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Abstract

Assessing the impacts of multiple sources on statistical downscaling is challenged by uncertainty from global climate model

(GCM), scenario and factor. In our study, by integrating stepwise cluster analysis (SCA), wavelet-based multiscale entropy

(WME), and multi-level factorial analysis (MFA); a SCA-WME-MFA is developed to quantitatively analyze the diverse un-

certainty (i.e., numerical fluctuation, and the complexity of the modes) of daily mean temperatures (Tmean) for Amu Darya

River Basin (ADRB). The major results reveal that: (i) the most remarkable warming rate would be obtained (0.056 ± 0.015

*C/year) under SSP5-8.5; (ii) Compared to the base period (1979–2005), Tmean under SSP1-2.6, SSP2-4.5, SSP3-7.0, and

SSP5-8.5 would increase by 1.06 +- 1.26 *C,1.38 +- 1.39 *C, 1.741 +- 1.255 *C, and 2.05 +- 1.22 *C in the future (2022-2097);

(iii) the secular mode of temperature projections is complex (WME values = 0.81 +- 0.15), while the short-term mode is rela-

tively single (WME values = 0.14 +- 0.13); (iv), the uncertainty of temperature projections would increase under the resource

and energy intensive development scenario SSP5-8.5; (v) the annual scales features of temperature projections has a marked

impact on the relationships between Tmean and factors, and they can be identified by SCA model; (vi) air temperature at 850

hPa has dominant effect on the numerical fluctuation, and the interactions of geopotential height at 500 hPa on other factors

have significant effects on downscaling processes; (vii) the ensemble downscaling based on multi-GCM datasets can reduce the

diverse uncertainty of temperature projections.
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Key Points:

• Among four scenarios, the uncertainty of temperature projections would
be highest under radical development scenario.

• The annual scales features dominant the relationships between tempera-
ture and factors, which can be identified by SCA downscaling model.

• Ensemble downscaling can reduce the uncertainty (i.e., numerical fluctua-
tion and the complexity of the modes) of temperature projections.

Abstract

Assessing the impacts of multiple sources on statistical downscaling is challenged
by uncertainty from global climate model (GCM), scenario and factor. In our
study, by integrating stepwise cluster analysis (SCA), wavelet-based multiscale
entropy (WME), and multi-level factorial analysis (MFA); a SCA-WME-MFA is
developed to quantitatively analyze the diverse uncertainty (i.e., numerical fluc-
tuation, and the complexity of the modes) of daily mean temperatures (Tmean)
for Amu Darya River Basin (ADRB). The major results reveal that: (i) the most
remarkable warming rate would be obtained (0.056 ± 0.015 ◦C/year) under
SSP5-8.5; (ii) Compared to the base period (1979–2005), Tmean under SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 would increase by 1.06 ± 1.26 ◦C,1.38 ±
1.39 ◦C, 1.741 ± 1.255 ◦C, and 2.05 ± 1.22 ◦C in the future (2022-2097); (iii)
the secular mode of temperature projections is complex (WME values = 0.81
± 0.15), while the short-term mode is relatively single (WME values = 0.14 ±
0.13); (iv), the uncertainty of temperature projections would increase under the
resource and energy intensive development scenario SSP5-8.5; (v) the annual
scales features of temperature projections has a marked impact on the relation-
ships between Tmean and factors, and they can be identified by SCA model;
(vi) air temperature at 850 hPa has dominant effect on the numerical fluctu-
ation, and the interactions of geopotential height at 500 hPa on other factors
have significant effects on downscaling processes; (vii) the ensemble downscaling
based on multi-GCM datasets can reduce the diverse uncertainty of temperature
projections.

1 Introduction

Climate change is one of the key issues due to its effects on ecosystems and hu-
man societies over the world (He et al., 2021; Shrestha and Wang, 2020). Global
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climate models (GCMs) are common tools to provide multi-model climate pro-
jections for impact studies, such as those archived in Phase 6 of the Coupled
Model Intercomparison Project (CMIP6) (Almazroui et al., 2020; Cook et al.,
2020; Han et al., 2020; Ukkola et al., 2020). Despite the improvement and pro-
liferation, the coarse resolution limits GCMs describe climatic characteristics
precisely for regional to local scale climate impact studies, such as hydrologic
modeling and water resources assessment (Fang et al., 2015; Mishra et al., 2020;
Nuterman et al., 2021). Thus, the downscaling techniques are desired to get
more reliable information for local climatic characteristics.

Statistical downscaling and dynamical downscaling are two commonly down-
scaling techniques to tackle the scale mismatch issues (Fowler et al., 2007; Lam
and Fu, 2009). Statistical downscaling, based on the statistical relationships be-
tween large-scale meteorological predictors and local predictand, provides faster
and computationally efficient simulations of local climate (Gebrechorkos et al.,
2019; Li et al., 2020). Compared to dynamical models, statistical downscaling
techniques are more appropriate when station data for impact assessment or
extreme events are required and resources are limited (Fowler and Wilby, 2007).
Previously. many statistical downscaling techniques have previously been de-
veloped for the multiple scenario ensemble projections to quantify uncertainty
in climate change impacts (Fan et al., 2021; Hou et al., 2017; Jacobeit et al.,
2014; Jafarzadeh et al., 2021; Trinh et al., 2021). For example, Jafarzadeh et al.
(2021) employed support vector machine (SVM) for downscaling daily precipi-
tation in Iran; results indicated it has acceptable prediction skill. As a robust
approach for statistical downscaling, Stepwise cluster analysis (SCA) captures
nonlinear interactions between atmospheric variables and local observations as
a cluster tree without requiring assumption of determined functions (Duan et
al., 2021; X Q Wang et al., 2013; Zhai et al., 2019). For instance, Duan et al.
(2021) used SCA to investigate the possible changes in temperature and precip-
itation in the Pearl River Basin, the results indicated SCA showed a reasonable
simulation skill in projecting the two variables.

Despite the advantages, the statistical downscaling processes usually involve
multiple uncertainty, and no statistical downscaling techniques (e.g., SCA) can
identify and solve them alone. Multiple GCMs yield a wide range of projection
intervals due to their structural differences (Shiru et al., 2019). Meanwhile,
because of the different Shared Socioeconomic Pathways (SSPs) and Represen-
tative Concentration Pathways (RCPs), scenario uncertainty occurs inevitably
resulting from different combinations of socioeconomic development pathways
and climate outcomes (O’Neill et al., 2016). Hence, GCMs, scenarios, and other
uncertainty sources may lead to the numerical fluctuation of downscaling results;
systematic assessment of uncertainty (i.e., numerical fluctuation) from various
sources in the statistical downscaling is necessary to obtain more reliable projec-
tions (De Niel et al., 2019; Liao et al., 2009; Muller et al., 2021; Nury et al., 2019;
Slangen and van de Wal, 2011; Timm, 2017). Timm. (2017) presented a statis-
tical method to estimates warming rates and their uncertainty for the northern
subtropical Pacific; results showed that the largest uncertainty stems from the
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emission scenarios for the late 21st century. De Niel et al. (2019) used the
analysis of variance to quantify contributions of different sources to uncertainty
of hydrologic processes; results showed the most important uncertainty sources
in hydrological extremes projections are the GCMs. In fact, Besides GCM and
scenario, factor (independent variable in statistical relationship) is also the cru-
cial roles and one major uncertainty source for statistical downscaling processes.
Every factor in the combination projection has diverse effects on projection re-
sponses. Searching main factor and quantifying the interactions of factors are
important to obtaining the accurate projections results. However, few study
about quantitative analysis of factor uncertainty was reported. As a powerful
statistical tool, Multi-level factorial analysis (MFA) features the advantages of
quantitively analyzing the effects of individual factors and their interaction on
model outputs (Montgomery, 2017). Various climate change impact studies
based on MFA have been reported, such as carbon dioxide mitigation plan, hy-
drologic, and extreme weather events (Korell et al., 2020; H Wang et al., 2021a;
P P Wang et al., 2021b). Therefore, MFA is chosen to investigate the effects of
multiple factors on temperature projections of statistical downscaling.

Besides the numerical fluctuation, the complexity of the modes and characteris-
tics for time series, is part of the concept of atmospheric and hydrological vari-
able projections uncertainty (Agarwal et al., 2016). The atmospheric and hydro-
logical variable time series encountered in geophysics are usually non-stationary,
which having one or more type of characteristics (e.g., deterministic trend, sea-
sonality) (Roushangar et al., 2018). The non-stationary characteristics can have
appreciable effects on the statistical relationships between atmospheric variables.
Therefore, not only the numerical fluctuation, the complexity of modes for the
atmospheric variables characteristics should be assessed to get more information
about downscaling results. Wavelet transform (WT), by decomposing a time
series into time–frequency space, can identify both the dominant modes of vari-
ability and how those modes vary in time (Ciria and Chiogna, 2020; Roushangar
et al., 2021; Suman and Maity, 2019). For the non-stationary time series, the
wavelet transform is a practical tool to analyze localized characteristics of both
in temporal and frequency domains (Sehgal et al., 2014; Torrence and Compo,
1998). Meanwhile, entropy theory provides information about the uncertainty
at a given scale, which can be corroborated to the level of variation present
at that scale, and can serve as are reliable approach to study hydrologic and
meteorologic processes (Jaynes, 1957; Singh, 1997; 2011). Wavelet-based mul-
tiscale entropy (WME), the combination of entropy theory and WT method,
can measure the degree of order/disorder of the signal and carries information
associated with multi-frequency signal, and evaluate the uncertainty (i.e., com-
plexity of modes) of a time series at different timescales. WME has been applied
successfully in analyzing the variability and complexity of atmospheric and hy-
drologic variables (Agarwal et al., 2016; Guntu et al., 2020; Karmakar et al.,
2019; Roushangar et al., 2018; Ziarh et al., 2021). For instance, Guntu et al.
(2020) proposed a framework based on WME for daily precipitation regional-
ization of Indian considering both precipitation magnitude and its temporal
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variability; results indicated the integrated method reveals the unique seasonal
distribution of precipitation for each region. Unfortunately, few applications of
WME were reported for analysing the effects of GCM and scenario on down-
scaling projections results. Therefore, one potential approach for Systematically
studing the uncertainty and the interactive relationship of multiple factors is to
integrate techniques of SCA, WME, and MFA into a general framework.

Therefore, by integrating SCA, WME, and FA within a general framework,
the objective of this study is to develop a SCA-WME-MFA framework for as-
sessing diverse uncertainty (i.e., numerical fluctuation, and the complexity of
the modes) existing in climate projections and downscaling processes for Amu
Darya River Basin (ADRB) in Central Asia. Specifically, the objective en-
tails (a) investigating the temporal change of daily mean temperatures through
ensemble downscaled global climate models, (b) identifying complexity of the
modes of temperature projections in multiple time scales from multi-GCM and
under multi-scenario, and (c) disclosing the individual effects of multi-factor
and their interactions on the numerical fluctuation of temperature projections.
The results are helpful to deeply comprehend the downscaling processes and get
reliable atmospheric variable projections.

2 Materials and Methods

In this study, the SCA-WME-FA method is applied to daily mean temperature
data observed at twelve stations in the ADRB. Continuous Wavelet Transform
(CWT) is applied to each of the observed streamflow time series using the Mor-
let wavelet to capture the temporal multiscale variability of the streamflow in
the form of wavelet coefficients. These wavelet coefficients for each scale are
utilized to obtain the entropy for the respective scales. The SCA-WME-FA
consisting of three parts: (i) ensemble downscaling/projection based on mul-
tiple GCM datasets and scenarios, (ii) WME values estimation; (iii)and MFA
analysis experiments. The ensemble downscaling/projection is composed of a
series of simulation chains, where each chain corresponding to one GCM (total
twelve GCMs) under a scenario (including SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5) is simulated through stepwise cluster analysis (SCA) for temperature
projections. Based on the results of ensemble downscaling/projection, WME
method is used to estimate the entropy for different time scales (2, 4, 8, 16,
32, 64, and 128 months) for measuring the complexity of mode for every sim-
ulation chain. Then MFA is conducted to disclosing the individual effects of
multi-factor and their interactions on the numerical fluctuation of temperature
projections.

2.1 Stepwise cluster analysis

The stepwise cluster analysis (SCA) can describe the complicated relationship
(i.e., continuous and discrete) between predictors and predictand in the form
of clustering trees, and deal with the complex nonlinear and discrete relation-
ships without assuming the functional relationship (Sun et al., 2009). Based on
the characteristics under the F test, the research objects can be classified and
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formed into a clustering tree through series cutting or merging processes (Su et
al., 2021). Such a classification tree can be adopted to specify the inherently
complex relationship between local-scale predictors and large-scale predictands
(Zhu et al., 2021). Compared with other methods, SCA has the most consider-
able advantage in dealing with the complicated relationship between multiple
dependent and independent variables at the same time.

The core content for the stepwise cluster analysis (SCA) method mainly includes
two aspects: cutting (i.e., splitting one set into two) and merging (i.e., joining
two sets together). The dependent variables will constantly repeat these two
processes (i.e., cutting and merging) to form a cluster tree until it can no longer
be cut and merged, and the two processes mainly followed a given criterion (i.e.,
Wilk’s likelihood-ratio). The ratio is defined as follows:

(1)

where E and H are the within- and between-group sums of squares and cross
products matrices, respectively.

(2)

(3)

(4)

(5)

Where e and f are the two sets of dependent variables, ne and nf are the number
of the two variables and are the mean values, respectively. According to Rao’s
F-approximation, the Wilk’s likelihood-ratio (i.e., ) for the two sets of dependent
variables (i.e., e and f) can be changed to an F statistic, as follows:

(6)

As described in Wilk’s likelihood-ratio criterion, if the cutting point is optimal,
the value of Wilk’s likelihood-ratio (i.e., ) should be the minimum. In other
words, the smaller the value, the larger the difference between the two sets of
dependent variables (i.e., e and f ). From the formulas, the Wilk’s likelihood-
ratio (i.e., ) is related to the F statistic. Therefore, F test can be used here
to compare the means of the two sets of dependent variables. We assume that
H0: �e = �f versus H1: �e � �f (i.e., null and alternative hypothesis), where �e
and �f are the population means of the two sets of dependent variables (i.e., e
and f ). The significance level is �, if F � F�, it implies that H0 is false, and
the difference between the two sets of dependent variables (i.e., e and f ) is
statistically significant. If F < F�, H0 is true, would be the merging criterion,
which indicates that the two sets of dependent variables (i.e., e and f ) have no
significant difference.

2.2 Wavelet transform

The Continuous Wavelet Transform (CWT) Wn of a discrete sequence of ob-
servations Xn is defined as the convolution of Xn with a scaled and translated
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wavelet �(n). �(n) depends on a non-dimensional time parameter g with zero
mean and localized in both frequency and time (Farge, 1992; Torrence and
Compo, 1998). The Wn is defined as:

(7)

where n is the localized time index, n ’is the time variable, s is the wavelet scale,
�t is the sampling period, N is the number of points in the time series, and the
asterisk (*) indicates the complex conjugate. Varying the wavelet scale s and
translating along the localized time index n can clarify the amplitude of any
features versus the scale and how this amplitude varies with time. Since the
definition of multi-scale entropies is based on the distribution of the activity in
the time-frequency domain, a high degree of time-frequency localization allows
an accurate measure of entropy. In this study, the Morlet wavelet function is
chosen as the mother wavelet function �(n) because of its good time-frequency
localization when compared to the other wavelets (i.e., Mexican Hat and the
Daubechies wavelets).

2.3. Multiscale wavelet entropy

To gage the complexity of the time series (i.e., the average temperature time
series in this study), The wavelet coefficients produced from the CWT analysis of
the time series can be utilized to obtain the multiscale wavelet entropy coefficient.
Based on the Shannon entropy measure (Shannon, 1948), the multiscale wavelet
entropy coefficient is defined as:

(8)

where P(xi) is the probability distribution function (pdf) describing the random
behavior of variable x with the length of n. Entropy is a measure of the statistical
variability of the random variable x as described by the pdf. When the base
of the logarithm is log2, entropy is measured in bits. Swt is a measure of
information content in the signal; more information represents a lower entropy
value and vice versa. At a given scale, maximum entropy is possible when the
information is evenly spread across time, and minimum entropy occurs when
all the information is contained in a single location Therefore, a high value
of entropy represents a high degree of unpredictability and, hence, a highly
complicated and disordered system.

To measure the P(xi) in Eq. (2), an entropy based on the wavelet energy dis-
tribution of a time series was proposed Cek et al. (2009). Because the value of
the entropy Swt calculated is based on the wavelet results, using this approach,
by Sang et al. (2011) to propose a new entropy measure, named wavelet-based
multiscale entropy (WME). According to the wavelet energy, the CWT-based
pdf that P(xi) is estimated:

(9)

where P(xi) represents the wavelet energy under time position i and time scale
j; E(i,j) represents the total wavelet energy of the time series under timescale j
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(Cek et al., 2009; Sang et al., 2011).

2.4 Multi-level factorial analysis

MFA experiment is employed to disclose the individual and interactive effects of
multiple factors on projection responses. A generalized formula can be written
as y = F(x1, x2, x3, …, xn) to show this relationship, where y represents the
response (i.e., dependent variable: population exposure) and (x1, x2, x3, …, xn)
define the factors (i.e., independent variables: multiple factors) In the MFA
experiments, the effects model of different factors (SStotal) can be outlined as
two parts (Montgomery, 2017):

(10)

where SSi is the variance of the individual effect of xi; SSij to SS1, 2, …, n
represent the variance of interactive effects between k factors, and all interactive
terms are summarized into:

(11)

The variance fractions � (%) for individual/interactive effect are calculated
through the following formulas:

(12)

(13)

where �i and �int indicate the contribution of the individual factor and their
interactive effects to the total variance, respectively

(14)

In this study, seven factors are employed, there are 37 different level combina-
tions.

3 Study area and data

The proposed SCA-WME-FA is applied to temperature projections in the Amu
Darya River Basin (ADRB) in the south of Central Asia (Figure 1). ADRB
is the largest sub-basin of the Aral Sea Basin with a catchment area of nearly
465,000 km2 (Jalilov et al., 2016). The ADRB experiences a continental climate,
characterized by high, dry summers and cold winter. The intense human activi-
ties (i.e., the amount of water for agriculture, hydropower generation, industrial
and domestic continue to increase) significantly affect the local climate change
since 1960(Chen et al., 2018; Xi and Sokolik, 2016).

The temperature variable that daily mean temperature (Tmean) of twelve sta-
tions is the predictand (Table S1). The twelve stations are located in the upper
(P11 and P12), middle (P03 to P10) and lower basins (P01 to P12), respectively.
The Observed dataset of twelve stations for 1979–2005 were collected from the
NOAA’s National Climatic Data Center (NCDC, http://ncdc.noaa.gov); the
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reason for choosing the twelve stations is that their datasets have few miss-
ing values and long time span. The missing data was detected and inter-
polated with adjacent values prior to the downscaling. The historical mete-
orological variables are the predictors for training downscaling models being
extracted from reanalysis datasets of the National Centers for Environmen-
tal Prediction (NCEP, https://www.esrl.noaa.gov), including relative humidity,
air temperature, geopotential height, and eastward wind at different pressure
levels. The meteorological variables for future period are the predictors for
projecting Tmean from twelve GCMs under 4 scenarios SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP5-8.5 (SSP; Shared Socioeconomic Pathway) were obtained from
the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset archive
(https://esgf-node.llnl.gov/search/cmip6/) (Table S2). These models were cho-
sen for the following reasons that (1) many studies using some datasets of these
GCMs have been conducted to analyze climate change in Central Asia and
results demonstrated acceptable performances (Guo et al., 2021; Jiang et al.,
2020); (2) these GCMs datasets were produced by different models and atmo-
spheric circulation hypothesis, which helps provide more reliable ensemble sim-
ulation. The NECP reanalysis and GCMs datasets were resampled to the same
spatial resolution through interpolation before the downscaling.

4 Result and discussion

4.1. Future temperature projection

To provide compared results, same number of predictors are selected from the
three GCMs and are then used to build the SCA model. The nineteen poten-
tial predictors are selected for this study (Table 1). Since dependency across
predictors may impact the performance of downscaling from SCA, the predic-
tors are screened for collinearity by sequential forward selection prior to down-
scaling (Vasu and Lee, 2016). For the SCA downscaling technique, every fac-
tor is brought into SCA in turn, and the factor (e.g., TMP_850) is retained
which makes the Nash coefficient the highest. Factors other than TMP_850
are brought in turn, and the factor improving the model’s Nash coefficient to
the greatest extent is retained, and so on until the model’s Nash coefficient no
longer improves. According to the results of the sequential forward selection,
seven meteorological variables are selected as predictors, including TMP_850,
RH_1000, RH_850, UGRD_50, HGT_500, HGT_250, and VGRD.

In calibration period, the meteorological variables from the NCEP reanalysis
data during 1979–1994 were used to train the statistical downscaling model
SCA for twelve stations respectively. In validation period, the trained model
was validated with both of NCEP reanalysis datasets and the historical GCMs
datasets from 1995 to 2005. Four goodness-of-fit statistical indicators of R2,
NSE, STD, and RMSE were calculated to assess the performances of SCA. Fig-
ure 2 and Table 2 presents the

performance of the SCA downscaling model, which is calibrated and validated
with NCEP reanalysis datasets. In validation period, the mean values of R2,
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NSE, STD and RMSE for twelve stations are 0.92, 0.90, 10.40, and 4.46, respec-
tively. To gauge the generic ability of the trained SCA model, it is validated
with the GCMs historical datasets in the period of 1995–2005. Figure 3 shows
the validation results with GCMs datasets of the trained model. The results
of the ensemble mean are better than those of each GCM for more than half
of stations (e.g., P05 to P09). For the validation results of other stations, the
best results are obtained from different GCMs datasets. These results indicate
that no single GCM reproduction can ensure best performance for all areas in
ADRB, and ensemble projection is necessary to provide accurate temperature
projections.

Figure 4 presents the changes of Tmean between the observation of stations and
GCM datasets in base period (1979–2005) in different months. In general, the
Tmean from GCMs datasets are less than the observations with a value of 5.35
± 4.06 ℃, and the maximum and minimum error of Tmean are 9.43 ± 4.00 ℃ in
November and 3.74 ± 0.96 ℃ in June, respectively. For a certain GCM dataset,
the maximum and minimum error of Tmean are obtained from NorESM2 (7.25 ±
3.17 ℃) and IITM-ESM (4.30 ± 3.48 ℃), respectively. Meanwhile, the ensemble
means are compared with the observation (Figure 5). Filled area indicates the
range bounded by the maximum and minimum of the GCM reproductions; the
solid red line represents the ensemble mean simulations. The observations are
well captured by simulations in spring (March to May), autumn (September
to November) and winter (December to February). The observations are larger
than the ensemble means obviously (3.49 ± 1.09 ℃) in summer (June to August).

To investigate the long-term change, the annual trends of Tmean based on the
Mann-Kendall test and Sen’s slope estimator testare calculated (Libiseller and
Grimvall, 2002; Mann, 1945; Sen, 1968). All the trends of Tmean are increasing,
and most of them are significant (p values < 0.001), except the results from
several GCMs (i.e., INM-CM, CAMS-CSM, NorESM2, MPI-ESM) under SSP1-
2.6 (Figure 7). The details of Mann-Kendall tests can be seen Figure S3 in
supplementary material. The range of values of Sen’s slopes of Tmean are
0.013 ± 0.009 ◦C/year under SSP1-2.6, 0.031 ± 0.021 ◦C/year under SSP2-
4.5, 0.046 ± 0.014 ◦C/year under SSP3-7.0, and 0.056 ± 0.015 ◦C/year) under
SSP5-8.5, respectively. The highest warming rate are obtained from IITM-ESM
(0.036 ± 0.001 ◦C/year) under SSP1-2.6, CanESM5 (0.097 ± 0.009 ◦C/year)
under SSP2-4.5, CanESM5 (0.074 ± 0.006 ◦C/year) under SSP3-7.0, and IPSL-
CM6A (0.081 ± 0.008 ◦C/year) under SSP5-8.5, respectively. Meanwhile, the
lowest warming rate are from NorESM2 (0.004 ± 0.001 ◦C/year) under SSP1-
2.6, CAMS-CSM (0.007 ± 0.001 ◦C/year) under SSP2-4.5, MIROC6 (0.028 ±
0.004 ◦C/year) under SSP3-7.0, and CanESM5 (0.040 ± 0.004 ◦C/year) under
SSP5-8.5, respectively. The results indicate that the warming trend is likely
to occur in ADRB in the future, and the warming rate would increase with
the development mode turning from the sustainable (SSP1-2.6) to the radical
(SSP5-8.5). The details can be seen in Table 3. Figure 6 presents the annual
Tmean for the base period (1979–2005) produced by GCMs and observation.
The highest and lowest Tmean are obtained from MIROC6 (13.68 ± 12.34 ◦C)
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and CanESM5 (8.54 ± 2.19 ◦C), and the value of ensemble mean is 10.58 ± 2.34
◦C. Compared with the observed Tmean (15.53 ± 1.93 ◦C), the downscaling
results of GCMs are lower, with a percentage error of 32.3% ± 7.2%, and the
results of MIROC6 have the highest accuracy, being consistent with results of
(Das et al., 2018).

Figure 8 shows the average annual Tmean for all GCMs reproductions under 4
scenarios. For most reproductions, the average annual Tmean would increase
with the end of the range being from low to high of future forcing pathways.
In general, the Tmean under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 are
6.44 ± 2.29 ◦C, 16.90 ± 2.30 ◦C, 17.27 ± 2.21 ◦C, and 17.59 ± 2.16 ◦C,
respectively. For a certain GCM, The Tmean from MIROC6 are the highest
under all 4 scenarios; the Tmean under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 are 17.61 ± 2.06◦C, 19.61 ± 2.05 ◦C, 19.81 ± 1.98 ◦C, and 20.15
± 1.97 ◦C, respectively. The results of Figure 6 and Figure 8 are compared
to investigate the change of Tmean in historical (1979-2005) and future periods
(2022-2097). Compared to the base period, Tmean under SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5 would increase by 1.06 ± 1.26 ◦C, 1.38 ± 1.39 ◦C, 1.741
± 1.255 ◦C, and 2.05 ± 1.22 ◦C, respectively. The increases from MIROC6 are
the highest, and those from CESM2 are the lowest.

4.2. Multiscale entropy analysis

The Tmean time series produced by GCMs under four scenarios were distributed
monthly, thus the parameters for the CWT analysis were set as �t = 1 month
(sampling time between each precipitation value), s0 = 2 months (smallest scale
of the wavelet) because s = 2�t (s is the wavelet scale), �j = 0.25 (the spacing
between discrete scales), and j1 = 7/�j (the number of scales minus one). Scales
range from S0 up to S0 × 2(J

1
× D

J
), to give a total of (J1+1) scales which

allows for a set of seven powers of-two with �j sub-octaves each. The CWT
decomposed the Tmean time series into 7 scales (i.e., 2-, 4-, 8-, 16-, 32-, 64-
, and 128-month bands), respectively. Then WMEs were calculated across 7
scales for each of the Tmean time series produced by GCMs from the twelve
stations (Figure 9), and WMEs represent the uncertainty of the Tmean time
series at different scales. To facilitate the understanding, the 7 scales are defined
as the multi-month (2- or 4-month bands), sub-annual (8-month band), annual
(16-month band), multi-year (32- or 64- month band) and decadal (128- month
band) scales, respectively. Summarily, for each result of GCMs or Scenarios,
the highest WMEs is obtained mostly at multi-year or decadal scales (0.81 ±
0.15), while the lowest one is obtained mostly at multi-month scale (0.14 ±
0.13), indicating the secular (multi-year or decadal) mode of temperature time
series has higher uncertainty than that of short-term (multi-month). This result
means the secular mode of temperature time series is complex and diverse, while
the short-term variation pattern is relatively single. Furthermore, the highest
WME at multi-month scale would be obtained under SSP5-8.5 with values of
0.19 ± 0.16. This result indicates that, under radical development scenario, the
uncertainty of atmospheric variables temperature would increase by behaviors
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(e.g., exploitation of abundant fossil fuel resources) of the resource and energy
intensive social mode.

Figure 10 present the WMEs values under different scenarios for three sub basins
of ADRB. The highest WMEs values in sub-annual scale would be both obtained
under SSP3-7.0 for upper basin and middle basins, and the highest ones in an-
nual scale would be both obtained under SSP2-4.5 for middle and lower basins.
The results indicated the uncertainty of temperature projections is similar in
adjacent areas. For the middle and lower basins, the WMEs values in multi-
month scale would be highest under SSP5-8.5, implying the features and modes
of temperature projections are more complex for plain areas under radical de-
velopment scenarios. For the whole areas of ADRB, the highest WMEs values
in multi-year scales would be obtained under SSP1-2.6. This result implies that,
under under the green and sustainable development scenario, not only the sin-
gle trend of temperature projections (e.g., continuing warming), but also diverse
characteristics and modes would exist. Figure 11 present the WME values from
different GCMs. Being similar to the results of Figure 10, by the increase of
time scales, the WME values would increase for every GCM and scenario. This
implies that more features and modes of temperature projections would be iden-
tified under bigger time scales, and the uncertainty becomes bigger. Compared
with single GCM dataset, the SCA downscaling model based on ensemble mean
perform best for most stations (Figure 3 and Table 3). Meanwhile, note that all
WME values of the ensemble mean in annual scale are lowest for upper (0.28),
middle (0.23), and lower (0.18) basins; these results may imply that the annual
scales features of atmospheric variable temperature have a marked impact on
the relationships between temperature projections and factors, and these fea-
tures can be identified by SCA downscaling model. According to the results of
Figure 9 to Figure 11, it is effective for WME to explore the impacts of GCMs
and Scenarios on the projection responses.

4.3. Individual and interactive effects of the factor on the projection responses

To identify the individual and interactive effects of the factors (i.e., predictors
for the statistical downscaling models) on the projection responses of the results
of MIROC6, MFA experiments are conducted. Because of the MFA results un-
der four scenarios are similar, only the MFA results under SSP1-2.6 scenario are
presented. Figure 12 shows the individual effects of every factor on temperature
projections. Compared with other factors, TMP_850 has the steepest slope, im-
plying TMP_850 has the greatest magnitude of individual effect on projected
Tmean. For example, projected Tmean would increase from 8.41 to 25.08 ℃
with TMP_850 rising from its low level of -3.90 ℃ to a high level of 28.04 ℃.
The lines of VGRD are close to the horizontal, meaning VGRD has very weak
effects on the temperature projections. For the ADRB, the slopes of TMP_850,
HGT_500 and HGT_250 are positive, meaning they have positive effects. Simi-
larly, UGRD_50 and RH_1000 have negative effects on temperature projections.
These five factors have significant individual effects on temperature projections,
indicating they are closely related to temperature projections and are prefer fac-
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tors for constructing the statistical downscaling model based on SCA for ADRB
region. Figure 13 presents the matrix of interaction plots, which quantify the
effect of each factor on temperature projections under the impact of another
factor. When TMP_850 is at low level (-3.90 ℃), UGRD_50 has a negative
effect (-4.23 ℃); when TMP_850 is at high level (28.04 ℃), UGRD_50 has a
negative effect on temperature projections (-4.75 ℃), the impact of TMP_850
on UGRD_50 is the gap of -0.52 ℃ (12%) between the effects (row 1, column
2). The impact of HGT_500 on other factors is most significant, with a mean
value of 0.27 ℃ (a variation of 25%). The interactions of HGT_500 on other fac-
tors are obvious and they should be noted for the temperature projection based
on statistical downscaling. The results of MFA are conducive to identify the
dominant factor and interaction between factors for the statistical downscaling
processes.

5 Conclusions

In this study, a SCA-WME-MFA method was developed for quantifying diverse
uncertainty existing from GCM, scenario, and factor for downscaling results.
The SCA-WME-MFA features the advantages of assessing the complexity of
modes for climatic variables in multi-time scales, and quantifying the individual
and interactive impacts of factors on the numerical fluctuation of downscaling
results. The SCA-WME-MFA was applied to quantitatively analyze the mean
temperatures (i.e., Tmean) for twelve meteorological stations of ADRB in Cen-
tral Asia.

The main findings can be summarized as follow: (1) SCA based on multi-GCM
datasets ensemble downscaling can provide accurate temperature projections
(NSE = 0.90 ± 0.3 for validation) for the areas over Central Asia; (2) the
warming rate for ADRB areas would increase with the development mode in
scenarios turning from the sustainable (SSP1-2.6) to the radical (SSP5-8.5), and
the most remarkable one is 0.056 ± 0.015 ◦C/year; (3) Compared to the base
period (1979–2005), Tmean under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5
would increase by 1.06 ± 1.26 ◦C,1.38 ± 1.39 ◦C, 1.741 ± 1.255 ◦C, and
2.05 ± 1.22 ◦C in the future (2022-2097); (4) the highest WMEs values are
obtained mostly at multi-year or decadal scales (0.81 ± 0.15), while the lowest
one is obtained mostly at multi-month scale (0.14 ± 0.13), meaning the secular
mode of temperature time series is complex and diverse, while the short-term
mode is relatively single; (5) the highest WME at multi-month scale would be
obtained under SSP5-8.5 with values of 0.19 ± 0.16. This result indicates that,
under radical development scenario, the uncertainty of atmospheric variables
temperature would increase by behaviors (e.g., exploitation of abundant fossil
fuel resources) of the resource and energy intensive social mode; (6) the annual
scales features of atmospheric variable temperature has a marked impact on the
relationships between temperature projections and factors, and these features
can be identified by SCA downscaling model; (7) air temperature at 850 hPa has
dominant effect on the numerical fluctuation of temperature projections, and the
interactions of geopotential height at 500 hPa on other factors have significant
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effects on downscaling processes; (8) the ensemble downscaling based on multi-
GCM datasets can reduce the uncertainty (i.e., numerical fluctuation, and the
complexity of the modes) of the temperature projections.
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Figure 1. The map of Amu Darya River Basin and the meteorological stations.
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Figure 2. Calibration and validation results of GCMs’ reproductions for Tmean
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with NCEP reanalysis datasets.
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Figure 3. Calibration and validation results of GCMs reproductions for Tmean
with historical GCMs datasets.

Figure 4. Monthly mean Tmean for the observed and reproductions from
GCMs, 1979–2005.
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Figure 5. Monthly mean Tmean for the observed and ensemble mean of repro-
ductions, 1979–2005.
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Figure 6. Comparisons of annual Tmean between GCMs’ reproductions, en-
semble means, and the observations for 1979–2005.
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Figure 7. Annual trend of Tmean for 12 stations under 4 scenarios
(2021−2100).

Figure 8. Comparison of annual average Tmean under 4 scenarios.
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Figure 9. Comparison of Wavelet-based Multiscale Entropy (WME) for each
scale for Tmean under 4 scenarios.

Figure 10. The effects of scenarios on the WME.
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Figure 11. The effects GCMs on the WME.

Figure 12. The main effects of factors on the Tmean projectios.
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Figure 13. The interactive effects of factors on the Tmean projectios.

Table 1. Potential factors selected for statistical downscaling models.

Factors selected Unit Pressure level (hPa) Abbreviation
Relative humidity % 1000 RH_1000

850 RH_850
500

Air temperature K 850 TMP_850
700
500
250
10

U-wind m/s 100
50 UGRD_50
10

Geopotential height m 850
700
500 HGT_500
250 HGT_250
100
50
10

V-wind m/s 10 m VGRD

Table 2. The Calibration and validation statistics indicators for GCMs’ repro-
ductions for Tmean with NCEP reanalysis datasets.

Station Calibration Validation
R2 NSE STD RMSE R2 NSE STD RMSE

P01 0.94 0.93 11.57 4.27 0.92 0.89 11.39 4.7
P02 0.95 0.94 11.70 3.85 0.92 0.91 11.24 4.62
P03 0.96 0.94 11.88 3.65 0.92 0.91 11.74 4.79
P04 0.95 0.94 10.60 3.48 0.92 0.88 10.51 4.43
P05 0.96 0.93 10.30 3.03 0.94 0.93 10.04 3.5
P06 0.95 0.92 9.96 3.15 0.92 0.88 9.81 4.01
P07 0.97 0.93 9.40 2.41 0.96 0.95 9.29 2.58
P08 0.96 0.92 9.81 6.06 0.95 0.91 9.55 6.33
P09 0.93 0.90 10.54 3.96 0.86 0.83 11.86 7.73
P10 0.88 0.92 9.71 3.05 0.94 0.90 9.72 3.56
P11 0.97 0.94 9.46 2.26 0.96 0.94 9.4 2.9
P12 0.96 0.92 8.91 2.46 0.93 0.90 8.9 3.09
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Table 3. Projected trends in Tmean of decadal for the 12 stations under 4
scenarios (2021−2100).

GCMs Scenarios P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12
BCC-CSM SSP1-2.6 0.009 0.008 0.009 0.008 0.007 0.007 0.008 0.008 0.007 0.007 0.008 0.008

SSP2-4.5 0.026 0.026 0.031 0.026 0.026 0.026 0.026 0.027 0.028 0.027 0.021 0.026
SSP3-7.0 0.043 0.043 0.049 0.043 0.041 0.040 0.040 0.040 0.041 0.038 0.026 0.038
SSP5-8.5 0.054 0.054 0.061 0.054 0.051 0.049 0.048 0.049 0.047 0.049 0.029 0.049

CanESM5 SSP1-2.6 0.017 0.017 0.019 0.016 0.016 0.015 0.016 0.016 0.018 0.017 0.017 0.016
SSP2-4.5 0.108 0.108 0.114 0.101 0.097 0.095 0.091 0.093 0.094 0.095 0.080 0.091
SSP3-7.0 0.082 0.082 0.088 0.077 0.075 0.073 0.071 0.071 0.072 0.074 0.064 0.070
SSP5-8.5 0.045 0.045 0.046 0.041 0.039 0.038 0.037 0.036 0.040 0.038 0.035 0.035

EC-Earth3 SSP1-2.6 0.022 0.021 0.023 0.020 0.018 0.018 0.018 0.017 0.017 0.018 0.015 0.017
SSP2-4.5 0.037 0.037 0.041 0.036 0.035 0.033 0.031 0.033 0.032 0.032 0.027 0.031
SSP3-7.0 0.054 0.053 0.061 0.054 0.051 0.050 0.049 0.053 0.050 0.052 0.042 0.051
SSP5-8.5 0.073 0.071 0.082 0.072 0.069 0.067 0.066 0.069 0.067 0.066 0.049 0.067

INM-CM SSP1-2.6 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.005 0.007 0.007 0.007
SSP2-4.5 0.029 0.029 0.031 0.027 0.026 0.025 0.025 0.025 0.024 0.024 0.023 0.024
SSP3-7.0 0.044 0.044 0.048 0.042 0.039 0.038 0.036 0.038 0.034 0.037 0.029 0.038
SSP5-8.5 0.045 0.044 0.051 0.045 0.043 0.041 0.039 0.042 0.042 0.041 0.033 0.044

MPI-ESM SSP1-2.6 0.008 0.009 0.008 0.008 0.007 0.006 0.007 0.007 0.008 0.006 0.006 0.007
SSP2-4.5 0.022 0.022 0.024 0.023 0.022 0.021 0.019 0.019 0.021 0.022 0.021 0.020
SSP3-7.0 0.043 0.042 0.048 0.043 0.044 0.043 0.040 0.040 0.041 0.045 0.041 0.041
SSP5-8.5 0.054 0.054 0.062 0.055 0.053 0.050 0.049 0.049 0.052 0.052 0.045 0.049

ACCESS-CM2 SSP1-2.6 0.020 0.023 0.021 0.023 0.021 0.022 0.021 0.021 0.019 0.020 0.020 0.021
SSP2-4.5 0.042 0.043 0.041 0.046 0.040 0.039 0.037 0.041 0.036 0.038 0.040 0.039
SSP3-7.0 0.064 0.067 0.064 0.072 0.063 0.061 0.059 0.064 0.056 0.059 0.059 0.060
SSP5-8.5 0.079 0.083 0.076 0.088 0.077 0.072 0.070 0.077 0.068 0.070 0.069 0.070

IPSL-CM6A SSP1-2.6 0.015 0.013 0.016 0.013 0.012 0.010 0.010 0.009 0.008 0.011 0.008 0.010
SSP2-4.5 0.035 0.033 0.036 0.034 0.031 0.029 0.029 0.029 0.027 0.030 0.026 0.028
SSP3-7.0 0.067 0.065 0.071 0.064 0.060 0.058 0.056 0.058 0.057 0.058 0.046 0.055
SSP5-8.5 0.086 0.085 0.098 0.086 0.081 0.078 0.078 0.079 0.079 0.079 0.060 0.077

MIROC6 SSP1-2.6 0.012 0.012 0.014 0.012 0.011 0.011 0.011 0.012 0.010 0.011 0.007 0.011
SSP2-4.5 0.023 0.023 0.024 0.021 0.020 0.019 0.019 0.018 0.018 0.018 0.010 0.017
SSP3-7.0 0.030 0.029 0.035 0.032 0.029 0.029 0.027 0.028 0.026 0.028 0.019 0.028
SSP5-8.5 0.052 0.050 0.057 0.051 0.047 0.046 0.044 0.043 0.043 0.043 0.029 0.043

CAMS-CSM SSP1-2.6 0.003 0.005 0.006 0.006 0.007 0.007 0.007 0.007 0.006 0.008 0.008 0.008
SSP2-4.5 0.013 0.013 0.016 0.014 0.014 0.014 0.014 0.015 0.014 0.014 0.010 0.015
SSP3-7.0 0.038 0.036 0.042 0.037 0.035 0.034 0.033 0.035 0.033 0.034 0.025 0.034
SSP5-8.5 0.046 0.045 0.050 0.045 0.042 0.041 0.040 0.042 0.041 0.041 0.030 0.040

CESM2 SSP1-2.6 0.008 0.008 0.009 0.008 0.008 0.007 0.008 0.007 0.007 0.007 0.008 0.007
SSP2-4.5 0.023 0.024 0.025 0.023 0.022 0.021 0.020 0.020 0.020 0.021 0.019 0.019
SSP3-7.0 0.048 0.048 0.052 0.046 0.044 0.042 0.042 0.043 0.042 0.044 0.041 0.041
SSP5-8.5 0.070 0.071 0.083 0.068 0.069 0.067 0.065 0.065 0.063 0.070 0.063 0.062

NorESM2 SSP1-2.6 0.005 0.005 0.005 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003
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GCMs Scenarios P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12
SSP2-4.5 0.024 0.025 0.027 0.023 0.023 0.022 0.020 0.021 0.023 0.022 0.021 0.022
SSP3-7.0 0.044 0.043 0.049 0.044 0.041 0.039 0.038 0.040 0.038 0.038 0.037 0.040
SSP5-8.5 0.066 0.066 0.073 0.065 0.062 0.059 0.054 0.059 0.058 0.057 0.047 0.057

IITM-ESM SSP1-2.6 0.036 0.037 0.040 0.036 0.035 0.034 0.033 0.035 0.037 0.037 0.036 0.037
SSP2-4.5 0.019 0.018 0.023 0.019 0.021 0.020 0.019 0.020 0.021 0.022 0.021 0.020
SSP3-7.0 0.036 0.037 0.039 0.034 0.034 0.033 0.032 0.033 0.034 0.036 0.035 0.034
SSP5-8.5 0.045 0.046 0.050 0.044 0.043 0.042 0.041 0.042 0.041 0.046 0.042 0.042

Ensemble SSP1-2.6 0.013 0.013 0.014 0.012 0.012 0.011 0.011 0.011 0.011 0.012 0.011 0.012
SSP2-4.5 0.034 0.034 0.036 0.033 0.031 0.030 0.029 0.030 0.030 0.030 0.027 0.029
SSP3-7.0 0.050 0.049 0.054 0.049 0.046 0.045 0.043 0.045 0.044 0.045 0.038 0.044
SSP5-8.5 0.059 0.059 0.065 0.059 0.056 0.054 0.052 0.054 0.053 0.054 0.044 0.053
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Figure S1. Annual temperature projections of all
GCMs under SSP1-2.6..
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Figure S2. Annual temperature projections of all
GCMs under SSP5-8.5.

Figure S3. The results of Mann-Kendall test un-
der different scenarios (The crosses indicate the
MK p value > 0.05).

Table S1. The meteorological stations selected
for study.
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Number ID Name latitude longitude
25 P01 CIMBAJ, Uzbekistan 42.95 59.82
31 P02 TAHIATASH, Uzbekistan 42.40 59.60
32 P03 TAMDY, Uzbekistan 41.73 64.62
41 P04 DARGANATA, Uzbekistan 40.47 62.28
61 P05 KARAKUL, Uzbekistan 39.50 63.85
62 P06 CHARDZHEV, Tajikistan 39.08 63.60
64 P07 SAMARKAND, Uzbekistan 39.57 66.95
69 P08 CHIMKURGAN, Uzbekistan 38.80 66.20
70 P09 DECHANABAD, Uzbekistan 38.40 66.50
72 P10 KERKI, Tajikistan 37.83 65.20
74 P11 SHIRABAD, Uzbekistan 37.67 67.02
75 P12 SHURCHI, Uzbekistan 38.00 67.80

Table S2. The datasets of 12 global climate mod-
els used in this study.

Institution Source (abbreviation in
this paper)

Nominal resolution

Beijing Climate Center,
China

BCC-CSM 2 MR
(BCC-CSM)

km

Chinese Academy of
Meteorological Sciences,
China

CAMS-CSM 1.0
(CAMS-CSM)

km

Canadian Centre for
Climate Modelling and
Analysis, Environment
and Climate Change,
Canada

CanESM5 km

EC-Earth consortium,
European Union

EC-Earth3-Veg
(EC-Earth3)

km

Institute for Numerical
Mathematics, Russian
Academy of Science,
Russia

INM-CM 4.8
(INM-CM)

km

Japan Agency for
Marine-Earth Science
and Technology, Japan

MIROC6 km

Max Planck Institute
for Meteorology,
Germany

MPI-ESM 1.2
(MPI-ESM)

km
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Institution Source (abbreviation in
this paper)

Nominal resolution

National Center for
Atmospheric Research,
Climate and Global
Dynamics Laboratory,
USA

CESM2 km

Institute Pierre Simon
Laplace, France

IPSL-CM6A-LR
(IPSL-CM6A)

km

Commonwealth
Scientific and Industrial
Research Organization,
Australia
Australian Research
Council Centre of
Excellence for Climate
System Science,
Australia

ACCESS-CM2 km

Centre for Climate
Change Research,
Indian Institute of
Tropical Meteorology
Pune, India

IITM-ESM km

NorESM Climate
modeling Consortium

NorESM2-LM
(NorESM2)

km
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