from the field (Almeida et al., 2018). Area of black box is shown in
167	Figure 16. (b) 2D refraction velocity models by Liu et al. (2020) generated from
168	seismic data collected along Ratu, Bhabsi, and Lakshmi rivers (vertical exaggeration
169	2:1), with locations of borehole sites (magenta bars) P1-P10. Each contour line
170	shows 500 m/s velocity interval. Red and black dashed lines show the 1500 and 2000
171	m/s contours, respectively. Blue vertical dashed lines represent the approximate
172	location of the tip of the Bardibas thrust. Black box along Bhabsi river shows
173	location of seismic reflection image shown in c. (c) Section of Bhabsi river seismic
174	profile (post-stack depth-migrated, no vertical exaggeration) on the hanging wall of
175	the Bardibas thrust by Almeida et al. (2018), showing close-up of the buried angular
176	unconformity (marked by yellow arrows and red dashed line) between tilted Siwalik
177	Group strata (below) and subhorizontal fluvial sediments (above). White vertical
178	bars show locations of boreholes P4 and P5.

180 **2. Geologic Setting**

181	The Himalaya is currently accommodating shortening at a rate of \sim 13–21 mm/a
182	(Larson et al., 1999; Ader et al., 2012; Lindsey et al., 2018). The MFT is the youngest and
183	most active fault of the Himalayan orogen, extending >2500 km along strike. During the
184	interseismic period, geodetic observations show shortening accumulating around the deep
185	base of the megathrust, but most of this shortening is expected to eventually reach the
186	surface as slip along the MFT (Lavé and Avouac, 2001), likely during or soon after large
187	earthquakes, as inferred from paleoseismic studies (e.g., Nakata et al., 1998; Lavé et al.,
188	2005; Sapkota et al., 2013; Bollinger et al., 2014; Wesnousky et al., 2017; Wesnousky,
189	2020; Dal Zilio et al., 2021). This seismic hazard poses a threat to the populations living
190	in the Himalaya and its foothills, as well as the densely populated areas of the Indo-
191	Gangetic Plain. The fault system also modifies the accommodation space and sediment
192	supply to the largest foreland basin system on Earth, i.e., the Indo-Gangetic Plain (e.g.,
193	Kumar et al., 2007).
194	Our study area in central Nepal (Fig. 2) is located in the lowlands between the

195 foothills of the Himalaya (the Siwaliks) and the Indo-Gangetic Plain, a region known as 196 the Terai. Located within ~1 km south of the topographic range front, the area is actively 197 deforming due to slip on the Patu and Bardibas thrusts (e.g., Bollinger et al., 2014;

198	Almeida et al., 2018) (Figs. 2, 3). Paleoseismic studies have identified fault offsets
199	associated with the last two great (M>8) earthquakes in east-central Nepal along the Patu
200	thrust (1255 and 1934 CE; Sapkota et al., 2013; Bollinger et al., 2014). In contrast, no
201	surface rupture has been identified along the Bardibas thrust, although a fold scarp has

been found (Bollinger et al., 2014).

203 The fault system here has been characterized by seismic reflection surveys, which imaged the ~20-30° north-dipping Bardibas thrust as blind, and the ~28-39° north-204 205 dipping Patu thrust as emergent (Figs. 3a; Almeida et al., 2018). Refraction velocities 206 determined from the seismic data document the distribution of low-velocity sediments 207 overlying the more lithified Siwalik bedrock in the hanging wall (~20-50 m thick) and 208 footwall (~80-120 m thick) of the Bardibas thrust, indicating relatively recent sediment deposition across the fault, with ~60-70 m of uplift since their deposition (Fig. 3b; Liu et 209 210 al., 2020). The effect of fault-related shortening on the Bardibas thrust should be to raise 211 the hanging wall relative to base level and cause incision; the observation of deposition (Fig. 3c) therefore implies that another factor must be influencing base level, and the 212 magnitude of that effect must exceed that of local tectonics. Specifically, exogenetic 213 214 factors such as climate must play an important role in modulating the river base levels and incision in this region (Almeida et al., 2018). 215

216	The bedrock in the study region consists of the Miocene-Pliocene Siwalik Group,
217	which is a set of fluvial strata comprising at large scale an overall coarsening-upward
218	sequence of alternating beds of sandstone and siltstone with lenses of conglomerate, with
219	smaller-scale fluvial successions showing fining-upward sequences (Corvinus, 2001;
220	Ulak, 2009; Dhital, 2015; Supporting Information Fig. S2a). The current depositional
221	environment is characterized by confined braided channels with minor overbank
222	floodplains within a channel-dominant alluvial fan system. The contemporary alluvial fan
223	is surrounded by abandoned river terraces, older alluvial fans, and uplifted hills.
224	The highest river terrace is \sim 70 m above the current riverbed and has a reported
225	age of ~7 ka based on radiocarbon dating of a charcoal buried in the same horizon as
226	cobble tool assemblages (artefacts of paleolithic industry) found within the sediments
227	(Gaillard et al., 2011; Bollinger et al., 2014). A succession of six to seven younger river
228	terraces, presumably abandoned during the Holocene, are also present (e.g., Gaillard et
229	al., 2011; Bollinger et al., 2014). These river terraces are both deposition-dominant "fill
230	terraces," which exhibit thick alluvial fills not exposing the underlying bedrock, and
231	incision-dominant "strath terraces," which are underlain by tilted bedrock (Supporting
232	Information Figs. S2b,c, S3). South of the Bardibas thrust, the rivers supply sediments
233	into the Indo-Gangetic foreland basin between the Koshi and Gandak megafans (e.g.,

234	DeCelles and Cavazza, 1990; Sinha et al., 2014). Surprisingly, as the rivers travel
235	hundreds of kilometers towards the southeast, their channel widths decrease (from ~300
236	m to ~ 10 m wide) (Supporting Information Fig. S4). Some of these narrow meandering
237	channels are abandoned, while others eventually merge with the Koshi river and flow into
238	the Ganges-Brahmaputra rivers and the Bay of Bengal (Supporting Information Fig. S4a).
239	In contrast to the major transverse Himalayan rivers, e.g., Ganga, Maakali, Karnali,
240	Narayani, and Koshi rivers, which cut across the High Himalaya with large drainage
241	basins, the catchment areas of the Lakshmi, Bhabsi, and Ratu rivers in this study are
242	confined to the southern part of the Siwalik Range (area <100 km ²), and the drainages are
243	hence younger (Fig. 2; Supporting Information Fig. S4). The rivers are supplied mainly
244	by seasonal monsoon rainfall and associated runoff, with hardly any contribution of
245	snowmelt (e.g., Bookhagen and Burbank, 2010). Annual rainfall around the Siwalik
246	Range is about 2.8–3.8 m/a in central-eastern Nepal, with >80% of total precipitation
247	occurring during the Indian summer monsoon (Bookhagen and Burbank, 2010). The
248	moisture is derived from the Bay of Bengal and is carried north and rainfall peaks spatially
249	south of the topographic barriers formed by the Lesser and Higher Himalayas (e.g.,
250	Bookhagen and Burbank, 2010; Hirschmiller et al., 2014; Deal et al., 2017). The rivers in
251	the foreland thus have highly variable water discharge, experiencing high flow and

252	flooding during the monsoon, with a long dry period for the rest of the year. Because the
253	monsoon supplies large amounts of water to this river system, climate-driven changes in
254	monsoon intensity are expected to be one of the key paleoenvironmental controls on its
255	fluvial sedimentary record.
256	
257	3. Methods
258	To investigate the subsurface structure surrounding the MFT, we drilled and cored
259	sediments to depths of 45–100 m at ten sites (Sites P1-P10) across the fault. Drilling was
260	conducted along the Lakshmi, Bhabsi and Ratu rivers around the town of Bardibas in the
261	Mahottari district of central Nepal (Figs. 2). These rivers flow nearly perpendicular to the
262	MFT. Sites P1–P5 are located on the hanging wall of the Bardibas thrust, whereas Sites
263	P6–P10 are located on the footwall (Figs. 2b, 3).
264	Rotary drilling was applied using XUL-100 and UEW vol-35 drill rigs and NQ
265	double core barrels, with core recovery of 28-59% (average: 41%), and maximum

penetration depths of 45-100 mbs. There was no attempt to core the first 5 m of each 266 borehole. Areas of low recovery were associated with coarse gravels and poorly sorted 267fluvial sediments. The cores were transferred from the core barrel to rolled tins with a 268

269	mechanical extruder, tightly secured to avoid light exposure, transported to Kathmandu,
270	and then cut in a dark room, preserving 25–30 cm of core every 2 m for sampling for OSL
271	dating. The rest of the cores were then cut open, and laid in steel trays for observation.
272	The recovered cores were logged based on principal grain size range, sediment
273	color, lithification, bed thickness, grading, sorting, clast size, sedimentary and
274	deformation structures, weathering, organic content, and bioturbation (Supporting
275	Information Dataset S1). The orientations of structures such as bedding were measured
276	using core protractors by Holcombe Coughlin Oliver (www.hcovglobal.com). We also
277	referred to the geotechnical reports from the drilling operations to infer the lithology
278	where the cores had low or no recovery (Supporting Information Dataset S2). All core log
279	data were digitized using Strater 5 (Golden Software LLC), and facies were interpreted.
280	We combined our observations with the co-located seismic reflection profiles of Almeida
281	et al. (2018; and unpublished data) to reconstruct regional cross-sections.
282	To date the sediments, we conducted OSL dating on quartz grains in fine sand,
283	and accelerator mass spectrometry ¹⁴ C dating on organic sediments (see details in
284	Supporting Information Texts S1, S2, Figs. S5-S7). Eighteen OSL samples were
285	measured at the University of Cincinnati and North Carolina State University, using an
286	automated Riso OSL reader model TL-DA-20. At least thirty-two quartz aliquots were

287	measured for each sample. The single aliquot regeneration (SAR) method (Murray &
288	Wintle, 2000, 2003) was used to determine the dose rate for age estimation. To help
289	resolve the overestimate of ages due to partial bleaching and hence a large spreads of
290	equivalent dose values (dispersion >25%), we applied a 2-mixing model (Vermeesch,
291	2009) to determine the minimum age for samples that yielded >25% dispersion. For
292	samples that showed \leq 25% dispersion, we used the average OSL ages.
293	Fourteen samples of organic sediments were measured for ¹⁴ C dating at Beta
294	Analytics Inc., using NEC accelerator mass spectrometers. Given the absence of detrital
295	charcoals and other macrofossils, the bulk organic fraction (carbon content: 0.06–1.62%)
296	smaller than 180 $\mu m,$ inclusive of humic and humins, was used for dating. $\delta^{13}C$ values

were measured separately by Thermo isotope ratio mass spectrometers (IRMS).
Conventional radiocarbon ages were calculated using the Libby half-life (5568 years),

and were corrected for total isotopic fractionation effects. Errors reported from the

300 laboratory are based on 1-sigma counting statistics. Calibration of the conventional age

- 301 was performed using the 2013 calibration databases (INTCAL13) (Reimer et al., 2013),
- 302 high probability density range method, and Bayesian probability analysis (Ramsey, 2009).

304 4. Results

305 **4.1. Core descriptions**

306	Three sedimentary facies were present within the recovered cores: 1) poorly
307	sorted gravels with silt to sand, interpreted to represent coarse-grained braided channel
308	facies (herein "Facies A"); 2) moderately sorted silt to sand with gravels sandwiched by
309	thin floodplain silts, interpreted to represent fine-grained braided channel facies (herein
310	"Facies B"); and 3) massive, well-sorted clayey silt with bioturbation, alternating redox
311	state and occasional sand beds, interpreted to represent fluvio-lacustrine facies (herein
312	"Facies C"). In all boreholes, Facies A caps the upper section, overlying Facies B and C
313	(Figs. 4-10). Detailed lithological and structural features for each site are described in
314	this section. The recovered gravels are mainly metamorphosed quartz-feldspar-mica
315	sandstone including quartzite. These are similar to typical clasts found in conglomerates
316	of the Upper Siwaliks Group and are likely reworked derived clasts (e.g., Dhital, 2015).
317	

318 4.1.1 Lakshmi river (Hanging wall)

319 **4.1.1.1 Site P1** (27.03302°N, 85.87577°E; total depth of core: 55 mbs)

320 The recovered sedimentary sequence at Site P1 (0–55 mbs) (Fig. 4a) consists of

321	three beds of 6–11-m-thick, poorly sorted gravels (16 mm $<$ diameter (d) $<$ 256 mm) with
322	a matrix of fine-coarse sand (Fig. 5a), assigned as Facies A, interbedded with 7-11-m-
323	thick moderate-poorly sorted, grayish-orange silt to medium sand, and well-sorted silt
324	(Fig. 5b), assigned as Facies B. These interbeds of coarse and fine sediments are
325	interpreted to represent bedload and suspended load deposits of a braided river system.
326	Well-sorted silts (at 12–14 and 34–35 mbs) are thin, and occur near the base of coarser
327	beds; we interpret these to have floodplain or aeolian origin (Fig. 5b). The sediments are
328	generally massive, and contain occasional rip-up clasts. The presence of oxidized patches
329	and black Fe/Mn oxides in fine-grained sediments indicate moderate
330	pedogenesis/weathering.
331	
332	4.1.1.2 Site P2 (27.01315°N, 85.85964°E; total depth of core: 45 mbs)
333	The upper 20 m of sediments at Site P2 (Fig. 4b) consist of mostly poorly sorted
334	gravels (16 mm $<$ d $<$ 128 mm) with variable amounts of fine to coarse sand; these likely
335	represent bedload-dominant channel deposits and are assigned as Facies A. In contrast,
336	the underlying sediments (20-45 mbs) consist of primarily well-sorted clayey silt, with

337 several beds of fine to medium sand containing a few gravel clasts (a few cm to 3 m thick,

338 with the thickest sections at 29–33, 35–38 and 42–45 mbs); this suggests a change in

339	depositional environment (Figs. 5c-h). Bioturbation by burrowing and color mottling
340	associated with an irregular distribution of Fe/Mn oxides are distinct, reflecting
341	pedogenesis (Figs. 5c,d). These sediments are generally massive, occasionally containing
342	rhythmic interbeds of silt and clay (0.2-2 cm thick; Figs. 5e-g). Other sedimentary
343	structures include silty rip-up clasts and silt dikes. These sediments are interpreted to have
344	been deposited in a waterlogged, low-energy lacustrine environment in the vicinity of a
345	channel, with pulses of sandy fluvial inputs and aeolian silts (loess), which we assign as
346	Facies C.
347	The observed bedding planes are mostly sub-horizontal, dipping between 0° and
348	10° (Fig. 4b). The interval at 20-29 mbs is characterized by oxidized, dark yellowish
349	orange silty clay with distinct pedogenic features, including rounded mud-filled nodules
350	(Fig. 5h); below 29 mbs, gleyed dark gray sediments are more dominant (Fig. 4b).
351	Gradual alternations between gleyed silty clay and oxidized silty clay are common at 29-
352	34 mbs, implying changes between anaerobic and aerobic conditions (Figs. 5e-g).
353	

Figure 4. Graphic sedimentary core logs of Lakshmi river Sites P1 and P2 showing
principal grain size, sediment color, description of lithology, and bedding dip angle.
Black bars represent core recovery (black: recovered). Facies A–C are interpreted
facies (see Section 4.2 for details). Red line marks the base of top gravels. (a) Site P1.
(b) Site P2. Symbols next to core log described in legend below. Numbers are OSL
and radiocarbon (italic) ages at each depth. Age results are detailed in Figure 12 and
Tables 1 and 2. Measured dip angles are shown in tilted lines.

364	Figure 5. Representative features of cores from Lakshmi river Sites P1 and P2. Cores
365	in each image are shallowing upward. (a) Coarse gravels at Site P1; 5–6 mbs. (b)
366	Well-sorted silt at Site P1; 12–13 mbs. (c) Silty clay exhibiting bioturbation at Site
367	P2; 20–21 mbs. (d) Silt with mottled texture interpreted to be paleosol at Site P2;
368	26-27 mbs. (e) Transition from gleyed to oxidized silty clay, with thin interbeds of
369	silt and clay (marked by arrows) at Site P2; 29–30 mbs. (f) Transition from gleyed
370	clay to oxidized silt at Site P2; 30–31 mbs. (g) Interbeds of silt and clay showing
371	cross-bedding (marked by arrows) at Site P2; 33–34 mbs. (h) Rounded mud-filled
372	nodules observed in silty clay at Site P2; 21–22 mbs.
373	
374	4.1.2 Bhabsi river (Hanging wall)

375 **4.1.2.1 Site P3** (27.02714°N, 85.88994°E; total depth of core: 50 mbs)

The upper 27 m of sediments at Site P3 (Fig. 6a) are mostly coarse gravels (8 mm < d < 64 mm) with variable amounts of sand, and are assigned as Facies A. Beneath this unit (27–50 mbs, base of core), the sediments are finer grained, characterized by moderately to poorly sorted fine to medium sand with gravels, interbedded with wellsorted silt to clay, assigned as Facies B. The well-sorted fine sediments include brown

381	clay (Fig. 7a), grayish-orange silt, and gleyed clay/silt, interpreted to be of floodplain
382	origin. These sediments are massive and thinly bedded, with no bioturbation, contrasting
383	with the lacustrine sediments at Site P2. A distinct, lithified organic-rich black clay
384	(possibly a paleosol) is present at 40 mbs and coarsens up to fine sand (Fig. 7b). This
385	observed reverse grading was likely caused by a gradual increase in water level during
386	flooding in the overbank (e.g., Iseya, 1989; Rubin et al., 1998; Skolasińska, 2014).
387	The sediments are generally structureless, occasionally containing rip-up clasts
388	and oxidized spots. Gradual transitions from silt to clay and from sand to silt show wavy
389	contacts that dip 15–30° below 40 mbs (Fig. 6a). Infiltration of roots and organic materials
390	in brown and gleyed clay, together with the distribution of Fe/Mn oxides, indicates
391	pedogenesis.
392	
393	4.1.2.2 Site P4 (27.01497°N, 85.88236°E; total depth of core: 100 mbs)
394	The upper 42 m of sediments at Site P4 (Fig. 6b) are mostly coarse gravels (16
395	mm $< d < 256$ mm) with coarse sand and thin layers of poorly sorted sandy clay with
396	pebbles, representing bedload-dominant channel deposits, assigned as Facies A. From
397	42-100 mbs (base of the core), the sediments are finer grained, consisting of packages of
398	silt to very coarse sand with gravels, assigned as Facies B (Fig. 7c-f). These sediments

399	generally have normal grading, sandwiched by well-sorted gleyed clayey silt, grayish-
400	orange silt, and/or brown clay, interpreted to be floodplain deposits. Under the microscope,
401	the gleyed sediments contain disseminated pyrite and ferrous minerals that presumably
402	formed under reducing conditions.
403	Moderate to intense color mottling due to bioturbation and pedogenesis are
404	common in the fine sediments, as are fine-grained rip-up clasts. The sediments are
405	generally massive, except for several horizons of inclined laminas in silty fine sand (Figs.
406	7c,d), which dip 3–45° below 55 mbs (Fig. 6b). These dips likely reflect local sedimentary
407	processes such as cross-bedding, and/or post-depositional processes such as soft sediment
408	deformation.
409	
410	4.1.2.3 Site P5 (27.00879°N, 85.88044°E; total depth of core: 95 mbs)
411	The upper 68 m of sediments at Site P5 (Fig. 6c) are mostly coarse gravels (16 mm
412	< d $<$ 256 mm) with variable amounts of silt to coarse sand, occasionally interbedded with
413	poorly sorted silty clay to fine sand with pebbles, assigned as Facies A. From 68-95 mbs
414	(base of the core), the sediments are finer grained, consisting of normally graded, poorly
415	sorted silt to coarse sand with gravels of Facies B (Fig. 7g-i). Inclined laminas in silty
416	fine sand are present, and are mostly oxidized (Fig. 7i). Very well sorted, clayey silt is

Figure 6.

Figure 6. Graphic sedimentary core logs for Bhabsi river sites (a) P3, (b) P4, and (c)
P5 showing principal grain size, sediment color, dip angles and description of
lithology. Black bars show recovered core. Symbols next to core log are described in
legend below. Dating results are for OSL and radiocarbon (italic) ages. Age results

426 are detailed in Figure 12 and Tables 1 and 2. Measured dip angles are shown a	s tilted
---	----------

- 427 lines. Facies A and B are interpreted facies (see Section 4.2 for details). Red line
- 428 marks the base of top gravel section (Facies A1). Brown clay (yellow dots) and gleyed
- 429 clay (pink dots) are key beds traced in Fig. 14.
- 430

433	Figure 7. Representative features of cores from Bhabsi river Sites P3–P5. Cores in
434	each image shallow upward. (a) Brown clay at Site P3; 28–29 mbs. (b) Black organic-
435	rich clay at Site P3; 39–40 mbs. (c) Inclined lamina in gleyed silt at Site P4; 59–60
436	mbs. (d) Inclined lamina in grayish orange silt at Site P4; 69–70 mbs. (e) Very coarse
437	sand at Site P4; 76–77 mbs. (f) Gleyed silt at Site P4; 99–100 mbs. (g) Fine to medium
438	sand at Site P5; 73–74 mbs. (h) Erosional contact from silt to gravels recovered at
439	Site P5; 82–83 mbs. (i) Inclined laminas in silty sand at Site P5; 83–84 mbs.
440	

4.1.3 Ratu river (Footwall)

4.1.3.1 Site P6 (26.98673°N, 85.91089°E; total depth of core: 50 mbs)

443	The upper 15 m of sediments at Site P6 (Fig. 8a) are mostly coarse gravels (16
444	mm $< d < 256$ mm) with silt to coarse sand, representing bedload-dominant channel
445	deposits, assigned as Facies A (Fig. 9a). From 15 mbs, the sediments are finer grained,
446	characterized by silt and fine to coarse sand of Facies B, intercalated with gravels until
447	29 mbs. Below this unit, from 29 mbs to the base of the core at 50 mbs, gravel layers are
448	absent, and the sediments consist of moderately sorted, normally graded silt to medium
449	sand (Figs. 10a-f). Color mottling and oxidized spots are common throughout the core,

450 reflecting pedogenesis and bioturbation.

451	Continuous sub-vertical bedding planes characterize the sediments below 29 mbs,
452	whereas the sediments above dip sub-horizontally (3-25°) (Figs. 8a, 10a-f, 11). The
453	transition occurs around 30-35 mbs, where distinct silt laminas (1-2 mm thick) in well-
454	sorted, indurated sandy silt show an abrupt increase in dip from 30° to 85° (Figs. 10a-e,
455	11). Within this interval, laminas exhibit several variations of decrease and increase in
456	dip, forming multiple open, recumbent folds (Fig. 11). Below this interval, the sandy beds
457	maintain near-vertical dip (~75–90°) (Figs. 10f, 11).

458

459 **4.1.3.2 Site P7** (26.98347°N, 85.91175°E; total depth of core: 100 mbs)

460	The upper 17 m of sediments at Site P7 (Fig. 8b) are mostly coarse gravels (16
461	mm $< d < 256$ mm) with silt and sand, assigned as Facies A. From 17 to 36 mbs, the
462	sediments become finer grained, consisting of poorly sorted silt with various sand and
463	pebbles intercalated with thin gravels of Facies B. At the bottom of this unit (35–36 mbs),
464	very well sorted, smooth and friable silt suggests aeolian loess. From 36 to 56 mbs, the
465	sediments exhibit mainly coarse gravels, similar to the upper 17 mbs (Facies A) (Fig. 9b).
466	Below this unit (56–100 mbs), the sediments become finer grained, consisting of
467	normally graded cycles of well sorted clayey silt intercalated with poorly sorted silt to

468	coarse sand with gravels of Facies B (Figs. 9c-e, 10g). 1–2-mm-thick laminas in fine sand
469	and silt are inclined (~15–45°) (Figs. 8b, 10g), and occasionally exhibit cross-bedding

470 (dip 5–40°) (Fig. 9c).

471	At depths of 66.34-66.42 mbs, distinctive white fine-grained tabular features,
472	identified to be deformation bands, are visible in the middle of a 2-m-thick moderately
473	sorted, medium-coarse grained, massive sand (Fig. 10h-m). The deformation bands are
474	narrow (0.5–3 mm) and cuts across the core and inferred shallow bedding (Fig. 10h, i, m).
475	The bands form a conjugate set dipping 70° and 30°, where the high-angle band is cross-
476	cut by the sub-horizontal band (Fig. 10m). Under a microscope, the deformation band is
477	finer-grained than the host sand and lacks the abundant visible porosity of the host
478	immature arkosic sand (Fig. 10j,k,l). Instead, intergranular space is filled mostly by 50-
479	100 μ m angular grains and clay material (Fig. 10k,l). Beneath this interval, sediment
480	lithification continues to increase downhole, as evident in massive gleyed clayey silt
481	below 82 mbs (Fig. 9e) and lithified conglomerates at 95–99 mbs (Fig. 9d).
482	

483 **4.1.3.3 Site P8** (26.97999°N, 85.90928°E; total depth of core: 47 mbs)

484 The upper 18 m of sediments at Site P8 (Fig. 8c) are mostly coarse gravels (16 485 mm < d < 256 mm) with silt to coarse sand, assigned as Facies A. From 18 to 35 mbs, the

486	sediments are finer grained, consisting of moderately to poorly sorted silt with sand and
487	pebbles, intercalated with thin gravels assigned as Facies B (Fig. 9f). Organic-rich black-
488	brown sandy silt at 19 and 21 mbs is notable. The sediments are generally massive, with
489	several sub-horizontal laminas observed in well sorted silt towards the bottom of the unit
490	(32-35 mbs), possibly representing floodplain deposits or loess (Fig. 9f). These laminas
491	and bedding planes dip 5° – 15° (Fig. 8c). From 35 to 47 mbs (base of core), the sediments
492	are mainly coarse gravels of Facies A, similar to the upper 18 mbs.
493	
494	4.1.3.4 Site P9 (26.97883°N, 85.90906°E; total depth of core: 96 mbs)
495	The upper 28 m of sediments at Site P9 (Fig. 8d) are mostly coarse gravels (16
496	mm < d < 256 mm) with silt to coarse sand, representing Facies A. From 28 to 41 mbs,
497	sediments become finer grained, consisting of poorly sorted silt to sand with gravels
498	intercalated with well sorted clayey silt, suggesting the channel/floodplain environment
499	of Facies B. The sediments are generally massive and normally graded, with some sub-
500	horizontal wavy laminas in silt at 32–33 mbs (Fig. 9g). Bedding dips 5°–30° (Fig. 8d).
501	Thin layers of organic rich, brown clayey silt also characterize this unit. Color mottling,
502	oxidized spots and irregular layers are present in the fine sediments. At the bottom of this

503 unit, well sorted silt to clay is present (39–41 mbs), with a particularly friable silt at 40–
41 mbs, which is likely aeolian loess. Beneath this unit, from 41 mbs to the base of the
core at 96 mbs, the sediments are mainly coarse gravels of Facies A, similar to the upper
28 mbs (Fig. 9h).

507

508 **4.1.3.5 Site P10** (26.97794°N, 85.90878°E; total depth of core: 50 mbs)

509 The upper 20 m of sediments at Site P10 (Fig. 8e) are mostly coarse gravels (16 mm < d < 256 mm) with silt to coarse sand, representing Facies A. From 20 to 38 mbs, 510 511 the sediments are finer grained, consisting of well sorted clayey silt intercalated with 512 poorly sorted silt to sand with pebbles and thin gravel layers, assigned as Facies B. Intervals of organic-rich dark brown clayey silt are also distinct (Fig. 9i). Towards the 513 514 bottom of this unit (36–38 mbs), well sorted, friable to earthy-hard silty clay, possibly 515 aeolian loess, is present. The sediments are generally massive, and color mottling with oxidized spots and organic matter is common. Beneath this unit, from 38 to 50 mbs (base 516 517 of core), the sediments are mainly coarse gravels of Facies A, similar to the upper 25 m.

520	Figure 8. Graphic sedimentary core logs for the Ratu river sites (a) P6, (b) P7, (c)
521	P8, (d) P9, and (e) P10 showing principal grain size, sediment color, dip angles, and
522	description of lithology. Black bars are recovered core. Symbols next to core log are
523	described in legend below. Dating results are for OSL and radiocarbon (italic) ages
524	(also shown in Tables 1 and 2). Measured dip angles are shown as tilted lines. Facies
525	A and B are interpreted facies (see Section 4.2 for details). Red line marks the base
526	of top gravels (Facies A1). Brown clay (yellow dots) and loess (orange dots) are key
527	beds traced in Fig. 15.

529 Figure 9.

530 Figure 9. Representative features of cores for the Ratu river sites P6–P10. Cores in

each image shallow upward. (a) Gravels with matrix of sand and silt at Site P6; 26–

532	27 mbs. (b) Large cobble of quartzite at Site P7; 38–39 mbs. (c) Cross-bedding in
533	silty fine sand at Site P7; 69–70 mbs. (d) Lithified conglomerate at Site P7; 97–98
534	mbs. (e) Grayish orange silt transitioning into gray silt at Site P7; 99–100 mbs. (f)
535	Sub-horizontal laminas in silt at Site P8; 32–33 mbs. (g) Sub-horizontal laminas in
536	silt at Site P9; 32–33 mbs. (h) Large cobble of sandstone at Site P9; 61–62 mbs. (i)
537	Brown clay at Site P10; 28–29 mbs.

541 Figure 10. High-angle bedding and deformation band observed at Sites P6 and P7. 542 Cores in each image shallow upward. (a) Inclined laminas in silt at Site P6; 31-32 543 mbs. (b) Inclined laminas in silt at Site P6; 32-33 mbs. (c) Near-vertically dipped 544 laminas in silt at Site P6; 33-34 mbs. (d) Same core as (c). (e) Inclined laminas in silt 545 exhibiting gradual increase in dip with depth at Site P6; 34-35 mbs. (f) Near-546 vertically dipped laminas in medium sand at Site P6; 46-47 mbs. (g) Inclined laminas in silt at Site P7; 82-83 mbs. (h) Deformation band observed in medium-547 548 coarse sand at Site P7; 66.34-66.5 mbs. Deformation band is white (marked by arrows), and dip is steep. (i) Same core as (h), viewed uphole at 66.35 mbs. (j) High-549 550resolution scan of thin section of core cut perpendicular to plane of deformation

551	band. Section epoxy is stained weakly blue to show porosity. Note finer grain size
552	and whiter color of deformation band (arrows) relative to matrix. White box show
553	area of (k). (k) Plane polarized photomicrograph of inset box shown in (j). Epoxy is
554	stained light blue to show porosity. Note porosity reduction and grain size reduction
555	within deformation band (central region highlighted with dashed lines). (I) Close-up
556	of plane polarized photomicrograph of deformation band without epoxy from
557	another thin section. Yellow line marks the top and bottom of the deformation band.
558	(m) Deformation bands observed in conjugate set. Same location as (h).
559	

Figure 11. Distribution of dip angles measured at Site P6. The right panel shows
close-up of 30–35 mbs, shaded in red in the left panel. Two recumbent folds are
identified between 33–33.6 mbs, owing to continuous core recovery (see Figs. 9c,d).

4.2. Sediment ages, marker beds, and timing of facies transitions

566	Sediment ages from Sites P2-P4 and P6-P9 were determined from 18 samples by
567	OSL dating and 14 samples by ¹⁴ C dating (Figs. 4, 6, 12, Tables 1, 2). The ages span from
568	13.5 ± 0.1 to 72.5 ± 4.3 ka. Based on our stratigraphic observations (Section 4.1) and the
569	recovered ages, we infer the timing of facies transitions. Despite the variations in
570	deposition and sediment thickness observed in each river, we are able to correlate the
571	major facies transitions among them. We also identify several key lithologies that can be
572	correlated across the different sites and across different rivers: brown clay, gleyed clay/silt,
573	and well-sorted aeolian silt (loess). Together, this information is used to construct a
574	regional cross-section and timing of events in Section 5.
575	Figure 12 shows the ¹⁴ C and OSL ages at Sites P2 and P3. The overall ranges of
576	ages obtained by the two methods are similar (Fig. 12). However, there is a wide scatter
577	in dates that cannot be explained by the reported uncertainties from either method. This
578	may be related to specific challenges associated with each dating method, such as
579	reworking of organic material, and partial bleaching and/or saturation (all OSL electron
580	traps have become filled, and no further charge is trapped in the sample) of quartz sands.
581	For example, the gleyed clay at 40 mbs at Site P3 yielded older ¹⁴ C ages (38.7–41.5 ka)
582	than the OSL data both above and below (30.9±2.3 ka) (Figs. 6a, 12b). This could be

explained by the clay containing reworked old residual carbon (e.g., Wu et al., 2011; Reuther et al., 2017). Due to this possibility, we prefer the OSL age over the ¹⁴C age for this section, since the OSL ages are internally consistent. We also note that the OSL ages obtained at 30.9 mbs and 40.9 mbs are >31.3 and >36.4 ka, respectively, at Site P2 represent lower limits (Fig. 12a), since the OSL responses for the obtained equivalent doses are approaching saturation and reaching the limit of detection; these ages therefore have infinite positive error bars (Supporting Information Fig. S5).

Figure 12. Sediment ages from Sites P2 and P3 (also see Tables 1, 2). Blue dots: OSL

593	dating. Red dots: 14C dating. Age values are given next to each data point (blue:
594	OSL, red: 14C). Orange line marks the lithologic base of Facies A1 (see Figs. 3 and
595	5). Error bars for OSL include dose rate errors and uncertainty for equivalent dose.
596	Error bars for 14C are 1σ counting statistics. (a) Site P2. (b) Site P3.
597	
598	The first marker bed is the brown clay in Facies B, which is observed both in the
599	hanging wall (28 mbs at Site P3 and 50 mbs at Site P4) and in the footwall (20-30 mbs
600	at Sites P6–P10), and has a sediment age of 17.5–26.4 ka (Figs. 6, 8). In the hanging wall,
601	the brown clay is dated between 13.5–26.4 ka (Site P3, 14 C and OSL ages above and
602	below) and 24.1±3.2 ka (Site P4, OSL) (Fig. 6; Tables 1, 2). In the footwall, the brown
603	clay is dated at 23.5 \pm 1.5 ka (Site P6, OSL) and 17.1 \pm 0.2 to 18.6 \pm 0.2 ka (Site P8, ¹⁴ C)
604	(Fig. 8; Tables 1, 2).
605	The second marker bed is the gleyed clay in Facies B in the hanging wall, identified
606	at 39–40 mbs at Site P3, 80–85 mbs at Site P4, and 86–90 mbs at Site P5 (Fig. 6). The
607	gleyed clay is dated at 30.9±2.3 ka (Site P3, OSL) and between 26.9 and 35.8 ka (Site P4,

608 OSL ages above and below) (Fig. 6; Table 2).

592

609 The third marker bed is the loess in the footwall, identified at 35–36 mbs at Site P7,

32-35 mbs at Site P8, 39-41 mbs at Site P9, and 36-38 mbs at Site P10 (Fig. 8; Section

4.1). This loess is dated at 28.2±2.1 ka by OSL methods at Site P9 (Fig. 8; Table 2).

612	The obtained sediment ages also constrain the timing of the observed facies
613	transitions (Section 4.1). The youngest and clearest facies transition that we identify
614	occurs between the upper Facies A, which encompasses the upper part in all boreholes,
615	and the Facies B section beneath it (observed in all but Site P2, which has Facies C below
616	Facies A). Here, we name the upper Facies A that is common in all boreholes as "Facies
617	A1," and the Facies B below Facies A1 as "Facies B1h" and "Facies B1f" in the hanging
618	wall and footwall of the Bardibas thrust, respectively (Figs. 4, 6, 8). We do not have any
619	dates from Facies A1 as it is not suitable for dating (coarse gravels with very low
620	recovery), but the nearest sample below the facies transition is obtained at 27 mbs at Site
621	P3 and has an age of 13.5±0.1 ka (14 C); this represents a maximum age for the transition
622	into Facies A1 (Fig. 12b).

The facies transition at Site P2, from Facies C (lacustrine) below to Facies A1 above, is poorly dated. However, within Facies C at this site, we dated eight samples by 14 C and four by OSL methods (Fig. 12a). The ages are scattered and do not exhibit a strong relationship with depth, but in general range from 24.5 ± 0.3 to 43.1 ± 3.2 ka (Fig. 4b, 12a, Tables 1, 2); these sediments are older than the Facies A/B transition (13.5 ± 0.1 628 ka) estimated at Site P3.

629	The base of Facies B1, which is buried beneath Facies A1, is best observed in the
630	footwall. At Sites P7-P10, the base of Facies B1f is marked by the loess marker bed
631	(28.2±2.1 ka), and we consider this age to represent the timing of this transition (Fig. 8).
632	Beneath this unit at these sites, we observe a coarse-grained sequence assigned as Facies
633	A and an underlying fine-grained sequence of Facies B in the footwall (Sites P7-P10).
634	Here we name these second sequences of Facies A and B in the footwall as "Facies A2f"
635	and "Facies B2f", respectively (Figs. 4, 6, 8). At Site P7, we obtained an OSL age of
636	34.8±3.1 ka at the base of Facies A2f at 56.6 mbs, and 32.6±2.7 ka at 70.9 mbs within
637	Facies B2f (Fig. 8; Table 2). Below this depth, age constraints are poor: we have an
638	estimate age of >58 ka at 85 mbs at Site P7 by OSL, but we are reluctant to use this age
639	as there were not sufficient quartz aliquots for this sample (only 8; Table 2). At Site P6,
640	OSL ages of Facies B1f at 30–50 mbs include some older ages than Facies B1f at Sites
641	P7–P10, ranging from 21.0 to 72.5 ka (Fig. 8, Table 2). The large scatter in ages at Site
642	P6 may be due to disturbance by the deformation that produced the sub-vertical beds
643	$(\sim 75^{\circ}-90^{\circ})$ that characterize this section below 29 mbs (Fig. 11).
644	These deeper facies transitions recorded in the footwall (associated with Facies A2f
645	and B2f) are not well observed in the hanging wall (Sites P1-P5), despite the fact that the

646	dated ages show that the sediments cover the same age range (Figs. 4, 6, 8). In particular,
647	the deep sediments of Facies B1h (59.1±4.6 ka; Site P3) and Facies C (43.1±3.2 ka; Site
648	P2) in the hanging wall are older than the base of Facies B1f (28.2±2.1 ka; Site P9) in the
649	footwall (Figs. 4, 6, 8; Table 2). This may be the result of different facies being active in
650	different locations; alternatively, some sedimentary sections may not be preserved in the
651	hanging wall due to different rates of uplift/subsidence, and/or there could be poor
652	recovery of some sections in the hanging wall. It is likely that Facies B1h corresponds to
653	both Facies B1f and B2f, with a missing or very thin or poorly recovered section of Facies
654	A2f in between (Figs 4, 6, 8).

	Table 1							
Site	Depth (mbs)	Lithology	Dated material	Conventional radiocarbon age (ka) (10)	Calendar calibrated age (ka) (higher probability)*	Calendar calibrated age (ka) (lower probability)**	Stable isotope δ13C (‰)	Carbon content (%)
P2	29.05-29.07	Brown silt	Organic sediment	24.26 ± 0.09	28.600 - 28.005	28.459 - 28.150	-14.4	0.27
P2	29.5-29.54	Gray silty clay	Organic sediment	32.59 ± 0.19	37.144 - 36.023	36.714 - 36.243	-17	0.19
P2	30.2-30.21	Gray clay	Organic sediment	20.36 ± 0.06	24.751 - 24.202	24.544 - 24.327	-16.9	0.09
P2	33.23-33.24	Black silty clay	Organic sediment	38.87 ± 0.36	43.323 - 42.272	43.027 - 42.516	-11	1.2
P2	34.1-34.15	Black silt	Organic sediment	26.81 ± 0.11	31.147 - 30.762	31.061 - 30.865	-13.2	0.5
P2	37.42-37.43	Dark gray medium sand	Organic sediment	32.15 ± 0.18	36.428 - 35.617	36.260 - 35.850	-13.6	0.5
P2	38.53-38.55	Black silt	Organic sediment	31.75 ± 0.17	36.092 - 35.201	35.888 - 35.426	-13.6	0.3
P2	40.37-40.4	Black silt	Organic sediment	34.91 ± 0.24	40.038 - 38.826	39.745 - 39.110	-12.5	0.4
P3	27.45-27.48	Gray silty sand	Organic sediment	11.72 ± 0.04	13.615 - 13.442	13.703 - 13.681	-17.7	0.2
P3	39.09-39.1	Grayish orange silt	Organic sediment	18.76 ± 0.06	22.830 - 22.434	22.693 - 22.491	-18.2	0.07
P3	40-40.15	Black clay	Organic sediment	36.9 ± 0.31	42.016 - 40.904	41.775 - 41.236	-13.3	1.4
P3	40.23-40.25	Gray silt	Organic sediment	34.16 ± 0.22	39.213 - 38.216	38.870 - 38.435	-14.7	0.3
P8	19.82-19.87	Brown silt	Organic sediment	14.06 ± 0.04	17.330 - 16.882	17.185 - 16.996	-11.4	0.52
P8	21.47-21.49	Brown silt	Organic sediment	15.34 ± 0.06	18.765 - 18.462	18.700 - 18.547	-12.3	1.62

Calibration of the conventional age were performed using the INTCAL13 (2013 calibration databases) (Reimer et al. 2013), high probability density range method and Bayesian probability analysis (Ramsey, 2009). For sediment age, we use the higher probability calendar-calibrated age.

* 95.4% probability density range for all samples except for P3 27.45-27.48 mbsf, which is 94.1% probability.

** 68.2% probability density range for all samples except for P3 27.45-27.48 mbsf, which is 1.3%.

- **Table 1. Summary of radiocarbon dating results from Sites P2–P8 showing sample**
- 658 location, lithology, dated material, conventional radiocarbon age, calendar
- 659 calibrated age, δ13C (‰), and carbon content. See more details in Supporting
- 660 Information Text S2.

Table 2															
Site	Depth (mbs)	Lithology	U ^a (ppm)	Th ^a (ppm)	K ^a (%)	Rbª (ppm)	Cosmic ^{b. c} (Gy/ka)	Dose- rate ^{b, c, d} (Gy/ka)	n°	Average equivalent dose ^f (Gy)	Weighted average equivalent dose ^h (Gy)	2-mixed model equivalent dose ⁱ (Gy)	Average OSL Age ^{fj.} (ka)	Weighted average OSL Age ^{h,j} (ka)	2- mixing model OSL Age ^{h.i,j} (ka)
P2	22.75-23	Silt with fine sand	3.4	19.5	1.62	42	0.026±0.003	3.44±0.20	30(60)	124.8±7.3	102.0±1.9	99.2±2.0	36.3±3.0	29.6±1.8	28.8±1.8
									[6]			(21%)			
P2	26.75-27	Silt with medium sand	3.9	17.4	1.44	182	$0.021 {\pm} 0.002$	3.24±0.19	26(60)	139.5±6.3	114.07±2.6	99.0±3.5	43.1±3.2	35.2±2.2	30.6±2.1
									[13]			(19%)			
P2	30.75-31	Clayey silt with	4.4	20.2	1.68	42	0.017±0.002	3.73±0.22	14(48)	>116.9±7.2	>101.3±5.1	107.6±5.7	>31.3±2.7	>27.2±2.1	28.8±2.3
		very fine sand							[14]			(6%)			
P2	40.75-41	Silt with fine sand	4.1	18.5	1.54	175	0.011±0.001	3.43±0.20	15(48)	>124.9±7.8	>93.9±3.6	78.6±4.5	>36.4±3.1	>27.4±1.9	22.9±1.9
									[13]			(24%)			
P3	28.75-29	Clay	4.6	16.7	1.39	138	0.019±0.002	3.29±0.20	25(60)	183.3±19.1	102.5±3.0	86.9±3.5	55.7±6.7	31.2±2.1	26.4±1.9
									[7]			(35%)			
P3	30.7-31	Silt	3.9	17.7	2.20	155	0.02±0.002	3.94±0.24	34 (29)	133.84±9.1	79.9±1.8	69.1±2.6	34.0±3.1	20.3±1.3	17.5±1.3
									[70]			(34%)			
D2	28 7 20	Cile with	5.6	15.0	2.04	125	0.02+0.002	2 08±0 24	10 (2)	112 0+5 0	104 2+2 7	72 7+2 0	28 442 13	26.2+1.9	
15	56,1-59	very fine sand	5,0	15.0	2.04	155	0,02±0,002	3,96±0,24	[22]	115.0±5.0	104,2±5,7	(11%)	20.4-2.15	20,2±1,6	
	10 7 11					07	0.00.0000		[52]						
P3	40.7-41	fine sand	3.0	16.8	1.53	97	0.02±0.002	3.21±0.19	30 (4)	1/5.1±12.1	119.9±3.0	(36%)	54.6±5.0	37.4±2.4	30.9±2.3
									[52]			(50%)			
P3	48.7-49	Medium sand with silt	4.3	17.0	2.13	141	0.02±0.002	3.91±0.24	39 (11)	231.2±11.1	193.4±3.9	186.6±5.0	59.1±4.6	49.5±3.2	47.7±3.2
									[58]			(21%)			
P4	50.75-51	Brown silt	3.7	15.9	1.32	163	$0.007 {\pm} 0.001$	2.98±0.18	18(48)	128.1±9.3	94.2±3.6	71.9±8.5	43.0±4.1	31.6±2.3	24.1±3.2
									[10]			(26%)			
P4	69.75-70	Silt with fine sand	4.7	22.1	1.83	146	0.004 ± 0.000	4.04±0.24	22(48)	185.8±13.0	143.69±4.0	108.8±5.9	46.0±4.2	35.6±2.3	26.9±2.2
									[18]			(28%)			
P4	99.75-100	Clayey silt	3	16.4	1.36	120	0.002 ± 0.000	2.90±0.17	26(48)	103.8±7.5	86.0±1.4	89.5±1.4	35.8±3.3	29.6±1.8	30.9±1.9
									[2]			(14%)			
P6	19.75-20	Brown clayey silt	2.2	11	0.91	123	0.034±0.003	2.02±0.12	26(48)	62.9±3.9	53.0±0.7	47.4±0.93	31.1±2.7	26.2±1.6	23.5±1.5
									[0]			(29%)			
P6	33.75-34	Silt with fine sand	3.2	14.5	1.20	131	0.015±0.002	2.69±0.16	11(48)	93.8±10.1	85.4±3.0	51.0±6.4	34.9±4.3	31.7±2.2	19.0±2.6
									[11]			(24%)			
P6	39-39.25	Fine to medium sand	1.9	9.3	0.77	100	0.012±0.001	1.70±0.10	10(16)	164.0±17.8	129.67±4.7	123.3±6.0	96.4±11.9	76.3±5.3	72.5±4.3
									[6]			(27%)			
P6	49.75-50	Fine to medium sand with silt	2.1	11.1	0.92	123	$0.008 {\pm} 0.001$	1.98±0.12	54(76)	80.0±4.3	47.9±0.7	41.5±1.7	40.4±3.3	24.2±1.5	21.0±1.5
									[1]			(34%)			
P7	56.5-56.75	Fine sand with silt	3.3	16.4	1.36	98	0.006±0.001	2.97±0.18	18(48)	103.3±6.6	89.4±2.4	78.0±3.9	34.8±3.1	30.1±2.0	26.3±2.1
									[16]			(24%)			
P7	70.75-71	Silt to fine sand	3.2	15.5	1.29	103	0.004±0.000	2.81±0.17	32(48)	91.6±5.2	74.1±1.2	74.6±1.3	32.6±2.7	26.4±1.6	26.5±1.6
									[6]			(25%)			
P7	84.75-85	Silt	3.1	15.5	1.29	175	0.003±0.000	2.79±0.17	8	>150			> 58		
P7	99.75-100	Silt	5.9	17.7	1.47	106	0.002 ± 0.000	3.68±0.22		No quartz					
P9	31.75-32	Clay	2.4	14.8	1.23	113	0.016±0.002	2.57±0.15		No quartz					
P9	40.75-41	Silt	2.2	12.4	1.03	108	$0.011 {\pm} 0.001$	2.19±0.13	27(48)	61.8±2.9	53.1±0.9	46.4±1.5	28.2±2.1	24.3±1.5	21.2±1.4
									[3]			(22%)			

^a Elemental concentrations from ICP-MS of whole sediment measured at Activation Laboratories Limited Ancaster, Ontario Canada.

¹⁶ Estimated concentrations non rCP-M3 of whole sediment negative at Activation Laboratories Limited Antaster, ofnano Canada. ¹⁶ Estimated fractional day water content for whole sediment is taken as 10% and with an uncertainty of \pm 5%. ¹⁷ Estimated contribution to dose-rate from cosmic rays calculated according to Prescott and Hutton (1994). Uncertainty taken as \pm 10%. ¹⁶ Total dose-rate from beta, gamma and cosmic components. Beta attenuation factors for U, Th and K compositions incorporating grain size factors from Mejdahl (1979). ¹⁷ Beta attenuation factor for Rb is taken as 0.75 (cf. Adamicc and Aitken, 1998). Factors utilized to convert elemental concentrations to beta and gamma dose rates from Adamice and Aitken (1998) and beta and gamma components attenuated for moisture content. Dose rates calculation was confirmed using the Dose Rate and Age Calculator (DRAC) of Duncan et al. (2015).

^c Number of replicated equivalent dose (D_E) estimates used to calculate D_E. These are based on recuperation error of < 10%. Number is parentheses is the number of saturated aliquots.The number in the square parentheses is the total measurements made including failed runs with unusable data.

^fAverage equivalent dose (D_E) determined from replicated single-aliquot regenerative-dose (SAR; Murray and Wintle, 2000) runs. The uncertainty is the standard error and

includes an uncertainty from beta source estimated of ±2.5%. ^h Weighted average equivalent dose (D_E) determined from replicated single-aliquot regenerative-dose (SAR; Murray and Wintle, 2000) runs. The uncertainty is the standard error and includes an uncertainty from beta source estimated of ±2.5%.

ⁱAge based on minimum population in 2-mixing model using the program of Vermeesch (2009). Values in parentheses are the dispersion of the aliquots.

^jUncertainty incorporate all random and systematic errors, including dose rates errors and uncertainty for the D_E.

In this study, we use average OSL ages for samples that showed $\leq 25\%$ dispersion of the aliquots, and 2-mixing model OSL ages for samples that yielded > 25\% dispersion. Preferred ages are highlighted in bold.

Table 2. Summary of OSL dating results from Sites P2, P3, P4, P6, P7 and P9

664	showing sample location, lithology, radioisotope concentration, moisture contents,
665	total dose rates, equivalent dose estimates and optical ages. Dose rate and age
666	calculations follow the details indicated in the footnote. See more details in
667	Supporting Information Text S1.
668	
669	5. Discussion
670	5.1. Shallow structure of the Bardibas thrust
671	The Bardibas thrust is characterized by a hanging wall anticline composed of
672	Siwaliks bedrock beveled by erosion and buried by ~ 100 m of more recent sediments (Fig.
673	3). Sediment cores in this study reveal that a \sim 15–68-m-thick gravel sequence (Facies A1)
674	was deposited during the latest Pleistocene to Holocene, capping both the hanging wall
675	and footwall (Section 4.1). Near the fault tip, displacement by the thrust is accommodated
676	by a tip-line fold or fault-propagation fold, deforming the syntectonic strata in the

677 footwall (Fig. 3a).

663

678 We construct cross-sections across the Bardibas thrust by placing the boreholes 679 presented here onto the seismic profiles of Almeida et al. (2018; and unpublished data;

680	Figs. 13–15). We also compare our data with the refraction velocity models of Liu et al.
681	(2020), which were developed from the same raw data as the seismic profiles of Almeida
682	et al. (2018; Figs. 3b, 16). We first document the shallow structures surrounding the
683	hanging wall anticline beneath the Lakshmi and Bhabsi rivers, using the stratigraphy from
684	Sites P1-P5. We then constrain the shallow structures around the fault tip and growth
685	strata in the footwall beneath the Ratu river, using the stratigraphy from Sites P6-P10.
686	These comparisons, together with sediment ages, allow us to infer the shortening of the
687	hanging wall anticline, and the uplift of the hanging wall of the Bardibas thrust relative
688	to the footwall.

692 Figure 13. Lakshmi river cross-section. (a) Graphic sedimentary core logs of Sites

694	Vertical exaggeration=2:1. (b) Interpretation of (a) with colored Facies A1 (light
695	gray) and Facies C (dark gray). Red line marks the base Facies A1. Measured dip
696	angles from the cores at Site P2 are shown in blue bars, vertically exaggerated (2:1).
697	Representative ages obtained at Site P2 are shown next to core log (also see Fig. 12;
698	Table 1). The hanging wall anticline of the Bardibas thrust is observed at depth, with
699	a small syncline between the south-dipping forelimb of the main anticline and a
700	north-dipping limb of smaller tip-line fold of a southern splay, creating a local
701	lacustrine depocenter.

704 Figure 14. Bhabsi river cross-section. (a) Graphic sedimentary core logs of Sites P3–

705	P5 placed on seismic reflection profile of Almeida et al. (2018). The hanging wall
706	anticline of the Bardibas thrust is observed at depth (tilted strata). Vertical
707	exaggeration=2:1. (b) Interpretation of (a) with colored Facies A1 (light gray) and
708	Facies B (dark gray). Red line marks the base of Facies A1 at 27-68 mbs. The
709	seismically imaged angular unconformity (marked by red dashed line) between the
710	tilted sediments and relatively younger sediments (colored in gray). Measured dip
711	angles from the cores are shown in blue bars, vertically exaggerated (2:1). Marker
712	beds of brown clay (yellow dots and lines) and gleyed clay (pink dots and lines) are
713	traced and their ages are shown next to graphic logs (also see Fig. 12; Tables 1, 2).

715

716 Figure 15. Ratu river cross-section. (a) Graphic sedimentary core logs of Sites P6–

718	in dip in deeper sediments represents the effect of fault-propagation folding near the
719	tip of the Bardibas thrust. Growth strata are observed in the footwall (south side).
720	Vertical exaggeration=2:1. Near the base of the fold axis beneath Sites P6 and P7,
721	seismic section shows poor imaging. (b) Interpretation of (a) with colored Facies A
722	and B. Red line marks the base of top gravels (Facies A1) at ~15–28 mbs. Measured
723	dip angles from the cores are shown in blue bars, vertically exaggerated (2:1).
724	Marker beds of brown clay (yellow dots and lines) and loess (orange dots) are traced
725	and their ages are shown next to graphic log (also see Table 1). Fluvial on-lap of
726	sediments onto tilted strata is inferred. Red dashed lines represent the two fault
727	splays of the Bardibas thrust from Almeida et al. (2018). The tip of the southern
728	splay is inferred based on fault plane reflections beneath the growth strata, and the
729	position of the northern splay is inferred based on fault-propagation folding.
730	

731

Figure 16. Boreholes placed onto refraction velocity models and the estimation of 732 733 the timing of uplift. (a) Boreholes and sediment ages from this study placed on the 734 refraction velocity model by Liu et al. (2020). Vertical exaggeration=10:1. 1500 m/s 735 contour traced along the Ratu, Bhabsi and Ratu river profiles, interpreted to 736 represent the water table. (b) 2000 m/s contour, proposed by Liu et al. (2020) to 737 represent the top of the bedrock (Siwalik Group). In this study, the 2000 m/s horizon 738 is found to be consistently above this contact, suggesting that the Siwalik Group 739 strata have faster seismic velocities.

5.1.1. Temporary lacustrine depocenter formed due to uplift of the hanging wall anticline

743	Along the Lakshmi river, Site P1 is located near the crest of the hanging wall
744	anticline of the Bardibas thrust, above the gently north-dipping back-limb, whereas Site
745	P2 is located to the south, above a secondary tip-line anticline (Figs. 2c, 13). Since we do
746	not have sediment ages from Site P1, and the seismic reflection imaging does not exhibit
747	clear and continuous reflectors in this shallow section (Fig. 13a), we cannot define the
748	timing of the facies transitions at Site P1. Because of this, we cannot exclude the
749	possibility that Site P1 may have penetrated the bedrock Upper Siwalik Group (Fig. 13b).
750	At Site P2, beneath the recent $\sim 10-20$ m of coarse gravels (Facies A1), we
751	identified a >25-m-thick section of lacustrine facies sediments (Facies C), which was not
752	evident at Site P1 (Figs. 4, 13). We interpret that a depocenter formed between the broad
753	anticlinal uplift to the north and the narrower uplift zone related to the fault tip to the
754	south, that would have impounded the river, creating a small depocenter in the small
755	syncline between these two anticlines (Fig. 13b).
756	The rate of deposition of the lacustrine sediments (Facies C) may represent the

minimum rate of uplift of the secondary anticline in order to maintain a lacustrine
depositional environment (e.g., Collignon et al., 2016). Samples from this section (Site

P2, Facies C) date from around 24.5 ± 0.3 to 43.1 ± 3.2 ka; however, it is not possible to confidently infer how long the depocenter was active due to the large scatter in the data (Fig. 12a). In addition, there may be a non-depositional time gap between the top of Facies C and the base of Facies A1. We therefore are unable to use this section to infer tectonic deformation rates.

764 Analogous modern depocenters have been identified elsewhere in the vicinity of the MFT, produced by local tectonic uplift. Dasgupta et al. (2013) reported the 765 766 distribution of elongated lakes and marshes (long axis: ~0.5-1 km) with clay deposits 767 (~1-2 m thick) at the base of north-facing scarps in the Bhutan Himalaya. These lakes are 768 inferred to have resulted from damming of south-flowing rivers during uplift of the 769 hanging wall of the local strands of the MFT there (Dasgupta et al., 2013). Larger paleo-770 lakes (~5 km in diameter) are also documented in the Lesser Himalaya in Kumaun near thrust faults, with sediments composed largely of carbonaceous mud (>5-10 m thick) 771 772 deposited around 21-36 ka (Kotlia et al., 2000, 2008, 2010). These paleo-lakes are 773 inferred to have formed behind thrust faults (Kotlia et al., 2000, 2008, 2010). Our study 774 is the first documentation of such a paleo-lake formed by the MFT in the frontal piedmont 775 in Nepal.

776

The paleo-lake sediments documented in this study were later capped by coarser

777	fluvial inputs/gravels (Facies A1) during the late Pleistocene to Holocene (Site P2, Figs.
778	4, 13). This change may have resulted from a reduction in the rate of tectonic uplift, the
779	breaching of the anticline by the Lakshmi river, or from a climate event that modified the
780	fluvial sediment supply and/or discharge. Similarly, a number of paleo-lakes in the
781	Kumaun Himalaya are also documented to have been filled with coarse fluvial deposits
782	at around the same time (Kotlia et al., 2000, 2010), suggesting that this lake filling may
783	have been the result of a regional climatic shift. The transition to coarse fluvial deposition
784	across the late Pleistocene–Holocene is discussed in more detail in Section 5.2.
785	

5.1.2. Tilted stratigraphy and uplift inferred from marker beds and ages above the hanging wall anticline

Along the Bhabsi river, Site P3 is located near the crest of the hanging wall anticline of the Bardibas thrust, whereas Sites P4 and P5 are located on the forelimb, more than 1 km south of the crest (Fig. 14). The coarse gravels of Facies A1 that compose the top unit in these cores thicken downstream, from 27 to 42 m and then 68 m. Based on the distance between the sites, and the changes in sediment thickness and channel slope, the base of Facies A1 dips ~1.2° between Sites P3 and P4, and ~2.8° between Sites P4 and P5, steeper than the current channel slope of ~0.7° (Fig. 14b). Below this unit (Facies

795	B1h), brown clay (at 28 mbs at Site P3 and 50 mbs at Site P4) and gleyed clay (at 39–40
796	mbs at Site P3, 80–85 mbs at Site P4, and 86–90 mbs at Site P5) can be traced as marker
797	beds (Section 4.2; Fig. 14b). Between Sites P3 and P4 the apparent dip of the brown clay
798	bed between boreholes is ~1.5°, and the dip of the gleyed clay bed ranges $2.1-2.3^{\circ}$.
799	Between Sites P4 and P5, the gleyed clay bed dip ranges from 0.8° to 1.5° (Fig. 14b).
800	Compared to the stratigraphic dip constrained by the marker beds, the orientations of
801	laminas and silt beds measured directly from recovered cores (2-65°) show some much
802	steeper values, which we attribute to local depositional and/or post-depositional processes
803	such as cross-bedding and soft sediment deformation, or deviation of the well bore from
804	vertical (Fig. 14b).
805	The tilting of the strata inferred from the boreholes along the Bhabsi river is likely
806	caused by a combination of changes in river slope through time due to changes in
807	sediment supply and/or river discharge (e.g., Finnegan et al., 2007), and folding of the
808	hanging wall anticline of the Bardibas thrust, with associated southward tilt of the
809	forelimb, similar to the shape of the underlying fold. In the current study, we cannot

however the difference in dip between the mapped dip of the marker beds and the current
river slope may be a maximum estimate for tectonic tilting. We note that between Sites

810

quantify the effect of varying sediment supply or river discharge on channel slope,

813	P4 and P5, the dip of the gleyed clay beds in Facies B1h $(0.8-1.5^{\circ})$ is less than that at the
814	base of Facies A1 (~2.8°) above, although the clay beds of Facies B1h are older and
815	should have incurred more tectonic deformation. This suggests that sediment supply and
816	river discharge have a strong influence on the sediment thickness of Facies A1, obscuring
817	the effect of tectonic deformation (folding) by the thrust. This also suggests that the base
818	of Facies A1 may be erosive, and could have removed the underlying sediments (such as
819	the brown clay downstream of Site P4).
820	Here, we use the age and tilting of the base of the brown clay (24.1±3.2 ka) and
821	gleyed clay (30.9±2.3 ka) (Section 4.2) marker beds to estimate the shortening rate using
822	an area-of-uplift calculation (e.g. Lavé & Avouac, 2000; Almeida et al., 2018; Fig. 17).
823	We first estimate the area of uplift for each of the two marker beds, by tracing the tilted
824	stratigraphy of the base of the brown clay and the gleyed clay in the seismic section, and
825	inferring their original (undeformed) tilt of the sediments based on the modern channel
826	slope (Fig. 17b).
827	Since we did not observe brown clay at Site P5, we interpret that this marker bed

terminates between Sites P4 and P5, and/or was eroded at the base of Facies A1 (Fig. 17b). 828 Here, we estimate the extension of the brown clay south of Site P4, by extending the 829 830 stratigraphy between Sites P3 and P4 on a straight line (Fig. 17a,b). The section south of

831	Site P5 and north of Site P3 are also poorly imaged by the seismic data, and we cannot
832	directly observe the area of uplift between Site P5 and the fault tip, and the area of uplift
833	at the backlimb north of Site P3 (Fig. 17a,b). Here, we assume that the fold is symmetric,
834	and estimate the uplift at these locations by extending the stratigraphy of the marker beds
835	south of Site P5 to the fault tip and north of Site P3, and inferring the intersection with
836	the original (undeformed) tilt of the sediments based on the modern channel slope (Fig.
837	17a,b). Our ranges of shortening allow for qualitative uncertainties in the location of the
838	axial surface defining the northern edge of the backlimb, which is poorly imaged by the
839	seismic data and not penetrated by boreholes (Fig. 17ab).
840	We use a depth to detachment from the undeformed horizon of \sim 1.9–2.1 km,
841	defined by Almeida et al. (2018) from the Ratu profile, considering possible errors
842	associated with the location of the axial surface (horizontal shift by ± 100 m) and fault dip
843	shifts by $\pm 5^{\circ}$ (Almeida et al., 2018; Fig. 3a). Since the hanging wall is buried by thicker
844	sediments beneath the Bhabsi river than at Ratu river (Figs. 14, 15), it is possible that the
845	
	axial surface beneath Bhabsi is located further away from the fault tip than at Ratu,
846	axial surface beneath Bhabsi is located further away from the fault tip than at Ratu, making the detachment deeper than ~ 2 km. However, since we cannot clearly constrain
846 847	axial surface beneath Bhabsi is located further away from the fault tip than at Ratu, making the detachment deeper than ~2 km. However, since we cannot clearly constrain the axial surface from the Bhabsi profile due to the scatter in seismic signals (Fig. 17),

Ratu section (Fig. 3a). We then assume conservation of mass; i.e., that the area displaced

849

850	along the detachment equals the area of uplift (Fig. 17c). By dividing the area of uplift by
851	the depth to detachment, we obtain shortening of 275 ± 14 and 313 ± 16 m in 24.1 ± 3.2
852	(brown clay) and 30.9±2.3 ka (gleyed clay), respectively.
853	We plot the shortening vs. time to calculate an average shortening rate, assuming
854	that the rate was constant over time (Fig. 18a). From this analysis, the shortening rate of
855	the Bardibas thrust ranges from 11.4±2.4 m/ka (mm/a), inclusive of the full error ranges.
856	The linear regression taking into account uncertainties of both ages and shortening (York
857	et al., 2004) yields a shortening rate of 10.5±1.8 m/ka (mm/a) (Figure 18a; best-fit line).
858	The shortening rate may have changed over time, but we do not have sufficient date points
859	to address this. We also note that a deeper detachment depth will produce smaller
860	shortening rates; e.g. if we use 3 km as detachment depth, we estimate a shortening rate
861	of 7.5±1.3 m/ka.

Near or below the base of Sites P4 and P5 (deeper than ~100 mbs), seismic imaging reveals that the Siwalik bedrock dips ~14°, significantly steeper than the overlying sediments, below an angular unconformity (Almeida et al., 2018; Fig. 14). Creating this angular unconformity requires at least two phases: first, uplift and erosion (here, associated with tectonic folding), followed by a period during which the deposition

867	rate exceeded the uplift rate. The sediments at 49 mbs at Site P3 are dated to 59.1±4.6 ka,
868	which is the oldest obtained age in the drilled sections of the hanging wall. The overall
869	thickness of the stratigraphy at Site P3 is thinner compared to Sites P4 and P5, likely due
870	to the faster uplift near the crest of the anticline (Fig. 14, Table 2). Given that the
871	underlying Siwalik Group sediments are much older (Miocene-Pliocene), we infer that
872	the P3 borehole did not penetrate the Siwalik Group bedrock (Figs. 6, 14; Table 2).
873	The geometry of the upper 100 m of strata is not well-imaged in the seismic
874	section (Fig. 14). The refraction velocity model by Liu et al. (2020) provides some
875	additional detail in this shallow section (Figs. 3b, 16). Liu et al. (2020) highlight a
876	transition at 1500 m/s, which they associate with the water table; this horizon lies
877	somewhere in Facies B1h in the hanging wall units but does not show the southward
878	deepening that we observe at Sites P3-P5, suggesting it may indeed reflect water rather
879	than stratigraphy (Figs. 3b, 16). Liu et al. (2020) interpret the boundary between Siwalik
880	Group and young sediments to be at 2000 m/s; with this interpretation, our boreholes P4
881	and P5 would penetrate the Siwalik Group (Figs. 3b, 16), which is inconsistent with the
882	deepest dates from P4 (Fig. 6). The fine-grained Facies B1h sediments may have lower
883	porosities and higher seismic velocities than the typical coarser young sediments (Facies
884	A1), resulting in the miss-association of these sediments with the lithified, higher velocity

885 Siwalik Group sediments.

888	Figure 17. Shortening rate estimated from area-of-uplift calculation at the Bhabsi
889	river. (a) Sites P3–P5 placed on seismic reflection profile of Almeida et al. (2018). No
890	vertical exaggeration. Red dashed line represents the Bardibas thrust. Blue lines are
891	representative trace of folded reflections at greater depth for reference. (b) Close-up
892	of the entire lateral length of (a). Vertical exaggeration=5:1. Areas of uplift are
893	obtained by tracing the base of the brown clay key marker bed (yellow) and the
894	gleyed clay key marker bed (pink), assuming that the fold is symmetric, and by
895	inferring that their depositional dip was equal to the modern channel slope. (c)
896	Schematic cartoon showing the approach used to obtain shortening in this study,
897	assuming that the area displaced along the detachment equals the area of uplift
898	(colored yellow).

900 Figure 18. Shortening rate estimation for the Bhabsi river section. Black dot shows
901	0 ka (zero shortening). Box shows error range. The slope of the best-fit linear
902	regression line indicates the shortening rate incorporating both uncertainties of
903	shortening and age (York et al., 2004). Error is 2σ . Gray shaded areas are 95%
904	confidence intervals. (a) Shortening estimated from area-of-uplift calculation based
905	on stratigraphy of key bed markers (base of brown clay and gleyed clay) along the
906	Bhabsi river profile (Fig. 17), plotted with sediment age. (b) Shortening combining
907	data from uplift of marker beds and 2000 m/s contours (Fig. 19).
908	
909	5.1.3. High-angle beds and deformation bands related to shallow deformation at
910	the fault tip
911	Sites P6-P10 are located near the fault tip of the Bardibas thrust, south of the
912	forelimb of the hanging wall anticline (Figs. 3c, 15). Here, there are two splays of the
913	Bardibas thrust. The tip of the southern splay is inferred to be at \sim 300 mbs based on fault
914	plane reflections beneath the growth strata, and the position of the northern splay is
915	inferred based on fault-propagation folding (Almeida et al., 2018; Fig. 15). The high-
916	angle beds observed in the cores at Sites P6 (\sim 30–85° below 30 mbs) and P7 (\sim 15°–45°
917	below 55 mbs) are likely the result of fault-propagation folding up dip of the northern
918	splay (Fig. 15). The seismic imaging cannot recover these high dips due to scattering of

919	the signal; Site P6 therefore lies in a zone of no imaging that continues \sim 300 m to the
920	south (Fig. 15). Based on the observations of bed dip from P6, we suggest that the abrupt
921	transition from imaging to noise reflects a fold axis.
922	Packages of sediments defined as Facies A1, B1f, A2f, and B2f can be traced across
923	Sites P6-P10 (Fig. 8); these sediments form the growth strata identified in seismic
924	reflection profiles (Almeida et al., 2018) and illustrate the gradual southward decrease in
925	stratigraphic dip (Fig. 15b). Traceable marker beds include the brown clay/silt and the
926	loess, as described in Section 4.2 (Figs. 8, 15b). Measured dips from the cores are
927	generally consistent with the dips of the seismic stratigraphy (Fig. 15b). The slight tilting
928	of beds (by ~4°), which we observe around Sites P8 and P9 at ~15–40 mbs in both the
929	cores and seismic stratigraphy, likely reflects kink band deformation above the fault tip
930	documented by Almeida et al. (2018).
931	The tilted strata of Facies B2f observed at Sites P6 (> 31 mbs, Fig. 8a) and P7 (>
932	55 mbs, Fig. 8b) thicken downstream, from ~30 m thick below Site P6 to ~100 m thick
933	below Site P10, as inferred from seismic data (Fig. 15b). This observation is consistent

- with uplift above the fault tip reducing the accommodation space. To the south, below 934
- Site P8, a scour surface is present at ~130 mbs, interpreted as an incised valley associated 935
- with episodes of incision and deposition (Almeida et al., 2018; Fig. 15b). 936

937	The near-vertical dip observed at Site P6 is consistent with surface outcrop
938	measurements of bedding dips below river terraces that are vertical and even locally
939	overturned in the southernmost part of the anticline forelimb (Almeida et al., 2018; Fig.
940	3a). These terraces are distributed above the current footwall growth strata, and the
941	exposed tilted beds are documented as Siwalik bedrock (Fig. 3a). Beneath the current
942	river, the bedrock is covered by growth strata. These growth strata exhibit sub-horizontal
943	dips at shallow depths, and become steep below \sim 30–55 mbs at Sites P6 and P7 (Fig. 11).
944	The near-vertical beds below ~ 30 mbs at Site P6 are dated to 21.0–72.5 ka (Fig. 8),
945	indicating that they are not bedrock Upper Siwalik Group, despite their intense
946	deformation. The significant amount of deformation of these young sediments and the
947	terraces at the surface is likely due to localized deformation at the fault tip (Fig. 15).
948	Shallow deformation is also evident in the form of deformation bands, found in
949	medium-coarse sand at Site P7 at 66 mbs (Section 4.1.3.2) (Figs. 10h-m). Here, we note
950	deformation bands ~230 m above the fault tip of the Bardibas thrust; these are likely
951	associated with related folding and strain. Deformation bands are a suite of narrow
952	(generally mm- to cm-thick), low-displacement, tabular deformational features found
953	both in poorly lithified porous sediments (Cashman et al., 2007), and lithified sediments
954	with porosity >15%, such as sandstones, carbonates, tuffs, and chalks (Aydin, 1978;

955	Wilson et al., 2003; Fossen et al., 2007; Cilona et al., 2012; Wennberg et al., 2013; Pizzati
956	et al., 2020). The deformation bands observed in this study indicate significant grain size
957	reduction and porosity loss by cataclasis (Fig. 10h-m), and are classified as 'shear bands'
958	or 'cataclastic shear bands' on the basis of their morphology (Fossen et al., 2007).
959	Cataclastic shear bands are generally known to form where higher confining and
960	shear stresses in an initially high-porosity material are sufficient for grain breakage to
961	occur (Fossen et al., 2007). In porous lithified rock, shear band formation is thought to
962	occur at 1.5–3.0 km depth and effective stresses of 20–40 MPa, based on numerous field
963	studies in predominantly quartz-rich aeolian sandstones (Fossen et al., 2007 and
964	references therein), with the onset of cataclasis at burial depths of 0.9-1.2 km in quartz-
965	rich sands, while in more arkosic sands, the onset of cataclasis in shear bands can occur
966	at burial depths of 0.4-0.5 km (Beke et al., 2019; Pizzati et al., 2020). In contrast, the
967	position of Site P7 in the hanging wall block of the active Bardibas thrust precludes
968	significant burial beyond present-day depth, and the maximum overburden stress at ~66
969	m depth is ~ 1.3 MPa, assuming an average 15% overburden porosity. The confining
970	stresses are thus too low to explain the significant cataclasis that is observed in the core
971	(Figure 10h-m). The formation of deformation bands and observed cataclasis may thus
972	likely instead records slip at seismic velocities reaching the surface in the process zone at

973 the tip of the Bardibas thrust at some point post-deposition.

974	Cataclastic shear bands, with both porosity loss and visible cataclasis are also
975	documented from unlithified sands in the immediate vicinity of active faults such as the
976	San Andreas and McKinnleyville faults in California, USA (Cashman & Cashman, 2000;
977	Cashman et al. 2007, Kaproth et al., 2010). These cataclastic bands in sands with
978	maximum burial <200 m have been posited to be indications of slip at seismic velocities
979	owing to the very low (<4.5 MPa) possible maximum overburden stresses at such depths
980	being insufficient on their own to induce the observed cataclasis (Cashman et al., 2007).
981	We suggest that the deformation band at Site P7 at ~66 m burial depth may similarly
982	record brittle localized slip suggestive of rapid failure.

983

984 **5.1.4. Slip rate estimation based on age and vertical uplift inferred from seismic**

985 refraction velocities

Figure 16 shows the depths of interpreted horizons based on seismic refraction velocities along the Lakshmi, Bhabsi, and Ratu river profiles (Liu et al., 2020). By placing our boreholes on the refraction velocity models and integrating our new dates with previously inferred fault throw, we can infer the rate of uplift on the Bardibas thrust (Figs. 3b, 16). Here, we evaluate the 1500 and 2000 m/s contours identified by Liu et al. (2020) and establish the age of sediments for these horizons.

992	We first evaluate the 1500 m/s contour, interpreted by Liu et al. (2020) to represent
993	the water table. Along the Lakshmi, Bhabsi, and Ratu rivers, this contour exhibits a
994	vertical offset of ~17-32, ~12-51, ~57-66 m between the hanging wall and footwall of
995	the Bardibas thrust, respectively (Liu et al., 2020) (Figs. 3b, 16a). In our boreholes, this
996	1500 m/s contour exists at ~40 mbs (Facies B) at Site P1 and ~27 mbs (Facies C) at Site
997	P2 along the Lakshmi river (Figs. 3b, 16a). At the Bhabsi river, the 1500 m/s horizon
998	exists at ~40 mbs (Facies B1h), ~35 mbs (Facies A1), and ~30 mbs (Facies A1) at Sites
999	P3, P4, and P5, respectively (Figs. 3b, 16a). At the Ratu river, the 1500 m/s horizon is
1000	inferred at the subsurface at Site P6, ~15 mbs (Facies B1f) at Site P7, and at ~50 mbs
1001	(Facies A2f) at Site P9 (Figs. 15, 16ab). Given that we observe different lithologies at
1002	these depths, we agree that the 1500 m/s contour likely represents a non-stratigraphic
1003	feature like the water table, and therefore we are unable to assign an age for this horizon.
1004	The 2000 m/s contour is inferred to represent a regional lithological boundary,
1005	common in all the three rivers, likely at the base of or within relatively young sediments
1006	(Liu et al., 2020) (Fig. 3b). At the Lakshmi river, this contour lies approximately at the
1007	base of our borehole at Site P2, and therefore the dates from the borehole would
1008	correspond to the sediments overlying it (Figs 3b, 16b). The dates in Facies C are mixed,

1009	ranging from 24.5 ± 0.3 ka at 30.2 mbs to 43.1 ± 3.2 ka at 26.8 mbs (Fig. 12a). Three
1010	well-constrained dates at 37.4–40.4 mbs near the base of the borehole all date between
1011	35.2–40 ka (Fig. 12a), so we here use 40 ka to represent the youngest possible age of the
1012	contact at the Lakshmi river.
1013	At the Bhabsi river, the 2000 m/s contour is at ~55 mbs (Facies B1h) at Site P4 and
1014	~40-45 mbs (Facies A1/Facies B1h) at Site P5 (Fig. 3b, 16b); we estimate the timing of
1015	this horizon to be ~20.9–29.1 ka, based on the sediment age from Site P4 (24.1 \pm 3.2 ka
1016	at 50.8 mbs and 26.9 \pm 2.2 ka at 69.8 mbs) (Fig. 6). At the Ratu river, the 2000 m/s horizon
1017	is inferred at ~30 mbs (Facies B1f) at Site P6 and ~60 mbs (Facies B2f) at Site P7 (Figs.
1018	3b, 16b); we infer the timing of this horizon to range ~29.9–39.2 ka, based on sediment
1019	age of 34.8 ± 3.1 and 32.6 ± 2.7 ka at 56.8 mbs and 70.8 mbs at Site P7, respectively, and
1020	34.9±4.3 ka at 33.8 mbs at Site P6 (Fig. 8).
1021	Here, we treat the sediment age of the 2000 m/s contour beneath the three rivers to
1022	be the same, and use the overall age range of \sim 20.9–40 ka to characterize this horizon for
1023	all the rivers, and fully incorporate the uncertainties of age. At the Lakshmi river, a
1024	vertical offset of ~37–42 m of the 2000 m/s contour is evident (Liu et al., 2020) (Fig. 16b).
1025	When using the sediment age of 20.9–40 ka, this yields a tectonic throw rate of 0.9–2.0
1026	m/ka (mm/a), corresponding to a shortening rate of 1.9–5.9 m/ka (mm/a) given a fault dip

1027 of 20°–30° (Fig. 19).

1028	At the Bhabsi river, a vertical offset of $\sim 61-86$ m is inferred at the 2000 m/s contour
1029	(Liu et al., 2020; Figs. 3b, 16b,c). From the estimated vertical offset and assigned age
1030	(20.9–40 ka), we calculate an uplift rate of 1.5–4.1 m/ka (mm/a), translated to a shortening
1031	rate of 3.1-12 m/ka (mm/a), using a fault dip of 20-30° (Fig. 19). The slip rate is
1032	comparable with the average shortening rate of 9.7–12.1 m/ka (mm/a) estimated by area
1033	of uplift calculation at the Bhabsi river in Section 5.1.2 (Figs. 17, 18), although it is also
1034	wide enough to be consistent with area of uplift estimates based on deeper detachment
1035	depths as well. When combining the results from the area of uplift and 2000 m/s contour,
1036	the linear regression taking into account uncertainties on all errors (York et al., 2004)
1037	yields a shortening rate of 10.4 ± 1.8 m/ka (mm/a) (Fig. 18b).
1038	At the Ratu river, a vertical fault offset of $>\sim 95-101$ m is inferred at the 2000 m/s
1039	contour (Liu et al., 2020; Figs. 3b, 16). The offset is a minimum fault throw, as the hanging
1040	wall is not fully preserved due to substantial erosion along the Ratu section (Fig. 3b).
1041	From the estimated vertical displacement, assigned age (20.9-40 ka), and fault dip (20-
1042	30°), we calculate an uplift rate of >2.4–4.8 m/ka (mm/ya), corresponding to a shortening
1043	rate of >4.8–14.1 m/ka (mm/a; Fig.19).

1044 Uplift along the Ratu river has also been estimated from river terraces (Bollinger

1045	et al., 2014). Bollinger et al. (2014) describe at least four river terrace levels in the hanging
1046	wall of the Bardibas thrust, which have heights of $\sim 1-2$, ~ 16 , $\sim 40-45$, and ~ 70 m above
1047	the current riverbed. If we incorporate the height of the regionally highest river terrace
1048	level (~70 m) as the maximum additional uplift in our estimation of slip rate at the Ratu
1049	section, this yields a maximum uplift and shortening rate of \sim 8.2 m/ka (mm/a) and \sim 23.9
1050	m/ka (mm/a), respectively, using a fault dip of 20–30° (Fig. 19).
1051	Bollinger et al. (2014) estimate an uplift rate of ~10 mm/a by the Bardibas thrust
1052	on the basis of the 70 m high terrace, estimated to date to \sim 7 ka (Gaillard et al., 2011).
1053	Using a fault dip of 20–30°, this would reflect a slip rate of 20–29 m/ka, which exceeds
1054	the shortening rate across the Himalaya (e.g., Lindsey et al., 2018) and is therefore
1055	implausible. We note that the age of this terrace (~7 ka) is poorly constrained, which is
1056	derived from a single charcoal sample (Gaillard et al. 2011). Furthermore, fluctuations in
1057	past river base level could either add to or subtract from this value, and we are not able
1058	to constrain this as we do not have materials dated within the last 7 ka (Tables 1, 2). The
1059	height of river terrace levels may also be affected by incision caused by climate events;
1060	assumptions of steady-state (erosion balancing uplift) may not be appropriate as the
1061	regional climate events such as the Indian monsoonal variations are reported in millennial
1062	to centennial to decadal scales (e.g., Wang et al., 2001; Fleitmann et al., 2003; 2007), and

are likely to have an impact on river base levels and sedimentary environment (e.g., Pratt
et al., 2004; Sharma et al., 2004) (Section 5.2).

Overall, our results indicate that the Bardibas thrust has slipped at an average rate 1065 1066 of 1.9-5.9 m/ka (mm/a) (uplift rate: 0.9-2.0 m/ky) beneath the Lakshmi river, 3.1-12.1 m/ka (mm/a) (uplift rate: 1.5-4.1 m/ka) beneath the Bhabsi river, and >4.8 m/ka 1067 (maximum 23.8 m/ka) (uplift rate: >2.4 m/ka; maximum uplift rate: 8.2 m/ka) beneath 1068 the Ratu river over the last ~50 ka (Figs. 18, 19). We calculate an increase in slip rate from 1069 west (Lakshmi) to east (Ratu), which is consistent with the fact that the overall slip on the 1070 1071 Bardibas thrust decreases towards the west where the Bardibas thrust strand is dying out, 1072 and transferring slip onto the Patu fault strand to the north (Almeida et al., 2018; Liu et 1073 al., 2020) (Fig. 2c). Our results from the Bhabsi river are more accurate as they likely reflect the full tectonic offset (Figs. 18, 19). The eastward increase in fault slip is 1074 1075 compatible with observed variations in sediment thickness among the three rivers; we 1076 measure thicker sediments in the hanging wall along the Bhabsi river than in the Ratu river. In addition, there are possible variations caused by local depositional conditions 1077 due to river size and/or proximity of the range front. For example, we measure a thicker 1078 1079 section of Facies A1 (27-68 m thick) beneath the Bhabsi river in the hanging wall of the Bardibas thrust than beneath the Ratu river (15-28 m thick) in the footwall of the Bardibas 1080

- 1081 thrust (Figs. 13–15), also indicated by the brown clay marker bed that underlies it (Section
- 1082 4.2) (Figs. 14–15).

Figure 19. Uplift and shortening rate estimations using the 2000 m/s contour by Liu 1084 1085 et al. (2020). Black dot shows 0 ka (zero shortening). Box shows error range. Colored areas show the range of uplift/shortening rate incorporating all errors. (a) Vertical 1086 offset at the base of 2000 m/s velocity contours along the Ratu, Bhabsi, and Lakshmi 1087 1088 river profiles, plotted with sediment age. We incorporate additional uplift (~70 m; 1089 maximum value) above the riverbed from river terrace studies (Bollinger et al., 2014). (b) Shortening estimated from vertical fault offset at the base of 2000 m/s 1090 1091 velocity contours (a), plotted with sediment age.

1093	The Patu strand remains active at the longitude of the Ratu river, so we interpret
1094	that the slip here is being partitioned between the Bardibas and Patu thrusts (Fig. 2c). At
1095	the Ratu river, Almeida et al. (2018) calculated a total shortening of 1.81 km associated
1096	with the Patu thrust, and 1.67 km associated with the Bardibas thrust along their seismic
1097	lines. If the shortening rate is distributed along the same lines in the inferred ratio
1098	(1.81:1.67), this would imply that the Patu thrust is shortening at a rate of $>5.2-15.3$ m/ka
1099	(mm/a), and together the faults would be taking up >10-29.4 m/ka (mm/a). This
1100	assumption may be reasonable given that each fault is the frontal thrust of the range within
1101	a short distance (Fig. 2c), but is not founded in observation, and the uncertainties above
1102	do not reflect either the possibility that the ratio of active shortening differs from the total
1103	shortening, or uncertainties in the total shortening.
1104	Bollinger et al. (2014) inferred that the river terrace abandonments in this region
1105	were locally consecutive to great earthquakes, and estimated the recurrence interval of
1106	past earthquakes and an average uplift rate of 8.5 ± 1.5 mm/a (along the Sir river) and 10–
1107	12 mm/a (along the Ratu river) on the Patu and Bardibas thrusts, respectively, based on
1108	the elevations and dating of river terraces. Overall, their estimation is much larger than
1109	the uplift rate inferred in this study. This may be due to the maximum estimate of uplift
1110	from river terraces, which may also be affected by incision caused by climate events

1111 (Section 5.2).

1112	The geodetically constrained shortening rate across this section of the Himalaya is
1113	15-16 m/ka (mm/a) (Lindsey et al., 2018); thus, the rate on this section of the Bardibas
1114	thrust inferred from this study from the Bhabsi river (3.1-12.1 m/ka; York regression:
1115	10.4 ± 1.8 m/ka) (Fig. 18) represents 19–81% (York regression: 54–81%) of the total
1116	shortening across the range. Lavé and Avouac (2000) interpreted that nearly all of the
1117	interseismic shortening eventually manifests as slip on the frontal thrust systems in the
1118	region around the Bakeya and Bagmati Rivers, 40-60 km west of our field area. This
1119	would be consistent with our results, but our large uncertainties mean that we cannot
1120	exclude the possibility of significant shortening being accommodated on other structures
1121	within the range.
1122	
1123	5.2. Implications for the depositional environment across monsoonal climate
1124	variations
1125	5.2.1 Facies transitions in this study compared with paleoclimate records
1126	We identify three depositional facies in the sediment cores recovered from the
1127	three rivers: coarse-grained braided channel (Facies A), fine-grained braided channel

1128	(Facies B), and fluvio-lacustrine (Facies C); these are primarily marked by changes in p
1129	(grain diameter) size (Section 4.1; Figs. 4, 6, 8). The fact that we observe similar facies
1130	transitions in different rivers suggest that they represent a regional event. In general,
1131	changes in fluvial sediment grain size are thought to be associated with variations in river
1132	discharge, sediment supply, abrasion, and subsidence rate (e.g., Robinson & Slingerland,
1133	1998; Dingle et al., 2017). The timescale of the sediment deposition in this study is tens
1134	of ka, and therefore tectonic subsidence/uplift (>hundreds of ka) and/or earthquake-
1135	triggered landsliding (< few hundred years) (e.g., Bollinger et al., 2014; Rizza et al., 2019)
1136	cannot be the cause for the observed variations in grain size, except for Facies C, which
1137	we observe only at Site P2 and interpret as related to localized uplift to the south (see
1138	Section 5.1.1). We can also eliminate variations in abrasion, as the sediments are quartz-
1139	dominant and the length of the catchment is only a few km. We therefore suggest that
1140	changes in river discharge and sediment supply are likely to be the primary processes
1141	recorded in these sedimentary facies. Higher river discharge is capable of transporting
1142	more and coarser sediments, and hence, the grain size of deposited sediments is expected
1143	to be larger (e.g., Parker, 1978). Empirical and physical studies have shown that an
1144	increase in river discharge tends to increase both sediment grain size and channel width
1145	(e.g., Parker, 1978; Bray, 1982; Hey and Thorne, 1986).

1146	A major transition from fluvio-lacustrine facies (Facies B1h, B1f and C) to coarse
1147	braided channel facies (Facies A1) is observed at depths of ~15-68 mbs in all ten
1148	boreholes (Figs. 4, 6, 8). ¹⁴ C and OSL dating from Site P3 suggest that this transition,
1149	from finer sediments to coarser, is younger than ~13.5±0.1 ka, around the Pleistocene-
1150	Holocene transition (Fig. 12b). The timing of this facies transition coincides with a
1151	transition in regional climate observed in a number of climate proxies. Specifically, the
1152	Indian monsoon was generally weak in the late Pleistocene, and became much stronger
1153	during the Holocene, as determined from speleothems from the Bittoo cave in northwest
1154	India (Kathayat et al., 2016), the Timta cave in north-central India (Sinha et al., 2005),
1155	and the Mawmluh cave in northeast India (Dutt et al., 2015) (Fig. 20). Previous studies
1156	have linked monsoonal variability with Earth's orbital parameters, such as precessional
1157	cycles and variations in the Northern Hemisphere summer solar insolation (NHSI),
1158	punctuated by millennial-scale oscillations such as the Younger Dryas and Heinrich
1159	events (e.g., Cai et al., 2015; Kathayat et al., 2016). The period of strengthened monsoon
1160	around the Pleistocene/Holocene transition correlates with the peak of the NHSI and
1161	precession that occurred following the Bølling-Allerød interstadial and the last glacial to
1162	interglacial boundary (Berger and Lutre, 1991; Wolff et al. 2010) (Fig. 20).
1163	

Figure 20. Comparison of our stratigraphic records to records related to the Indian
summer monsoon. Plotted records include: compiled δ18O records of cave
speleothems (blue and green) tracking Indian summer monsoon intensity, Northern

1168	Hemisphere summer solar insolation (NHSI) (red), orbital precession cycle (orange),
1169	and Greenland ice core records (gray). Speleothem $\delta 180$ data indicate Indian
1170	summer monsoon intensity, where larger absolute values indicate increased
1171	precipitation. YD: Younger Dryas. H1–H6: Heinrich events. Gray vertical bar
1172	marks the duration of the last glacial period. MIS 1-4: Marine isotope stages,
1173	separated by horizontal dotted lines (black). Red shading: Facies A in this study.
1174	Blue shading: Facies B and C in this study. Red horizontal line marks the age of each
1175	facies transition based on sediment age from Sites P2 (43.1±3.2 ka), P3 (13.5±0.1 ka),
1176	P6 (72.5±4.3 ka), P7 (34.8±3.1 ka, 32.6±2.7 ka), and P9 (28.2±2.1 ka) in this study.
1177	Facies B and C roughly correlates with the minima of the precession and NHSI,
1178	when the monsoon was weaker. In contrast, Facies A roughly coincides with the
1179	precession and NHSI maxima, when the monsoon was stronger. Prior to ~43 ka, we
1180	are unable to correlate facies with climate events due to missing ages likely
1181	associated with incision.

Below this interval, the footwall strata exhibit packages of fine-grained Facies B1f dated to ~13.5–28.2 ka (Figs. 8, 15). These dates match to a period with low NHSI and low precession, when the monsoon was weak (Dutt et al., 2015; Kathayat et al., 2016)

(Fig. 20). This period also corresponds to marine isotope stage (MIS) 2, during the lastglacial.

Below this section of Facies B1h and B1f, we have mixed records: at Sites P3 and 1188 1189 P4 (hanging wall), we do not recognize another major facies transition, although ages in 1190 these cores reach as old as 59.1±4.6 ka (Fig. 6). In contrast, in the footwall cores (P7-P10), we identify a second package of coarse-grained Facies A2f dating to ~28.2-34.8 ka 1191 1192 (Figs. 8, 15). This difference may relate to lower stratigraphic preservation over the hanging wall due to uplift, or may have been eroded due to base level fluctuations. We 1193 1194 therefore consider that the footwall record is likely to be more representative. Notably, 1195 the ages for this coarser section coincide with a period when the NHSI and precession 1196 were elevated, and the beginning of MIS 3 (globally warm period) (Fig. 20). Climate 1197 proxies also show that the monsoon was stronger during this period, although not as strong as during the Holocene (Dutt et al., 2015; Kathayat et al., 2016; Fig. 20). 1198 1199 The borehole at Site P7 penetrates an additional section of fine-grained Facies B2f in its lowest section (Fig. 8). This period also correlates to the deposition of Facies C 1200 1201 (lacustrine) sediments at Site P2 (Fig. 4). During or before this period, there was also 1202 events of incision, as inferred from fluvial onlap in seismic imaging (Fig. 15). Climate proxies from this time (prior to ~32.6-34.8 ka) show high-frequency variations without 1203

1204	large magnitude of changes; while during this time, the NHSI started low and increased
1205	over time (Fig. 20). Given our limited records (likely incomplete due to periodic incision),
1206	together with the variability in other climate proxies, it is not possible to link the facies
1207	in this section to specific climatic conditions. The oldest sediments that we recovered in
1208	this study date to 59.1±4.6 ka at Site P3 in the hanging wall and 72.5±4.3 ka at Site P6 in
1209	the footwall; however, we did not recover sediments between 43.1–59.1 ka and 59.1–72.5
1210	ka.
1211	We suggest that the primary sedimentary facies transitions observed in this study
1212	are likely associated with changes in the Indian monsoonal climate, which is linked to
1213	Earth's precession (~23-ka-cycle; Fig. 20). Indian monsoon intensity is a primary control
1214	on river discharge and sediment supply in this region. While the latest transition in
1215	sedimentary facies appears to correlate with the last glacial maximum, the catchments of
1216	the rivers we are studying were never glaciated (e.g. Owen et al., 2002, 2005, 2009;
1217	Tsukamoto et al., 2002; Asahi, 2010), and thus the glaciers did not directly affect river
1218	discharge and sediment output in this region.
1219	We interpret instead that the strengthened Indian monsoon through the late
1220	Pleistocene to the Holocene led to increased river discharge and the advance of coarse
1221	bedload-dominant braided channels in our study area (Figs. 21a, b). These channels were

1222	likely wider and less mobile, similar to modern channels (Section 2), due to the high
1223	stream power and transport capability (e.g., Wickert et al., 2013; Bufe et al., 2016; Fig.
1224	21b). In contrast, weak monsoon periods should have decreased river discharge and
1225	formed a finer-grained channel environment (Fig. 21a, c). These rivers were likely
1226	narrower and had higher lateral mobility, forming distinct floodplains and occasional river
1227	bedload sediments, as inferred from Facies B (Fig. 21c).

Figure 21. Overview of observed facies and inferred evolution of depositional
environment. (a) Summary of observed facies (see main text). (b) Left: Fluvial
environment during strengthened monsoon characterized by wide braided rivers.
Rivers are marked in blue. Right: Schematic image of coarse-grained braided

1234	channel facies (Facies A) during strengthened monsoon. These rivers are wide with
1235	less distinct floodplains (less laterally mobile). (c) Left: Fluvio-lacustrine
1236	environment during weak monsoon, characterized by narrower braided rivers.
1237	Right: Schematic image of fine-grained braided channel facies (Facies B) during
1238	weak monsoon. These rivers were laterally mobile, with adjacent floodplain levees.
1239	
1240	Other regions around the Himalaya also exhibit a coarse alluvial/fluvial
1241	aggradation around the early Holocene (~12-6 ka). These results are inferred from fluvial
1242	terraces in several duns and valleys between the MFT and MBT, including the Subathu
1243	sub-basin (Kumar et al., 2007), Ganga valley (Sinha et al., 2010; Ray and Srivastava,
1244	2010), Yamuna valley (Dutta et al., 2012), Kangra Dun (Dey et al., 2016) and Pinjaur Dun
1245	(Suresh et al., 2007), and in foreland alluvial fan systems south of the MFT, such as the
1246	Matiali inter-megafan (Kar et al., 2014) and the southern Ganga Plain (Sinha et al., 2007)
1247	(Supporting Information Fig. S8). These studies document a shift from a fine-grained
1248	environment such as interfluve floodplains, distal fans, paleosols, aeolian and lakes
1249	during the last glacial, to a coarser-grained environment in the early Holocene (e.g., Sinha
1250	et al., 2007; Kumar et al., 2007; Srivastava et al., 2009; Dutta et al., 2012). Loess
1251	deposition, as observed in Facies B in this study (Section 4), is reported in multiple

1252	regions in the Himalaya (e.g., Pant et al., 2005; Srivastava et al., 2003a, 2009), often tied
1253	to cold, dry and windier conditions when the monsoon was weaker (e.g., Harrison et al.,
1254	2001; Pourmand et al., 2004).
1255	Although the primary shift from fine to coarser sediments is likely climatic in
1256	origin, the lacustrine Facies C in this study observed at Site P2 is not. We interpret that
1257	this section is the result of uplift around the frontal thrust temporarily defeating the river,
1258	resulting in a local depocenter and ponding (Section 5.1.1; Fig. 21c). However, the fact
1259	that this ponding no longer exists suggests that it may have been favoured by the weaker
1260	monsoon conditions that were active at the time: the reduced river discharge made its
1261	defeat by tectonic uplift more likely.
1262	These lacustrine sediments may provide a record of climate-related hydrological
1263	changes. For example, the alternations from oxidized to gleyed clay observed at 29-34
1264	mbs at Site P2 (Figs. 4b, 12a, Section 4.1.2) imply diagenetic changes from aerobic to
1265	anaerobic conditions, perhaps related to the stadial Heinrich 4-6 events (Fig. 20). The
1266	increase in δ^{13} C values (-13.6–11‰) in gleyed fine sediments at 33–41 mbs suggests
1267	decreased precipitation (Table 1). The gradual transition to oxidized sediments above 29
10/0	
1268	mbs (Fig. 4b) and the low δ^{13} C values (-17 to -14.4‰) between 28–30 mbs (Table 1,

paleo-lake was gradually filled by fluvial input. Based on our limited ages, we cannot
confidently relate these variations to regional climate, but suggest that these sediments
could provide a window into past climate in this region.

1273

1274 **5.2.2.** Implications for base level changes across monsoonal climate variation

1275 In addition to stratigraphic changes, we also observe striking changes in relative 1276 base level, likely also tied to climatic variations. Sites P1-P5 are located in the hanging 1277 wall of the MFT, and therefore tectonic uplift should lower the relative river base level, decreasing the accommodation space for sediments. This is consistent with the angular 1278 unconformity imaged in the hanging wall of the Bardibas thrust beneath the Bhabsi River 1279 that indicates that the local base level was at least 100 m lower than the present river level 1280 when it formed, however after that anticline bevelling event, it has risen (Almeida et al., 1281 1282 2018) (Figs. 3d, 14). To explain this, we must conclude that monsoonal climate variations 1283 have affected river base levels in this region (Fig. 22). In the footwall, an incised valley observed in the Ratu River profile also suggests that relative base levels fluctuated in the 1284 1285 past (Almeida et al., 2018) (Fig. 15). Based on sediment ages determined here, there has 1286 been significant net aggradation over the last few 10s of ka, but it is likely that the observed record is not continuous, preferentially preserving sediments deposited in the 1287

1288	early parts of aggradation periods, as the upper sediments might have been later eroded
1289	as base level once again dropped (Fig. 22). This process was likely more intense in the
1290	hanging wall region (Sites P1–P5) than the footwall (Sites P7–P10), as the hanging wall
1291	has been subject to persistent tectonic uplift.

1294 Figure 22. Base level evolution inferred in this study during different time intervals.

1295	Solid blue line: location of base level at each time stage. Dashed blue line: location
1296	of previous base level. Tectonic uplift in the hanging wall lowers the relative base
1297	level. (a) t<13.5 ka: Sediment aggradation/progradation is facilitated by

1298	strengthened monsoon that causes increase in river discharge and sediment supply,
1299	raising the base level. Facies A1 deposited during this period. (b) t=13.5-28.2 ka:
1300	During a weak monsoon period, a decrease in river discharge and sediment supply
1301	facilitated incision and base level fall, or slow base level rise. Incision and slow
1302	deposition occurred, and Facies B and C were deposited during this period. (c)
1303	t=28.2-34.8 ka: Dominant aggradation/progradation, rise of base level, and
1304	deposition of Facies A2 during strengthened monsoon (similar process as t<13.5 ka).
1305	(d) t>34.8 ka: Enhanced incision, base level fall and/or slow rise, and deposition of
1306	Facies B and C during weak monsoons (similar process as t=13.5–28.2 ka).

Regionally, the monsoon is known to have a substantial influence on base level 1308 (Figs. 1, Supporting Information Fig. S8). In Higher and Lesser Himalayan rivers, 1309 increased river discharge during strengthened monsoons is inferred to produce large 1310 1311 sediment supply and immediate aggradation in the form of increased alluvium, fill-terrace 1312 deposits and landslides, raising river base levels (e.g., Pratt et al., 2002, 2004; Bookhagen et al., 2005, 2006) (Fig. 1). This upstream aggradation is associated with lower sediment 1313 1314 supply downstream, as observed in the Ganga and Yamuna Rivers in the Ganga Plain, where high river discharge but low sediment supply during a strengthened monsoon 1315

1316	favours incision, lowering the base level (e.g., Srivastava et al., 2003b; Gibling et al.,
1317	2005; Sinha et al., 2007) (Fig. 1). In our case, the sites we are studying are very close to
1318	the headwaters of the rivers, and our results more closely mirror the upstream results.
1319	Other studies in the piedmont foreland, however, do not always report consistent
1320	results. Some report similar patterns: in the Kangra Dun valley (Thakur et al., 2014; Dey
1321	et al., 2016), Dehra Dun (Densmore et al., 2016), and Matiali inter-megafan (Kar et al.,
1322	2014), strengthened monsoons seem to be associated with high river discharge, high
1323	sediment supply and dominant fan/terrace aggradation (Fig. 1), with incision during weak
1324	monsoon conditions. However, other regions report different patterns: in the Subathu sub-
1325	basin (Kumar et al., 2007), Ganga valley (Sinha et al., 2009; Ray and Srivastava, 2010),
1326	Yamuna valley (Dutta et al., 2012), and Pinjaur Dun (Suresh et al., 2007), strengthened
1327	monsoons seem to be associated with high river discharge, low sediment supply and
1328	dominant incision in the form of terrace abandonment and base level drop (Fig. 1). These
1329	studies suggest that there is higher sediment supply during weak monsoon periods due to
1330	less vegetation cover and enhanced weathering.
1331	All of these studies in the piedmont agree that a strengthened monsoon should
1332	increase river discharge, but suggest different patterns in sediment supply. We note that

the regions where sediment supply seems to decrease are formed by large river systems 1333

1334	(e.g. Ganga river), and are relatively downstream, compared to the smaller, foothill-fed
1335	river systems closer to the catchment like the ones in this study. Thus, these differences
1336	likely reflect very real differences in the erosion patterns and sediment transport of

1337 different scales of fluvial systems.

1338

```
1339 6. Conclusions
```

1340	We drilled and cored to depths of 45–100 m at ten sites along three rivers crossing
1341	the southernmost blind fault strand of the MFT in central Nepal, locally named the
1342	Bardibas thrust. We characterize the sedimentary facies of the recovered cores, and obtain
1343	sediment ages using OSL and radiocarbon dating. By combining our observations with
1344	previously published seismic profiles, we study the subsurface structure and the slip rate
1345	of the Bardibas thrust, and infer the evolution of the depositional environment. Our main
1346	findings are:

Sediment cores reveal a lacustrine depocenter between the south-dipping limb of the
 hanging wall anticline and a north-dipping limb of a smaller tip-line fold, formed due
 to the uplift near the fault tip of the Bardibas thrust. Our study is the first to document
 a paleolake formed by the MFT in the Nepalese Himalayan piedmont.

1351	2.	Near the tip of the Bardibas thrust, high-angle bedding planes and deformation bands
1352		were observed in the sediment cores, ~ 250 m above the fault tip. These structures
1353		characterize the shallow deformation ahead of the propagating fault tip,
1354		demonstrating that deformation by the blind thrust reaches to shallow depths via local
1355		folding and small-scale faults.
1356	3.	We identify marker beds and correlate them between boreholes. By measuring their
1357		deformation and age, our results indicate that the Bardibas thrust has slipped at an
1358		average rate of 1.9-5.9 m/ka (uplift rate: 0.9-2.0 m/ka) beneath the Lakshmi river,
1359		3.1-12.1 m/ka (uplift rate: 1.5-4.1 m/ka) beneath the Bhabsi river, and >4.8 m/ka
1360		(maximum 23.9 m/ka) (uplift rate: >2.4 m/ka; maximum uplift rate: 8.2 m/ka) beneath
1361		the Ratu river over the last \sim 50 ka. The rate on this section of the Bardibas thrust (3.1–
1362		12.1 m/ka; Bhabsi) represents 19-81% of the total shortening across the Himalaya at
1363		this longitude. The uplift rates estimated in this study are smaller than those reported
1364		from previous studies based on elevations of river terraces.
1365	4.	We recognize major transitions from finer-grained, fluvio-lacustrine facies to coarse-
1366		grained braided channel facies in all ten boreholes. The timing of the facies transitions
1367		correlates with reported Indian monsoonal intensity variations linked to northern
1368		hemisphere summer solar insolation and precession. We infer that strengthened

1369		monsoon conditions led to increased river discharge and advance of coarse bedload-
1370		dominant braided channels, whereas weak monsoon periods formed a finer-grained
1371		fluvial channel environment.
1372	5.	Fluctuations of river base levels in the past are evident from the seismically imaged
1373		angular unconformity underlying the deposition of ~100 m of recent sediments in the
1374		hanging wall, and an incised valley in the footwall. Monsoonal climate variations
1375		have likely affected the river base levels in this region, causing a non-steady state
1376		among uplift, deposition, and incision.

1378 Acknowledgments

1379 This research was supported by the National Research Foundation Singapore (NRF) and the Singapore Ministry of Education under the Research Centres of Excellence 1380 1381 initiative, the Earth Observatory of Singapore, and the NRF Fellowship scheme (award No. NRF-NRFF2013-06). This work comprises Earth Observatory of Singapore 1382 contribution no. 425. We express our gratitude to Ranjan Kumar Dahal, Manita Timilsina, 1383 Om Dhakal, Nitesh Shrestha, and staff members from Geotech Solutions International 1384 Pvt Ltd for the drilling operations and core management, and for providing laboratory 1385 space. We also thank Suman Pariyar for helping with onsite operations. We are grateful 1386

1387	to the Department of Mines and Geology (National Seismological Center, Nepal) and
1388	their staff members for providing laboratory space and core storage space. We thank Zhi
1389	Long Goh, Jing Ci Neo, Miranda Ong, and Cheng Seah for their assistance in core
1390	description and log data analyses. We are thankful to Paul Tapponnier, Çağil Karakaş,
1391	and Edgardo Latrubesse for useful discussions. We are grateful to Paula Marques
1392	Figueiredo and Antonio Votor for preparing the sediments ready for OSL dating. The
1393	authors declare that they have no known financial conflicts of interests or personal
1394	relationships that could have appeared to influence the results of this paper.
1395	

1396 Open Researc	h
--------------------------	---

1397 All data used in this study is attached in Supporting Information. The satellite image in

1398 Figure 2b uses a map from Google Earth imagery, Image Landsat/Copernicus.

1399

```
1400 References
```

1401 Adamiec, G. & Aitken, M. (1998). Dose-rate conversion factors: update. Ancient TL, 16,

1402 37–50.

- 1403 Ader, T., Avouac, J., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., Genrich, J.,
- 1404 Thomas, M., Chanard, K., Sapkota, S. N., Rajaure, S., Shrestha, P., Ding, L., &

1405	Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic
1406	coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal
1407	of Geophysical Research: Solid Earth, 117(B04403),
1408	doi:https://doi.org/10.1029/2011JB009071.
1409	Almeida, R. V., Hubbard, J., Liberty, L., Foster, A., & Sapkota, S. N. (2018). Seismic
1410	imaging of the Main Frontal Thrust in Nepal reveals a shallow decollement and blind
1411	thrusting. Earth and Planetary Science Letters, 494, 216-225.
1412	https://doi.org/10.1016/j.epsl.2018.04.045
1413	Asahi, K. (2010). Equilibrium-line altitudes of the present and Last Glacial Maximum in
1414	the eastern Nepal Himalayas and their implications for SW monsoon climate.
1415	Quaternary International, 212, 26-34. doi:10.1016/j.quaint.2008.08.004
1416	Aydin, A. (1978). Small faults formed as deformation bands in sandstone. Pure and
1417	Applied Geophysics 116, pp. 913–930.
1418	Beke, B., Fodor, L., Millar, L., Petrik, A., (2019). Deformation band formation as a
1419	function of progressive burial: Depth calibration and mechanism change in the
1420	Pannonian Basin (Hungary). Marine and Petroleum Geology 105, pp. 1 – 16.
1421	Berger, A., & Loutre, M. F. (1991). Insolation values for the climate of the last 10 million
1422	years. Quaternary Science Reviews, 10, 297-317.

1423 Blum, M. D, & Törnqvist, T. E. (2000). Fluvial responses to climate and sea-lev	el change:
--	------------

1424	a review and look forward. Sedimentology, 47 (s1), 2-
1425	48. https://doi.org/10.1046/j.1365-3091.2000.00008.x.
1426	Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Rizza, M., Van der Woerd, J.,
1427	Tiwari, D. R., Pandey, R., Bitri, A., & Bes de Berc, S. (2014). Estimating the return
1428	times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and
1429	Bardibas strands of the Main Frontal Thrust. Journal of Geophysical Research: Solid
1430	Earth, 119, 7123-7163. doi:10.1002/2014JB010970.
1431	Bookhagen, B., Thiede, R. C., & Strecker, M. R. (2005). Late Quaternary intensified
1432	monsoon phases control landscape evolution in the northwest Himalaya. Geology,
1433	33 (2), 149-152. doi: 10.1130/G20982.1
1434	Bookhagen, B., Fleitmann, D., Nishizumi, K., Strecker, M. R., & Thiede, R. C. (2006).
1435	Holocene monsoonal dynamics and fluvial terrace formation in the northwest
1436	Himalaya India. Geology, 34 (7), 601-604. doi: 10.1130/G22698.1.
1437	Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological
1438	budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on
1439	river discharge. Journal of Geophysical Research, 115, F03019.
1440	doi:10.1029/2009JF001426

1441 Bray, D. I. (1982). Regime equations for gravel-bed rivers. *in* Hey, R.D., Bathhurst, J.C.,

1442	and Thorne, C.R., eds., Gravel-Bed Rivers; Fluvial Processes, Engineering and
1443	Management: Chichester, U.K., Wiley, p. 517-542.
1444	Cai, Y., Fung, I. Y., Edwards, R. L., An, Z., Cheng, H., Lee, J-E., Tan, L., Shen, C-C.,
1445	Wang, X., Day, J. A., Zhou, W., Kelly, M. J., & Chiang, J. C. H. (2015). Variability
1446	of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. PNAS,
1447	112 (10), 2954-2959. https://doi.org/10.1073/pnas.1424035112
1448	Cashman, S., Cashman, K. (2000). Cataclasis and deformation-band formation in
1449	unconsolidated marine terrace sand, Humboldt County, California. Geology 28, pp.
1450	111-114. https://doi.org/10.1130/0091-7613(2000)28<111:CADFIU>2.0.CO;2
1451	Cashman, S.M., Baldwin, J.N., Cashman, K.V., Swanson, K., Crawford, R., (2007).
1452	Microstructures developed by coseismic and aseismic faulting in near-surface
1453	sediments, San Andreas Fault, California. Geology 35, pp. 611 – 614.
1454	https://doi.org/10.1130/G23545A.1
1455	Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson,
1456	P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A.,
1457	Holbrook, J. M., Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J.,
1458	Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R.,

1459	Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., & Winker, C.
1460	(2009). Towards the standardization of sequence stratigraphy. Earth-Science
1461	Reviews, 92, 1-33. doi:10.1016/j.earscirev.2008.10.003
1462	Cilona, A.; Baud, P.; Tondi, E.; Agosta, F.; Vinciguerra, S.; Rustichelli, A.; Spiers, C.,
1463	(2012). Deformation bands in porous carbonate grainstones: Field and laboratory
1464	observations. J. Structural Geology 45, pp. 137 – 157.
1465	https://doi.org/10.1016/j.jsg.2012.04.012
1466	Collignon, M., Yamato, P., Castelltort, S., & Kaus, B. J. P. (2016). Modeling of wind gap
1467	formation and development of sedimentary basins during fold growth: application

- 1468 to the Zagros Fold Belt, Iran. Earth Surface Processes and Landforms, 41 (11), 1521-
- 1469 1535. https://doi.org/10.1002/esp.3921.
- 1470 Corvinus, G. & Rimal, L. N. (2001). Biostratigraphy and geology of the Neogene Siwalik
- 1471 Group of Surai Khola and Rato Khola areas in Nepal. Palaeogeography,
- 1472 Palaeoclimatology, Palaeoecology, 165 (2001) 251–279.
- 1473 https://doi.org/10.1016/S0031-0182(00)00163-2
- 1474 Dal Zilio, L., Hetényi, G., Hubbard, J. & Bollinger, L. (2021). Building the Himalaya
- 1475 from tectonic to earthquake scales. *Nature Reviews Earth & Environment*, 2, 251–
- 1476 268. https://doi.org/10.1038/s43017-021-00143-1

1477	Dasgupta, S., Mazumdar, K., Moirangcha, L. H., Gupta, T. D., & Mukhopadhyay, B.
1478	(2013). Seismic landscape from Sarpang re-entrant, Bhutan Himalaya foredeep,
1479	Assam, India: Constraints from geomorphology and geology. Tectonophysics, 592,
1480	130-140. http://dx.doi.org/10.1016/j.tecto.2013.02.021
1481	Deal, E., Favre, A. C., & Braun, J. (2017). Rainfall variability in the Himalayan orogen
1482	and its relevance to erosion processes. Water Resources Research, 53, 4004-4021.
1483	doi:10.1002/2016WR020030.
1484	DeCelles, P. G., & Cavazza, W. (1999). A comparison of fluvial megafans in the
1485	Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. GSA
1486	Bulletin, 111 (9), 1315-1334.
1487	Densmore, A. L., Sinha, R., Sinha, S., Tandon, S. K., & Jain, V. (2016). Sediment storage
1488	and release from Himalayan piggyback basins and implications for downstream river
1489	morphology and evolution. Basin Research, 28, 446-461. doi: 10.1111/bre.12116
1490	Dey, S., Thiede, R. C., Schildgen, T. F., Wittmann, H., Bookhagen, B., Scherler, D., Jain,
1491	V., & Strecker, M. R. (2016). Climate-driven sediment aggradation and incision
1492	since the late Pleistocene in the NW Himalaya, India. Earth and Planetary Science
1493	Letters, 449, 321-331. http://dx.doi.org/10.1016/j.epsl.2016.05.050
1494	Dingle, E. H., Attal, M., & Sinclair, H. D. (2017). Abrasion-set limits on Himalayan
- 1495 gravel flux. *Nature*, 544, 471-482. doi:10.1038/nature22039
- 1496 Dhital, M. R. (2015). Geology of the Nepal Himalaya, Regional perspective of the classic
- 1497 collided orogen. Regional Geology Reviews, Springer International publishing,
- 1498 Switzerland. DOI 10.1007/978-3-319-02496-7.
- 1499 Duncan, J.A., King, G.E., & Duller, G.A.T. (2015). DTAC: Dose Rate and Age Calculator
- 1500 for trapped charge dating. Quaternary Geochronology, 28, 54-61.
- 1501 Dutt, S., Gupta, A. K., Clemens, S. C., Cheng, H., Singh, R. K., Kathayat, G., & Edwards,
- 1502 R. L. (2015). Abrupt changes in Indian summer monsoon strength during 33,800 to
- 1503 5500 years B.P. Geophysical Research Letters, 42, 5526-5532,
- 1504 doi:10.1002/2015GL064015.
- 1505 Dutta, S., Suresh, N., & Kumar, R. (2012). Climatically controlled late Quaternary terrace
- 1506 staircase development in the fold-and-thrust belt of the Sub Himalaya.
- 1507 Palaeogeography, Palaeoclimatology, Palaeoecology, 356-357, 16-26.
- 1508 doi:10.1016/j.palaeo.2011.05.006
- 1509 Farquhar, G.D., O'leary, M.H., & Berry, J.A. (1982). On the relationship between carbon
- 1510 isotope discrimination and the intercellular carbon dioxide concentration in leaves.
- 1511 Funct. Plant Biol. 9 (2), 121e137.
- 1512 Finnegan, N. J., Sklar, L. S., & Fuller, T. K. (2007). Interplay of sediment supply, river

1513	incision, and channel morphology revealed by the transient evolution of an
1514	experimental bedrock channel. Journal of Geophysical Research. 112, F03S11,
1515	doi:10.1029/2006JF000569
1516	Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A.
1517	(2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from
1518	southern Oman. Science, 300 (5626), 1737-1739. DOI: 10.1126/science.1083130
1519	Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U.,
1520	Al-Subbary, A. A., Buettner, A., Hippler, D. & Matter, A. (2007). Holocene ITCZ
1521	and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen
1522	(Socotra). Quaternary Science Reviews, 26, 170-188.
1523	doi:10.1016/j.quascirev.2006.04.012
1524	Fossen, H., Schultz, R. A., Shipton, Z. K. & Mair, K. (2007). Deformation bands in
1525	sandstone: a review. Journal of the Geological Society, London, 164, 755-769.

- 1526 Gaillard, C., Singh, M., & Malassé, A. D. (2011). Late Pleistocene to early Holocene lithic
- 1527 industries in the southern fringes of the Himalaya. *Quaternary International*,
- 1528 229,112-122. doi:10.1016/j.quaint.2010.06.023
- Gibling, M. R., Tandon, S. K., Sinha, R., & Jain, M. (2005). Discontinuity-bounded
 alluvial sequences of the southern Gangetic plains, India: Aggradation and

- degradation in response to monsoonal strength. Journal of Sedimentary Research,
- 1532 75 (3), 369-385. DOI 10.2110/jsr.2005.029
- 1533 Goodbred S. L. & Kuehl, S. A. (2000a). The significance of large sediment supply, active
- tectonism, and eustasy on margin sequence development: Late Quaternary
 stratigraphy and evolution of the Ganges-Brahmaputra delta. *Sedimentary geology*,
- 1536 133, 227-248. https://doi.org/10.1016/S0037-0738(00)00041-5
- 1537 Goodbred, S. L. & Kuehl, S. A. (2000b). Enormous Ganges-Brahmaputra sediment
- discharge during strengthened early Holocene monsoon. Geology, 28 (12), 1083-
- 1539 1086. https://doi.org/10.1130/0091-7613(2000)28<1083:EGSDDS>2.0.CO;2
- 1540 Goodbred, S. L., Paolo, P. M., Ullah, M. S., Pate, R. D., Khan, S. R., Kuehl, S. A., Singh,
- 1541 S. K., & Rahaman, W. (2014). Piecing together the Ganges-Brahamputra-Meghna
- 1542 River delta: Use of sediment provenance to reconstruct the history and interaction
- 1543 of multiple fluvial systems during Holocene delta evolution. GSA Bulletin, 126
- 1544 (11/12), 1495-1510. doi: 10.1130/B30965.1.
- 1545 Harrison, S. P., Kohfeld, K. E., Roelandt, C., & Claquin, T. (2001). The role of dust in
- 1546 climate changes today, at the last glacial maximum and in future. *Earth Science*
- 1547 *Reviews*, 54: 43–80. https://doi.org/10.1016/S0012-8252(01)00041-1
- 1548 Hey, R. D., & Thorne, C. R. (1986). Stable channels with mobile beds. Journal of

- 1549 *Hydraulic Engineering*, v. 112, p. 671–689.
- 1550 Hirschmiller, J., Grujic, D., Bookhagen, B., Coutand, I., Huyghe, P., Mugnier, J. L., &
- 1551 Ojha, T. (2014). What controls the growth of the Himalayan foreland fold-and-thrust
- 1552 belt? *Geology*, 42 (3), 247-250. doi:10.1130/G35057.1
- 1553 Holcomb, D.J. & Olsson, W.A. 2003. Compaction localization and fluid flow. Journal of
- 1554 *Geophysical Research*, 108(B6), 2290. https://doi.org/10.1029/2001JB000813
- 1555 Iseya, F. (1989). Mechanism of inverse grading of suspended load deposits. In: Taira, A.,
- 1556 Masuda, F. (Eds.), *Sedimentary Facies in the Active Plate Margin*, pp. 113–129.
- 1557 Jain, M. & Singhvi, A. K. (2001). Limits to depletion of blue-green light stimulated
- 1558 luminescence in feldspars: implications for quartz dating. *Radiation Measurements*,
- 1559 33 (6), 883-892. https://doi.org/10.1016/S1350-4487(01)00104-4
- 1560 Kaproth, B., Cashman, S., Marone, C., (2010). Deformation band formation and strength
- 1561 evolution in unlithified sand: The role of grain breakage. J. Geophysical Research B
- 1562 115, B12103. Doi:10.1029/2010JB007406.
- 1563 Kar, R., Chakraborty, T., Chakraborty, C., Ghosh, P., Tyagi, A. K., & Singhvi, A. K. (2014).
- 1564 Morpho-sedimentary characteristics of the Quaternary Matiali fan and associated
- 1565 river terraes, Jalpaiguri, India: Implications for climatic controls. *Geomorphology*,
- 1566 227, 137-152. http://dx.doi.org/10.1016/j.geomorph.2014.05.014

1567	Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang, H., Li, X., Yi, L.,
1568	Ning, Y., Cai, Y., Lui, W. L., & Breitenbach, S. F. (2016). Indian monsoon variability
1569	on millennial-orbital timescales. Scientific Reports, 6: 24374, DOI:
1570	10.1038/srep24374
1571	Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of
1572	(paleo) ecology and (paleo) climate. Proc. Natl. Acad. Sci. 107 (46),19691e19695.
1573	Kotlia, B. S., Sharma, C., Bhalla, M. S., Rajagopalan, G., Subrahmanyam, K.,
1574	Bhattacharyya, A., & Valdiya, K. S. (2000). Paleoclimatic conditions in the late
1575	Pleistocene Wadda Lake, eastern Kumaun Himalaya (India). Paleogeography,
1576	Paleoclimatology, Paleoecology, 162, 105-118.
1577	Kotlia, B. S., Sanwal, J., & Bhattacharya, S. K. (2008). Climatic record between ca. 31
1578	and 22 ka BP in East-Central Uttarkhand Himalaya, India. Himalayan Geology, 29
1579	(1), 25-33.
1580	Kotlia, B. S., Sanwal, J., Phartiyal, B., Joshi, L. M., Trivedi, A., & Sharma, C. (2010).
1581	Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as
1582	deduced from multi-proxy studies. Quaternary International, 213, 44-55.

- 1583 doi:10.1016/j.quaint.2009.09.002
- 1584 Kumar, R., Suresh, N., Sangode, S. J., & Kumaravel, V. (2007). Evolution of the

- 1585 Quaternary alluvial fan system in the Himalayan foreland basin: Implications for 1586 decoupling. Quaternary International, tectonic and climatic 159, 6-20. doi:10.1016/j.quaint.2006.08.010. 1587 Larson, K.M., Burgmann, R., Bilham, R., & Freymueller, J.T. (1999). Kinematics of the 1588 1589 India-Eurasia collision zone from GPS measurements. Journal of Geophysical 1590 Research: 104 (B1), 1077-1093. Solid Earth, https://doi.org/10.1029/1998JB900043 1591 Lavé, J. & Avouac, J.-P. (2000). Active folding of fluvial terraces across the Siwaliks 1592 1593 Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105, 5735-5770. 1594 https://doi.org/10.1029/1999JB900292 Lavé, J. & Avouac, J.-P. (2001). Fluvial incision and tectonic uplift across the Himalayas 1595 of central Nepal. Journal of Geophysical Research, 106, B11, 26561-26591. 1596 https://doi.org/10.1029/2001JB000359 1597 1598 Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M. & Pandey, R. (2005). 1599 Evidence for a great medieval earthquake (~1100 A.D.) in the central Himalayas,
- 1600 Nepal. *Science*, 307, 1302-1305. 10.1126/science.1104804
- 1601 Liu, Y., Hubbard, J., Almeida, R. V., Foster, A., Liberty, L., Lee, Y. S., & Sapkota, S. N.
- 1602 (2020). Constraints on the shallow deformation around the Main Frontal Thrust in

- 1603 central Nepal from refraction velocities. *Tectonophysics*, 777, 228366.
 1604 https://doi.org/10.1016/j.tecto.2020.228366
- 1605 Manning, M. P. & Reid, R. C. (1977). CHO systems in the presence of an iron catalyst.
- 1606 Industrial and Engineering Chemistry Process Design and Development, 16(3):358–
 1607 6.
- Mejdahl, V. (1979). Thermoluminescence dating: beta attenuation inquartz grains.
 Archaeometry 21, 61–73.
- 1610 Murray, A.S. and Wintle, A.G. (2000). Luminescence dating of quartz using an improved
- single-aliquot regenerative-dose protocol. *Radiation Measurements*, 32(1): pp57-73.
- 1612 Murray, A.S. and Wintle, A.G. (2003). The single aliquot regenerative dose protocol:
- potential for improvements in reliability. *Radiation Measurements*, 37(4-5):
 pp377-381.
- 1615 Nakata, T., Kimura, K., & Rockwell, T. (1998). First successful paleoseismic trench study
- 1616 on active faults in the Himalaya. *Eos, Transactions,* American Geophysical Union,
- 1617 79, 615.
- 1618 O'Leary, M.H. (1981). Carbon isotope fractionation in plants. *Phytochemistry* 20
 1619 (4),553e567.
- 1620 Osmond, C.B., Winter, K., & Ziegler, H. (1982). Functional significance of different

- 1621 pathways of CO2 fixation in photosynthesis. In: Lange, O.L., Nobel, P.S., Osmond,
- 1622 C.B., Ziegler, H. (Eds.), *Physiological Plant Ecology II*. Springer, Berlin, pp.
 1623 481e499p.
- 1624 Owen, L. A., Finkel, R. C., & Caffee, M. W. (2002). A note on the extent of glaciation
- 1625 throughout the Himalaya during the global Last Glacial Maximum. *Quaternary*
- 1626 Science Reviews, 21, 147-157. https://doi.org/10.1016/S0277-3791(01)00104-4
- 1627 Owen, L. A., & Benn, D. I. (2005). Equilibrium-line altitudes of the Last Glacial
- 1628 Maximum for the Himalaya and Tibet: an assessment and evaluation of results.
- 1629 *Quaternary International*, 138-139, 55-78. doi:10.1016/j.quaint.2005.02.006
- 1630 Owen, L. A. (2009). Latest Pleistocene and Holocene glacier fluctuations in the Himalaya
- and Tibet. *Quaternary Science Reviews*, 28, 2150-2164.
 doi:10.1016/j.quascirev.2008.10.020
- 1633 Pant, R. K., Basavaiah, N., Juyal, N., Saini, N. K., Yadava, M. G., Appel, E., & Singhvi,
- 1634 A. K. (2005). A 20-ka climate record from Central Himalayan loess deposits. Journal
- 1635 of Quaternary Science, 20 (5), 485-492. DOI: 10.1002/jqs.938
- 1636 Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed.
- 1637 Part 2. The gravel river. *Journal of Fluid Mechanics*, v. 89, p. 127–146.
- 1638 Pickering, J. L., Goodbred, S. L., Reitz, M. D., Hartzog, T. R., Mondal, D. R., & Hossain,

1639	M. S. (2014). Late Quaternary sedimentary record and Holocene channel avulsions
1640	of the Jamuna and old Brahmaputra river valleys in the upper Bengal delta plain.
1641	Geomorphology, 227, 123-136. http://dx.doi.org/10.1016/j.geomorph.2013.09.021
1642	Pickering, J. L., Goodbred, S. L., Beam, J. C., Ayers, J. C., Covey, A. K., Rajapara, H. M.,
1643	& Singhvi, A. K. (2017). Terrace formation in the upper Bengal basin since the
1644	middle Pleistocene: Brahmaputra fan delta construction during multiple highstands.
1645	Basin Research, 1-18. doi: 10.1111/bre.12236
1646	Pizzati, M., Balsamo, F., Storti, F., (2020). Displacement-dependent microstructural and
1647	petrophysical properties of deformation bands and gouges in poorly lithified
1648	sandstone deformed at shallow burial depth (Crotone Basin, Italy). J. Structural
1649	Geology 137, 104069 https://doi.org/10.1016/j.jsg.2020.104069
1650	Plink-Björklund, P. (2015). Morphodynamics of rivers strongly affected by monsoon
1651	precipitation: Review of depositional style and forcing factors. Sedimentary Geology,
1652	323, 110-147. http://dx.doi.org/10.1016/j.sedgeo.2015.04.004
1653	Polach, H. A., & Golson, J. (1966). Collection of specimens for radiocarbon interpretation
1654	of results. Manual No. 2, Australian Institute of Aboriginal Studies, pp. 42.
1655	Porat, N. (2006). Use of magnetic separation for purifying quartz for luminescence dating.
1656	Ancient TL 24(2): pp33-36.

1657	Pourmand, A., Marcantonio, F., & Schulz, H. (2004). Variations in productivity and eolian
1658	fluxes in the northeastern Arabian Sea during the past 110 ka. Earth and Planetary
1659	science Letters, 221, 39-54. doi:10.1016/S0012-821X(04)00109-8
1660	Pratt, B., Burbank, D. W., Heimsath, A., & Ojha, T. (2002). Impulsive alluviation during
1661	early Holocene strengthened monsoons, central Nepal Himalaya. Geology, 30 (10),
1662	911-914. https://doi.org/10.1130/0091-7613(2002)030<0911:IADEHS>2.0.CO;2
1663	Pratt, B., Burbank, D. W., Heimsath, A., & Ojha, T. (2004). Landscape disequilibrium on
1664	1000-10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology,
1665	58 (1-4), 223-241. https://doi.org/10.1016/j.geomorph.2003.07.002
1666	Prescott, J.R., & Hutton, J.T. (1994). Cosmic ray contributions to dose rates for
1667	luminescence and ESR dating: Large depths and long-term time variations.
1668	Radiation Measurements 23(2-3): pp497-500.
1669	Ramsay, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51 (1), 337-
1670	360. https://doi.org/10.1017/S0033822200033865
1671	Ray Y., & Srivastava, P. (2010). Widespread aggradation in the mountainous catchment

- 1672 of the Alaknanda-Ganga River System: timescales and implications to Hinterland-
- 1673 foreland relationships. *Quaternary Science Reviews*, 29, 2238-2260.
- 1674 doi:10.1016/j.quascirev.2010.05.023

1675	Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Ramsey, C., Van der Plicht,
1676	J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000
1677	Years cal BP. Radiocarbon, 55(4), 1869-1887. doi:10.2458/azu_js_rc.55.16947
1678	Reuther, J. D., Cherkinsky, A., & Coffman, S. (2017). Radiocarbon variation in
1679	charcoal/wood and soil fractions from a loessic setting in central Alaska.
1680	Radiocarbon, 59, 2, 449-464. DOI:10.1017/RDC.2016.41
1681	Rizza, M., Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Karakaş, Ç., Kali, E.,
1682	Etchebes, M., Tiwari, D. R., Siwakoti, I., Bitri, A., & Bes de Berc, S. (2019). Post
1683	earthquake aggradation processes to hide surface ruptures in thrust systems: The M8.
1684	3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal).
1685	Journal of Geophysical Research: Solid Earth, 124(8), 9182-9207.
1686	https://doi.org/10.1029/2018JB016376

- Rubin, D. M., Nelson, J. M., & Topping, D. J. (1998). Relation of inversely graded
 deposits to suspended-sediment grain-size evolution during the 1996 flood
 experiment in Grand Canyon. *Geology*, 26, 99–102.
- 1690 Robinson, R. A. J. & Slingerland, R. L. (1998). Origin of fluvial grain-size trends in a
- 1691 foreland basin: the Pocono Formation on the Central Appalachian Basin. *Journal of*
- 1692 Sedimentary Research, 68 (3), 473-486. https://doi.org/10.2110/jsr.68.473

1693	Sapkota.	S.N.,	Bollinger.	L	Klinger.	Y.,	Tapponnier.	Р	Gaudemer.	. Y.	. &	Tiwari.	. D.
								7		,	,		, —

1694 (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and

1695 1255. *Nature.Geoscience*, 6, 71–76. DOI:10.1038/NGEO1669

- 1696 Sharma, S., Joachimski, M., Sharma, M., Tobschall, H. J., Singh, I. B., Sharma, C.,
- 1697 Chauhan, M.S. & Morgenroth, G. (2004). Lateglacial and Holocene environmental
- 1698 changes in Ganges plain, Northern India. *Quaternary Science Reviews*, 23, 145-159.
- 1699 doi:10.1016/j.quascirev.2003.10.005
- 1700 Shipton, Z.K. & Cowie, P.A. (2003). A conceptual model for the origin of fault damage
- zone structures in high-porosity sandstone. *Journal of Structural Geology*, 25, 333–

1702 345. https://doi.org/10.1016/S0191-8141(02)00037-8

- 1703 Sinha, A., Cannariato, K. G., Stott, L. D., Li, H. C., You, C. F., Cheng, H., Edwards, R.
- 1704 L., & Singh, I. B. (2005). Variability of southwest Indian summer monsoon
- 1705 precipitation during the Bølling-A° llerød. Geology, 33 (10), 813-816, doi:
- 1706 10.1130/G21498.1
- 1707 Sinha, R., Bhattacharjee, P. S., Sangode, S. J., Gibling, M. R., Tandon, S. K., Jain, M., &
- 1708 Godfrey-Smith, D. (2007). Valley and interfluve sediments in the Southern Ganga
- 1709 plains, India: Exploring facies and magnetic signatures. Sedimentary Geology, 201,
- 1710 386-411. doi:10.1016/j.sedgeo.2007.07.004

- 1711 Sinha, S., Suresh, N., Kumar, R., Dutta, S., & Arora, B. R. (2010). Sedimentologic and
- geomorphic studies on the Quaternary alluvial fan and terrace deposits along the
- 1713 Ganga exit. *Quaternary International*, 227, 87-103.
- 1714 doi:10.1016/j.quaint.2009.09.015
- 1715 Sinha, R., Ahmad, J., Gaurav, K., & Morin, G. (2014). Shallow subsurface stratigraphy
- 1716 and alluvial architecture of the Kosi and Gandak megafans in the Himalayan
- 1717 foreland basin, India. Sedimentary Geology, 301, 133-149.
- 1718 http://dx.doi.org/10.1016/j.sedgeo.2013.06.008
- 1719 Skolasińska, K. (2014). Inquiry of levee formation by grain size analysis A case study
- 1720 from the Warta River (central Poland). *Catena*, 122, 103-110.
- 1721 http://dx.doi.org/10.1016/j.catena.2014.06.014
- 1722 Srivastava, P., Singh, I. B., Sharma, S., Shukla, U. K., & Singhvi, A. K. (2003a).. Late
- 1723 Pleistocene-Holocene hydrologic changes in the interfluve areas of the central
- 1724 Ganga Plain, India. Geomorphology, 54, 279-292. doi:10.1016/S0169-
- 1725 555X(02)00361-6
- 1726 Srivastava, P., Singh, I. B., Sharma, M., & Singhvi, A. K. (2003b). Luminescence 1727 chronometry and late Quaternary geomorphic history of the Ganga Plain, India.
- 1728 Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 15-41.

1729	doi:10.1016/S0031-01820	03)00384-5
			/

- 1730 Srivastava, P., Rajak, M. K., & Singh, L.P. (2009). Late Quaternary alluvial fans and
- paleosols of the Kangra basin, NW Himalaya: Tectonic and paleoclimatic
 implications. *Catena*, 76, 135-154. doi:10.1016/j.catena.2008.10.004
- 1733 Suresh, N., Bagati, T. N., Kumar, R., & Thakur, V. C. (2007). Evolution of Quaternary
- alluvial fans and terraces in the intramontane Pinjaur Dun, Sub-Himalaya, NW India:
- interaction between tectonics and climate change. *Sedimentology*, 54, 809-833. doi:
- 1736 10.1111/j.1365-3091.2007.00861.x
- 1737 Thakur, V.C., Joshi, M., Sahoo, D., Suresh, N., Jayangondapermal, R., & Singh, A. (2014).
- 1738 Partitioning of convergence in Northwest Sub-Himalaya: estimation of late Qua-
- ternary uplift and convergence rates across the Kangra reentrant, North India.
- 1740 International Journal of Earth Sciences, 103, 1037–1056.
- 1741 http://dx.doi.org/10.1007/s00531-014-1016-7.

1742 Tsukamoto, S., Asahi, K., Watanabe, T., & Rink, W. J. (2002). Timing of past glaciations

- in Kanchenjunga Himal, Nepal by optically stimulated luminescence dating of tills.
- 1744 Quaternary International, 97-98, 57-67. https://doi.org/10.1016/S1040-
- 1745 6182(02)00051-4

1746 Ulak, P. D. (2009). Lithostratigraphy and late Cenozoic fluvial styles of Siwalik Group

1747	along Kankai River section, east Nepal Himalaya. Bulletin of the Department of
1748	Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 12, 2009, pp. 63–74.
1749	Vermeesch, P. (2009). Radial Plotter: a Java application for fission track, luminescence
1750	and other radial plots, Radiation Measurements, 44, 4, 409-410.
1751	Vogel, J. S., Southon, J. R., Nelson, D. E., & Brown, T. A. (1984). Performance of
1752	catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear
1753	Instruments and Methods in Physics Research Section B: Beam Interactions with
1754	Materials and Atoms, 5 (2), 289-293. https://doi.org/10.1016/0168-583X(84)90529-
1755	9
1756	Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J.,
1757	Dykoski, C. A., & Li, X. (2001). The Holocene Asian Monsoon: Links to solar
1758	changes and North Atlantic climate. Science, 308 (5723), 854-857. DOI:
1759	10.1126/science.1106296
1760	Wennbnerg, O., Casini, G., Jahanpanah, A., Lapponi, F., Ineson, J., Wall, B., Gilespie, P.,
1761	(2013). Deformation bands in chalk, examples from the Shetland Group of the
1762	Oseberg Field, North Sea, Norway. Journal of Structural Geology, 56, pp. 103 – 117.
1763	https://doi.org/10.1016/j.jsg.2013.09.005

1764 Wesnousky, S. G., Kumahara, Y., Chamlagain, D., Pierce, L. K., Karki, A., & Gautam, D.

- 1765 (2017). Geological observations on large earthquakes along the Himalayan frontal
- fault near Kathmandu, Nepal. *Earth and Planetary Science Letters*, 457, 366-375.
- 1767 https://doi.org/10.1016/j.epsl.2016.10.006
- 1768 Wesnousky, S. G. (2020). Great pending Himalaya earthquakes. *Seismological Research*
- 1769 *Letters*, 91 (6), 3334-3342. https://doi.org/10.1785/0220200200
- 1770 Wickert, A. D., Martin, J. M., Tal, M., Kim, W., Sheets, B., & Paola, C. (2013). River
- 1771 channel lateral mobility: metrics, time scales, and controls. *Journal of Geophysical*

1772 *Research*, 118 (2), 396-412. https://doi.org/10.1029/2012JF002386

- 1773 Willett, S. D., & Brandon, M. T. (2002). On steady states in mountain belts. *Geology*, 30
- 1774 (2), 175-178. https://doi.org/10.1130/0091-
- 1775 7613(2002)030<0175:OSSIMB>2.0.CO;2
- 1776 Wilson, J., Goodwin, L., Lewis, C., (2003). Deformation bands in nonwelded ignimbrites:
- 1777 Petrophysical controls on fault-zone deformation and evidence of preferential fluid

1778 flow. Geology 31, pp. 837 – 840. https://doi.org/10.1130/G19667R.1

- 1779 Wintle, A.G. & Murray, A.S. (2006). A review of quartz optically stimulated
- 1780 luminescence characteristics and their relevance in single-aliquot regeneration
- dating protocols. *Radiation Measurements*, 41(4): pp369-391.
- 1782 Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., & Svensson, A. (2010).

1783 Millennial-scale variability during the last glacial: The ice core record. *Quaternary*

1784 *Science Reviews*, 29, 2828-2838. doi:10.1016/j.quascirev.2009.10.013

- 1785 Wu, Y., Wang, S., & Zhou, L. (2011). Possible factors causing older radiocarbon age for
- bulk organic matter in sediment from Daihai Lake, north China. *Radiocarbon*, 53, 2,
- 1787 359-366. https://doi.org/10.1017/S0033822200056617
- 1788 York, D., & Evensen, N. M. (2004). Unified equations for the slope, intercept, and
- standard errors of the best straight line. *American Journal of Physics*, 72 (3), 367.
- 1790 https://doi.org/10.1119/1.1632486

Geochemistry, Geophysics, Geosystems

Supporting Information for

Fluvio-sedimentary response to late Quaternary climate and tectonics at the Main Frontal Thrust, central Nepal

Mari Hamahashi¹⁺, Judith A. Hubbard^{1, 2}, Rafael Almeida³, Samuel H. Haines¹,

Lewis A. Owen⁴, Sanjita Mishra⁵, and Soma Nath Sapkota⁵

¹Earth Observatory of Singapore, Nanyang Technological University, Singapore

²Asian School of the Environment, Nanyang Technological University, Singapore

³Department of Geological Sciences, San Diego State University, USA

⁴Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, USA

⁵Department of Mines and Geology, National Seismological Center, Nepal

[†]Now at Kobe University, Kobe Ocean-Bottom Exploration Center, Japan

Contents of this file

Text S1 to S2

Figures S1 to S8

Additional Supporting Information (Files uploaded separately)

Captions for Datasets S1 to S2

Introduction

This supporting information contains detailed descriptions of the dating methodologies employed in this study, and additional descriptions of the outcrop terraces and bedrock surrounding our study area. Text S1 contains the description of optically stimulated luminescence (OSL) dating methodology. Text S2 contains the description of radiocarbon (¹⁴C) dating methodology. Figure S1 shows the uninterpreted image of the Ratu river seismic profile (pre-stack depth-migrated, no vertical exaggeration) by Almeida et al. (2018) with co-located boreholes P6-P10 in this study. Figures S2 and S3 illustrate the features of bedrock Upper Siwalik Group and outcrop terraces surrounding our study area. Figure S4 shows regional satellite map of the Himalayan foreland and Ganges plain illustrating the rivers studied in this paper and the surrounding major rivers. Figures S5 and S6 show data of measured luminescence and equivalent dose of samples and the analysis of two-mixing model used to obtain OSL age. Figure S7 shows the calibration data of radiocarbon age to calendar years. Figure S8 shows the locations of previous studies in other foreland regions cited in this paper. Dataset S1 contains our core description data (raw data) presented in this paper. Dataset S2 contains the geotechnical report created by the drilling company.

Text S1. Optically stimulated luminescence (OSL) dating

Eighteen OSL samples were chosen from relatively well-sorted, silt to fine sand identified from surrounding cores at Sites P2, P3, P4, P6, P7, and P9, and were measured for quartz OSL at the University of Cincinnati and North Carolina State University in the USA. We avoided poorly-sorted fluvial sediment (sand with pebbles) due to risk of partial bleaching during fluvial transport, and selected well-sorted fluvial sediment (silty sand to clay). The samples were opened in the Luminescence Dating Laboratory under safe light conditions. The end of each sample (approximately 1 inch) was first removed, and were dried to determine water content. The sediment from the ends were then crushed and sent to the Activation Laboratories Limited in Ancaster, Ontario, Canada for Major Elements Fusion ICP/MS/Trace Elements analysis to determine the U, Th, Rb and K concentrations for dose rate calculations (Table 2).

The remaining samples were pretreated with 10% HCl and 10% H_2O_2 to remove carbonates and organic matter, respectively. The pretreated samples were rinsed in water, dried and sieved to obtain the 90-150 µm particle size fraction. A sub-fraction (~20 g) of

each sample was etched using 44% HF acid for 80 minutes to remove the outer alpha irradiated layer from quartz particles. This treatment also helps dissolve any feldspars present. Any fluorides precipitated during HF treatment were removed using concentrated HCl for 30 min. The quartz samples were then rinsed in distilled water and acetate, and dried and sieved to obtain grain size 90-150 μ m in diameter. Next, a low-field-controlled Frantz isodynamic magnetic separator (LFC Model-2) was used to separate feldspar and magnetic minerals from quartz in the 90-150 μ m particle size fraction following the method of Porat (2006), with the forward and side slopes set at 100° and 10°, respectively, within a variable magnetic field. The quartz was sieved using a 90 μ m mesh to remove any grains smaller than 90 μ m, so that the 90-150 μ m fraction could be used for OSL measurement.

An automated Riso OSL reader model TL-DA-20 was used for OSL measurements and irradiation. Aliquots, containing approximately several hundred grains of the samples, were mounted onto ~6 mm-diameter stainless steel discs as a small central circle of ~3 mm in diameter. Aliquots were first checked for feldspar contamination using infrared stimulated luminescence (IRSL) at room temperature before the main OSL measurements were undertaken (Jain and Singhvi, 2001). The samples that did not pass the IRSL test were etched in 40% HF for further 30 minutes to remove any feldspar, followed by 10% HCl treatment and sieving again. The samples then passed the IRSL test and was used for OSL dating. Aliquots of the samples were illuminated with blue LEDs stimulating at a wavelength of 470 nm (blue light stimulated luminescence). The detection optics comprised Hoya U-340 and Schott BG-39 color glass filters coupled to an EMI 9235 QA photomultiplier tube. The aliquots were irradiated using a ⁹⁰Sr/⁹⁰Y beta source. The single aliquot regeneration (SAR) method (Murray and Wintle, 2000; 2003) was used to determine the dose rate for age estimation. Only aliquots that satisfy the criterion of a recycling ratio not more than 10% were used in determining equivalent dose. A preheat of 240°C for 10 s was used and the OSL signal was recorded for 40 s at 125°C. OSL sensitivity of the samples had a high signal to noise ratio. Dose recovery tests (Wintle and Murray, 2006) indicate that a laboratory dose of 10 Gy could be recovered to within 10% by the SAR protocol, suggesting that the protocol was appropriate.

Table 2 presents the radioisotope, water content, and cosmic dose, dose rate, equivalent dose, and OSL age for the samples. Dose rate calculations follows the details highlighted in the captions of Table 2 and confirmed using the Dose Rate and Age Calculator (DRAC) of Duncan et al. (2015). The dose rates for the samples were 3.21 ± 0.19 and 3.98 ± 0.24 Gy/ka, which is within the normal range for terrestrial sediments. The Th/U

ratio is consistent with there being no problems of leaching of radionuclides from the sediment. Natural water content was ~10%, and we assumed a conservative value with a large uncertainty (\pm 5%) to account for any possible changes in water content over the geologic history.

The natural OSL signal for all aliquots were at least two orders of magnitude greater than background signal. The shine down curves (luminescence stimulated in the lab over 40 s of exposure to light) for all aliquots showed fast decay patterns that confirm that the signal is the fast component of luminescence, which is dominant in quartz. This provides confidence that quartz would have likely been bleached quickly if only briefly exposed to sunlight. Figure S3 shows an example of shine down curves for the dated samples. Figure S3 also shows examples of the regenerative curves, illustrating good growth and recuperation. Dose rate recovery tests for the samples showed that they have good recovery within the uncertainty of the laboratory measurement and 10% of the applied dose of 100 s.

At least thirty-two aliquots were measured for each sample. Of those several aliquots were saturated (»200 Gy), and many aliquots failed the recuperation (especially for sample P3-39) and recycling criteria (Table 2). The remaining aliquots were used to determining a likely equivalent dose for the sample (Table 2). The spread of equivalent dose varied between the samples and are shown in Figure S4. In all the samples (especially P3-39), the large spread of equivalent dose values (dispersion >25%) and the significant number of aliquots that were saturated suggests partial bleaching problems (i.e., not all the sand grains were totally rest by sunlight before burial). This can result in an overestimate of the age. To address this issue, we use a minimum age model separating the population of equivalent dose using a two-mixing model (Figure S4; Vermeesch, 2009), and we use the equivalent dose value of the minimum peak to calculate the age (Table 2 and Figure S4). This provides best estimation of ages (see ages highlighted in bold in Table 2). For completeness and comparison, the average and weighted averages ages are provided in Table 2. The average ages are overestimates because of partial bleaching issue and have large uncertainties associated with them, but all our data is included in those ages. The weighted averages skew the ages towards the lower range because of the smaller associated uncertainties with low value aliquots. These ages are similar to the two-mixing model ages, adding confidence in our twomixing model ages (Table 2). In this study, we use average OSL ages for samples that showed \leq 25% dispersion of the aliquots, and 2-mixing model OSL ages for samples that yielded > 25% dispersion (Table 2).

Text S2. Radiocarbon (¹⁴C) dating

Fourteen samples of organic sediment were retrieved from the cores at Sites P2, P3, and P8, and measured for ¹⁴C dating at Beta Analytics Inc., following standard laboratory procedures. Given the absence of charcoals and other macrofossils, the bulk organic fraction (carbon content: 0.06-1.62%) of less than 180 μ m in size, inclusive of humic and humins, were used for dating. The samples were first visually inspected for size, homogeneity, debris, inclusions, clasts, grain size, organic constituents and potential contaminants, before they were dispersed in de-ionized water and sieved through a 180 μ m mesh. The samples were then bathed in 1.25 N HCl at 90°C for a minimum of 1.5 hours to ensure removal of carbonates, followed by serial de-ionized water rinses at 70°C until neutrality was reached. Any debris or micro-rootlets were discarded during these rinses. After drying in an oven at 100°C for 12-24 hours, HCl was applied to a representative sub-sample under the microscope to validate the absence of carbonate. Microscopic examination was performed to assess its characteristics and to determine the appropriate sub-sample for AMS dating.

The pretreated samples were then oxidized to CO₂ by combustion at 1000-1200°C. The CO₂ generated was cryogenically purified by removing water vapor and any noncombustible/condensable gases, and were converted to graphite (Vogel et al., 1984; Manning and Reid, 1977). AMS counting was performed by charging the atoms in the sample graphite using NEC accelerator mass spectrometers. Stable isotope ratio ($^{13}C/^{12}C$ or $\delta^{13}C$) values were measured separately by Thermo isotope ratio mass spectrometers (IRMS). The conventional radiocarbon age was calculated using the Libby half-life (5568 years), and were corrected for total isotopic fractionation effects. Errors reported from the laboratory are based on 1 sigma counting statistics, and the conventional ages and their sigmas were rounded to the nearest 10 years. Calibration of the conventional age were performed using the 2013 calibration databases (INTCAL13) (Reimer et al., 2013), high probability density range method and Bayesian probability analysis (Ramsey, 2009) (Fig. S5).

 δ^{13} C values of bulk organic fraction can be referred as a proxy to infer intensity of regional precipitation, in the recognition that differences in δ^{13} C values of plants are controlled by differences in metabolic processes in C₃ and C₄ plants (e.g. Kohn, 2010). It serves as a proxy because C₃ plants are generally known to flourish under moderate temperature and wet climate, compared to C₄ plants which favor cold and dry climate (e.g. O'Leary, 1981; Farquhar et al. 1982). δ^{13} C values of C₃ plants are reported to range between -35 and -22‰, whereas C₄ plants range between -20 and -9‰ (e.g. Osmond et al., 1982). In this study, we placed a cut-off around -15 to 20‰ to infer differences in C_3 and C_4 plants and climate.

Figure S1. Ratu river seismic profile (pre-stack depth-migrated, no vertical exaggeration) by Almeida et al. (2018), uninterpreted image. CDP spacing is 2.5 m. Depth measurements are with respect to sea level (sl). White vertical bars show location of borehole sites P6–P10 in this study. Interpretation by Almeida et al. (2018) is shown in Figure 3a (main text).

С

Sedimentary processes in fluvial sediments

Incision of gravels into finer sediments

(arrows: bedding orientation) Deposition and cross-bedding

Figure S2. (a) Representative images of bedrock Upper Siwalik Group observed from the outcrops in the study area. Left panel: Gray silt (partially oxidized). Right panel: Grayish orange silt and fine sand. **(b)** Representative images of terrace outcrops in the study area. Left panel: Features of a strath terrace, showing tilted Upper Siwalik bedrock (sandstones) incised and buried by more recent fluvial sediments (gravels), bounded by white dotted line. Right panel: Features of a fill terrace, showing thick sequence of recent fluvial sediments, interbedded with fine sand/gravels (bounded by white dotted lines). The bedrock is not exposed in fill terraces. **(c)** Representative images of terrace outcrops showing sedimentary processes in fluvial sediments. Yellow arrows mark bedding orientations. Left panel: Beveled erosional surface between finer and coarser fluvial sediments. Right panel: Cross-bedding observed in sandstone.

Figure S3. Views of exposures along river terraces surrounding borehole sites in this study. Map shows locations of borehole Sites P1-P3. Blue lines in map show locations of elevation profiles for (a)-(e). (a) Elevation profile across i-i' and representative images of river terrace outcrops along the Lakshmi River (location is indicated in blue box in elevation profile). River terrace sediments consist of mainly alluvial fill sediments. (b) Elevation profile across i-ii' and representative images of terrace outcrops along the Bhabsi River (location is indicated in blue box in elevation profile). River terrace sediments consist of interlayers of fine sand and gravels. (c) Elevation profile across iiiiii' and representative images of terrace outcrops along the Lakshmi River (location is indicated in blue box in elevation profile). River terrace sediments consist of well-sorted silt, paleosol, fine sand and gravels. (d) Elevation profile across iv-iv' and representative images of terrace outcrops along the Lakshmi River (location is indicated in blue box in elevation profile). Terrace sediments consist of well-sorted silt, fine sand and gravels. (e) Elevation profile across v-v' and representative images of terrace outcrops along the Bhabsi River (location is indicated in blue box in elevation profile). Terrace consist of alluvial fill sediments.

Figure S4. Regional satellite image showing the rivers studied in this paper and the surrounding major rivers flowing into the Himalayan foreland and to the Ganges plain. (a) In contrast to the major transverse Himalayan rivers such as the Koshi, Gandak, and the Ganges rivers, which have large drainage basins further upstream (High Himalaya), the drainage of the rivers in this study (white square closed-up in b.) are limited to the southern part of the Siwalik Range and are smaller ("footwall-fed rivers"). As the rivers travel hundreds of kilometers towards the southeast, their channel widths decrease (white arrows). Some of the channels are abandoned, while some merge with the Koshi and the Ganges rivers. (b) Close-up map showing the rivers in this study and their drainage basins within the Siwalik Range. A: Lakshmi river. B: Bhabsi river. C: Ratu river. The width of the rivers decreases downstream (white arrows). Satellite image uses map from Google Earth imagery, Image Landsat/Copernicus.

P3-39M

P2-27m

P2-31m

P2-31 (Representative saturated curve)

P2-41m

P2-41 (Representative saturated curve)

P6-33m

Figure S5. Examples of typical OSL shine down curves (luminescence stimulated in the lab over 40 s of exposure to light) (right panels) and regenerative curves (left panels) for the measured samples. The shine down curves for all aliquots showed fast decay patterns that confirm that the signal is the fast component of luminescence, which is dominant in quartz. Bottom panel shows the decay curve of infrared stimulated luminescence (IRSL).

P3-49M

(n=30)

P3-41M

400

350 300

250

200

_____150 _____129

P3-39M

Figure S6. Equivalent doses for measured samples plotted as histograms (number of aliquots) and probability against equivalent dose (Gy) (right panels), and radial plots for each sample using a two-mixing model (left panels). The spread of equivalent dose varies among the samples. A minimum age model separating the population of equivalent dose was employed using a two-mixing model (Vermeesch, 2009). We used the equivalent dose value of the minimum peak from this analysis to calculate the age (Table 2).

Organic sedim

Figure S7. Radiocarbon dating results measured at Beta Analytics Inc., and calibration of radiocarbon age to calendar years for the 18 samples reported in this paper. Sample information is shown above each chart. Calibration of the conventional radiocarbon age

were performed using the 2013 calibration databases (INTCAL13) (Reimer et al., 2013), high probability density range method and Bayesian probability analysis (Ramsey, 2009).

Figure S8. Regional satellite map showing locations of previous studies in other foreland regions (Pratt et al., 2002; 2004; Bookhagen et al., 2005; 2006; Kumar et al., 2007; Sinha et al., 2007; Suresh et al., 2007; Sinha et al., 2010; Dutta et al., 2012; Goodbred et al., 2014; Kar et al., 2014; Pickering et al., 2014; 2017; Densmore et al., 2016; Dey et al., 2016) and this study. Satellite image uses map from Google Earth imagery, Image Landsat/Copernicus.

Dataset S1. Core description sheets for Sites P1-P10, which are the raw data from which we created the core logs in this study. The files contain excel spreadsheets that include our lithological and structural data for each site.

Dataset S2. Geotechnical reports created by the drilling company (Geotech Solutions International Pvt. Ltd.). The files contain drilling procedures, photos, on-site reports, core and sample handling, and on-site logs of the cores.