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Abstract

Ocean worlds such as Europa and Enceladus are high priority targets in the search for past or extant life beyond Earth. Evidence

of life may be preserved in samples of surface ice by processes such as deposition from active plumes or thermal convection.

Terrestrial life produces unique distributions of organic molecules that translate into recognizable biosignatures. Identification

and quantification of these organic compounds can be achieved by separation science such as capillary electrophoresis coupled

to mass spectrometry (CE-MS). However, the data generated by such an instrument can be multiple orders of magnitude larger

than what can be transmitted back to Earth during an ocean worlds mission. This requires onboard science data analysis

capabilities that summarize and prioritize CE-MS observations with limited compute resources.

In response, the Autonomous Capillary Electrophoresis Mass-spectra Examination (ACME) onboard science autonomy system

was created for application to the Ocean Worlds Life Surveyor (OWLS) instrument suite. ACME is able to compress raw

mass spectra by two to three orders of magnitude while preserving most of its scientifically relevant information content. This

summarization is achieved by the extraction of raw data surrounding autonomously identified ion peaks and the detection and

parameterization of unique background regions. Prioritization of the summarized observations is then enabled by providing

estimates of scientific utility, the uniqueness of an observation relative to previous observations, and the presence of key target

compound signatures.
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Abstract11

Ocean worlds such as Europa and Enceladus are high priority targets in the search for12

past or extant life beyond Earth. Evidence of life may be preserved in samples of sur-13

face ice by processes such as deposition from active plumes or thermal convection. Ter-14

restrial life produces unique distributions of organic molecules that translate into rec-15

ognizable biosignatures. Identification and quantification of these organic compounds16

can be achieved by separation science such as capillary electrophoresis coupled to mass17

spectrometry (CE-MS). However, the data generated by such an instrument can be mul-18

tiple orders of magnitude larger than what can be transmitted back to Earth during an19

ocean worlds mission. This requires onboard science data analysis capabilities that sum-20

marize and prioritize CE-MS observations with limited compute resources. In response,21

the Autonomous Capillary Electrophoresis Mass-spectra Examination (ACME) onboard22

science autonomy system was created for application to the Ocean Worlds Life Surveyor23

(OWLS) instrument suite. ACME is able to compress raw mass spectra by two to three24

orders of magnitude while preserving most of its scientifically relevant information con-25

tent. This summarization is achieved by the extraction of raw data surrounding autonomously26

identified ion peaks and the detection and parameterization of unique background re-27

gions. Prioritization of the summarized observations is then enabled by providing esti-28

mates of scientific utility, the uniqueness of an observation relative to previous observa-29

tions, and the presence of key target compound signatures.30

1 Motivation31

The search for extraterrestrial life is one of the great motivators for exploring worlds32

beyond Earth. Ocean worlds, such as Europa and Enceladus, offer protected, potentially33

habitable environments that may be sampled from the surface through inclusions in ther-34

mally convected ice or deposition by active plumes (Postberg et al., 2009; Carr et al.,35

1998). To prepare for such deep space missions to these icy worlds, NASA’s Jet Propul-36

sion Laboratory (JPL) is developing the Ocean Worlds Life Surveyor (OWLS), an in-37
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situ instrument suite capable of detecting multiple, independent biosignatures indica-38

tive of life. At the molecular scale, terrestrial life may be detected by the presence of key39

organic compounds such as metabolites and amino acids. However, as extant life may40

have resulted from a separate genesis, an in-situ instrument must be sensitive to as broad41

a spectrum of life-like molecules as possible. This challenging analytic goal must be achieved42

on a freshly melted ice sample within a few minutes of collection, using only the limited43

computation available to space missions, and in an autonomous fashion (Howell et al.,44

2020; Willis et al., 2020).45

To enable the detection of molecular-scale evidence of life, OWLS includes a Cap-46

illary Electrophoresis (CE) electrospray ionization Mass Spectrometry (MS) instrument47

(Mora et al., 2021). The combination of CE and MS technologies provides a two-dimensional48

fingerprint that can be used to uniquely identify and quantify a wide range of molecu-49

lar species. Sample molecules are first separated by CE, producing migration times that50

vary according to the ratio of molecular size to charge. Then, the MS breaks molecules51

into unique fragmentation patterns separated by their mass-to-charge (m/z ) ratio. The52

resulting observations appear as a two-dimensional grid of ion counts, superimposed on53

a complex noise background. Recent work has shown that the CE-MS instrument can54

be used to detect a wide range of biomolecules in liquid samples (Mora et al., 2021), even55

in the presence of large concentrations of dissolved salts such as may be present on both56

Europa and Enceladus (Postberg et al., 2011; McCord et al., 1999).57

The extreme distance between ocean worlds and Earth severely limits the amount58

of data that can be returned due to the energy required for transmission, the limited power59

available onboard, and the availability of the deep space network. For example, the en-60

tire downlink budget for a reference mission to Europa (∼190 MB) is roughly the same61

size as a two, raw CE-MS samples (Tan-Wang & Sell, 2019). Given that multiple, in-62

dependent samples from multiple instruments will be needed to characterize a landing63

site, a space-born CE-MS instrument must be able to reduce its observations by at least64
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two orders of magnitude, to be feasible for mission inclusion. This compression cannot65

be performed agnostic to the science use-case if valid science conclusions are to be pre-66

served; the detailed, high-frequency structures within the ion peaks must be captured,67

preventing application of simple Fourier or Wavelet filters or lossy image formats such68

as JPEG. Rather, onboard summarization capabilities must be developed to support the69

precise scientific analyses that will be performed once data is returned to Earth. Even70

with effective onboard summarization, the desire to fully characterize the surface will drive71

science teams to consider as many samples as possible. To support representative sam-72

pling and robust characterization, a further onboard capability to prioritize among these73

summarized samples is required. This ensures that high-value observations are returned74

first as measured by quality (strong signal to noise), evidence for compounds of known75

interest, and uniqueness with respect to previous observations. The Autonomous Cap-76

illary electrophoresis Mass-spectra Examination (ACME) science autonomy software pro-77

vides both summarization and prioritization capabilities to meet these needs.78

2 Hardware and Data79

2.1 Instrument Description80

The CE-MS experiments used for ACME’s development and evaluation were op-81

timized for the goal of broadly separating a wide variety of biological compounds rele-82

vant to the search for life in the presence of confounding environmental salts (Mora et83

al., 2021). Briefly, CE-MS was carried out on a CESI 8000 instrument (SCIEX, Brea,84

CA) coupled to a 3D quadrupole ion trap mass spectrometer (LCQ Fleet MS), equipped85

with a nanospray MS source (Thermo Electro North America LLC, Madison, WI). Sep-86

arations were performed using bare fused silica capillaries (91 cm × 30 µm I.D.) with a87

porous tip (OptiMS cartridge, SCIEX), and a background electrolyte containing 5 M acetic88

acid. Samples were hydrodynamically injected using a pressure of 2 psi for 20 or 60 sec,89

corresponding to an injection volume of approximately 7 and 21 nL, respectively. Larger90
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injection volumes were typically used at low organic and low salt concentration samples91

to achieve greater signals when high salt content was not present. Analytes were sep-92

arated by applying a voltage of 20 kV and 2 psi of pressure at the inlet of the capillar-93

ies, and the capillary temperature was set at 25°C. Data were acquired using positive94

ionization mode in the mass range of 70−400m/z.95

2.2 Input Data Description96

The OWLS CE-MS instrument outputs 2D grids of raw ion counts resolved by their97

m/z and migration time as shown in Figure 1. The m/z resolution of 0.08 amu is con-98

stant over the full range. The temporal resolution varies between 0.3 sec and 0.5 sec, de-99

pending on the instrument operation mode. Each analyzed sample produces approximately100

100 MB of raw data with 5000 m/z bins and 4000 time bins. By summing over a spec-101

ified m/z dimension, an electropherogram may be generated consisting of the total ion102

counts in the specified mass range versus time. (A special case is the ”total ion count”103

electropherogram that reduces the data back to a 1D time separation by summing over104

the entire mass range). The heights of peaks in these electropherograms correspond to105

the concentration of the parent compound. Similarly, slicing the data at a single migra-106

tion time produces an associated mass spectra (ion counts vs m/z ). The migration time107

is related to the mobility of a compound under an electric field. The total scientific in-108

formation content of a CE-MS observation corresponds to identifying and characteriz-109

ing all ion count peaks in the 2D data in the presence of a potentially complex, noisy110

background. This noise can originate from random instrument fluctuations, regions with111

elevated and variable ion counts, and high concentrations of salts.112

2.2.1 Laboratory Samples113

ACME’s development incorporated nearly two thousand samples produced in the114

laboratory environment, concurrent with the development of the CE-MS instrument it-115

self. A standard set of 25 organic compounds relevant to astrobiology (L-leucine, L-alanine,116
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β-alanine, L-histidine, glycine, L-valine, L-serine, L-aspartic acid, L-glutamic acid, γ-aminobutyric117

acid (GABA), 2-aminoisobutyric acid (AIB), Gly-Gly, Gly-Gly-Gly, Leu-Leu-Leu, Phe-118

Val, cytosine, adenine, guanine, uracil, cytidine, adenosine, guanosine, thymidine, uri-119

dine, and isovaline), referred to as Mix25, was analyzed at various concentrations and120

in the presence of high salt concentrations to serve as baselines with known peak loca-121

tions. These analyses were performed in close coordination with instrument scientists,122

facilitating a tight iterative loop that enabled the parallel development of the CE-MS123

instrument and the associated ACME science autonomy system. An example separation124

of Mix25 is shown in Figure 1.125

2.2.2 Dataset Annotation126

Development Set: This dataset was used for ACME’s algorithm selection, de-127

velopment, and to inform and evaluate the instrument hardware development. Ion count128

peaks that represent the target science observables were annotated by hand in the raw129

data. The annotated dataset spans eight independent samples varying in their concen-130

tration of Mix25 (100 nM - 50 uM) and the amount (0 M - 3 M) and type of salt (NaCL131

and MgSO4). To capture the annotations, 500 electropherograms per sample were pro-132

duced by binning the ion counts every 0.5m/z. The MATLAB Computer Vision Tool-133

box’s Image Labeler1 was used to manually annotate the time range for every peak with134

a z-score (peak height over baseline divided by the local noise environment) greater than135

5, where the z-score is the ratio of peak height to ambient noise (peak height above base-136

line divided by the standard deviation of the local baseline). Annotations were performed137

and reviewed by both instrument scientists and the autonomy team’s data scientists. The138

total annotated dataset comprises eight independent samples with 907 labeled peaks.139

Training Set: After finalizing the ACME algorithm using the development set,140

a second labeled dataset was prepared to optimize ACME’s filtering parameters as de-141

1 https://www.mathworks.com/help/vision/ref/imagelabeler-app.html
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Figure 1. Example of raw data from a sample with 10 uM of Mix25 in a 3 M NaCl solution.

(a) Entire 2D ion count grid resolved by migration time (x-axis) and mass-to-charge ratio (y-

axis). Horizontal structures are due to the presence of salt in the sample and are part of the

background. Individual peaks are too small to be visible. (b) Zoom-in of the red box showing

individual peaks (circled in red) and cliff-like, horizontal ‘salt fronts.’ (c) Mass spectra corre-

sponding to a migration time of 24 min ± 10 sec. (d) Electropherogram plotting ion count vs.

time for the mass bin m/z = 265, showing a peak at 24 min. (e) Electropherogram for m/z =

262 showing a ‘salt front.’ (f) Electropherogram plotting total ion count vs. time.
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tailed in section 3.2 as well as discourage over-fitting to the limited samples in the de-142

velopment set. The training set extends the development set by seven samples that var-143

ied concentrations of Mix25, NaCl and MgSO4 salts, and acetic acid. Hand annotation144

was performed by an instrument scientist using Xcalibur2, a proprietary mass spectrom-145

etry analysis software by Thermo Fisher, and verified by the autonomy team’s data sci-146

entists. The training set consists of a total of 536 labeled peaks.147

Testing Set: To estimate ACME’s generalized performance, an additional six, in-148

dependent, lab-prepared samples were produced that spanned Mix25 and NaCl concen-149

trations as well as two injection volumes (MgSO4 showed no significant difference to NaCl150

and was omitted from the testing set). Annotations were produced as described in the151

training set. The testing dataset contains a total of 292 labeled peaks. Characteristics152

for each of these datasets are summarized in Table 1.153

2.2.3 Simulated Data154

To provide a highly controlled environment for performance evaluation, sensitiv-155

ity analysis, and explore challenging separation scenarios, a CE-MS data simulation ca-156

pability was created. The simulator includes the ability to construct differing regions of157

noise characteristics and embed 2D Gaussian-shaped target peaks with custom heights158

and widths. The simulator was used to create two evaluation datasets. The first, named159

‘Golden,’ was intended to test ACME’s performance under ideal data conditions. It con-160

tained 20 simulated samples of 100 peaks per sample with z-scores greater than 10 and161

an absence of complex background features such as salt fronts and regionally-varying noise.162

The second dataset, named ‘Silver,’ more closely resembles lab-provided instrument data163

and contains varying levels of background noise, horizontal salt front features, and peaks164

with z-scores greater than 5. An example sample from the Silver dataset is shown in Fig-165

ure 2. While these datasets are simpler than the actual instrument data, they represent166

2 https://www.thermofisher.com/order/catalog/product/OPTON-30965#/OPTON-30965
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Table 1. Development, Training, and Testing Dataset Characteristics

dataset Mix25 Salt Injection # Labeled

(uM) (M) vol. (nL) peaks

Development 0.1 - 21 5

2 - 21 35

5 NaCl 3 7 17

10 NaCl 3 7 16

50 MgSO4 0.15 7 235

50 NaCl 0.15 7 155

50 NaCl 0.6 7 232

50 NaCl 1 7 213

Training 50 - ? 113

50 - 7 81

50 MgSO4 1.5 7 96

50 NaCl 3 7 72

50 NaCl 3 7 114

2 NaCl 3 7 13

2 - 21 47

Testing 0.1 - 21 15

1 - 21 58

10 - 21 88

1 NaCl 3 7 10

10 NaCl 3 7 19

90 NaCl 3 7 102
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Figure 2. Example of simulated ion counts vs. migration time and m/z for a sample from the

‘Silver’ simulated dataset: (a) Regions of differing noise characteristics and salt fronts are visible,

(b) Zoom-in to highlight individual peaks (circled in red).

an unambiguous truth source that does not depend on human subjectivity for annota-167

tion. Here, we use both labeled laboratory data as well as simulated data to evaluate ACME’s168

performance.169

3 Methods170

The ACME processing pipeline for a new CE-MS observation is structured into three171

major steps. First, ACME identifies and characterizes peaks in the raw CE-MS ion count172

data (Section 3.2). Next, ACME extracts and compresses the scientifically relevant in-173

formation for both peak and background regions by generating several summary Autonomous174

Science Data Products (ASDPs) for potential downlink to mission control (Section 3.3).175

Finally, ACME enables later downlink prioritization among several observations either176

by the presence of high-quality peaks of interest (the Science Utility Estimate or SUE)177

or by the presence of unusual or unique data features (the Diversity Descriptor or DD)(Section178

3.4). This system level description of ACME is captured in Figure 3.179
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CE-MS Spectra CE-MS SpectraBlob Detection

Peak Filtering

Autonomous Science Data Products

Migration Time
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Peak
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Peak Crops

Total Ion Count
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Summary

Figure 3. System level diagram of ACME. Left: raw data is collected using the CE-MS. Cen-

ter: ion count peaks are identified with blob detection from raw CE-MS data. Right: identified

peak candidates are filtered based on calculated peak properties. Finally, various autonomous

science data products are generated and ranked for transmission to the ground.

3.1 ACME Reconfiguration and Operations180

For application to a specific mission, the initial parameters that control ACME’s181

behavior will be determined as described in the following sections using annotated data182

prepared similarly to Section 2.2. This initial set of parameters, or configuration, will183

enable pre-flight validation of key performance requirements. However, once launched184

into space, a variety of influences may require alteration of ACME’s initial configuration.185

Several factors within the spacecraft and instrument may effectively lower the sig-186

nal to noise ratio of the science observables. Flight instrument performance character-187

istics may change due to mechanical shocks and vibrations inherent during launch, degra-188

dation of sensor elements over the mission lifetime, accumulation of debris and contam-189

ination, and failures of the supporting systems necessary for proper instrument function-190

ing such as temperature regulation and clean power supply. These factors may introduce191

complex background features and false peak-like structures as well as suppress valid tar-192

get peaks. The deployment environment may also differ from expectation in challeng-193
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ing ways. Noise due to radiation or the significant presence of uninteresting compounds194

with similar and confounding separation patterns could reduce data quality.195

Even in the absence of these challenges, a science team’s focus is likely to change.196

Once ubiquitous compounds of interest have been well characterized in a deployed en-197

vironment, it is reasonable to shift a mission’s attention to other more subtle or rare sig-198

nals that may have differing peak characteristics than the primary mission targets used199

to tune ACME.200

Whether in reaction to internal or external challenges, or to accommodate an evolv-201

ing science focus, ACME has been constructed to be readily reconfigurable with the up-202

link of a small set of intuitive parameters. In a mission scenario, ground teams comprised203

of scientists and autonomous instrument operators will need to determine and validate204

new configurations prior to uplink. The team would capture new training datasets that205

incorporate any emergent data challenges and annotate them to emphasize the desired206

change in focus of ACME’s summarization and prioritization.207

3.2 Peak Detection Algorithm208

The most scientifically valuable information in CE-MS data corresponds to the lo-209

cation of all ion count peaks, expressed as a pair of mass-to-charge ratio and migration210

time. Reliably detecting and characterizing subtle peaks in the presence of a complex,211

structured, and varying background forms the primary function of ACME. If the peaks212

can be well identified and characterized, the resulting list fully describes a 100 MB dataset213

of raw CE-MS data using only approximately 10 kB and is agnostic to the specific com-214

pounds sampled. That is to say, by choosing to initially characterize peaks rather than215

search for specific compound signatures, the ability to discover unanticipated molecu-216

lar species is preserved.217

The onboard science autonomy use-case presents unique requirements that sharply218

differ from laboratory data analysis in terms of computational constraints, robustness219
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to unanticipated inputs, and interpretability (Slingerland et al., 2021). For example, while220

abundant open source software packages exist to find peaks in mass spectrometer data221

such as OpenMS (Sturm et al., 2008), XCMS (Smith et al., 2006), CWT (Du et al., 2006),222

MZmine2 (Pluskal et al., 2010), or more recently deep learning (Liu et al., 2019; Zhao223

et al., 2021), most of these algorithms maximize sensitivity with little consideration for224

computational efficiency or the requirement for real-time user parameter adjustment. ACME225

is designed to operate onboard a spacecraft with limited computational power (e.g. a 200 MHz226

processor) in real-time, analyzing and summarizing a fresh sample within 35 minutes, with-227

out regular user guidance for parameter adjustment. Furthermore, the data products pro-228

duced by ACME must support and enable rigorous scientific interrogation in lieu of ac-229

cess to the full raw data record. As the presence of biosignatures on an ocean world would230

be an extraordinary claim, ACME’s results must also be highly interpretable and sup-231

port confirmatory analysis on the ground. Further, summarization and prioritization de-232

cisions must be backed up by sufficient context to provide justification as well as raise233

alarms should a reconfiguration be required. This includes not only peak information234

but descriptions of the complex background that may include unanticipated but mission235

critical structure. Towards these goals, ACME was developed utilizing a readily inter-236

pretable expert system for target peak detection that borrows concepts from many lead-237

ing peak detection algorithms, strongly optimizes for computational efficiency, and cap-238

tures snapshots of raw data around each identified peak to enable detailed ground anal-239

ysis, re-processing, and overlapping lines of evidence.240

Rather than accuracy, the space use-case bandwidth constraint places individual241

requirements on both false positive and false negative peak detections. False positive peak242

detections result in the high resolution capture of uninteresting portions of the CE-MS243

ion count grid. These cause no harm so long as all target peaks are also captured. How-244

ever, should false positive peaks become so numerous as to crowd out true positives for245

limited downlink bandwidth, valid science targets may not be included. False negatives,246

or missed peaks, whether by a failure in the peak detection step or by crowding out by247
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false positives, may directly result in failure to capture key science observables. Using248

values from the Europa reference mission, produced ACME requirements for a false neg-249

ative rate of less than 5% for peaks with z-score greater than 5 and less that 50 false pos-250

itive peaks per observation.251

The peak detection algorithm steps are illustrated in Figure 4 and documented be-252

low. Generally, they proceed by first producing a low-quality list of candidate peaks us-253

ing computationally efficient methods, followed by a more sophisticated analysis of each254

candidate to separate valid from spurious peaks.255

3.2.1 Background Isolation256

Raw data from the CE-MS instrument typically includes distinct and slowly vary-257

ing regions of elevated, noisy background. These regions are visible as horizontal streaks258

in Figure 4a, and are often influenced by salt concentrations. In the same figure, target259

peaks can be seen as bright dots; the location of these peaks must be identified by iso-260

lating them from the noisy background. To estimate this background, a median filter is261

applied along the migration time axis to smooth over the noise. Large filter window sizes262

produce higher quality background estimates, but induce errors near abrupt changes in263

background behavior. On the other hand, small windows produce noisy background es-264

timates and may confuse valid, wide peaks as background noise. An optimal median fil-265

ter window size of 36 sec was determined by maximizing performance on the training dataset.266

Figure 4b shows an example of an isolated background estimate. By subtracting this es-267

timate from the raw data and setting negative values to zero, the peaks are isolated from268

their local noisy background.269

3.2.2 Initial Peak Candidate Detection270

In preparation for the blob detection process, the isolated peaks are convolved with271

a Difference of Gaussians (DoG) spatial filter that is produced by subtracting a two-dimensional272

Gaussian from a smaller-width Gaussian. Intuitively, this selects for peak-like structures273

–14–
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Figure 4. Steps of the peak identification algorithm on a cropped sample with 90 uM of

mix25 and 3 M NaCL (introduced in section 2.2.1): (a) Raw data, (b) Background estimate from

median filter, (c) Raw data with background subtracted, (d) Data is convolved with a Difference

of Gaussians filter, (e) Peaks identified with non-maximum suppression (shown as red dots), (f)

Identified target peaks that were down selected from all found peaks by their properties (shown

as red dots)

that have a Gaussian shape and suppresses structures that deviate from such a shape,274

as this was found to well represent the valid CE-MS targets of interest. The DoG filter275

is defined by setting the standard deviation of the two Gaussian filters in both the mass276

and time dimensions. An example result of enhanced peaks is shown in Figure 4d.277

Non-maximum suppression blob detection is then applied to find the local max-278

ima of the now isolated potential peaks. The resulting list of peak maxima contains valid279
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Figure 5. Core elements of calculated peak properties. The cropped peak from raw CE-MS

data is shown in (a), and the estimated local background is shown in (b). Subtracting (b) from

(a) results in (c), which is the isolated signal. Labeled variables include the surrounding back-

ground region, B1 and B2, central peak region, C, peak height, p, Gaussian fit of r, g, center

mass slice of (c), and peak width, w.

peaks embedded among far more numerous false-positive, spurious noise peaks. An ex-280

ample of peak identification results is shown as red dots in Figure 4e.281

3.2.3 Peak Characterization282

Valid target peaks may be separated from spurious peaks based on detailed exam-283

ination of their properties in the original raw ion count data. To extract these proper-284

ties, the local region surrounding each peak candidate (Figure 5a) is first examined to285

estimate a local background (Figure 5b) that is removed by subtraction (Figure 5c). The286

peak’s width w and Gaussianity is estimated using a Gaussian fit to the central m/z slice287

of the windowed region (Figure 5d). Defining the temporal region before the peak (B1),288

the peak itself (C), and after the peak (B2), additional properties as identified in Ta-289

ble 2 are extracted. These peak properties were captured from the manual data inves-290

–16–
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Table 2. Extracted Peak Properties

Peak Property Equation Description

Center (m/z) m/z of peak maxima

Center (migration time) Migration time of peak maxima

Height p = max(C) Maximum height of peak

Volume
∫
C Total peak ion counts

Width w = ±3σ Duration of peak

Z-Score p/max(σB1
, σB2

) Signal-to-noise

Gaussian Loss MSE(r, g)/p Divergence from Gaussian profile

Background Level max(B̂1, B̂2) Estimate of local baseline

Background Stdev max(σB1
, σB2

) Estimate of local noise level

Background Diff abs(B̂1 − B̂2) Delta between left and right baselines

Background Ratio min(B̂1/B̂2, B̂2/B̂1) Slope between left and right baselines

B̂1 is the median of B1.

σB1
is the standard deviation of B1.

Note: All calculations are performed after subtracting the local background

tigations used by instrument scientists during instrument development and character-291

ization.292

3.2.4 Peak Filtering293

The specific peak properties and associated threshold values most informative for294

filtration of spurious peaks will strongly vary depending on CE-MS instrument hardware,295

available mission downlink, the associated degree of filtration required, and to a lesser296

degree on specific target compounds of interest. Further, the filtration process should297

encourage science team trust through interpretability of its function and the parameters298

that control its behavior. To meet these operational requirements, ACME currently lever-299
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ages an ”expert system” comprised of simple threshold checks on the most informative300

peak properties. While this approach maximizes operator understanding and computa-301

tional efficiency, there can be negative implications to mid-mission reconfiguration and302

operator awareness of missed peaks as discussed in future work in Section 6.303

ACME’s peak filtration was optimized to the annotated training dataset (Section304

2.2.2) in a two step, semi-automated manner. First, a decision tree model was trained305

to classify valid vs. invalid peaks, and the model’s reported feature importances were306

used to identify the most discriminative peak properties. For the OWLS CE-MS pro-307

totype and Europa reference mission, the decision tree approach determined that z-score,308

Gaussian loss, peak volume, and peak width were the most informative peak prop-309

erties. Second, thresholds of acceptability for each property were manually determined,310

incorporating both the reported values from the decision tree as well as domain knowl-311

edge from the instrument scientists. The resulting expert system rules are described in312

Algorithm 1.313

Algorithm 1: Determine if Peak is a Valid Target Peak

Data: Calculated properties of a peak

Result: True if peak is a valid science target, False if peak is spurious

if peak.volume ≥ 500 then

if peak.gaussloss < 2% then

if 5 ≤ peak.zscore < 10 and peak.width > 2.4 sec then

return True

else if peak.zscore ≥ 10 and peak.width > 1.5 sec then

return True

else

return False

Should the data quality, compounds of scientific interest, or desired filtration rate314

change over the course of a mission, these rules can easily be reoptimized by repeating315

the above process with a new, representative, annotated dataset. Should it be suspected316
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Table 3. ACME Parameters for Algorithm described in section 3.2

Algorithm step Parameter Value

Background Estimation window size 36 sec

Gaussian Convolution larger Gaussian stdv. 1.5m/z, 2.9 sec

smaller Gaussian stdv. 0.54m/z, 1.0 sec

Peak Filtering z-score > 5

peak volume > 500 ion counts

peak width
> 1.5 sec @ z-score > 10

> 2.4 sec @ 10> z-score> 5

Gaussian loss MSE < 2%

that desirable peaks are being filtered, or that inappropriately high or low values of valid317

peaks are detected, mission operators may choose to downlink the entire pre-filtration318

peak candidate list to inform reconfiguration of threshold values. The parameters op-319

timized for the OWLS CE-MS prototype and Europa reference mission are shown in Ta-320

ble 3. Further, Section 6 describes future developments that will improve the robustness321

of ACME to flight failure scenarios featuring a probabilistic approach to peak validity.322

3.3 Autonomous Science Data Products323

ACME produces several Autonomous Science Data Products (ASDPs) that cap-324

ture and summarize the contents of CE-MS observations at a small fraction of the raw325

data volume to be compliant with the bandwidth restrictions of planetary exploration.326

Taken together, these products must first and foremost support the same valid science327

conclusions as would the full raw ion count grid. To do so, they must extract known key328

science observables (peaks), capture justifying context for interpretation of extracted quan-329

tities (background & data quality characteristics), support ground re-analysis as new lines330
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of inquiry arise (raw data crops), provide overlapping lines of evidence to support skep-331

tical inquiry (overlapping information), reveal unanticipated structures in the raw data332

to support discovery (background), and provide insight into regions of non-returned raw333

data to inform manual requests and identify the need for reconfiguration. Further, ACME334

must inform the later prioritization of multiple observations by estimating the scientific335

utility of a sample as well as identify key characteristics that reveal the uniqueness of336

a sample’s contents. ACME can be reconfigured to include or exclude specific ASDPs337

or to adjust the size and resolution of each ASDP as required for a given mission use-338

case. Detailed descriptions of ACME’s output data products follow, and a product sum-339

mary as configured for the Europa reference mission is provided in Table 4. Note, that340

more expensive (higher data volume) products may be conditionally returned depend-341

ing on the assessed priority of a sample’s scientific content, again in a fully configurable342

manner.343

3.3.1 List of Detected Peak Properties344

The primary science product from the CE-MS data is a list of every peak candi-345

date and its extracted properties as described in section 3.2. During nominal operation,346

only valid peaks that survived filtration are downlinked to preserve bandwidth, and the347

complete list of peak candidates remains available onboard the spacecraft for later mis-348

sion operator request should verification or reconfiguration of ACME’s behavior be de-349

sired. In the event of a major discovery such as strong biosignature evidence, it is likely350

that the complete peak list would be requested to provide additional supporting context.351

This data product’s size may be configured by selecting the peak properties to include.352

3.3.2 Raw Peak Crops353

For each valid peak, ACME captures a window from the surrounding raw ion count354

data. Selected raw data regions are crucial to enable ground science analysis and inter-355

pretation. This is the most expensive data product by volume, and its size is configured356
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Table 4. Overview of ACME’s Autonomous Science Data Products

ASDP Data Volume (kB) Low Priority (kB) High Priority (kB)

Valid Peak Properties 3 X X

Valid Peak Crops 108 X

Compressed Background 56 X

Total Ion Count 3 X X

DD & SUE 0.3 X X

Complete Peak Properties∗ (145)

Raw Data (for comparison) (70800)

Total data volume per sample 6 170

Compression Ratio (raw / ASDP) 11,800x 416x

Note: Data volumes are averages over the Testing Set

∗ Transmitted only upon special mission operator request
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Figure 6. Full and m/z -integrated crops for three peaks with decreasing SNR. Each 2D crop

(left column) is centered on an identified peak and shows an area of 36 sec by 1m/z (121 time

bins, 13 mass bins). The right column shows the same crops integrated over ±0.5m/z. The ion

count data was reduced to an 8-bit representation to further preserve bandwidth. Returning raw

data regions allows independent assessment of ACME’s findings as well as enables later re-tuning

of ACME’s settings.

by specifying the desired window size and the level of peak candidate filtration. Addi-357

tional data volume savings may also be realized by optionally reducing the bit depth of358

the returned ion counts or integrating over the m/z dimension to instead return local359

electropherograms. Bandwidth protection is ensured by a specified maximum number360

of peaks to receive raw data capture. Figure 6 shows three example raw peak cropped361

regions as well as their integrated alternatives.362

3.3.3 Background Characterization363

While the list of peaks properties and cropped raw data regions well characterize364

the primary science observables of a CE-MS instrument, ACME must ensure that unan-365

ticipated or serendipitous discovery remains possible even if not peak-like in nature. Fur-366

ther, characterizing the complex background enables detailed instrument health mon-367

itoring, provides context for peak detection decisions, and supports reasoning on poten-368
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Figure 7. Diagram of the ion count background summarization method. (1) Calculate the

maximum of each m/z row, (2) Segment the max ion counts in m/z by thresholding the first

derivative, (3) For each m/z region, compute the median ion count as a function of time, (4)

Further sub-segment each m/z region in time by thresholding the first derivative of the me-

dian ion count, (5) For each resulting rectangular sub-region, calculate and store the mean and

standard deviation.

tially undetected peaks. To efficiently parameterize the CE-MS background using a min-369

imum amount of data bandwidth, ACME leverages the observation that the ion count370

background can be efficiently described by a series of rectangular regions with fairly uni-371

form noise behavior. These sub-regions typically extend broadly (several minutes) in time372

and narrowly (0.5 − 2m/z ) in m/z. To enable background characterization, ACME dy-373

namically determines sub-region boundaries and captures its mean and standard devi-374

ation. The region determination algorithm is diagrammed in Figure 7.375

The background summarization product may be configured by changing the seg-376

mentation percentile thresholds, resulting in coarser or finer representation of the back-377

ground structure. Alternatively, to enable a more uniform data product size, ACME can378

produce multiple background summarization products at differing threshold values and379

select the highest resolution product that satisfies a maximum allowed data volume.380
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3.3.4 Total Ion Count (TIC)381

ACME separately reports the total ion content integrated over the full m/z and382

migration time ranges, corresponding to a mean mass spectra and electropherogram. This383

product provides context for ACME’s more detailed findings as well as insight into in-384

strument health, as well as ensuring that large but highly non-Gaussian peaks are still385

captured. Configuration options include down-sampling the series and reducing its bit386

depth to preserve bandwidth. Down-sampling by a factor of 4 and a 8-bit encoding re-387

sults in an average data volume of 3 kB for the testing set.388

3.4 Prioritization-supporting Output Products389

While onboard summarization enables high data volume instruments to be deployed390

on remote worlds, potential discoveries that are environmentally rare may still be missed391

by the relatively limited number of summarized samples that may be returned. Detailed392

characterization of an unknown environment requires representative sampling that re-393

turns the most diverse set of observations as well as the distribution, or rarity, of each394

example. Prioritization is the capability to determine which subset of available samples395

would be most scientifically informative to return. ACME generates two products that396

enable sample-level prioritization. The Science Utility Estimate (SUE) prioritizes obser-397

vations based on a mission’s explicit science goals, while the Diversity Descriptor (DD)398

focuses on rare or unusual observations and enables inter-sample similarity comparisons.399

These two synergistic approaches may be later combined into a single prioritization scheme400

in any ratio, allowing a science team to configure and reconfigure ACME’s prioritization401

behavior to best match the science team’s current goals.402

3.4.1 Science Utility Estimation for Known Science Targets403

The SUE is a real-valued estimate (ranging from 0 to 1.0) of the scientific value of404

a CE-MS observation as defined by the known science targets of the mission use-case.405

The SUE is constructed from the extracted information produced by the summarization406
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algorithms in Section 3.3. The precise formula is highly mission use-case specific and may407

evolve over the mission lifetime to follow changing science goals. To support this need,408

ACME includes a variety of potentially useful inputs to consider for inclusion in a given409

SUE instantiation. Following data science nomenclature, we call these extracted inputs410

”features” of the observation. Each of the candidate features captures a separate, de-411

sirable property of a valid, scientifically interesting CE-MS observation, such as the num-412

ber of peaks in a specified mass and time region of interest or an estimate of the instru-413

ment data noise level. The set of features of interest for SUE calculation will generally414

be determined during mission preparation and will likely not change until later phases415

of the mission or in the event of unanticipated data quality issues.416

Each raw input feature xi is normalized and conditioned for SUE calculation by

the transformation:

yi =


√

xi

xi,max
xi < xi,max

1 xi ≥ xi,max

(1)

where xi,max is a user defined threshold for each input feature that sets its maximum417

significant contribution. The square root dependence below this threshold encourages418

rapid initial contributions that gradually taper towards saturation and diminishing re-419

turns.420

The SUE is calculated by a weighted average over the set of N normalized features:

SUE =

∑N
i=1 wi ∗ yi∑N

i=1 wi

(2)

where wi are user-specified weights corresponding to the relative importance of each fea-421

ture.422

For the prototype OWLS CE-MS and the Europa reference mission, five features423

were chosen for SUE calculation to demonstrate observation prioritization. 1) Priority424

compound presence, as defined by the number of valid peaks with m/z values match-425

ing a customizable onboard list of high-priority organic compounds (e.g. amino acids,426

nucleobases, nucleosides), 2) Observation complexity, as defined by the total number of427
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Table 5. Demonstrated Features for the Science Utility Estimate

Feature Saturation (ximax) Weight (wi)

Number of target organic compound peaks 100 1

Total identified peaks 200 0.5

Average z-score (Peak height / background noise) 100 0.2

Number of unique migration times 50 1

Number of unique m/z 100 1

identified target peaks, 3) Observation SNR, as defined by the average z-score of iden-428

tified target peaks to prioritize high compound abundance, 4) Number of unique com-429

pounds as estimated by the number of unique migration times to 36 s accuracy, and 5)430

Number of unique compounds as estimated by the number of unique m/z ’s to 1 AMU431

accuracy. Table 5 summarizes these features and their associated saturation thresholds432

and weighted importance for SUE calculation. Future missions may easily subsample from433

this list or use any other extracted features of interest.434

3.4.2 Diversity Descriptors for Representative Sampling435

The needs of planetary scientists to characterize an unknown environment extend436

beyond the stated science targets of interest. Diversity-based sampling requires calcu-437

lating the dissimilarity of a CE-MS observation relative to those already onboard or re-438

turned to Earth. Observations that strongly differ from those previously seen may re-439

ceive an increased priority relative to those that are highly similar to past observations.440

Further, even for the observations that are not prioritized for downlink and remain on-441

board, their unique contributions may be summarized to the ground such that their sim-442

ilarity to the returned observations is known.443

In ACME, both prioritization by observation uniqueness as well as comparison with444

non-downlink-selected observations are enabled by the choice of a scalar distance met-445

–26–



manuscript submitted to Earth and Space Science

ric that measures the dissimilarity between two CE-MS observations. The features that446

enter this distance metric are called the observation’s Diversity Descriptor (DD) and form447

a vector whose elements capture observation details that are meaningfully comparable.448

Similar to the SUE, the raw input features xi are normalized and thresholded similarly449

to the SUE:450

yi =


xi

ximax
xi < ximax

1 xi ≥ ximax

(3)

The relative difference D between two observations a and b with N DD elements451

can then be calculated by the Euclidean distance between their respective DD vectors:452

D(a, b) =

√√√√∑N
i=1((ai − bi) ∗ wi)2∑N

i=1 w
2
i

(4)

where the user-defined weights wi define the relative importance of each DD fea-453

ture.454

For the prototype OWLS CE-MS and the Europa reference mission, three features455

were selected to enable diversity-based sampling through the DD. The first two estimate456

salt abundance as 1) the average background ion count and 2) the standard deviation457

of the background in the proximity of peaks. To enable compound-level diversity sam-458

pling, the final feature 3) is a vector itself and captures the binary presence of peaks (1459

or 0) for coarsely binned m/z (10 AMU resolution). The features and weights used are460

provided in Table 6.461

In summary, the scalar SUE and the vector DD are calculated for each observa-462

tion, using a variety of mission-specific extracted features and user-defined weights. To-463

gether, they enable later data prioritization by estimating the science utility relative to464

known mission science targets and the uniqueness of each sample’s contents.465
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Table 6. Features used to calculate the Diversity Descriptor

Feature Saturation (ximax) Weight (wi)

Average background height 50 0.2

Standard deviation of background height 50 0.2

Peak presence in m/z bins∗ 1.0 1.0†

∗Feature is a vector

†Cumulative weight of vector elements

As an illustrative example of assessing observation dissimilarity, the datasets of Sec-466

tion 2.2 were compared in Figure 8. The laboratory datasets are visibly grouped together467

by similarity, with the exception of 10 uM NaCl 3M. The simulated ‘Golden’ and ‘Sil-468

ver’ datasets are similar within their respective dataset but differ significantly to each469

other.470

3.4.3 Downlink Prioritization471

Downlink prioritization for the OWLS instrument suite is accomplished by balanc-472

ing two competing goals: (1) selecting data products with high science utility for down-473

link, and (2) selecting a diverse set of representative data products that capture the full474

range of observed phenomena. This is achieved in a two-step process. First, data prod-475

ucts are ordered by the highest SUE-per-byte value, in order to achieve the maximal util-476

ity within a budgeted downlink data volume. Second, the DD is used to penalize obser-477

vations by their similarity to observations higher in the priority list, to account for the478

decreased marginal utility of downlinking similar data products (Doran et al., 2021). The479

magnitude of the DD penalty, and hence the relative weight of target science (SUE) vs.480

representative sampling (DD), is user-defined and easily modified by mission operators.481

In addition to ACME’s downlink prioritization, scientists maintain the ability to482

manually request and prioritize observations for downlink during sequencing and ground-483
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Figure 8. Dissimilarity (distance) between six laboratory samples and two samples from the

Golden and Silver simulated dataset as determined by their Diversity Descriptors (DD’s). 0 cor-

responds to two samples being exactly the same, 1 corresponds to two experiments being the

most different.

in-the-loop commanding opportunities. Manual control over prioritization is enabled by484

preserving the common mission practice of ‘priority bins.’ In this scheme, operators spec-485

ify which data products to place in each of several priority bins. Products from higher-486

priority bins are always downlinked ahead of lower-priority bins until the communica-487

tion opportunity ends, ensuring interpretable, predictable downlink behavior. ACME’s488

SUE- and DD-based prioritization algorithm would only apply to observations within each489

bin. This hybrid prioritization strategy emphasizes informing the operations team and490

leveraging their guidance when available, while ensuring a reasoned, predictable, and pro-491

ductive behavior otherwise. In the extreme case of an extraordinary discovery captured492

by ACME’s prioritized, summarized data products, it is likely that a follow-on, manual493

request for transmission of the raw observation data would be made. ACME, its sum-494

mary data products, and its prioritization strategies have been designed to ensure that495

the mission science operations team is sufficiently informed to make such a request.496
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4 Results and Discussion497

4.1 Target Peak Detection498

Three data sets were used to evaluate the peak detection performance of ACME.499

The ‘Golden’ and ‘Silver’ simulated datasets (see Section 2.2.3) were used to character-500

ize ACME’s performance under controlled and ideal conditions, while laboratory test sam-501

ples (see section 2.2.1) were used to evaluate ACME under more realistic conditions.502

ACME’s peak detection performance was captured by the metrics of precision and503

recall. Precision is the fraction of peaks ACME selected that were valid, annotated tar-504

get peaks, i.e. how likely is an ACME-selected peak to be valid. Recall measures the frac-505

tion of valid, annotated target peaks in the dataset that were correctly selected by ACME,506

i.e. how many of the known targets were correctly detected. Both of these metrics are507

critical to the space use-case. Low precision would result in false peak detections that508

would corrupt SUE and DD prioritization, and the unnecessarily captured raw data re-509

gions surrounding uninteresting peaks could crowd out science targets from the down-510

link record if present in large numbers. More directly, however, a low recall would re-511

sult in missed scientifically relevant peaks, erroneously diminished SUE prioritization,512

and seriously compromise the goal of identifying existing life. Due to the high scientific513

cost of missing target peaks, ACME was optimized to emphasize recall over precision.514

On the Golden and Silver dataset, ACME has a recall and precision of greater than 0.99515

and 0.98, respectively. For the six hand annotated samples of the test set, the average516

precision and recall is 66% and 99%, respectively. The recall and precision for the sim-517

ulated and laboratory samples is summarized in Table 7.518

4.1.1 False Positives519

A moderate number of false positive peaks have little negative impact, as they would520

result in unnecessary raw cropped region capture and potential inflation of the obser-521

vation priority. However, substantial false positives may crowd out valid science targets522
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Table 7. Performance of ACME for Simulated and Laboratory Samples

Dataset Precision Recall

Golden Simulated Dataset 0.99 0.99

Silver Simulated Dataset 0.98 0.98

Laboratory Test Samples 0.66 0.99

of interest. As mission bandwidth decreases, the sensitivity to false positives increases.523

Figure 9 captures cropped regions surrounding some of ACME’s false positive peaks ex-524

tracted from our evaluation data, highlighted with a red border. Many of these peaks525

share similar characteristics to true positive peaks (e.g., the false positive peak at 101.0m/z526

and 12.8 min; left column, second from the top). Should peak-like structures be present527

as unwanted artifacts in the data, optimizing ACME to reject them will also remove weaker528

true positive peaks and thus overall sensitivity. This tuning trade-off is captured in Fig-529

ure 10. As sensitivity is lowered by increasing the required z-score threshold for peak de-530

tection, the number of false positives decreases (green) but so too does the recall of valid531

peaks decrease (blue). A specific mission use-case will determine an optimal tuning of532

ACME in similar fashion, balancing peak sensitivity and bandwidth constraints.533

4.2 Background Summarization534

ACME’s background summarization algorithm (section 3.3.3) was evaluated by com-535

parison with two baseline image compression methods.536

4.2.1 Baseline Methods537

Two common, off-the-shelf image compression algorithms used for science imagery538

were selected as a comparison baseline. JPEG2000 (Rabbani, 2002) is a lossy compres-539

sion method based on wavelet decomposition typically used for planetary mission cam-540

era images (Kiely & Klimesh, 2003). The principal component analysis (PCA) dimen-541
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Figure 9. Cropped regions of peaks detected in the 100 nM test sample with the ACME

software. Each peak shows an area of 36 sec by 1m/z. False positive peaks are highlighted in red.

Figure 10. Filter study for ACME’s z-score threshold on hand labeled laboratory samples.

ACME’s performance is shown for different z-score thresholds (x-axis) used to detect peaks. The

recall is shown with blue squares, precision with red triangles, F1 score with purple diamonds

(y-axis on the left), and average false positive rate per sample with green stars (y-axis on the

right).
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sionality reduction method (Pearson, 1901) instead focuses on preserving data covari-542

ance through the creation of a reduced basis set. For both of these methods, the CE-MS543

2D ion count grid was first scaled and discretized to an 8-bit integer image (0-255). The544

image was then compressed and reconstructed for comparison with ACME, with con-545

figuration parameters set to produce results similar in size to ACME’s ASDPs.546

4.2.2 Reconstruction Comparison547

ACME’s background summary product was compared to the baseline compression548

methods. An example is shown in Figure 11 for the 90 uM NaCl 3 M laboratory sam-549

ple. All three methods reduced the 97 MB CE-MS raw observation by roughly three or-550

ders of magnitude, but with greatly differing scientific fidelities. To provide comparison551

and context, three cropped regions of raw data were overlaid in yellow. The JPEG2000552

background reconstruction in Figure 11b shows clear artifacts due to the scaled integer553

discretization that is a necessary preprocessing step by the method. The PCA reconstruc-554

tion in Figure 11c better captures the average ion count background around the peaks,555

but it fails to capture the local noise estimate (stdev). Characterization of the noise is556

critical for analyzing the validity of a peak detection (SNR). ACME’s summarization prod-557

uct shown in Figure 11d solves this issue by summarizing both the mean and variance558

of the background. With these two pieces of information, it is possible to conclude that559

the detected peak at 23.5 min is most likely a false positive, as the height of the ‘peak’560

is within the summarized noise range.561

4.3 Computational Efficiency562

Short mission life time, limited power, and constrained onboard computation will563

be ubiquitous features of a mission to Europa or Enceladus. To maximize communica-564

tions opportunities and mission productivity, the ACME system is required to process565

a new observation within a 30 min time frame. On a standard laptop CPU (Intel i9 2.4 GHz)566

the ACME algorithm required 70 sec (average over the six test-set samples), operating567
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Figure 11. A comparison of reconstructions from three different methods (JPEG2000, PCA,

ACME). For comparison with raw data, crops of detected peaks have been overlaid on the recon-

structed background in yellow. The data sizes reported are of the entire CE-MS observation.

on a single core, to process one raw CE-MS observation and produce all specified AS-568

DPs. The OWLS instrument suite has currently targeted a processor that meets or ex-569

ceeds the Qualcomm Snapdragon 801 that was successfully flown on the Ingenuity he-570

licopter (Balaram et al., 2021) on the Perseverance rover. This processor can reach 2.5 GHz571

for each of its 4 cores (Qualcomm, 2021). Thus, we expect the onboard processing time572

to be similar to our tests on the standard laptop and exceed the mission computation573

requirement. As a reference for comparison, the processing time on a radiation hardened574

CPU, RAD750 V2 at 200 MHz (BAE Systems, 2017), would be approximately 14 min575

and still meet the requirement.576

4.4 Limitations577

4.4.1 False Negatives578

Separating true peaks from the noisy background requires making a variety of as-579

sumptions. ACME currently assumes that peaks can be approximated by a Gaussian580

distribution. This holds true for the vast majority of analyzed laboratory peaks. How-581
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ever, in the OWLS CE-MS development data, there exist two examples of non-Gaussian582

peaks.583

The first type occurs when two peaks are in close proximity in the time domain and584

overlap partially, as shown in Figure 12a. The ACME software correctly detects some585

of these cases as two peaks; however, in other cases only one of the peaks or no peak is586

detected. We quantified the effect of peak overlap on algorithm recall using a set of sim-587

ulated data containing a total of 10,000 peaks with a peak-width range of (1−27 sec) (see588

Figure 13). As shown, the recall for a target peak decreases due to overlap to a mini-589

mum of about -20% at a distance of 4 sec. Any closer, and recall increases compared to590

the baseline to approximately +20%. This can be explained by the algorithm only be-591

ing required to correctly detect one of the two peaks. The other peak is then close enough592

to be counted as detected, even if a filter removed it, for example due to its z-score or593

Gaussian fit. While this second peak would be missed in the list of peaks, it would be594

contained in the raw data crops.595

The second type of non-Gaussian peaks are very long with a plateau on top that596

can span more than 30 seconds, as shown in Figure 12c. These peaks approximate other597

background artifacts and are not detected in some instances. Although ACME can be598

retuned to be more sensitive to these cases, a resultant rise in false positives would be599

anticipated. These very long peaks are very rare in the CE-MS observations and con-600

sidered out of scope for the ACME use case at this time.601

4.4.2 Failure modes602

It is crucial that even if ACME’s configuration is misaligned with respect to the603

nature of incoming CE-MS observations, mission operators will be able to recognize and604

reconfigure ACME to restore functionality. This section captures ACME’s modes of fail-605

ure and ensures that operators would have access to both timely alerts and decision sup-606

porting information on how to proceed.607
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Figure 12. Examples of four false negative scenarios. (a) shows two overlapping peaks not

detected by ACME because they cannot be estimated by a single Gaussian distribution. (b)

shows two closely overlapping peaks that can be approximated by a single Gaussian distribution.

(c) shows a very wide peak that was not detected by ACME due to its similarity to background

artifacts. (d) shows a slightly less wide peak which was correctly detected by the algorithm.

Figure 13. ACME peak detection as two peaks converge and overlap. Baseline recall is shown

as the black dotted line, while the change in recall is shown in blue. As the peaks overlap, recall

suffers, until they become sufficiently close that they increase the chance of including each other

in their cropped raw data regions.
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There are a variety of low-sensitivity scenarios in which target peaks would be par-608

tially or completely missed (see Section 3.1). Should ACME erroneously detect few or609

no target peaks despite their presence, the SUE would be near 0, and only the TIC, DD,610

and SUE products would be transmitted due to low prioritization. However, the TIC would611

still capture an integration of the ion counts that revealed the presence of undetected612

peaks, alerting the operations team of an issue with ACME configuration. Should mul-613

tiple samples contain no target peaks, the operations team would be able to manually614

request the full candidate peak list and background summary, retune ACME, and re-615

solve the situation with the uplink of the new configuration at the next communications616

opportunity. The peak list and background would provide ample information to assess617

the cause for the misalignment, whether it be instrument related or unanticipated en-618

vironmental character.619

Similarly in the over-sensitive limit, ACME could erroneously detect unacceptably620

large numbers of peaks, presumably either spurious background peaks in an unexpect-621

edly large noise environment or through real unexpected environmental complexity. This622

would be problematic, as raw data crops surrounding each peak would exceed the down-623

link bandwidth allocated to ACME. To mitigate this scenario, ACME has an adjustable624

threshold for the maximum number of identified target peaks per observation. If ACME’s625

detected peaks exceed this threshold, the observation is treated as low priority due to626

data quality issues, and again only the TIC, DD, and SUE will be transmitted for fur-627

ther analysis along with an operator alert. The mitigation of this scenario proceeds as628

in the low sensitivity scenario above.629

Finally, the ACME background summarization method (Section 3.3.3) leverages630

that the background ion count patterns are aligned to the m/z and migration time axes631

in the data. For highly complex, unaligned background noise, the resulting data prod-632

uct would exceed its maximum downlink allocation of 100 kB. In such a scenario, ACME633

may be configured to fall back on the JPEG2000 image compression algorithm, as this634
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approach makes no morphological assumptions and supports specifying the maximum635

size of the resulting compressed image. This would allow operators to view the overall636

CE-MS observation structure even in the event that it radically departs from expecta-637

tion, likely due to instrument issues.638

5 Conclusion639

To search for life on distant ocean worlds, a flight-like CE-MS instrument with as-640

sociated onboard capabilities for scientific summarization and prioritization has been de-641

veloped. The large data volumes of the mass spectrometer, coupled with the limited down-642

link budget of a distant planetary mission such as Europa or Enceladus, will require sci-643

ence autonomy software. These onboard autonomy capabilities must maximize ground644

operator awareness of the raw data onboard and providing justification for its decisions.645

The ACME software can autonomously identify peaks in noisy CE-MS data, compress646

the analyzed experiments by up to three orders of magnitude, and quantify the unique-647

ness and estimated science utility of each observation. These configurable capabilities648

enable the return of data products that maximize target science capture as well as char-649

acterization of a diverse, unknown environment, even in the presence of severe downlink650

constraints. ACME has been shown to meet or exceed the expected performance require-651

ments for the Europa Lander reference mission.652

6 Future Work653

Several improvements to ACME are currently in progress as part of the continu-654

ing OWLS project. The current ACME product was designed to support initial instru-655

ment hardware development, terrestrial field demonstrations, and later extend to the space656

mission use-case. These improvements further support and refine planetary science ap-657

plications.658
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6.1 Compound-level assessment659

Currently, the SUE of an observation relies partially on the number of unique peak660

m/z and migration time values. These are used as approximate estimates for the num-661

ber of unique molecular compounds present in an observation. Instead, compounds could662

first be identified along the time axis and then associated with their mass fragmentation663

spectra. This would improve the quality of compound number estimation, and would also664

support prioritization by comparison with an onboard library of known, high-priority com-665

pounds of interest.666

6.2 Peak Detection Likelihood667

Currently, ACME filters spurious from valid peaks using a binary filter with sim-668

ple threshold checks. This approach was selected for maximum operator understanding669

and trust of the science team during instrument development and initial field deployment.670

However, a peak candidate that has low SNR may indeed be a detection of interest, rather671

than a spurious noise event. A more nuanced approach would assess each peak candi-672

date by its likelihood of validity, such as with a Gaussian process classifier. Then, given673

a fixed budget of N raw cropped regions informed by bandwidth constraints, the first674

N peak candidates sorted by likelihood would be captured in detail. Additional, peaks675

with sufficiently high likelihood could still be returned along with their extracted prop-676

erties, but without the expensive cropped region. This would more naturally mitigate677

the failure modes identified in Section 4.4.2 by affording mission operators sufficient in-678

formation to dynamically adjust ACME’s parameters without the costly request of the679

entire peak candidate list in the next uplink opportunity.680

6.3 Uncertainty Quantification681

ACME must engender trust from mission science teams and flight operators to pro-682

vide meaningful, useful insights into the environmental exploration science target, the683

instrument’s health and data quality, and its own function and calibration. As in the peak684
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likelihood example above, adding an estimate of uncertainty to ACME’s core products685

can afford deeper operator insight and more correctly capture the contents of observa-686

tions for summarization and prioritization. Both the SUE value and the DD elements687

could, for example, include uncertainties. This would allow several new lines of onboard688

reasoning. For example, a high priority observation with significant uncertainty may be689

less preferential than a slightly lower priority observation with low uncertainty. Obser-690

vations that result in highly uncertain SUE and DD elements could be effectively flagged691

as violating ACME’s fundamental assumptions and instigate operator inquiry. ACME’s692

current background summarization method already incorporates this concept by cap-693

turing the variance in each background ion count region. Current R&D efforts will ex-694

plore the mission utility and interpretability provided by adding uncertainty quantifi-695

cation to the various ACME output products.696

6.4 Internal Calibration & Diagnostics697

Future versions of the OWLS CE-MS instrument will include an internal standard698

consisting of known compounds at known concentrations. These standard compounds699

may be processed by the CE-MS and ACME before natural samples. ACME’s perfor-700

mance on these internal standards could then be compared to an expected outcome to701

provide a host of instrument and autonomy health information critical to interpreting702

the natural sample results. ACME’s ability to efficiently summarize a CE-MS observa-703

tion will be critical for these standards, to ensure a minimum of downlink bandwidth is704

spent on calibration information. In the event of instrument degradation for missions705

with very short lifespans or limited communication opportunities, such as Europa Lan-706

der, it may be desirable to further equip ACME with a form of auto-tuning that would707

determine its optimal peak sensitivity based on the results from the internal standard.708
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6.5 Natural Sample Characterization709

As ACME represents a data-driven approach to onboard science support, it is only710

as trustworthy as the observations that have been used to develop and validate its ca-711

pabilities. Currently, the majority of ACME’s evaluation was performed on samples pre-712

pared in a laboratory environment with a fixed list of compounds relevant to the search713

for extant life. Upcoming terrestrial field campaigns with the OWLS instrument suite714

will provide uncontrolled natural samples to be assessed by ACME and, in turn, assess715

ACME’s summarization and prioritization capabilities. The final evaluation of ACME’s716

relevance will be obtained by comparing the scientific findings produced by two groups717

of scientists. One group will have access to the raw CE-MS observations, while the other718

will only see ACME’s bandwidth-compliant ASDPs and prioritization results. This will719

mock-up an actual mission use-case and inform further improvements in ACME’s op-720

erational design.721

Software and Data Availability722

The open source ACME software is implemented in Python 3 and available at: https://723

github.com/JPLMLIA/OWLS-Autonomy . The data used to develop and validate ACME724

are available at: https://doi.org/10.5281/zenodo.5849873725
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