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Abstract

The polynomial form of the nondimensional complementary relationship (CR) follows from an isenthalpic process of evaporation

under a constant surface available energy and unchanging wind. The exact polynomial expression results from rationally derived

first and second-order boundary conditions (BC). By keeping the BCs, the polynomial can be extended into a two-parameter

(a and b) power function for added flexibility. When a = b = 2 it reverts to the polynomial version. With the help of

Australian FLUXNET data it is demonstrated that the power-function formulation excels among CR-based two-parameter

models considered, even when a = 2 is prescribed to reduce the number of parameters to calibrate to two. The same power-

function approach (a = 2) is then employed with a combination of different gridded monthly potential evaporation terms

across Australia, while calibrating b against the multiyear simplified water-balance evaporation rate on a cell-by-cell basis. The

resulting bi-modal histogram of the b values peaks first near b = 2 and then at b - 1 (secondary modus), confirming earlier

findings that occasionally a linear version (i.e., b = 1) of the CR yields the best estimates. It is further demonstrated that the

linear form emerges when regional-scale transport of moist air is negligible toward the study area during its drying, while the

more typical nonlinear CR version prevails otherwise. A thermodynamic-based explanation is yet to be found as to why the

flexible power function curves (i.e., b [?] 2) converge to the polynomial one (b = 2) in such cases.
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Key points  15 

i) The power-function extension of the polynomial complementary relationship (CR) of 16 
evaporation can account for horizontal moisture advection  17 

ii) Under negligible advection an existing linear version of the nondimensional CR is recaptured  18 

iii) The power-function solution converges to the existing polynomial CR otherwise 19 

Abstract The polynomial form of the nondimensional complementary relationship (CR) follows 20 
from an isenthalpic process of evaporation under a constant surface available energy and 21 
unchanging wind. The exact polynomial expression results from rationally derived first and 22 
second-order boundary conditions (BC). By keeping the BCs, the polynomial can be extended 23 
into a two-parameter (a and b) power function for added flexibility. When a = b = 2 it reverts to 24 
the polynomial version. With the help of Australian FLUXNET data it is demonstrated that the 25 
power-function formulation excels among CR-based two-parameter models considered, even 26 
when a = 2 is prescribed to reduce the number of parameters to calibrate to two. The same 27 
power-function approach (a = 2) is then employed with a combination of different gridded 28 
monthly potential evaporation terms across Australia, while calibrating b against the multiyear 29 
simplified water-balance evaporation rate on a cell-by-cell basis. The resulting bi-modal 30 
histogram of the b values peaks first near b = 2 and then at b → 1 (secondary modus), confirming 31 
earlier findings that occasionally a linear version (i.e., b = 1) of the CR yields the best estimates. 32 
It is further demonstrated that the linear form emerges when regional-scale transport of moist air 33 
is negligible toward the study area during its drying, while the more typical nonlinear CR version 34 
prevails otherwise. A thermodynamic-based explanation is yet to be found as to why the flexible 35 
power function curves (i.e., b ≠ 2) converge to the polynomial one (b = 2) in such cases. 36 
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1. Introduction 37 

The complementary relationship (CR) of evaporation is a powerful tool [see the latest global 38 
studies by Ma et al. (2021), Brutsaert et al. (2020)] for predicting actual land evaporation (E) 39 
rates with the help of basic meteorological variables (i.e., air temperature, humidity, net surface 40 
radiation and wind speed) all obtained at a single elevation above the ground. Since its original 41 
formulation by Bouchet (1963), it has evolved into various versions [see Han & Tian (2020) for 42 
a brief overview] based on different heuristic arguments.  43 

After almost six decades of the groundbreaking study by Bouchet (1963), Szilagyi (2021) as well 44 
as Crago & Qualls (2021) gave the CR a stronger physical foundation following the lead of 45 
Monteith (1981) who first defined the thermodynamic pathway a parcel of air near the 46 
evaporating drying surface must follow under unchanging wind conditions and constant 47 
available energy (Qn) at the surface during an adiabatic and isobaric (thus, isenthalpic) process. 48 

Crago & Qualls (2021), Szilagyi (2021) extended the study of Monteith (1981) by considering a 49 
full wet-to-dry cycle and simultaneously tracing the state of the air parcel at the land surface in 50 
addition to the one near to it (e.g., 2-m above ground). The key to success lies in the estimation 51 
of the wet surface temperature (Tws) from typical drying (i.e., not completely wet) environmental 52 
measurements for anchoring the surface isenthalp to the saturation vapor pressure curve in the 53 
state diagram. 54 

With the help of the two isenthalps, Qualls & Crago (2020) graphically illustrated evaporation 55 
from saturated surfaces. Using a similar approach, Crago & Qualls (2021) reproduced an 56 
existing linear nondimensional formulation of the CR (Crago & Qualls, 2018), while Szilagyi 57 
(2021) independently of them and by a different approach reproduced both the existing linear as 58 
well as the nonlinear polynomial formulation of the CR (Szilagyi et al., 2017), the latter having 59 
been originally inspired by the study of Brutsaert (2015). 60 

Here a brief summary of this thermodynamical approach is provided. First the nondimensional 61 
linear as well as the polynomial CR equations are derived. Then the latter is expanded by a 62 
power function formulation to make it more flexible. The resulting power function with two 63 
additional parameters (a and b) is to be applied with daily measurements of air temperature (T), 64 
pressure (p), vapor pressure deficit (VPD), net radiation (Rn), ground heat conduction (G) and 65 
wind speed (u) in addition to eddy-covariance obtained sensible (H) and latent heat (LE) fluxes 66 
for validation at seven Australian FLUXNET sites. The resulting E values are then to be 67 
compared with similar estimates of three additional CR-based heuristic evaporation methods by 68 
Kahler & Brutsaert (2006), Han & Tian (2012), and Gao & Xu (2021), to demonstrate the 69 
predictive capability of the power-function approach. All three methods have two parameters to 70 
calibrate, similar to the present power-function one, once one of its parameter values (a) is fixed.  71 

Finally, the power-function approach is to be applied with 0.25-degree spatial resolution gridded 72 
monthly input data after aggregation to 0.5-degree values over Australia and its sole free 73 
parameter (b) to be calibrated on a cell-by-cell basis against 0.5-degree simplified water-balance 74 
derived evaporation estimates (Ewb) to see how its value changes spatially and what may drive 75 
those changes. 76 
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Note that this work is not meant as a calibration/verification analysis of a preferred two-77 
parameter approach over other existing similar (or single parameter) approaches. That is why the 78 
steps required for such a study (i.e., validation with data separate from calibration, sensitivity 79 
analysis of the parameters, etc.) are deliberately not repeated here, specifically because it would 80 
blur the focus of the present work which is the investigation/demonstration, by the help of a 81 
recently discovered power-function expansion, of how and when the horizontal advection of 82 
humidity over a drying surface produces/affects the thermodynamically-derived linear and 83 
nonlinear forms (Szilagyi, 2021) of the CR of evaporation and the typical environmental 84 
conditions under which, one or the other, emerges. 85 

 86 

2. A concise thermodynamical derivation of the nondimensional polynomial 87 
complementary relationship 88 

During drying out of the environment under unchanging wind conditions, constant pressure as 89 
well as constant available energy, Qn (= Rn – G) at the surface, the change (d.) in vapor pressure 90 
(e) is strictly tied to changes in air temperature (T) near the surface via the equation 91 

                                                            𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −𝛾𝛾⁄                                                                   (1)  92 

(Monteith, 1981; Qualls & Crago, 2020, Szilagyi, 2021). Here γ = cpp(0.622Lv)-1 is the 93 
psychrometric constant, cp the specific heat of air under constant pressure, and Lv is the latent 94 
heat of vaporization. Eq. 1 forms straight (air and surface) isenthalpic lines of slope -γ emanating 95 
from the saturation vapor pressure curve, e*(T), in the state diagram of Fig. 1, provided the slight 96 
dependence of Lv on T is neglected under typical environmental conditions. 97 

Figure 1. Saturation vapor pressure (e*) curve, air (blue) and surface (green) isenthalps (Szilagyi, 2021; Crago & 99 
Qualls, 2021) during a full drying-out of the environment from completely wet to a completely dry state. The 100 
vertical and horizontal projections of the dotted lines are proportional (∝) to the different latent (E ≤ Ew ≤ Ep ≤ Ep

dry) 101 
and corresponding sensible (the latter negative –directed toward to surface– for Ep and Ep

dry) heat fluxes. See Table 102 
1 for definition of the different variables. 103 
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The saturation vapor pressure (hPa) can be obtained, e.g., by the Teten’s formula as e*(T) = 104 
6.108exp[17.27T / (237.3 + T)] where T is supplied in C° (Stull, 2000). The wet-bulb 105 
temperature, Twb, is the lowest temperature the air at the measurement height can attain by 106 
evaporation, but this temperature is rarely reached during natural processes due to large-scale 107 
vertical mixing of free tropospheric air into the boundary layer (Brutsaert, 1982). Instead, a wet 108 
environment air temperature, TPT ≥ Twb, generally occurs. TPT however is not known during 109 
drying conditions of the environment (i.e., when Ta > TPT), but it can be estimated by the wet-110 
surface temperature, Tws, because in humid conditions air temperature changes mildly with 111 
elevation above the ground (Laikhtman,1964; Stull, 2000; Szilagyi, 2014).  112 

Tws can be estimated (Szilagyi & Jozsa, 2008) by writing out the Bowen ratio (i.e., H / LE) for a 113 
small wet patch utilizing the Penman (1948) equation for Ep (mm d-1), yielding the evaporation 114 
rate of such a small wet area, as 115 

                                                             𝐻𝐻
𝐿𝐿𝐿𝐿

= 𝑄𝑄𝑛𝑛−𝐸𝐸𝑝𝑝
𝐸𝐸𝑝𝑝

≈ 𝛾𝛾 𝑇𝑇𝑤𝑤𝑤𝑤−𝑇𝑇𝑎𝑎
𝑒𝑒∗(𝑇𝑇𝑤𝑤𝑤𝑤)−𝑒𝑒𝑎𝑎

                                          (2) 116 

where the small size of the wet patch means it cannot alter the temperature and humidity of the 117 
overpassing air significantly, measured upwind of it. Note that E specified in water depth can be 118 
transformed into energy flux (LE) values by LE = LvρwE, and vice-versa for Qn, where ρw is the 119 
density of water. Eq. 2 is implicit for Tws, requiring iterations to solve. The Penman equation is 120 
given by 121 

                                                            𝐸𝐸𝑝𝑝 = ∆𝑄𝑄𝑛𝑛
∆+𝛾𝛾

+ 𝛾𝛾𝑓𝑓𝑢𝑢[𝑒𝑒∗(𝑇𝑇𝑎𝑎)−𝑒𝑒𝑎𝑎]
∆+𝛾𝛾

                                            (3) 122 

where Δ denotes the slope of the saturation vapor pressure curve (hPa C°-1) at the measured air 123 
temperature Ta, and the empirical wind function, fu (mm d-1 hPa-1), is traditionally specified as fu 124 
= 0.26(1 + 0.54u2) (Brutsaert, 1982). Here u2 (m s-1) is the horizontal wind speed at 2-m above 125 
the ground and can be estimated by a power function (Brutsaert, 1982) from measurements (uh) 126 
at h meters above the surface as u2 = uh (2 / h)1/7. The e*(Ta) – ea expression in the aerodynamic 127 
term of Eq. 3 is often referred to as the vapor pressure deficit (VPD). 128 

With the two isenthalps anchored to the saturation vapor pressure curve, one may notice that 129 
during a full wet-to-dry transition of the environment the (Ta, ea) state-coordinate points traverse 130 
the (TPT - Ta

dry, ePT - 0), while the corresponding state-coordinates (Ts, es) track the full length of 131 
the (Tws - Ts

dry, e*
ws - 0) distance on the surface isenthalp. From the two different distances 132 

travelled during the same amount of time, two different average speed values result for the 133 
movement of the respective state coordinates. By assuming that the ratio of distances travelled 134 
on the two isenthalps during any time interval equals the constant ratio of the two average speed 135 
values, a geometric similarity emerges (Szilagyi, 2021; c.f. Crago & Qualls, 2021, who used 136 
somewhat different reasoning), namely 137 

                                                                    𝑒𝑒𝑎𝑎
𝑒𝑒𝑃𝑃𝑃𝑃

= 𝑒𝑒𝑠𝑠
𝑒𝑒𝑤𝑤𝑤𝑤∗

                                                              (4) 138 

which can be augmented into 139 
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                                                       𝑒𝑒𝑎𝑎
𝑒𝑒𝑃𝑃𝑃𝑃

= 𝑒𝑒𝑤𝑤𝑤𝑤∗ −(𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑎𝑎)
𝑒𝑒𝑤𝑤𝑤𝑤∗ −(𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑃𝑃𝑃𝑃) 

= 𝑒𝑒𝑠𝑠
𝑒𝑒𝑤𝑤𝑤𝑤∗

                                                (5) 140 

The right-hand-side of Eq. 4 can be further expanded into                       141 

                                    𝑒𝑒𝑠𝑠
𝑒𝑒𝑤𝑤𝑤𝑤∗

=
𝑒𝑒𝑠𝑠(1−𝑒𝑒𝑎𝑎𝑒𝑒𝑠𝑠

)

𝑒𝑒𝑤𝑤𝑤𝑤∗ (1−𝑒𝑒𝑎𝑎𝑒𝑒𝑠𝑠
)

=
𝑒𝑒𝑠𝑠(1−𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑤𝑤𝑤𝑤

∗ )

𝑒𝑒𝑤𝑤𝑤𝑤∗ (1−𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑤𝑤𝑤𝑤
∗ )

=
𝑒𝑒𝑠𝑠−

𝑒𝑒𝑠𝑠
𝑒𝑒𝑤𝑤𝑤𝑤
∗ 𝑒𝑒𝑃𝑃𝑃𝑃

𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑃𝑃𝑃𝑃
= 𝑒𝑒𝑠𝑠−𝑒𝑒𝑎𝑎

𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑃𝑃𝑃𝑃
                            (6) 142 

The combination of Eqs. 5 and 6 yields (Szilagyi, 2021) 143 

                                                       𝑒𝑒𝑠𝑠−𝑒𝑒𝑎𝑎
𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑃𝑃𝑃𝑃

= 𝑒𝑒𝑤𝑤𝑤𝑤∗ −(𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑎𝑎)
𝑒𝑒𝑤𝑤𝑤𝑤∗ −(𝑒𝑒𝑤𝑤𝑤𝑤∗ −𝑒𝑒𝑃𝑃𝑃𝑃)

                                                    (7) 144 

which via the corresponding evaporation terms in Fig. 1 can be written as 145 

                                                               𝐸𝐸
𝐸𝐸𝑤𝑤

=
𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑−𝐸𝐸𝑝𝑝

𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑−𝐸𝐸𝑤𝑤

                                                            (8) 146 

due to the Dalton-type formulation of any evaporation term as E = - K de/dz = Kz (es – ea) where 147 
K is the turbulent diffusion coefficient, z is vertical distance and Kz is K divided by the 148 
measurement height.  149 

In Eq. 8, Ep
dry can be obtained by Eq. 3 with the ea = 0 substitution, and e* and Δ evaluated at the 150 

dry-environment air temperature, Tdry (= Ta + ea / γ) (Szilagyi, 2021). The wet-environment 151 
evaporation rate, Ew, can be obtained from the Priestley-Taylor (1972) equation as 152 

                                                           𝐸𝐸𝑤𝑤 = 𝛼𝛼 ∆(𝑇𝑇𝑃𝑃𝑃𝑃)𝑄𝑄𝑛𝑛
∆(𝑇𝑇𝑃𝑃𝑃𝑃)+𝛾𝛾

                                                           (9) 153 

The unknown wet-environment air temperature, TPT, can be substituted by the lesser of Tws and 154 
Ta because TPT can never exceed Ta due to the cooling effect of evaporation, while Tws can during 155 
high relative-humidity conditions (Szilagyi, 2014, 2021). The spatially and temporally constant 156 
value of the Priestley-Taylor (PT) coefficient, α, can be set without any calibration with gridded 157 
data, covering a large spatial domain and thus ensuring the presence of permanently or 158 
periodically wet areas, by the method of Szilagyi et al. (2017), otherwise, it must be calibrated, 159 
typically within the [1 – 1.32] interval (Morton, 1983).  160 

Eq. 8 can be rearranged after dividing it by Ep (Szilagyi et al., 2017; Crago & Qualls, 2018) into 161 

                                  𝑦𝑦 = 𝑋𝑋;      𝑦𝑦 ∶= 𝐸𝐸
𝐸𝐸𝑝𝑝

, 𝑋𝑋 ∶= 𝑤𝑤𝑖𝑖
𝐸𝐸𝑤𝑤
𝐸𝐸𝑝𝑝

,   𝑤𝑤𝑖𝑖 ∶=
𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑−𝐸𝐸𝑝𝑝

𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑−𝐸𝐸𝑤𝑤

                                 (10) 162 

which is a linear relationship between the two nondimensional variables y and X. Notice that wi 163 
acts as a wetness index, with wi ≈ 0 for hyper arid and wi = 1 for wet conditions (Szilagyi et al., 164 
2017). Note also that the two nondimensional variables were already obtained by Szilagyi et al. 165 
(2017) in a different way, before the present thermodynamic-based derivation was found. The 166 
complementarity in the CR means that E and Ep change in opposite ways (Bouchet, 1963), best 167 
seen in Eq. 10 between E and EpX. When Ep increases (i.e., the environment dries), wi decreases 168 
while Ew remains unchanged, yielding a decreased E rate. 169 
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As an area dries, large-scale horizontal advection of more humid air from the surrounding larger 170 
region may occur. This is especially true for areas lying downwind from a sea, or other large 171 
body of water, or areas surrounded by mountains having much wetter conditions. This influx of 172 
external humid air suppresses or completely eliminates the weak vertical humidity gradient that 173 
would otherwise exist. This means that the resulting suppressed and therefore vanishing es – ea 174 
term in Eq. 7 would not respond anymore to changes in es and therefore to the ensuing ea that a 175 
change in es would normally generate, leaving the left-hand-side of Eq. 7 unresponsive to any 176 
changes in (the transported) ea itself, thus causing dy / dX → 0 when X → 0 (Szilagyi, 2021). 177 
Note that e*

ws and ePT are conservative (invariant) quantities only under isenthalpic processes and 178 
any humidity advection violates this adiabatic requirement but the resulting changes in e*

ws and 179 
ePT are treated negligible in this study (as in Szilagyi, 2021) which is probably acceptable as long 180 
as the humidity transport itself is not too excessive. 181 

With consideration of the four boundary conditions (BC) of i) y = 1 | X = 1; ii) dy / dX = 1 | X =1, 182 
iii) y = 0 | X = 0; iv) dy / dX = 0 | X = 0 and seeking a polynomial solution, the following 183 
nondimensional complementary relationship  184 

                                                                     𝑦𝑦 = 2𝑋𝑋2 − 𝑋𝑋3                                                   (11) 185 

is obtained (Szilagyi et al., 2017; Szilagyi, 2021). Note also that when the horizontal advection of 186 
humidity is negligible then the last BC is absent, yielding the linear form, Eq. 10, of the CR. 187 
Figure 2 depicts the two solutions. 188 

Figure 2. The linear and nonlinear polynomial CR relationships between y = E Ep
-1 and X = wi Ew Ep

-1. 190 

Eq. 11 has already been applied on a monthly basis in a calibration-free mode, employing a 191 
spatially and temporally constant PT-α value with great success (outperforming mainstream 192 
complex, data-intensive evaporation models) over the US (Szilagyi et al., 2017; Kim et al., 2019; 193 
Ma & Szilagyi, 2019; Ma et al., 2020), China (Ma et al., 2019), and the globe (Ma et al., 2021). 194 
It is distinct from a similar model formulation of Liu et al. (2018), and Brutsaert et al. (2020) in 195 
two important aspects. Firstly, in the evaluation of Δ within the PT-equation the latter sources 196 
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ignore the temperature change between actual (i.e., drying) and wet environmental conditions. 197 
Secondly, and more importantly, in their nondimensional variable, x, playing the role of X here, 198 
the wetness index, wi, does not appear as their derivation of x is heuristic, not based on 199 
thermodynamics. As a result, their x = Ew Ep

-1 value can only approach zero when the available 200 
energy at the surface, Qn, does so in Ew, since Ep is bounded. In order to broaden the resulting 201 
limited range of the x values the PT-α value must be lowered significantly with growing aridity, 202 
much below its physically meaningful lower-bound value of unity. Their treatment of the PT-α 203 
simply as a tunable parameter thus negates the original purpose of the PT-equation, which is to 204 
account for the entraintment of free tropospheric air into the boundary layer (Lhomme, 1997) 205 
strictly under wet environmental conditions. See Szilagyi et al. (2020) for an in-depth discussion 206 
of this issue. 207 

Table 1. List of the different evaporation (E) rates employed in the study together with the relevant temperature (T) 208 
and vapor pressure (e) terms defined. 209 

E, LE Actual evaporation, latent-heat rate 
Ep Potential (Penman) evaporation rate 
Ep

dry Dry-environment potential evaporation rate 
Ew Wet-environment (Priestley-Taylor) evaporation rate 
Ta, ea [= e*(Td)] Actual air temperature, vapor pressure 
Ta

dry Dry-environment air temperature  
Td Dew-point temperature 
TPT, ePT Wet-environment air temperature, vapor pressure 
Twb, e*

wb Wet-bulb temperature, vapor pressure 
Ts, es Actual land-surface temperature, vapor pressure 
Ts

dry Dry-environment land surface temperature 
Tws, e*

ws Wet surface temperature (Szilagyi and Jozsa, 2008), vapor pressure 
 210 

3. Expansion of the polynomial complementary relationship by a power function approach 211 

The polynomial in Eq. 11 can be expanded by a power-function approach using the same BCs. 212 
The resulting function 213 

                                              𝑦𝑦 = 𝑎𝑎𝑋𝑋𝑏𝑏 − (𝑎𝑎 − 1)𝑋𝑋
𝑎𝑎𝑎𝑎−1
𝑎𝑎−1       𝑎𝑎, 𝑏𝑏 > 1                                   (12) 214 

has two parameters additional to Eq. 11, a and b. Fig. 3 displays the ensuing curves for selected 215 
values of a and b. With the value of b increasing (from 1.4 to 2 to 3) the curves move to the 216 
right, forming three groups of curves with the a and b values picked for demonstration. Within 217 
each group the curves move upward with increasing values of a. For example, the lowest (i.e., 218 
right-most) curve has a = 1.1 and b = 3, while the one just above it belongs to a = 1.2, b = 3. For 219 
most practical applications the parameter ranges can be narrowed to 1 < a ≤ 2 and 1 < b < 10.  220 

In order to reduce the number of parameters to just two (the PT-α, and b) in Eq. 12 for a 221 
meaningful comparison with other existing two-parameter CR-based methods, a = 2 is 222 
prescribed in this study for evaporation estimation. It makes also possible that the power-223 
function curve revert to the polynomial of Eq. 11 during calibration when necessary. Fig. 4 224 
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displays the curves with a prescribed value a = 2, and 1 < b ≤ 10. The curve with a = 2 and b = 225 
1.001 indeed has a vanishing slope at X = 0, as BC iv) requires, but it is indistinguishable from 226 
the y = X line of Eq. 10 by the naked eye. For this reason, during calibration of b in the ensuing 227 
analysis with a = 2 imposed, a value of b = 1 will be allowed for practicality, even though it 228 
violates BC iv).  229 

Figure 3. Graphical representation of Eq. 12 for selected values of a and b. The polynomial of Eq. 11 (a = b = 2) is 231 
the heavier red line. 232 

Figure 4. Graphical representation of Eq. 12 for a = 2 and 1 < b ≤ 10. The polynomial of Eq. 11 (a = b = 2) is the 234 
heavier red line. 235 
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4. Testing the power-function approach with eddy-covariance data 236 

The polynomial (Eq. 11) as well as the power-function (Eq. 12) formulations of the CR are tested 237 
with eddy-covariance data of seven Australian FLUXNET sites, diplayed in Fig. 5. These sites 238 
include land covers of grass, permanent wetland, open shrubland, woody savanna, and evergreen 239 
broadleaf forests. See Table 1 in Crago & Qualls (2018) for more information on the 240 
measurements, and Table 4 below for geographic coordinates and periods of record. In the 241 
ensuing modeling measurement heights for wind speed are reduced by the average height of the 242 
vegetation. The daily eddy-covariance-measured LE fluxes are Bowen-ratio corrected [i.e., LEc = 243 
Qn (1+H LE-1)] to close the energy budget (Twine et al., 2000), and the temperature values 244 
converted to potential temperatures, Tp = Ta + gzm / cp, where zm is the measurement height for air 245 
temperature, and g is the gravitational acceleration (e.g., Stull, 2000) due to the relatively large 246 
scatter in zm among the sites (from 2.5 m for grass to 70 m for the forests). Note that in theory, Tp 247 
must replace Ta in the preceding equations (as sensible heat fluxes are driven by vertical 248 
gradients of Tp and not Ta), but the difference between them is negligible for measurement 249 
heights not far from the ground in comparison to the observed vertical change in Ta. 250 

Figure 5. Location of the seven FLUXNET sites (see Table 4 for exact coordinates) with at least one year of daily 252 
meteorological and eddy-covariance derived flux measurements. +: permanent wetland; ▲: woody savanna; ■: open 253 
shrubland; ●: grassland; ♦: evergreen broadleaf forest. 254 

 255 

The evaporation estimates of Eqs. 11 and 12, employing daily, 5- and 30-day aggregated input 256 
data are compared to similar estimates of three additional two-parameter heuristic CR-based 257 
models by Kahler & Brutsaert (2006), Han & Tian (2012), and Gao & Xu (2021), to be referred 258 
to as KB06, HT12 and GX21, respectively. In all three models and in Eq. 12, the two tunable 259 
parameters include the PT-α and an additional parameter (Table 2) for a meaningful comparison 260 
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of the CR models. The exact representation of HT12 is chosen specifically for such a purpose of 261 
a shared PT-α. 262 

Table 2 summarizes the three models. KB06 and HT12 evaluate Eq. 9 at the drying air 263 
temperature, Ta, while GX21 adopts the approach of Szilagyi & Jozsa (2008) for estimating Tws 264 
and thus TPT (Szilagyi, 2014). For additional information of the models, please, refer to the 265 
relevant publication. 266 

 267 
Table 2. Summary of the three additional two-parameter CR-based models employed in this study. 268 

 *Written in the form specified in Han & Tian (2018).  269 
 270 

A 5-day aggregation instead of a weekly one is chosen, because Morton (1983) argues that it is 271 
the shortest time-interval over which any effect of passing weather systems, temporarily 272 
upsetting the dynamic equilibrium between the surface and the overlying air, can be expected to 273 
be substantially subdued. 274 

Performance of the calibrated models is summarized in Table 3. The four (plus Eq. 11) models 275 
behave similarly in terms of the root-mean-square error (RMSE), but Eq. 12 produces the best 276 
results in seven out of the nine cases considered, followed by Eq. 11 (four occasions, provided 277 
Eq. 12 is excluded) and KB06 (twice). In fact, Eq. 12 is always the best performing model with 278 
30-day aggregated data. In KB06 the calibrated values of the PT-α occasionally drop below the 279 
physically meaningful unity value while it is almost the norm for GX21. Interestingly, the best-280 
fit-line slope deviates from its optimal value of unity the least with Eq. 11.  281 

Fig. 6 demonstrates the increasing effect of large-scale horizontal moisture transport on the shape 282 
of the nondimensional CR curve of Eq. 12, as aridity progresses. For the evergreen broadleaved 283 
forests serious aridity never occurs as the majority of the points are situated at X > 0.5 (Fig. 6b), 284 
with corresponding evaporation rates, EEC > 1 mm d-1 (Fig. 6a), therefore the effect of any 285 
possible horizontal moisture transport toward these sites remains negligible. As a result, 286 
calibration of Eq. 12 yields b → 1 and thus the straight line of Eq. 10 (red line in Fig. 6b, on top 287 
of the 1:1 line). More serious aridity, on the other hand, can develop over the grass sites resulting 288 
in several points at X < 0.2 (Fig. 6d), and EEC < 0.5 mm d-1 (Fig. 6c). Any horizontal moisture 289 
transport to the grass sites somewhat drier than their environs will leave the eddy-covariance 290 
measurements largely unaffected in the beginning of drying when vertical gradients of the vapor 291 
pressure over the grass are still significant, but nonetheless, will depress the value of Ep (which is 292 

KB06 HT12*      GX21 

y = (1 + c-1) x – c-1 
xKB = Ew(Ta) Ep

-1 
 
 
 
 
Parameters: α, c 

y = [1 + k (x-1 - 1)n ]-1 
xHT = α-1 Ew(Ta) Ep

-1 
xh = (0.5 + cHT

-1)[α(1 + cHT
-1)]-1 

n = 4α(1 + cHT
-1) xh (1 – xh) 

k = [xh (1 – xh)-1]n 
 
Parameters:  α, cHT 
 

y = exp[(1 – x-d)d-1] 
x =  Ew Ep

-1 
 
 
 
 
Parameters: α, d 
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very sensitive to moisture changes in its VPD term due to the steep slope of the saturation vapor 293 
pressure curve at high temperatures), and thus boost the wetness index, wi, within X, which then 294 
moves the measurement points to the right horizontally in Fig. 6d, away from the 1:1 line for 0.2 295 
< X < 0.45. The measurement points however will follow the diminishing slope of Eq. 12 at 296 
extreme low X (< 0.2) values (as seen in Fig. 6d) and get closer to the 1:1 line again when large-297 
scale horizontal moisture advection itself weakens as arid conditions probably spread spatially. 298 

Figure 6. Regression plots of the modeled (Emod) 30-day evaporation rates against eddy-covariance measurements 300 
(EEC) at two forested (a) and two grass (c) sites of FLUXNET in Australia (see Fig. 5 for locations) together with the 301 
least-squares-fitted straight lines. Graphical representation of the calibrated (see Table 3) nondimensional formulas 302 
(b, d) listed in Table 2 plus that of Eq. 12, displayed with the nondimensional EEC measurements. Color coding for 303 
the best-fit lines and the theoretical curves comes from the markers. 304 
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Note that the 1:1 line forms a theoretical upper limit to the measured nondimensional 305 
evaporation rates for KB06 and GX21 only, as these models relate E Ep

-1 to Ew Ep
-1 with the E ≤ 306 

Ew expectation. While such is the case mostly for the grass sites (Fig. 6d), it is not so for the 307 
forested ones (Fig. 6b), due to their incorrect scaling that produces xKB and x (Table 2), 308 
respectively, instead of the thermodynamically backed one for X, first suggested by Szilagyi et 309 
al. (2017). 310 

Table 3. Root-mean-square error (RMSE) values (in mm d-1 for easier comparison among aggregation periods) of 311 
the CR-based two-, and single-parameter (Eq. 11) evaporation estimation methods at different Australian 312 
FLUXNET sites displayed in Fig. 5. The trial-and-error-calibrated parameter values of the different methods are also 313 
displayed, together with the resulting slope (m) of the best-fit line. The lowest RMSE values among the two-314 
parameter methods are displayed in bold for each aggregation period and group of sites considered. The single-315 
parameter estimate (Eq. 11) is bold-faced when it yields better estimates than the two-parameter methods (without 316 
Eq. 12). 317 

Station/aggregation Eq. 12 Eq. 11 KB06 HT12 GX21 
All (seven sites) 
       Daily 

0.81 
a=1.11, b=1.3 
m=0.83   

0.89 
α=1.16 
m=0.94 

0.84 
α=1.04, c=1.95 
m=0.84 

0.84 
α=1.09, cHT=1.3 
m=0.86 

0.86 
α=0.93, d=1.07 
m=0.85 

       5-day  0.66 
α=1.13, b=1.45 
m=0.87 

0.72 
α=1.17 
m=0.96 

0.71 
α=1.08, c=1.6 
m=0.9 

0.7 
α=1.13, cHT=1.1 
m=0.91 

0.71 
α=0.97, d=1.35 
m=0.9 

       30-day  0.51 
α=1.14, b=1.55 
m=0.91 

0.56 
α=1.17 
m=1 

0.58 
α=1.1, c=1.5 
m=0.95 

0.59 
α=1.14, cHT=1.1 
m=0.94 

0.59 
α=0.98, d=1.38 
m=0.93 

Grass (two sites) 
        Daily 

0.7 
α=1.12, b=1.65 
m=0.75 

0.72 
α=1.18 
m=0.83 

0.83 
α=0.96, c=2.25 
m=0.66 

.75 
α=1.15, cHT=0.9 
m=0.75 

0.75 
α=0.96, d=1.46 
m=0.74 

        5-day 0.55 
α=1.16, b=1.75 
m=0.83 

0.57 
α=1.21 
m=0.9 

0.69 
α=1.02, c=1.85 
m=0.75 

0.61 
α=1.18, cHT=0.9 
m=0.81 

0.6 
α=1.02, d=1.73 
m=0.84 

        30-day 0.37 
α=1.21, b=1.85 
m=0.93 

0.38 
α=1.24 
m=0.98 

0.55 
α=1.06, c=1.7 
m=0.83 

0.48 
α=1.24, cHT=0.8 
m=0.93 

0.46 
α=1.05, d=1.81 
m=0.92 

Forest (two sites) 
        Daily 

0.75 
α=1.11, b=1 
m=0.93 

0.92 
α=1.15 
m=0.98 

0.65 
α=0.94, c=46.4 
m=0.96 

0.67 
α=1, cHT=5 
m=1 

0.7 
α=0.86, d=0.1 
m=0.96 

        5-day 0.55 
α=1.12, b=1 
m=0.94 

0.66 
α=1.16 
m=1 

0.52 
α=0.98, c=7.64 
m=0.98 

0.53 
α=1, cHT=4.4 
m=1 

0.55 
α=0.88, d=0.1 
m=0.98 

        30-day 0.4 
α=1.13, b=1 
m=0.98 

0.48 
α=1.17 
m=1.06 

0.42 
α=1, c=5.9 
m=1 

0.41 
α=1, cHT=5 
m=1.01 

0.43 
α=0.89, d=0.1 
m=0.99 

 318 

Testing the power-function approach with gridded simplified water-balance data 319 

Eq. 12 is further tested across Australia for the spatial distribution of its b value, employing 0.25-320 
degree monthly estimates of Ew, Ep and Ep

dry calculated with data from sources specified in the 321 
global study of Ma et al. (2021), except that Rn now comes from the Global Land Data 322 
Assimilation System Version 2.1 (Beaudoing & Rodell, 2020). The above monthly evaporation 323 
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terms are aggregated to 0.5-degree spatial resolution over the 2003-2012 time period together 324 
with the 0.25-degree precipitation values from the Global Precipitation Climatology Center 325 
(GPCC) Full Data Monthly Version 2018 (Schneider et al., 2018). Multi-year, simplified water-326 
balance derived evaporation (Ewb) rates as precipitation less runoff are calculated on a cell-by-327 
cell basis by taking the arithmetic mean of two monthly 0.5-degree gridded global runoff rates 328 
from the gauge-derived database of Ghiggi et al. (2019), and the synthesis of eleven land surface 329 
models by Hobeichi et al. (2019). The two sources of the runoff values are necessary due to the 330 
scarcity and uneven distribution of the monitoring watersheds (Fowler et al., 2021) across 331 
Australia large enough to accommodate the model cells. As only the multi-year mean annual Ewb 332 
values are needed for the present purpose of investigating the spatial distribution of b in Eq. 12, 333 
any possible changes in annual cell-water storage can be assumed to exert a negligible influence 334 
on the multiyear Ewb value (Brutsaert, 1982) and especially on the spatial distribution 335 
characteristics of b.  336 

Figure 7. Spatial distribution of the 0.5-degree multiyear (2003-2012) mean annual evaporation rates (mm a-1) across 338 
Australia by a) Eq. 11; b) simplified water balance (Ewb), and; c) their difference. 339 
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The polynomial equation (Eq. 11) without any calibration, estimates (Fig. 7) the continent-wide 340 
(with Tasmania included) multiyear mean annual water-balance evaporation (Ewb) rate of 462 341 
mm a-1 within 4% (E = 447 mm a-1). The value of the PT-α in Eq. 11 was set to 1.1 globally by 342 
Ma et al. (2021) via the method of Szilagyi et al. (2017), requiring no calibration, therefore no 343 
precipitation or runoff data. (Note that such a calibration-free setting of the PT-α value can only 344 
be performed for large-scale data sets ensuring the presence of permanently or at least 345 
periodically wet areas within their spatial domain.)  346 

The polynomial CR (Eq. 11) overestimates the water-balance evaporation rates near the southern 347 
and western seashore where the prevailing winds carry moisture laden air from the ocean to the 348 
land, thus decoupling its moisture content from that of the underlying arid or semi-arid land 349 
surface. Naturally, the more arid the land is, the stronger this overestimation. The strongest 350 
overestimation, however, occurs along the western side of the Gulf of Carpentaria in the north 351 
where the Ewb values are unusually low along a south-west to north-east patch, for reasons not 352 
known to these authors. Otherwise, Eq. 11 generally underestimates the water-balance values in 353 
northern Australia characterized by a monsoonal precipitation regime, for reasons discussed 354 
below.  355 

The value of the parameter b in Eq. 12 (a = 2, α = 1.1) is calibrated on a cell-by-cell basis by 356 
minimizing the absolute difference in the multi-year mean annual model-estimated and water-357 
balance derived evaporation rates. Fig. 8a displays the resulting spatial distribution of the 358 
calibrated values. As seen, the spatial pattern of the values strongly follows that of the estimation 359 
error in Fig. 7: elevated values where the estimation error is positive and depressed ones where it 360 
is negative. This is to be expected, as the measurement points (Ewb or EEC) are fixed in the 361 
nondimensional graph once the value of α is set within X. An overestimation (i.e., when the 362 
curve is above a given marker point in e.g., Fig. 6d) in Eq. 12 can only be corrected by moving 363 
the curve to the right which is achieved by increasing the value of b (Fig. 4), and vice versa for 364 
an underestimation.  365 

Naturally, the calibration yields model estimates very close to the ‘observed’ values (Fig. 8b, c, 366 
d) in each cell with only a low number of exceptions. The multiyear mean annual value though 367 
remains practically the same (E = 448 mm a-1) as before, suggesting that the b = 2 value implicit 368 
in Eq. 11 and therefore Eq. 11 itself with its rational boundary conditions, is physically well 369 
founded and indeed obeyed by nature, at least, in a statistical sense. The histogram of the 370 
calibrated values of b (Fig. 9) with an ensemble mean of 2.08 and a median value of 1.9, further 371 
corroborates this finding.  372 

 373 
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Figure 8. Spatial distribution of the a) calibrated value of b in Eq. 12; b) resulting multi-year (2003-2012) mean 376 
annual evaporation rates (mm a-1) by Eq. 12 (E); c) simplified water-balance (Ewb) estimates for comparison, and; d) 377 
their difference. 378 

An interesting property of the histogram is that it is bimodal, with a secondary peak near b = 1. 379 
As discussed above, a unity value of b and a linear relationship between y and X (except in the 380 
vicinity of X = 0 where the slope must vanish due to the BCs in Eqs. 11 and 12) result in theory 381 
when in Fig. 1 the relative speed of the state coordinates along the isenthalps stays constant 382 
during drying out of the environment (until hyper arid conditions are reached near X = 0). Such 383 
conditions however may most commonly exist while the environment remains relatively humid 384 
as seen at the forest sites, and thus, the effect of any possible large-scale horizontal moisture 385 
transport toward the drying area continues to be negligible. Indeed, this must be the case along 386 
almost the entire eastern coast of Australia, the north-western part of the Northern Territory, the 387 
eastern side of the Gulf of Carpentaria, within the Australian Alps as well as the western part of 388 
Tasmania, all where annual precipitation rates are the highest and aridity the lowest (Fig. 10), 389 
forcing the calibrated values of b to remain unity (Fig. 8a). 390 

 391 
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 392 

Figure 9. a) Histogram of the b values obtained via a cell-by-cell calibration of Eq. 12 against the multiyear mean 394 
annual Ewb rate. b) The calibrated b values plotted against the aridity index (ratio of the wet-environment 395 
evaporation rate, Ew, and precipitation), marked by red dots when b > 3.  396 

Figure 10. Spatial distribution of the multi-year (2003-2012) mean annual precipitation (P) rates (mm a-1) and the 398 
aridity index (ratio of the wet-environment evaporation rate, Ew, and P). 399 

As seen in Fig. 9, about 95% of the histogram values are less than three. In fact, b > 3 occurs 400 
predominantly along the dry southern and western seashore (Fig. 8a) as a result of an 401 
overestimation of Eq. 11 (Fig. 7) due to the significant moisture transport from the ocean 402 
decoupling the moisture status of the air from its land surface. (A similar overestimation by Eq. 403 
11 along the western side of the Gulf of Carpentaria is most likely the consequence of the 404 
underestimated water-balance-derived values in Fig. 8c). The calibrated b < 3 values, assumed to 405 
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represent the required coupled state (with only minimal advection) of the air and the underlying 406 
land surface, scatter around the value of two in Fig. 9b but with a decreasing range and an 407 
increasing lower envelope as aridity grows. When the aridity index is less than about unity, 408 
signifying wet environmental conditions, the predominant value of b becomes unity, as discussed 409 
above. The scatter in the b values of Fig. 9b makes it hard to predict the value of b based on 410 
some index of environmental aridity, except when the environment is either very humid (b → 1) 411 
or increasingly arid (b → 2). This is not surprising, as the value of b generally depends on the 412 
strength of the horizontal moisture advection which in turn is influenced by the existing moisture 413 
difference between the study area and its larger, regional environment. This dynamic interplay 414 
explains the underestimation of Eq. 11 in the monsoonal northern part of Australia, where in the 415 
wet phase of the monsoon the b = 2 value implicit in Eq. 11 (instead of the calibrated b values 416 
close to unity seen in Fig. 8a) underestimates the wet evaporation rates while in the dry phase of 417 
the monsoon with its lower land evaporation rates it cannot make up for it, even when the b = 2 418 
value then is probably correct. 419 

The consistency in the spatial distribution of the calibrated b values is perhaps most striking 420 
when one compares the gridded-data-derived values with those obtained from the FLUXNET 421 
measurements, both listed in Table 4. Only at the southernmost site is there a significant 422 
difference in the two calibrated values, where the large-scale horizontal moisture transport from 423 
the nearby (about 70 km away) ocean is felt by the grid cell covering not only the forest but other 424 
land-covers (ESA, 2009) expected to be drier than the forested land (Fig. 11). 425 

Table 4. Calibrated values of b in Eq. 12 from the FLUXNET 30-day aggregated measurements and the monthly 426 
gridded data of Ma et al. (2021) for the grid-cell (2003-2012) covering the site. 427 

FLUXNET sites in Fig. 5  
(from north to south) with  
period of records displayed 

FLUXNET site 
latitude, longitude 
(decimal degrees) 

FLUXNET 
b 

Grid-cell  
b 

Woody savanna  
(2001-2014) 

12.5S,   131.15E  1 1 

Permanent wetland  
(2006-2008) 

12.54S, 131.31E 1 1 

Grassland (North)  
(2008-2014) 

17.15S, 133.35E 1.7 1.6 

Open shrubland  
(2013) 

22.29S, 133.64E 2 1.9 

Evergreen broadleaf forest (East)  
(2001-2014) 

35.66S, 148.15E 1 1 

Grassland (South)  
(2012-2014) 

36.65S, 145.58E 1.9 2.3 

Evergreen broadleaf forest (West)  
(2005-2008) 

37.43S, 145.19E 1 1.9 

 428 
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Figure 11. Location (circle) of the evergreen broadleaf forest (West) FLUXNET site of Table 4 (last row) within the 430 
0.5-degree grid-cell covering it. The predominant land-cover category according to the United Nations Land Cover 431 
Classification System (LCCS) is ‘rainfed croplands’ in green color (ESA, 2009). The forested areas are displayed in 432 
brown. The cell is about 55 km in size.  433 

Table 4 also indicates that the value of b and its spatial behavior with gridded data are not 434 
influenced or constrained by a correctly set constant value (i.e., α = 1.1) of the PT-α since with 435 
FLUXNET data both PT-α and b are simultaneously calibrated yet yield practically the same 436 
value of b as the gridded data. A systematic increase in the correctly set constant value of the PT-437 
α for the gridded data –in order to bring it closer to the average PT-α value of 1.14 with the 30-438 
day aggregated FLUXNET data– results in growing differences in the two calibrated values of b 439 
at the FLUXNET sites (not shown). But this is again to be expected, as Szilagyi et al. (2017) 440 
pointed out that the optimal value of the PT-α is influenced by the spatial and temporal 441 
resolution of the input data itself. 442 

 443 

5. Summary and conclusions 444 

The power-function extension, Eq. 12, of the nondimensional polynomial CR of Eq. 11, the latter 445 
derived from thermodynamic considerations, introduces two parameters, a and b, additional to 446 
the PT-α in Eq. 11. By setting a = 2, Eq. 12 can reproduce Eq. 11 via the b = 2 choice, and the 447 
linear CR of Eq. 10, provided b = 1.  448 

Calibration of the PT-α and b with FLUXNET data (while a = 2) results in a two-parameter CR 449 
version that excels among three additional heuristic two-parameter CR models in its estimation 450 
of the daily, 5- and 30-day aggregated latent heat fluxes. The calibrated value of b becomes unity 451 
with 30-day aggregated inputs at four FLUXNET sites, two of them situated in a wet climate 452 
with mean annual precipitation in excess of 1500 mm, while the other two sites are located in 453 
broadleaved forests enjoying about 700 mm of rain annually. At the driest, open shrubland, site 454 
the calibrated value of b becomes 2, while at the remaining two sites somewhat smaller than that. 455 

With the help of gridded precipitation and runoff data the calibration of b is repeated on a cell-456 
by-cell basis with 0.5-degree gridded monthly inputs to Eq. 12 across Australia over a whole 457 
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decade with a spatially and temporally constant PT-α value of 1.1, set by the method of Szilagyi 458 
et al. (2017). The FLUXNET-derived b values are almost perfectly recaptured for the cells that 459 
cover the FLUXNET sites. Only at one forest site is there a larger difference where the 460 
predominant land cover of the 0.5-degree cell overlying the site is rainfed cropland which 461 
probably explains the difference in the calibrated b values, i.e., unity for the forested site and 1.9 462 
for the cell. 463 

The grid-calibrated b values follow a bimodal distribution with a primary mode around two 464 
(mean of 2.08 and median of 1.9) and a secondary one near unity. It helps explain earlier 465 
findings by Crago & Qualls (2018) for the same FLUXNET sites, plus the current site-by-site 466 
FLUXNET calibration results of why a linear nondimensional CR relationship (corresponding to 467 
a = 2, b = 1 in Eq. 12) yields the best estimate for certain locations.  468 

While Szilagyi (2021) in his thermodynamics-based derivation of Eq. 11 correctly deduced that a 469 
a vanishing slope of the corresponding curve near X = 0 can only occur when the difference in es 470 
and ea also vanishes, he failed to identify the process that can produce it in general. The spatial 471 
distribution of the calibrated b values in Fig. 8, plus the site-by-site calibration results, help 472 
finding it. That process is the horizontal, regional transport of humidity toward the drying area 473 
which can clearly produce a vertically near constant humidity gradient and thus a vanishing 474 
difference in the es and ea values near X = 0. This horizontal humidity transport then sets the 475 
second-order BC at X = 0 to dy / dX = 0 and thus produces Eq. 11. Further exploration is required 476 
to explain why this polynomial solution acts as an attractor to the more flexible power-function 477 
expansion (yielding a mean b value of 2.08 and a median of 1.9), considering that the polynomial 478 
(just like the power-function) approach is just a mathematical convenience (satisfying the four 479 
BCs) without any physically based differential equation behind it. The linear solution of Eq. 10 480 
as the other attractor for the power-function curves, in contrast, results from purely 481 
thermodynamic reasoning. 482 

When the effect of the horizontal transport of humidity is negligible due to minimal spatial 483 
differences in moisture during slight-to-moderate drying of the study region, typically in 484 
permanently or at least periodically humid (due to monsoonal rains) environments, the constant 485 
relative speed conjecture of the state coordinates, (e, T) vs (es, Ts) along the air and surface 486 
isenthalps (Fig. 1), first postulated by Szilagyi (2021), seems to be validated by the calibrated b 487 
values of unity, and thus reproducing (except near X = 0) the linear CR version of Eq. 10. 488 
Naturally, the preservation of a constant relative speed between the two isenthalps’ state 489 
coordinates cannot be expected to exist in a strict sense, at all times, due to unavoidable changes 490 
in Qn, air pressure, and/or wind conditions during the averaging period (typically from day to 491 
month), but rather in a statistical sense, as a mean behavior over the averaging period. 492 

Eq. 12 may be preferrable over the existing single-parameter (and calibration-free when applied 493 
with gridded data of a large domain) polynomial approach of Eq. 11, due to its built-in flexibility 494 
when calibration is made possible by available measured (e.g., eddy-covariance derived) or 495 
water-balance based E estimates and/or the possibility exists that a linear CR approach (i.e., 496 
when a = 2 and b = 1 in Eq. 12) yields (even temporarily, during wet conditions that appear in 497 
monsoonal regions) a better estimate than Eq. 11.  498 
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Data availability All data used in this study are publicly available from the following sites. 499 
Daily FLUXNET values (http://fluxnet.fluxdata.org/sites/site-list-and-pages/); GPCC 500 
precipitation (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-501 
monthly_v2018_doi_download.html); runoff data (https://doi.org/10.6084/m9.figshare.9228176, 502 
https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9617_9854_8096_5503 
291); ERA5 and ERA5-Land data (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-504 
datasets/era5); Rn (https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary). 505 
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