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Abstract

Floods drive dynamic and deeply uncertain risks for people and infrastructures. Uncertainty characterization is a crucial step

in improving the predictive understanding of multi-sector dynamics and the design of risk-management strategies. Current

approaches to estimate flood hazards often sample only a relatively small subset of the known unknowns, for example the

uncertainties surrounding the model parameters. This approach neglects the impacts of key uncertainties on hazards and system

dynamics. Here we mainstream a recently developed method for Bayesian inference to calibrate a computationally expensive

distributed hydrologic model. We compare three different calibration approaches: (1) stepwise line search, (2) precalibration or

screening, and (3) the new Fast Model Calibrations (FaMoS) approach. FaMoS deploys a particle-based approach that takes

advantage of the massive parallelization afforded by modern high-performance computing systems. We quantify how neglecting

parametric uncertainty and data discrepancy can drastically underestimate extreme flood events and risks. Precalibration

improves prediction skill score over a stepwise line search. The Bayesian calibration improves the uncertainty characterization

of model parameters and flood risk projections.
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Key points: 14 

• We implement a sequential Monte Carlo particle-based Fast Model Calibrations (FaMoS) 15 
approach to improve the characterization of distributed hydrologic model parameters.  16 

• FaMos demonstrates a relatively higher prediction skill than stepwise line search and 17 
precalibration. 18 

• Accounting for model parametric uncertainty improves the projections of flood damage. 19 
 20 

  21 
Abstract 22 

Floods drive dynamic and deeply uncertain risks for people and 23 

infrastructures.  Uncertainty characterization is a crucial step in improving the predictive 24 

understanding of multi-sector dynamics and the design of risk-management strategies.  Current 25 

approaches to estimate flood hazards often sample only a relatively small subset of the known 26 

unknowns, for example the uncertainties surrounding the model parameters. This approach 27 

neglects the impacts of key uncertainties on hazards and system dynamics. Here we mainstream a 28 

recently developed method for Bayesian inference to calibrate a computationally expensive 29 

distributed hydrologic model. We compare three different calibration approaches: (1) stepwise line 30 

search, (2) precalibration or screening, and (3) the new Fast Model Calibrations (FaMoS) 31 

approach. FaMoS deploys a particle-based approach that takes advantage of the massive 32 

parallelization afforded by modern high-performance computing systems. We quantify how 33 

neglecting parametric uncertainty and data discrepancy can drastically underestimate extreme 34 

flood events and risks. Precalibration improves prediction skill score over a stepwise line search. 35 

The Bayesian calibration improves the uncertainty characterization of model parameters and flood 36 

risk projections. 37 

 38 
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1. Motivation and Introduction 39 

Floods pose major risks to people and property (Alfieri et al., 2017; Wing et al., 2018; 40 

Winsemius et al., 2015). These risks are dynamic and deeply uncertain (Merz et al., 2010; Read & 41 

Vogel, 2015; Ruckert et al., 2019; Zarekarizi et al., 2020). It is important to characterize the 42 

uncertainties surrounding flood hazards in order to understand the impacts on multi-sector 43 

dynamics and to inform the design of risk-management strategies (Boulange et al., 2021; Chester 44 

et al., 2020; Liu & Merwade, 2018; Salas et al., 2018b; Wasko et al., 2021; Wong & Keller, 2017). 45 

Hydrologic models are commonly used to understand hydrological processes, predict the 46 

response of hydrological systems to changing stresses, and provide boundary conditions to 47 

estimate flood hazards and risks (Bates et al., 2021; Brunner et al., 2020; Judi et al., 2018; Koren 48 

et al., 2004; Rajib et al., 2020; Thorstensen et al., 2016). However, hydrologic projections are 49 

subject to uncertainties such as from model structures, parameters and forcings (Gupta et al., 2012; 50 

Kavetski et al., 2006;  Beven, 2014; Fisher & Koven, 2020; Hu et al., 2019; Mendoza et al., 2015). 51 

Parametric uncertainty can arise, for example,  from the epistemic uncertainties about model 52 

parameters (Vrugt et al., 2003), the associated prior distributions (Tang et al., 2016), spatial-53 

resolutions and objective functions (Melsen et al., 2019), and different choices of calibration 54 

approaches (Kavetski et al., 2018). Hydrologic models need to resolve the complex response of 55 

multiple processes (e.g., land surface characteristics, soil properties and climate variability) with 56 

strong nonlinear interactions and often few observations. Characterizing parametric uncertainty 57 

can be critical to improve prediction credibility and inform decision-making, for example, in the 58 

context of water-resources planning and flood-risk management (Herman et al., 2013; Ruckert et 59 

al., 2019; Wong & Keller, 2017; Zarekarizi et al., 2020). 60 

Previous studies provide valuable new insights on flood hazard and risk estimates using model 61 

simulations (Bates et al., 2021; Judi et al., 2018; Rajib et al., 2020; Sanders et al., 2020; Sharma et 62 

al., 2021; Wing et al., 2018). For example, Judi et al. (2018) demonstrates an integrated multimodel 63 

multiscale simulation approach to evaluate social, economic, and infrastructure resilience to future 64 

flooding. Rajib et al. (2020) develops a coupled land surface hydrologic and river hydraulic 65 

modeling framework to provide regional flood hazard and risk estimates. Bates et al. (2021) 66 

presents estimates of current and future flood risk for all properties in the conterminous United 67 

States using a combined modeling approach considering river, coastal, or rainfall flooding. These 68 

studies typically obtain an optimal parameter set that produces the best possible agreement 69 
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between simulated and observed streamflow hydrographs at target locations. These previous 70 

studies break important new ground, but are mostly silent on the impacts of parametric 71 

uncertainties on hazards and dynamics. Neglecting parametric uncertainties can underestimate the 72 

tails of flood hazard probability distribution (Bates et al., 2021; Mendoza et al., 2015; Rojas et al., 73 

2020; Salas et al., 2018a), and can result in poor decisions and outcomes (Ruckert et al., 2019; 74 

Wong & Keller, 2017; Zarekarizi et al., 2020). 75 

Several studies on hydrologic model calibration have focused on manually adjusting a 76 

subset of model parameters (Bitew & Gebremichael, 2011; Siddique & Mejia, 2017). These 77 

manual calibrations typically rely on visual inspection of streamflow hydrograph and a trial and 78 

error-based procedure; hence, this method can be rather labor-intensive and time-consuming 79 

(Lahmers et al., 2021; Siddique & Mejia, 2017). A conceptual intuitive and relatively simple to 80 

implement approach for uncertainty characterization is the Generalized Likelihood Uncertainty 81 

Estimation (GLUE) method (Beven and Binley, 1992). The GLUE method has many advantages 82 

and can provide very useful insights, but several studies point to potential improvements with 83 

regard to subjective decisions on the likelihood function and implementing a statistically consistent 84 

error model (Blasone et al., 2008; Stedinger et al., 2008). A more complex approach adopted in 85 

this area is automatic parameter optimization (Kamali et al., 2013; Van Liew et al., 2005). 86 

Automatic calibration relies on systematic search approaches to find the best parameter values 87 

based on predefined single- and/or multi-objective functions (Kamali et al., 2013). Some studies 88 

use surrogate methods such as Gaussian process-based emulators to help identify best-fit 89 

parameters  (Gou et al., 2020; Pianosi et al., 2016; Razavi & Tolson, 2013). Gou et al. (2020) 90 

presents an automatic calibration framework that combines sensitivity analysis and surrogate-91 

based optimization for calibrating catchment-specific hydrologic model parameters. Surrogate-92 

based methods are typically limited to cases with relatively fewer model parameters because 93 

training a surrogate model can be computationally prohibitive with high-dimensional inputs due 94 

to the large number of training data required (Hwang & Martins, 2018; Lee et al., 2020; Liu & 95 

Guillas, 2017) or repeated evaluations of the gradient of the model output with respect to the input 96 

parameters (Constantine et al., 2014; Lataniotis et al., 2020).  97 

Bayesian calibration of hydrologic models have become increasingly popular (Hsu et al., 98 

2009; Jeremiah et al., 2011; Kavetski et al., 2018; Raje & Krishnan, 2012; Razavi & Tolson, 2013; 99 

Shafii et al., 2015; Su et al., 2018; Zhu et al., 2018). For example, Vrugt et al., (2008) employ an 100 
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adaptive Metropolis Markov chain Monte Carlo (MCMC) sampling scheme-Differential 101 

Evolution Adaptive Metropolis (DREAM) algorithm to explore the entire parameter space of a 102 

hydrologic model. Different variants of DREAM algorithm (Vrugt et al., 2008; Vrugt et al., 2009; 103 

Laloy and Vrugt, 2012) demonstrate the value of Bayesian approaches on model calibration. 104 

Jeremiah et al. (2011) demonstrates an improved efficiency of Sequential Monte Carlo approach 105 

over the Adaptive Metropolis MCMC samplers in exploring the parameter space where the optimal 106 

solutions lie in the tails of the prescribed prior distribution. Su et al. (2018) uses a Bayesian 107 

hierarchical model to calibrate the Priestly–Taylor Jet Propulsion Laboratory model using 108 

observed evapotranspiration measurements. Given the relatively short model run times, the 109 

hierarchical model can be fit using the Differential Evolution Markov Chain (Braak, 2006; Storn 110 

& Price, 1997), a population MCMC algorithm. Zhu et al. (2018) calibrates eight parameters of a 111 

conceptual water balance model using a Particle Evolution Metropolis Sequential Monte Carlo 112 

(PEM-SMC). The PEM-SMC algorithm evaluates the water balance model 2, 000 times 113 

sequentially, which may be computationally prohibitive for distributed hydrologic models with 114 

longer run times. These studies break important new ground, but focus on calibrating (1) average 115 

response of process over the watershed using a lumped hydrological model; (2) limited number of 116 

model parameters; (3) low-to-moderate flow threshold; and (4) relatively small basins. However, 117 

the computational requirement can be drastically larger for fully distributed hydrological modeling 118 

over the large basin and with a large number of sensitive parameters.  119 

Here we expand on previous studies and demonstrate an implementation of a  Bayesian model 120 

calibration framework by: (1) considering a computationally expensive distributed hydrologic 121 

model; (2) taking advantage of the massive parallelization afforded by modern high-performance 122 

computing systems; (3) focusing on a  large number of extreme streamflow events; (4) 123 

characterizing model parametric uncertainty, and (5) assessing the impacts of uncertainty 124 

characterization on projected flood-hazards and -risks.  125 

 126 

2. Bayesian Model Calibration  127 

Various algorithms exist for characterizing hydrologic model parametric uncertainty, 128 

including the multicriteria approach (Gupta et al., 1998), Generalized likelihood Uncertainty 129 

Estimation (GLUE) (Beven and Binley, 1992), Shuffled Complex Evolution Metropolis algorithm 130 

(SCEM-UA) (Duan et al., 1992; Sorooshian et al., 1993), Shuffled Complex Evolution Metropolis 131 
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(SCEM-UA) algorithm (Vrugt et al., 2003), and Differential Evolution Adaptive Metropolis 132 

(DREAM) (Vrugt 2008; Laloy and Vrugt 2012; Vrugt et al., 2009), among others. 133 

Bayesian computer model calibration (Bayarri et al., 2007a; Higdon et al., 2004; Kennedy & 134 

O’Hagan, 2001; Sacks et al., 1989) typically addresses several (potentially overlapping) 135 

objectives: (1) estimate the input parameters (in other words: what is the best parameter estimates); 136 

(2) quantify the parametric uncertainty (in other words: what is the joint probability density 137 

function of the parameters); and (3) infer the parameters of the observational error model and 138 

discrepancy terms. These parameter estimates are impacted by factors such as model-observation 139 

discrepancy (Bayarri et al., 2007b; Brynjarsdóttir & OʼHagan, 2014; Kennedy & O’Hagan, 2001) 140 

and measurement errors. The Bayesian model calibration framework (see the discussion in 141 

Kennedy and O’Hagan, 2001) facilitates both parameter estimation and uncertainty quantification 142 

while also accounting for external sources of uncertainty (e.g., discrepancy and measurement 143 

errors). For each model parameter, we specify prior distributions based on expert knowledge and 144 

then update the priors by comparing the model runs to the observed data. The update proceeds by 145 

placing more weight on the parameter sets whose corresponding model runs align better with the 146 

observations. The resulting posterior (updated) distribution naturally provides both point and 147 

interval estimates of the model parameters in light of the newly acquired data. Let !	be the vector 148 

of the model parameters, #!  the variance of the (assumed) independent and identically distributed 149 

observational error, and $ the discrepancy term. The posterior distribution %&(!, #!, $|	*) is defined 150 

as: 151 

%&(!, #!, $|	*) ∝ -(!, #!, $|*) 	× %(!) × %(#!) × %($), 152 

where %&(!, #!, $|	*) and %(⋅) denotes the probability density function of the posterior and prior 153 

distributions, respectively. -(!, #!, $|*) is the likelihood function based upon the hydrological 154 

model output, discrepancy term, and the observational error model (see Appendix).  155 

For complex deterministic models, the posterior distribution may not be available in closed 156 

form (Higdon, 2003; Oakley, 2009).  In this case, a common approach is to approximate the 157 

posterior via sampling approaches such as Markov chain Monte Carlo (MCMC) or Sequential 158 

Monte Carlo.  The choice of sampling approaches in influenced by several factors including: (1) 159 

the computational time requirements for a single model evaluation; (2) the number of model 160 

parameters to be calibrated, (3) the degree to which the algorithm can be parallelized, (4) the 161 

available computation environment, and (5) the available time for the computations. Markov chain 162 
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Monte Carlo methods with the true model can be an excellent choice for models with short single 163 

model run times (Asher et al., 2015; Gramacy, 2020; Lee et al., 2020). Surrogate modeling (i.e. 164 

emulation-calibration) approaches replace the hydrologic model with a faster surrogate model 165 

within the calibration framework; however, constructing a high-fidelity surrogate model may be 166 

computationally prohibitive for high-dimensional input spaces (X. Liu and Guillas 2017; Gramacy 167 

2020). Sequential Monte Carlo (SMC) (Lee et al. 2020; Kalyanaraman et al. 2016; Papaioannou, 168 

Papadimitriou, and Straub 2016; Kantas, Beskos, and Jasra 2014; Morzfeld et al. 2018) methods 169 

can be a practical alternative for calibrating hydrological models with a larger number of input 170 

parameters. 171 

 172 

2.1. The Fast Model Calibrations (FaMoS) approach 173 

We use a sequential Monte Carlo particle-based approach that relies on massive 174 

parallelization afforded by a high-performance computing system to efficiently calibrate a 175 

distributed hydrologic model in a relatively large watershed with a number of extreme events. 176 

Fast Model Calibrations (FaMoS) approach (Lee et al., 2020) provides an approximation of 177 

the posterior distribution by (i)  generating an adaptive posterior incorporation schedule to preserve 178 

particle diversity; (ii) requiring very few Metropolis-Hastings updates in the mutation stages; 179 

and  (iii) lending itself to parallel operations distributed across thousands of processors. We 180 

provide technical details about FaMoS in the Appendix. 181 

FaMoS approximates the posterior distribution of the model parameters using a series of 182 

sampling, reweighting, and re-sampling steps. The basic premise of sampling-importance 183 

resampling (Gordon et al., 1993) is to draw independent samples from the model parameters’ prior 184 

distribution and retain the parameter sets whose corresponding outputs closely resemble the actual 185 

observations. Each parameter set is then assigned weights, which are proportional to the likelihood 186 

function L(0|Z). The parameter sets whose model outputs fit the observed data well are given 187 

larger weights and those that do not are assigned smaller weights. The (importance) weights 188 

1(!)	are defined as: 189 

																					1(!) = "($)
&($) =

'(($|*)
'($) ,                                                   (1) 190 

where 3(!) is the target function and 4(!)is the importance function. In this context, we specify 191 

the target function as the posterior distribution of the model parameters %&(!|*) and importance 192 
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function as the prior distribution of the parameters %(!). We approximate %&(!|*) using the 193 

weighted empirical distribution %5(!|*) defined as: 194 

																			%&(!|6) ≈ %5(!|*) = ∑ 1+
,-. (!(,))9(!(,)) ,                           (2) 195 

where 1(!(,))is the importance weight and 9:!(,);is a Dirac measure at !(,) for the i-th sample.  196 

In the fast particle-based approach (Lee et al. 2020), we draw an initial ensemble of model 197 

parameters (particles) from the prior distribution (i.e., importance function) and approximate the 198 

posterior distribution (target function) using the initial ensemble. When there is very little overlap 199 

in the high-probability regions of the prior and posterior distribution, the initial ensemble may not 200 

adequately approximate the posterior distribution due to: (1) weight degeneracy, where the vast 201 

majority of particles have near-zero weights; and (2) sample impoverishment, where we 202 

“resample” the existing particles based on the weights, and we are left with multiple copies of a 203 

few unique particles. When there is very little overlap in the high-probability regions of the prior 204 

and posterior distribution, the initial ensemble may not adequately approximate the posterior 205 

distribution due to: (1) weight degeneracy, where the vast majority of particles have near-zero 206 

weights; and (2) sample impoverishment. Sample impoverishment occurs when we are left with 207 

multiple copies of a few unique particles after a “resampling” stage. In FaMoS, the resulting 208 

particles are “resampled” through multinomial sampling based on the importance weights w(0i) 209 

then “mutated” or “jittered” using Metropolis-Hastings updates. Please see the Appendix for 210 

additional details. 211 

FaMoS (Lee et al, 2020) mitigates these issues by gradually building up to the posterior 212 

distribution, a technique from iterated batch importance sampling  (Chopin, 2002) and Sequential 213 

Monte Carlo. Here, we consider a series of intermediate posterior distributions where those earlier 214 

in the series closely resemble the prior distribution and those at the latter part better resemble the 215 

full posterior distribution. In the first cycle, we use particles from the prior distribution to 216 

approximate an earlier intermediate posterior distribution. In the subsequent cycles, we use 217 

samples from an intermediate posterior distribution to approximate a later intermediate posterior 218 

distribution. We end the algorithm when the target distribution is the final posterior distribution.  219 

For cycles t=1,...,T, the t-th intermediate posterior distribution is: 220 

%&/(!|	*) 	∝ 	 -(|*)0! 	× 	%(!),                          (3) 221 

where </denotes the incorporation factor such that 0 = <1 ≤ <. ≤. . . ≤ <23. ≤ <2 = 1. Note that 222 

the 0-th intermediate posterior distribution (%&1(!|	*)) is simply the prior distribution  %(!)	with 223 
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incorporation factor <1 = 0. Likewise, the T-th intermediate posterior distribution %&2(!|	*) is the 224 

full posterior distribution since <2 =1. At each time t, the target distribution is the t-th intermediate 225 

posterior distribution %&/(!|	*), and the prior is the intermediate posterior from the previous 226 

iteration %&/3.(!|	*). 227 

At the end of each cycle, there still may be many replicates of a few unique particles, or 228 

sample impoverishment. To increase the number of unique particles, we “jitter” or “mutate” the 229 

particles through a carefully constructed kernel function (Gilks & Berzuini, 2001; Li et al., 2014; 230 

Liu & West, 2001). To increase the number of unique particles at the end of each cycle (t), we 231 

“jitter” or “mutate” the particles through a carefully constructed kernel function (Gilks & Berzuini, 232 

2001; Li et al., 2014; Liu & West, 2001). Upon completion of the fast particle-based calibration 233 

algorithm, we are left with an ensemble of updated parameter sets (particles) which sensibly 234 

approximate the posterior distribution.  Lee et. al. (2020) also provides guidelines for choosing the 235 

number of cycles, how to mutate the particles, and how to construct these intermediate posterior 236 

distributions. We approximate the posterior distribution using “mutated” samples from the final 237 

(T-th) intermediate posterior distribution: 238 

																												%&(!|	*) = %&2(!|	*) 	≈ ∑ 12+
,-. (!A(,))9(!A(,))                          (4) 239 

where !A(,) is the i-th mutated particle, 12(!A(,)) are the corresponding weights from the T-th cycle, 240 

and 9(!A(,))is a Dirac measure at !A(,).  241 

 242 

3. Experimental Design 243 

We demonstrate the approach for a case study in the Susquehanna River basin, Pennsylvania, 244 

United States. Pennsylvania provides a relevant study area as it ranked second, tenth, and 245 

fourteenth in the United States in terms of the frequency of flash flood-related fatalities, injuries, 246 

and casualties in 1959-2005 (Ashley & Ashley, 2008). This region has experienced several 247 

devastating flooding events over the recent decades, including floods associated with the remnants 248 

of Hurricane Ivan (September 2004), late winter–early spring extratropical systems (April 2005), 249 

warm-season convective systems (June 2006), and tropical storm Lee (September 2011) (Gitro et 250 

al., 2014; Grumm, 2011). In Pennsylvania, the Federal Emergency Management Agency (FEMA) 251 

paid $953 million in property damages to National Flood Insurance Program participants between 252 

1975 and 2019 (FEMA, 2019).   253 

 254 
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 255 

 256 

Figure 1: Diagrammatic representation of distributed hydrological model calibration framework. 257 

The framework also demonstrates flood hazards and risk components. 258 

 259 

We use the National Oceanic and Atmospheric Administration's (NOAA) Hydrology 260 

Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004). Distributed 261 

hydrologic modeling accounts for the spatial variability of model inputs, parameters and states to 262 

analyze rainfall-runoff processes at desired locations within a river basin. Distributed modelling 263 

involves processing and storing large amounts of data required to solve numerous and complex 264 

physics-based equations at each grid cell. We run HL-RDHM in a fully distributed mode at a 265 

spatial resolution of 2 km. The 2 × 2 km2 resolution mainly allows for a more realistic 266 

representation of the stream network. Within HL-RDHM, we use the Sacramento Soil Moisture 267 
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Accounting model with Heat Transfer (SAC-HT) (Koren et al., 2004) to represent hillslope 268 

rainfall-runoff processes, and the SNOW-17 module (Anderson et al., 2006) to represent snow 269 

accumulation and melt. SAC-HT is a physics-based, conceptual model where the basin system is 270 

divided into regularly spaced, square grid cells to account for spatial heterogeneity and variability. 271 

Each grid cell, in turn, is composed of storage components that store and transmit water. The cells 272 

are ultimately connected to each other through the stream network system, that is, each cell acts as 273 

a hillslope capable of generating surface and subsurface runoff that discharges directly into the 274 

streams. The hillslope runoff, generated at each grid cell by the SAC-HT and SNOW-17, is routed 275 

to the stream network using a nonlinear kinematic wave algorithm (Koren et al., 2004). Further 276 

information about the HL-RDHM model can be found for example in Koren et al. (2004), Reed et 277 

al. (2004), and Anderson et al. (2006).  The HL-RDHM distributed hydrological model takes 278 

approximately 15 minutes per run on a single 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) 279 

processor on the Cheyenne cluster (Computational and Information Systems Laboratory, 2017). 280 

We use three main datasets: multisensor precipitation estimates, gridded near-surface air 281 

temperature, and streamflow. We use NOAA’s multisensor precipitation estimates and gridded 282 

near-surface air temperature products to run the hydrological model for parameter calibration 283 

purposes and to initialize the model. Multisensor precipitation estimates represent a continuous 284 

time series of hourly, gridded precipitation observations at 4 × 4 km2 cells, which are produced by 285 

combining multiple radar estimates and in situ rain-gauge measurements (Prat & Nelson, 2015; 286 

Rafieeinasab et al., 2015). The gridded near-surface air temperature data are derived by combining 287 

multiple temperature observation networks, including the meteorological terminal aviation routine 288 

weather report (METAR), USGS stations, and National Weather Service Cooperative Observer 289 

Program (Siddique & Mejia, 2017). We use streamflow observations from the United States 290 

Geological Survey gage 01554000 located at Susquehanna River at Sunbury, Pennsylvania. The 291 

selected gage station represents the drainage area of 47, 396 km2.  292 

We calibrate the model for the period of 2004-2008 and use 2009-2012 observations to 293 

evaluate the calibration performance. We use the year 2003 to spin up the model. As part of the 294 

calibration process, we select 12 out of the 17 model parameters associated with each model grid 295 

cell (Table S1). To improve calibration efficiency, basin-scale parameter multipliers, rather than 296 

the parameters in each grid, were calibrated and applied to the a-priori parameter grids (NWS, 297 

2011). We only consider the model parameters that have a strong influence on the model output 298 
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(see Figure S1). Exploring a higher-dimensional parameter space demands additional processors 299 

(particles) (Bain & Crisan, 2008; Jeremiah et al., 2011; Kantas et al., 2014) to sensibly calibrate 300 

the hydrological model. Selecting only the strongly influential model parameters can help reduce 301 

the computational costs considerably. This is, of course, an approximation and points to future 302 

research needs. The sensitive parameters are associated with different hydrodynamic processes 303 

related to baseflow, percolation, evaporation, snowfall, storm runoff, and channel routing (Table 304 

S1). These parameters are also suggested by several other studies (Gomez et al., 2019; Sharma et 305 

al., 2021; Siddique & Mejia, 2017; Zarzar et al., 2018) as the most sensitive parameters in the 306 

Susquehanna river basin.   307 

We compare Bayesian calibration with relatively simple and low-cost model calibration 308 

approaches: i) stepwise line search (Kuzmin et al., 2008) and ii) precalibration (Edwards et al., 309 

2011). Stepwise line search typically adjusts a subset of model parameters to minimize an objective 310 

function (e.g., root mean square error) and returns a single estimate of the model parameters (for 311 

details of the implementation please see Text S2) (Bowman et al., 2017; Carlberg et al., 2020; 312 

Fares et al., 2014; Mejia & Reed, 2011; Siddique & Mejia, 2017). Precalibration applies a 313 

screening criterion to a large ensemble of hydrologic model runs and rules out any implausible 314 

model runs that deviate substantially from the observations (refer Text S3 for the details) (Craig 315 

et al., 1997; Edwards et al., 2011; Holden et al., 2010; Tarawneh et al., 2016). These simple 316 

approaches of carrying out limited calibration are used by many academic studies (Rafieeinasab 317 

et al., 2015; Siddique and Mejia, 2017; Fares et al., 2014; Kim et a., 2021) as well as commonly 318 

practiced in real-word applications (Salas et al., 2018). They are used in part because they are 319 

simple and fast (Knutti et al., 2002; Reed et al., 2022). 320 

We evaluate the calibrated model performance using several decision-relevant metrics. We 321 

use traditional deterministic metrics such as the Kling-Gupta Efficiency (KGE) (Mizukami et al., 322 

2019), which provides a direct assessment of streamflow time series (e.g., shape, timing, water 323 

balance and variability) using the ensemble mean estimate. We also evaluate the probabilistic 324 

prediction skill using the Brier Skill Score (BSS) (Murphy, 1973) and the Continuous Ranked 325 

Probability Skill Score (CRPSS) (Murphy, 1970). The Brier score is essentially the mean squared 326 

error of the probability predictions, considering that the observation is one if the event occurs, and 327 

that the observation is zero if the event does not occur. The Continuous Ranked Probability Score 328 

measures the integral square difference between the cumulative distribution functions of the 329 
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observation and predictions, averaged over all pairs of predictions and observations. The selection 330 

of these decision-relevant metrics is motivated by the balance between model output goodness-of-331 

fit, calibration approaches, and data availability. The description of evaluation metrics is provided 332 

in Text S4 in the supporting information. Model calibration and evaluation is focused on high 333 

flows by choosing the river flow that exceeds NOAA’s Action Stage (McEnery et al., 2005). 334 

Action Stage refers to the stage which, when reached by a rising river, represents the level where 335 

the National Weather Service or a partner/user needs to take some mitigation action in preparation 336 

for possible significant hydrologic activity. 337 

We assess the impact of model calibration on flood damage estimates. Flood damage 338 

represents interactions among hazard, exposure and vulnerability (Tellman et al., 2021; Wing et 339 

al., 2018). Hazard in this case refers to the magnitude of the flood event. Exposure characterizes 340 

property value in the floodplain. Vulnerability characterizes how sensitive the impacts are for a 341 

given hazard and exposure. We consider 2,000 hypothetical houses to quantify the damage from 342 

flood hazards (Figure S4; TextS6). We assess damage for a certain depth of water in a house by 343 

using a relatively simple Bathtub-based flood inundation model (Didier et al., 2019; Fereshtehpour 344 

& Karamouz, 2018; Neumann & Ahrendt, 2013; Yunus et al., 2016) and a vulnerability model 345 

(Scawthorn et al., 2006). The Bathtub model relies on a digital elevation model to provide flood 346 

depth in a house for a particular corresponding water level in the river (refer TextS5 and TextS6 347 

for the details). We use a common vulnerability model (depth-damage function) provided by the 348 

Federal Emergency Management Agency (FEMA) (Scawthorn et al., 2006).  349 

 

 

4. Results and Discussion 350 

We first generate streamflow simulations using the "best” parameter estimates obtained via 351 

the stepwise line search (Figure 2). In the considered example, stepwise line search substantially 352 

underestimates the high streamflow (Figure 2). Stepwise line is designed to sample high-353 

probability outcomes and excludes comprehensive sampling of the parametric distribution 354 

(Kuzmin et al., 2008; Sharma et al., 2019). 355 
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 356 

Figure 2: Historical time series of water level observation and model simulations obtained using 357 

best parameter estimates (stepwise line search). We obtain the observation from the United States 358 

Geological Survey (USGS) gauge records for ID 01554000 located upstream of Selinsgrove, 359 

Pennsylvania, USA. The most destructive floods in the Susquehanna river basin that occurred in 360 

recent years, each associated with different flood-generating mechanisms, includes Hurricane Ivan 361 

(September 2004), late winter–early spring extratropical systems (April 2005), warm-season 362 

convective systems (June 2006), and tropical storm Lee (September 2011).  363 

 364 

We account for parametric uncertainty using precalibration and FaMoS (Figure S1). 365 

Characterizing parametric uncertainty requires knowledge of model behavior throughout the (often 366 

high-dimensional) parameter space. Precalibration provides a relatively simple method to explore 367 

the high-dimensional parameter space. Precalibration is a low-cost way of ruling out implausible 368 

model runs. We begin with an initial ensemble of 5,000 model runs with input parameters settings 369 

selected from a 12-dimensional Latin hypercube design (Helton & Davis, 2003). We select an 370 

ensemble of 165 runs that fall within the +/- 75% window surrounding each observation. Note that 371 

specifying bounds for precalibration is a subjective choice (Craig et al., 1997; Edwards et al., 2011; 372 

Holden et al., 2010; Tarawneh et al., 2016). This choice impacts the “surviving” parameter 373 

samples. For instance, imposing tight bounds on the observed streamflow could lead to high-374 
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resolution sampling of the plausible parameter space and wider bounds may include more 375 

implausible runs into the final ensemble. We choose the considered acceptable range to sample 376 

into the upper tails of projected flood hazards, which are often associated with high-cost events.  377 

FaMoS adopts a more complex (but also more powerful) calibration approach compared to 378 

precalibration. We incorporate domain-area expertise (prior distribution) of the unknown 379 

parameters and also account for additional sources of uncertainty such as model-observation 380 

discrepancies and observational error (see the Appendix for the details). As a result, we obtain a 381 

distribution of viable parameter values (posterior distribution) along with interval estimates, as 382 

opposed to a single best fit estimate (Figure S1). Unlike precalibration, FaMoS does not fix an 383 

arbitrary screening criterion, but rather uses a flexible statistical model to assess model-fit. 384 

Moreover, FaMoS sequentially explores the entire parameter space and systematically attempts to 385 

move to a “target” region that contains the most plausible sets of model parameters. In contrast, 386 

precalibration attempts to locate this “target” region using a single initial ensemble of model runs.  387 

 388 

Figure 3: Performance metrics for hydrological model calibration and out-of-sample prediction.  389 

We compute Kling-Gupta Efficiency (KGE), and Brier skill score (BSS), and mean Continuous 390 

ranked probability skill score (CRPSS). All the metrics are computed with reference to the default 391 

parameter set available from several previous studies (Anderson et al. 2006, Reed et al. 2004). Any 392 
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positive values of the skill score, from 0 to 1, indicate that the calibration approach performs better 393 

than the reference system. Thus, a skill score of zero indicates no skill, and a skill of one indicates 394 

perfect skill. We plot the average value to compute KGE. CRPSS measures the integrated squared 395 

difference between the cumulative distribution function (cdf) of a model prediction, and the 396 

corresponding cdf of the observations. The CRPSS is averaged across n pairs of model predictions 397 

and observations, which leads to the mean CRPSS. BSS measures the averaged squared error of a 398 

probability prediction. 399 

 400 

Accounting for parametric uncertainty improves model performance metrics for the 401 

calibration data and out-of-sample predictions (Figure 3). We compute the skill score (KGE, BSS, 402 

and CRPSS) with reference to raw (uncalibrated) model runs using default parameter estimates 403 

obtained from several previous studies (Anderson et al., 2006; Reed et al., 2007). In terms of the 404 

performance metrics, model predictions remain skillful for all the calibration approaches (Figure 405 

3). Precalibration outperforms the stepwise line search (best estimate predictions). Stepwise line 406 

search and precalibration are not designed to find the global maximum, which can lead to lower 407 

skill score as compared to FaMoS. FaMoS demonstrate a higher skill score than both the stepwise 408 

line search and precalibration for both calibration and out-of-sample evaluations.  409 
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 410 

Figure 4: (a) - (c) Calibration and (d) - (f) and out-of-sample prediction for different flood events. 411 

 412 

Accounting for parametric uncertainty improves flood hazard estimates (Figure 4). The 413 

resulting predictive distribution of flood events demonstrates the impacts of model calibration. The 414 

stepwise line search underestimates the flood peaks by as much as 35% (Figure 4b) during 415 

calibration and 40% during out-of-sample prediction (Figure 4e). Precalibration captures the 416 

specific flood events, but exhibits very high prediction uncertainty as evidenced by the wider 417 

prediction intervals. Overall, FaMoS improves flood peak estimates and provides narrower 418 

prediction intervals. Consider, as an example, the case of Tropical Storm Lee with streamflow 419 

observation of 11, 292 m3/sec. Precalibration provides a flood peak prediction of 10, 539 m3/sec 420 

and prediction intervals (5%-95% credible interval) range from 6, 359 m3/sec to 14, 222 m3/sec 421 
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(width = 7, 863 m3/sec). FaMoS has a corresponding flood peak prediction of 11, 467 m3/sec with 422 

a credible interval ranging from 9, 925 m3/sec to 13, 121 m3/sec (width = 3, 196 m3/sec). 423 

 424 

 425 

Figure 5: Relative operating characteristics (ROC) curve for different calibration approaches. 426 

ROC curve plots the probability of detection against the probability of false detection for a range 427 

of forecast probability levels. A larger area under the ROC curve represents a more skillful 428 

prediction, with more ability to discriminate between flood thresholds. The area under the ROC 429 

curve can range between 0 and 1, where a score of 1 implies perfect discrimination and a score of 430 

0.5 or less implies predictive discrimination that is no better than a random guess. We also compute 431 

the ROC score. The ROC score measures the average gain over climatology for all probability 432 

levels. The ROC score for stepwise line search, precalibration and FAMOS is 0.55, 0.85 and 0.96 433 

respectively. 434 

 435 

We assess each calibration approach’s classification ability or how well each method 436 

discriminates between occurrences (water level crossing the action stage) versus non-occurrences 437 

(regular water level) of an event (Figure 5). Managing flood risks can require decision makers to 438 

choose between two options (e.g., to evacuate or not or to elevate a house or not) based on a 439 
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prediction of an event (e.g., water rising to a certain level) with one decision preferred if the event 440 

doesn't occur, and the other if it does. A perfect prediction system for a binary outcome correctly 441 

predicts the occurrence of an event (unity probability of detection) and never issues incorrect 442 

predictions when it does not occur (zero probability of false detection). How well a prediction 443 

system approaches this ideal case can be quantified by the relative operating characteristics (ROC) 444 

curve (see Text S4) (Mason & Graham, 2002). Technically, the ROC curve assesses the quality of 445 

probability predictions by relating the probability of detection (true alarm) to the corresponding 446 

probability of false detection (false-alarm rate), as a decision threshold is varied across the full 447 

range of a continuous prediction quantity (Figure 5). We fix the threshold corresponding to the 448 

river flow that exceeds NOAA’s Action Stage. Streamflow predictions obtained using FaMoS 449 

parameter distribution exhibit better discriminatory ability (higher ROC score) than the stepwise 450 

line search and precalibration. Stepwise line search shows a relatively poor ability to discriminate 451 

between different events. This poor ability to discriminate between the events can lead to poor 452 

decisions and outcomes.  453 

 454 

Figure 6: Survival function (one minus the cumulative frequency) for damage estimates using 455 

streamflow obtained using the best parameter set (stepwise line search) and parameter distribution 456 
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(FaMoS). We show damage estimates for a) calibration and b) out-of-sample prediction. cdf= 457 

cumulative distribution function.  458 

 459 

Neglecting parametric uncertainty also underestimates potential flood damage (Figure 6). We 460 

find that the stepwise line search tends to underestimate the flood damage. The underestimation 461 

bias increases as flood magnitude increases. Accounting for parametric uncertainty improves the 462 

damage estimates for the calibration data and out-of-sample predictions. The damage credible 463 

interval obtained using FaMoS parameter distribution generally captures the observed damage for 464 

different flood events. As expected, at the upper tails of the damage, the predictive uncertainty 465 

tends to be higher for the out-of-sample prediction as compared to the calibration.  466 

 467 

5. Caveats 468 

We use a relatively simple model and small region with hypothetical exposure to demonstrate 469 

our points. This parsimony helps with transparency, but it comes with several caveats. For 470 

example, our analysis focuses on calibrating high flows by choosing the river flow that exceeds 471 

NOAA’s Action Stage. Temporal independence, conditioned on the model outputs, is a key 472 

assumption within the calibration framework. We calibrate multiple disjoint (or unconnected) 473 

instances of extreme streamflow events. We compute skill score to assess the performance of 474 

different calibration approaches. However, implementing the Ljung-Box test and other diagnostic 475 

tools for autocorrelation (Smith et al., 2015) would require calibrating a continuous streamflow 476 

time series. Future work might consider calibrating a continuous time series of streamflow, 477 

including low flows and moderate flows. Due to a large number of low and moderate flow 478 

observations, dimension-reduction techniques like principal components (Chang et al., 2014; 479 

Higdon et al., 2008) or eigenfunctions (Mak et al., 2018) may be appropriate to summarize the 480 

large datasets. This study samples shallow uncertainty about hydrologic model parameters as a 481 

case-study. There are, of course, other deep uncertainties (Lempert, 2002) affecting flood hazards 482 

and risks that could be taken into account in future work (Mendoza et al., 2015, Bates et al., 2021, 483 

Reed et al., 2022). These include model structural uncertainty, different spatial resolutions, land 484 

surface characteristics, or projections of the socio-economic systems (Gupta et al., 2012; Kavetski 485 

et al., 2006; Zarekarizi et al., 2020). Characterizing the individual uncertainty sources and their 486 

propagation is crucial to improve the reliability of flood hazard and risk projections. Increasing the 487 
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spatio-temporal resolutions may drastically raise the hydrologic model’s complexity as well as the 488 

associated single model run times. To reduce the number of sequential hydrologic model 489 

evaluations, we can embed parallel Markov Chain Monte Carlo approaches such as Multiple-Try 490 

Metropolis (Liu et al., 2000) or “emcee” samplers (Goodman & Weare, 2010) or genetic 491 

algorithms (Park et al., 2009) into FaMoS calibration framework. We note that our damage 492 

estimates are based on a simple Bathtub-based flood inundation model. Future work could use 493 

process-informed models to characterize the impacts of hydrodynamic processes in damage 494 

estimates (Brunner, 1995; Coulthard et al., 2013; Judi et al., 2018). In addition, future work could 495 

sample the uncertainty surrounding the flood vulnerability of the building (Wing et al., 2020).  496 

Although the objective of this study is not to compare different complex calibration 497 

approaches, FaMoS can add to emerging research into uncertainty quantification of a distributed 498 

hydrologic model. We demonstrate the ability of FaMoS to calibrate a large number of extreme 499 

flood events and consider a relatively larger river basin than in the several previous studies (Vrugt 500 

et al., 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012). Computationally, the problem becomes 501 

very different to run and calibrate a spatially distributed model over a large river basin. Future 502 

study could compare FaMoS with other complex and state-of-the art Bayesian calibration 503 

approaches (e.g., Vrugt et al., 2008). 504 

 505 

6. Conclusions 506 

 We use a Bayesian data-model fusion framework to calibrate a distributed hydrologic 507 

model and to demonstrate practical implications of neglecting key uncertainties on hazard- and 508 

risk-estimates. We compare the results of the Bayesian approach to two simpler methods: stepwise 509 

line search and precalibration. We show that these simpler methods can considerably 510 

underestimate flood hazards and risks. Precalibration improves flood hazards estimates over the 511 

best fit estimates, but provides a wider predictive interval (i.e., highly uncertain estimates) than 512 

the Bayesian approach. The predictive skill of the Bayesian approach dominates the stepwise line 513 

search and precalibration approaches. We show how neglecting model parametric uncertainty can 514 

substantially underestimate flood hazards and risk estimates and demonstrate how applying state-515 

of-the-art statistical methods can help to refine flood-risk projections. 516 
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Appendix A: Fast Model Calibrations (FaMoS) Details

1 Bayesian Calibration Framework1

Suppose we have an observed time series Z = (Z(r1), ..., Z(rn))0 times ri 2 R where R is the2

temporal domain of the process. We also have a deterministic computer model that generates3

a temporal process, or time series, at times ri 2 R. Let Y (r,✓) be the computer model output4

at the time r 2 R and the parameter (input) setting ✓ 2 ⇥ ✓ Rd. ⇥ is the parameter space5

of the computer model with integer d being the number of input parameters. In this study,6

we use a discontinuous temporal domain at R distinct time points r = (r1, ..., rR)0. The7

vector Y(✓i) = (Y (r1,✓i), ..., Y (rR,✓i))0 is the computer model output corresponding to8

parameter setting ✓i. For input parameter setting ✓, we model the observations Z as:9

Z = Y(✓) + � + ✏✏✏, (A1)

where ✏✏✏ ⇠ N(0, �2
✏ I) are the independently and identically distributed observational error,10

and � 2 Rn is a systemic data-model discrepancy term, which can be modeled as a zero-mean11

Gaussian process (Bhat et al., 2010; Bayarri et al., 2007) or other flexible functional forms12

(Brynjarsdottir and O’Hagan, 2014).13

In the Bayesian calibration framework, we obtain samples (via a Markov chain Monte14

Carlo (MCMC) algorithm) from the posterior distribution:15

⇡̃(✓, �2
✏ , �|Z) / L(✓, �2

✏ , �|Z)⇡(✓)⇡(�2
✏ )⇡(�), (A2)

where L(✓, �2
✏ , �|Z) denotes the likelihood function and ⇡(·) represents the prior distribu-16

tion for the respective parameters and discrepancy term. Note that each evaluation of17

L(✓, �2
✏ , �|Z) requires running the computer model using specific input parameters ✓. Hence,18

MCMC-based calibration approaches are sensible for computer models with shorter single19

model run walltimes, typically under 5 seconds per model run (Lee et al., 2020). For our20

study, we estimate that a standard MCMC-based calibration approach would on the order21

of years to approximate the posterior distribution ⇡̃(✓, �2
✏ , �|Z).22

2 Particle-based Calibration Framework23

We calibrate the HL-RDHM distributed hydrological model using the fast particle-based24

approach from Lee et al. (2020), which is built upon traditional Sequential Monte Carlo25

algorithms (Del Moral et al., 2006; Doucet et al., 2000; Liu and West, 2001), notably the It-26

erated Batch Importance Sampling (IBIS) (Chopin, 2002; Crisan and Doucet, 2000) method.27

This method approximates the posterior distribution ⇡̃(✓, �2
✏ , �|Z) using an evolving ensem-28

ble of particles.29

We simplify the notation for an arbitrary target distribution as ⇡(✓) with random vari-30

able ✓ 2 Rd. In the hydrological model calibration framework, the target distribution ⇡(✓)31

would be the posterior distribution ⇡̃(✓, �2
✏ , �|Z) with random variables ✓, �2

✏ , and � and32

observations Z. Suppose we want to estimate µµµ = E⇡

⇥
g(✓)

⇤
. Given q(✓) > 0 when-33

ever g(✓)⇡(✓) > 0, 8✓ 2 ⇥. Then E⇡

⇥
g(✓)

⇤
= Eq

h
g(✓)w(✓)

i
, where w(✓) = ⇡(✓)

q(✓)
34

1



is the importance weight and
PN

i=1 w(✓i) = 1. The importance sampling estimator is35

µ̂µµn = 1
n

PN
i=1 g(✓i)w(✓i) and µ̂µµn ! µµµ with probability 1 as n ! 1 by the strong law of36

large numbers. For target distributions with an unknown normalizing constant, the weights37

can be normalized as follows:38

w̃(✓i) =
w(✓i)Pn
j=1 w(✓j)

=
⇡(✓i)/q(✓i)Pn

j=1 w(✓j)
(A3)

where
PN

i=1 w̃(✓i) = 1.39

Sampling-Importance-Resampling (Gordon et al., 1993; Doucet et al., 2001) approxi-40

mates a target distribution ⇡(✓) with an empirical distribution of the particles ⇡̂(✓) from an41

importance function q(✓) such as the prior distribution. The empirical distribution ⇡̄(✓) is42

defined as:43

⇡̄(✓) =
NX

i=1

w̃(✓i)�(✓i) ⇡ ⇡(✓), (A4)

where w̃(✓i) are the normalized importance weights, �(✓i) is a Dirac measure that places44

unit mass at ✓i and
PN

i=1 w̃(✓i) = 1.45

Poor choices of importance functions can lead to inaccurate approximations of the target46

distribution (Doucet et al., 2000) where the bulk of the particles ✓i’s do not reside in the47

high-probability regions of the target distribution ⇡(✓). Weight degeneracy occurs when the48

vast majority of the particles have near-zero importance weights. Multinomial resampling49

methods can combat weight degeneracy by eliminating the particles with very small impor-50

tant weights and replicating those with higher weights (Gordon et al., 1993; Doucet et al.,51

2000). After resampling, we reset all importance weights such that w(✓i) = 1/N and use52

the unweighted empirical distribution ⇡̈(✓):53

⇡̈(✓) =
1

N

NX

i=1

Ni�(✓i), (A5)

where Ni is the number of replicates corresponding to particle ✓i and
PN

i=1 Ni = N . Extreme54

weight degeneracy, where very few particles have any significant weight, can lead to sample55

impoverishment where a few unique particles ✓i’s are heavily replicated in the re-sampling56

step; hence, the empirical distribution ⇡̈(✓) may poorly approximate the target distribution57

⇡(✓).58

An alternative method mutates the replicated particles with samples from K(✓(t�1)
i ), the59

Metropolis-Hastings transition kernel (Gilks and Berzuini, 2001), whose stationary distribu-60

tion is also the target distribution ⇡(✓). The mutation stage proceeds with K Metropolis-61

Hastings updates for each particle ✓i, for i = 1, ..., N . Alternative mutation schemes use62

genetic algorithms (Zhu et al., 2018) or di↵erent families of transition kernels, K(·) (Pa-63

paioannou et al., 2016; Murray et al., 2016). We set the K-th sample drawn via MCMC as64

the mutated particle ✓̃i. Since ✓̃i ⇠ ⇡(✓), the resulting empirical distribution ⇡̂(✓) approxi-65

mates the target distribution ⇡(✓):66

⇡(✓) ⇡ ⇡̂(✓) =
NX

i=1

✓̃i�(✓̃i). (A6)
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Unfortunately, poor importance functions can result in severe sample impoverishment,67

which may require very long (and costly) mutation stages to provide an accurate represen-68

tation of the target distribution (Li et al., 2014). Mixture approximations (Gordon et al.,69

1993) or kernel smoothing methods (Liu and West, 2001) can mutate or rejuvenate the70

replicated particles. However, these methods may not scale well to high-dimensional target71

distributions (Doucet et al., 2000).72

2.1 Fast Particle-based Approach For Computer Model Calibra-73

tion74

In this study, we aim to approximate the posterior ⇡̃(✓, �, �2
✏ |Z) from a computationally e�-75

cient approach. The fast particle-based approach (Lee et al., 2020) utilizes a set of tempered,76

or intermediate, posterior distributions ⇡̃t(✓, �, �2
✏ |Z) for t = 1, ..., T , which will act as both77

the importance functions and target distributions. Intermediate posterior distributions can78

be generated using likelihood tempering (Chopin, 2002; Neal, 2001; Liang and Wong, 2001)79

where the tth intermediate posterior distribution is defined as:80

⇡̃t(✓, �, �2
✏ |Z) / L(✓, �, �2

✏ |Z)�t⇡(✓)⇡(�)⇡(�2
✏ ), (A7)

where �t’s are determined according to a schedule where �0 = 0 < �1 < · · · < �T = 1. For81

each ⇡̃t(✓, �, �2
✏ |Z), the likelihood component is a fractional power of the original likelihood82

L(✓, �, �2
✏ |Z). Using an adaptive incorporation schedule (Lee et al., 2020), we can select the83

appropriate ��� = {�0, �1, ..., �T} within the calibration algorithm.84

For cycle t = 1, we set the importance distribution to be the prior distribution p(✓, �, �2
✏ ) =85

p(✓)p(�)p(�2
✏ ), and the target distribution to be the first intermediate posterior distribution,86

⇡1(✓, �, �2
✏ |Z). For subsequent cycles t, the importance distribution is ⇡t�1(✓, �, �2

✏ |Z) and87

the target distribution is ⇡t(✓, �, �2
✏ |Z).88

Next, we mutate the particles via short runs of the Metropolis-Hastings algorithm, where89

the stationary distribution is ⇡t(✓, �, �2
✏ |Z), the t-th intermediate posterior distribution. Note90

that the importance and target distributions are consecutive (t-th and (t+1)-th) intermediate91

posterior distributions, so there is considerable overlap between the high-probability regions92

of the two distributions. In the mutation stage, we employ the stopping rule from Lee et al.93

(2020) to control the number of Metropolis-Hastings updates; thereby preventing any unnec-94

essary computer model runs. The mutation stages ends when the Bhattacharyya distance95

(Bhattacharyya, 1946) between two sets of particles from the mutation stage stablizes.96

2.2 Adaptive incorporation schedule97

To reduce computational costs and potentially reduce unnecessary computer model eval-98

uations, we adopt the adaptive incorporation schedule from Lee et al. (2020). For avoid99

confusion, we simplify the notation in this subsection by defining ✓̃✓✓ = (✓, �2
✏ , �), the com-100

bined vector of unknown parameters. Upon initialization, we set the first incorporation101

increment �0 = 0. We draw the initial set of particles ✓̃✓✓0 from ⇡̃0(✓̃✓✓|Z) / L(✓̃✓✓|Z)0⇡(✓̃✓✓) = ⇡(✓̃✓✓),102

the prior distribution of model parameters. For the subsequent cycles t = 1, 2, 3, ..., we103
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calculate the full likelihood L(✓̃✓✓
(i)

t�1|Z) for i = 1, ..., N where ✓̃✓✓
(i)

t�1 denotes the parame-104

ter samples from the previous cycle t � 1. Next, we compute the optimal �t that re-105

turns an e↵ective sample size (ESS) of ESSthresh or a sample size closest to ESSthresh:106

�t = argmin�{(ESS� � ESSthresh)2} , where � 2 (�min, 1 � �t�1), �min is a previously set107

minimum incorporation value, ESS�t =
PN

i=1 1/wt(✓̃✓✓
(i)

t )2, and wt(✓̃✓✓
(i)

t ) / L(✓̃✓✓
(i)

t |Z)�. Note108

that we can lower computational costs by evaluating the full likelihood L(✓̃✓✓
(i)

t |Z) only once109

before the optimization.110

We stop the scheduling algorithm when
Pt

i=1 �t = 1, or when the entire likelihood has111

been incorporated and the target distribution evolves to the full posterior distribution ⇡̃(✓̃✓✓|Z).112

Note at each cycle t, we set the incorporation increment (�t) to be between �min and 1 �113 Pt
i=1 �t. The user will typically set the minimum incorporation increment �min and the114

threshold e↵ective sample size, ESSthresh. We provide our choice of �min and ESSthresh in115

the next section (Implementation Details).116

Adaptive likelihood incorporation schedule117

1. Initialization: At t = 0, set �0 = 0.118

2. When t > 0 and
Pt�1

i=1 �i < 1119

• Compute L(✓̃✓✓
(i)

t�1|Z) for i = 1, ..., N120

• Set �t = argmin�{(ESS� � ESSthresh)2}, where ESS� =
PN

i=1
1

w
(i)2
t

, w(i)
t /121

L(✓̃✓✓
(i)

t |Z)�, and � 2 (�min, 1� �t�1).122

• Update t t+ 1123

3. When
Pt�1

i=1 �i = 1: Stop Calibration124

2.3 HL-RDHM Calibration: Implementation Details125

We now return to the original notation of the unknown parameters ✓, �2
� , and �2

✏ . The target
distribution is the full posterior distribution ⇡̃(✓, �2

� , �
2
✏ |Z) and the Bayesian hierarchical

framework for the HL-RDHM distributed hydrological model calibration is as follows:

Data Model: Z|Y(·),✓, �, �2
✏ ⇠ N (Y(✓) + �, �2

✏I) (A8)

Process Model: �|�2
� ⇠ N (0, �2

�I) (A9)

Parameter Model: ✓ ⇠ ⇡(✓), �2
� ⇠ ⇡(�2

� ), �2
✏ ⇠ ⇡(�2

✏ ) (A10)

where ⇡(✓), ⇡(�2
� ), and ⇡(�2

✏ ) denote the prior distributions of ✓, �2
� , and �2

✏ , respectively.126

For ⇡(✓), we place a priori independent uniform priors on each of the model parameters with127

ranges (lower and upper bounds) based on domain-area expertise.128

Instead of estimating the nuisance parameters �2
� and �2

✏ separately, we chose to combine129

these as �2 = �2
� + �2

✏ . We place a standard non-informative inverse gamma prior on the130

combined error variance �2
✏ ⇠ IG(0.2, 0.2). Note that we assume conditional independence131
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Algorithm 1: Fast Particle-based Calibration
Data: Z
Initialization:

Draw ✓̃✓✓
(i)

0 ⇠ p(✓̃✓✓) for particles i = 1, ..., N .

Set w(i)
0 = 1/N , �0 = 0, and K;

for cycles t = 1, ...., T do

1. Compute full likelihood:

Calculate L(✓̃✓✓
(i)

t�1|Z) for i = 1, ..., N ;
2. Select optimal likelihood incorporation increment �t:
Set �t = argmin�{(ESS�t � ESSthresh)2}, where � 2 (0.1, 1�

Pt�1
h=1 �h)

Note: ESS�t =
PN

i=1
1

w
(i)2
t

and w(i)
t / L(✓̃✓✓

(i)

t |Z)�t ;
3. Compute importance weights:

w(i)
t / w(i)

t�1 ⇥ L(✓̃✓✓
(i)

t |Z)�t ;
4. Re-sample particles via multinomial sampling:

Draw ✓̃✓✓
(i)

t from {✓̃✓✓
(1)

t�1, ..., ✓̃✓✓
(N)

t�1} with probabilities / {w(1)
t , ..., w(N)

t };
5. Set intermediate posterior distribution:

Set ⇡t(✓̃✓✓|Z) / L(✓̃✓✓i|Z)�̃⇡(✓̃✓✓), where �̃ =
Pt

j=1 �j;
6. Mutation:

Using each particle (✓̃✓✓
(1)

t , ..., ✓̃✓✓
(N)

t ) as the initial value, run N chains of an MCMC
algorithm with target distribution ⇡t(✓̃✓✓|Z) for 2K iterations
7. Check stopping criterion:

Compute �B = DB(h(✓̃✓✓
K

t ), h(✓̃✓✓
2K

t ));
if �B < ✏B then

Set ✓̃✓✓
(i)

t = ✓̃✓✓
(i),2K

t ;
else

Run K additional updates and re-evaluate stopping criterion
Continue until stopping criterion is met

8. Stop when full likelihood is incorporated;

if
PN

i=1 �t = 1 then

End Algorithm;
else

Reset weights: w(i)
t = 1/N for particles i = 1, ..., N ;

Set t=t+1 and return to Step 1;
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among the extreme observations given the model outputs. The updated Bayesian hierarchical132

framework is:133

Data Model: Z|Y(·),✓, �2 ⇠ N (Y(✓), �2I) (A11)

Parameter Model: ✓ ⇠ ⇡(✓), �2 ⇠ ⇡(�2) (A12)

While much of the fast particle-based approach is automated, the user must select the:134

(1) total number of particles, N ; (2) baseline number of Metropolis-Hastings updates run135

before checking the stopping criterion, K; (3) minimum incorporation �min at each cycle;136

and (4) the e↵ective sample size threshold ESSthresh. We chose N = 2015 particles based137

on the available resources. On the Cheyenne HPC, this requires 56 nodes with 36 processors138

per node. For the stopping criterion, we use K = 7 as the baseline length. The floor139

for the incorporation increment is fixed at �min = 0.1 such that we incoporate at least140

L(✓|Z)0.1 into the intermediate posterior at each cycle. Finally, the ESSthresh = N/2, which141

is the typical threshold that activates resampling in many sequential Monte Carlo methods142

(Del Moral et al., 2006).We calibrate the HL-RDHM distributed hydrological model using143

Cheyenne (Computational and Information Systems Laboratory, 2017), a 5.34-petaflops high144

performance computer operated by the National Center for Atmospheric Research (NCAR).145

We employ message passing interface (MPI) and the R package Rmpi for any parallelized146

operations such as computing importance weights and particle mutation.147

Consider the vector of HL-RDHM model parameters ✓ = (✓1, ..., ✓12)0. The prior distribu-148

tion ⇡(✓j) for the j-th model parameters follow a univariate uniform distribution with lower149

and upper bounds specified by our hydrological model experts. ✓j ⇠ Unif(lj, uj) with hy-150

perparameters lj(lower bound) and uj (upper bound) specified in Table S1. We place a stan-151

dard non-informative inverse gamma prior on the combined error variance �2 ⇠ IG(↵�2 , ��2)152

where ↵�2 = 0.2 and ��2 = 0.2.153
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