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Abstract

A portion of pore water is typically in a state of unfrozen condition in frozen soils due to the complex soil-water interactions.

The variation of the amount of unfrozen water and ice has a significant influence on the physical and mechanical behaviors of

the frozen soils. Several empirical, semi-empirical, physical and theoretical models are available in the literature to estimate

the unfrozen water content (UWC) in frozen soils. However, these models have limitations due to the complex interactions of

various influencing factors that are not well understood or fully established. For this reason, in the present study, an artificial

neural network (ANN) modeling framework is proposed and the PyTorch package is used for predicting the UWC in soils. For

achieving this objective, extensive UWC data of various types of soils tested under various conditions were collected through

an extensive search of the literature. The developed ANN model showed good performance for the test dataset. In addition,

the model performance was compared with two traditional statistical models for UWC prediction on four additional types of

soils and found to outperform these traditional models. Detailed discussions on the developed ANN model, and its strengths

and limitations in comparison to different other models are provided. The study demonstrates that the proposed ANN model is

simple yet reliable for estimating the UWC of various soils. In addition, the summarized UWC data and the proposed machine

learning modeling framework are valuable for future studies related to frozen soils.
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Abstract 24 

A portion of pore water is typically in a state of unfrozen condition in frozen soils due to the 25 

complex soil-water interactions. The variation of the amount of unfrozen water and ice has a 26 

significant influence on the physical and mechanical behaviors of the frozen soils. Several 27 

empirical, semi-empirical, physical and theoretical models are available in the literature to 28 

estimate the unfrozen water content (UWC) in frozen soils. However, these models have 29 

limitations due to the complex interactions of various influencing factors that are not well 30 

understood or fully established. For this reason, in the present study, an artificial neural network 31 

(ANN) modeling framework is proposed and the PyTorch package is used for predicting the 32 

UWC in soils. For achieving this objective, extensive UWC data of various types of soils tested 33 

under various conditions were collected through an extensive search of the literature. The 34 

developed ANN model showed good performance for the test dataset. In addition, the model 35 

performance was compared with two traditional statistical models for UWC prediction on four 36 

additional types of soils and found to outperform these traditional models. Detailed discussions 37 

on the developed ANN model, and its strengths and limitations in comparison to different other 38 

models are provided. The study demonstrates that the proposed ANN model is simple yet 39 

reliable for estimating the UWC of various soils. In addition, the summarized UWC data and 40 

the proposed machine learning modeling framework are valuable for future studies related to 41 

frozen soils. 42 
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1. Introduction 49 

The freezing of water to form ice is one of the most common phase transformations in the 50 

natural environment (Wettlaufer, 1999). Nearly one-third of the land surface of the Earth 51 

experiences freezing and thawing annually (Lu et al., 2021). In these permafrost and seasonally 52 

frozen regions, unfrozen water and pore ice coexist within a frozen soil, due to the complex 53 

soil-water interactions. The unfrozen water exists in small pore spaces by capillarity and as thin 54 

films adsorbed on the surfaces of soil particles, in equilibrium with the pore ice at subzero 55 

temperatures. The relationship between the amount of unfrozen water and its energy state in a 56 

frozen soil is generally referred to as the soil-freezing characteristic curve (SFCC) in the 57 

literature (Ren et al., 2021). The quantity of unfrozen water in the frozen soil can be represented 58 

by either the gravimetric water content, or volumetric water content, or degree of unfrozen 59 

water saturation. The energy state of unfrozen water is typically represented by the subzero 60 

temperature of the frozen soil.  61 

The SFCC links the degree of water-ice phase transition to the subzero temperature in a 62 

frozen soil. Since the constitutive relationships for hydraulic, thermal, and mechanical fields of 63 

frozen soils are functions of the quantity of unfrozen water, the SFCC is essential for modeling 64 

the transport mechanism of water, heat, and solutes in frozen soils (e.g., Lai et al., 2014; Yu et 65 

al., 2020a, b; Saberi and Meschke, 2021). For example, reliable determination of the unfrozen 66 

water in frozen soils is valuable for predicting their hydraulic properties which are vital for 67 

models of flood forecasting during spring thawing, and their mechanical properties that 68 

determine the stability of the ground for infrastructure in cold regions (Amankwah et al., 2021). 69 

In other words, a sound understanding of SFCC is critical for broad engineering applications 70 

and for understanding the likely impacts associated with climate change (Lara et al., 2021). 71 

Due to its essential role in cold regions science and engineering, an accurate description of 72 

the unfrozen water content (UWC) is crucial to achieve a realistic representation of the behavior 73 

of frozen soils. In addition, the increasing use of permafrost regions for civil infrastructure 74 

constructions and the effects of global warming on these regions has further stimulated research 75 

on the behavior of frozen soils (Shastri, 2014; Saberi and Meschke, 2021), among which the 76 

UWC is a key property. Many models have been proposed to estimate the soil UWC or SFCC 77 

during the last few decades. These proposed models are generally based on using soil physical 78 



properties, the similarity between SFCC and soil-water characteristic curve (SWCC), and / or 79 

physical and theoretical mechanisms (Ren, 2019). Amongst these models, the empirical models 80 

were generally put forward by earlier researchers (e.g., Dillon and Andersland, 1966; Anderson 81 

and Tice, 1972; Xu et al., 1985; Michalowski, 1993; Mckenzie et al., 2007). Most of the 82 

empirical models are based on fitting experimental results, with a connection to the basic 83 

physical properties of frozen soils (Ming et al., 2020) and subzero temperature. In recent years, 84 

there has been significant interest in proposing physical, theoretical and thermodynamic models 85 

for estimating UWC (e.g., Liu and Yu, 2013, 2014; Wang et al., 2017a; Amiri et al., 2018; Bai 86 

et al., 2018; Chai et al., 2018; Mu et al., 2018; Teng et al., 2020; Zhou et al., 2020; Jin et al., 87 

2020; Xiao et al., 2020; Saberi and Meschke, 2021), that may be attributed to the better 88 

understanding of physical mechanisms underlying the ice-water transition in porous media. 89 

Some investigators have summarized these models in their research studies (e.g., Kurylyk and 90 

Watanabe, 2013; Mu, 2017; Ren et al., 2017; Lu et al., 2019; Hu et al., 2020). 91 

It is widely acknowledged that many factors influence the UWC in frozen soils. These 92 

factors mainly include the soil physical and chemical properties, stress sate, and temperature. 93 

The complex effects of these factors result in a highly nonlinear relationship between these 94 

factors and the UWC. In addition, the relative contribution of each factor on UWC is not well-95 

understood. This causes difficulties in selecting the most relevant factors for establishing a 96 

reliable UWC model. Such difficulties can be effectively addressed by using machine learning 97 

(ML) algorithms, such as the artificial neural network (ANN) models. The ANN is an adaptive 98 

information-processing technique, which allows the correlations between input and output 99 

variables to be established through inter-connected neurons (Saha et al., 2018). The key 100 

advantage of an ANN model in comparison to empirical and statistical methods is that it does 101 

not require any prior knowledge about the nature of the relationship between the input and 102 

output variables (Shahin et al., 2001; Pham et al., 2019). In addition, it is able to take account 103 

of various influencing factors that have weak or nonlinear relationships with the outcomes 104 

(Zhang et al., 2021b; Zhong et al., 2021). For this reason, there is no need to either simplify the 105 

problem or introduce simplified assumptions (Shahin et al., 2008). Moreover, ANN models can 106 

always be updated to obtain better results by presenting new training examples as new data 107 

become available (Ismeik and AI-Rawi, 2014; Zhong et al., 2021). These features make ANN 108 



suitable for predicting soil behaviors affected by various factors. 109 

The ANN has been widely employed in geotechnical and geo-environmental engineering 110 

fields that include predicting soil stress–strain behavior (Habibagahi and Bamdad, 2003), 111 

resilient modulus (Ren et al., 2019), and thermal conductivity / resistivity (e.g., Erzin et al., 112 

2008; Wen et al., 2020). Wang et al. (2020b) employed three ML models to estimate the UWC 113 

of a frozen saline soil. Three influencing factors (i.e., temperature, sodium bicarbonate content, 114 

and initial water content) were considered in their models. One limitation of their models, 115 

however, is that the models were developed based on limited experimental data of a specific 116 

soil. This largely restricts the use of their models for other applications. For this reason, in the 117 

present study, UWC data of various types of soils tested under various conditions are collected, 118 

through an extensive literature search. An ANN model is developed for estimating the UWC in 119 

frozen soils, based on the collected large amount of experimental data. A modelling framework 120 

is proposed and followed, and the ANN model is built by PyTorch package (Paszke et al., 2017). 121 

The developed ANN model is further compared with two traditional statistical models for UWC 122 

prediction. Detailed discussions on the developed ANN model and model comparison are also 123 

presented. The present study is one of the earliest attempts to modeling UWC in frozen soils by 124 

ML algorithms. It can provide good reference (e.g., collected data, modeling framework, and 125 

programming scripts) for future studies related to the UWC prediction, and may be incorporated 126 

in numerical codes for solving the coupled thermal–hydraulic–mechanical–chemical process in 127 

frozen soils. 128 

 129 

2. Modeling framework and data sources 130 

Figure 1 represents the proposed framework for the prediction of UWC in frozen soils. The 131 

main framework can be divided into data preparation (left part of Fig. 1), model optimization 132 

(middle part of Fig. 1), and model application (right part of Fig. 1). The collected datasets are 133 

prepared as a tabular dataset where the final column is the prediction target (i.e., volumetric 134 

UWC). The first four columns of the prepared dataset are the specific surface area, dry density, 135 

initial volumetric water content and temperature, respectively. With the prepared dataset, the 136 

features’ values are firstly normalized by scaling each factor into a distribution with zero mean 137 

value and unit variance. This process is conducted to mitigate computational burden during the 138 



model optimization and application processes, as well as to increase the model performance. In 139 

the model optimization process, at each iteration, the normalized dataset will be randomly 140 

divided into 80%:20%. The 80% samples are used to train the ANN model with given 141 

hyperparameters, and the rest 20% samples are used for independent evaluation of the trained 142 

model. Based on the evaluation results, Bayesian optimization algorithm is used to find the 143 

optimal hyperparameters of the ANN model with better performance. The Bayesian 144 

optimization process is iterated 50 times in the present study. After obtaining the optimal 145 

hyperparameters, the ANN model is evaluated again with the k-folder cross validation. The 146 

folder with best performance is used for Shapley Additive exPlanations (SHAP) interpretation 147 

to determine the influence of considered factors on the prediction target. 148 

The details about data collection, ANN model, Bayesian optimization, and k-folder cross 149 

validation are discussed in the following sections from Section 2.1 to 2.4. 150 

 151 

2.1 Data collection 152 

In the present study, soil physical properties and the UWC data were obtained from the 153 

literature. For the UWC, only data points which can be clearly identified (e.g., scattered data 154 

points in figures or tabular data) were included. Those with only unfrozen water content curves 155 

shown were not considered since it is not possible to identify the real measured UWC data 156 

points. This avoids obtaining arbitrary data from the continuous UWC curves. The raw data 157 

points were extracted from the original plots using GetData Graph Digitizer. 158 

Factors that influence the UWC of frozen soils can be categorized into the internal and 159 

external factors. The internal factors are typical soil physical properties, such as the particle size 160 

distribution (PSD), sand/silt/clay content, plasticity indices, specific surface area (SSA), dry 161 

density, void ratio (or porosity), initial water content and salinity. The external factors can 162 

include temperature, stress state, freeze-thaw and wet-dry cycles, etc. The influencing factors 163 

that were considered in various studies in the literature are different and sometimes arbitrary. 164 

For example, Smith and Tice (1988), in their study considered four factors that include three 165 

internal factors (SSA, initial water content and dry density) and one external factor 166 

(temperature). In another study, Kruse and Darrow (2017) considered more factors such as soil 167 

cation exchange capacity and cation treatment. Besides temperature, which typically has the 168 



most significant effect on UWC, only a few studies considered other external factors such as 169 

freeze-thaw cycles and stress state (e.g., Mu, 2017; Ren and Vanapalli, 2020). Therefore, it is 170 

difficult to find abundant data or studies that took into account exact the same types of 171 

influencing factors. As a result, a search of more than 100 articles from the literature resulted 172 

in identifying 20 articles that can be used in the present study, as listed in Table 1. 173 

In this study, the following factors were selected: SSA, dry density (ρd), initial volumetric 174 

water content (θinit) and temperature (Temp). This is because these four factors were considered 175 

in all the 20 articles and the UWC data of a variety of soils are available (73 soils in Table 1). 176 

It should be noted that the soil specimens used for UWC measurement were not necessarily 177 

initially saturated. Table 1 also indicates that the UWC data were mostly measured by nuclear 178 

magnetic resonance (NMR) and time domain reflectometry (TDR), while some of them were 179 

measured by other methods such as frequency domain reflectometry (FDR), time domain 180 

transmissometry (TDT), etc. In order to increase the database, the UWC data was collected 181 

regardless of the testing methods. The gravimetric water content was converted to volumetric 182 

water content by multiplying by soil dry density. The thawing or freezing SFCC branch was 183 

generally measured in the selected studies, while several studies measured both the thawing and 184 

freezing branches. In addition, the supercooling portion on the freezing branch was abandoned 185 

when collecting UWC data, since it does not represent a real unfrozen water portion. 186 

Special attention was paid to the SSA which is not available for a few soils. In this case, 187 

the SSA of these soils were either estimated or assumed in the present study. Several estimation 188 

methods have been proposed in the literature. For example, Ismeik and AI-Rawi (2014) 189 

suggested using equivalent diameter from the PSD to estimate SSA. Ersahin et al. (2006) 190 

highlighted that fractal dimensions for PSD can be used as an integrating index in estimating 191 

SSA. However, the soils collected in the present study do not necessarily have a PSD 192 

information, making these two methods not applicable. On the other hand, according to 193 

Yukselen-Aksoy and Kaya (2010), there is high correlation between the soil SSA and its liquid 194 

limit or plasticity index. As soil consistency limit values are generally available, the SSA of 195 

several soils was estimated by the relationship between SSA and plasticity index, suggested by 196 

Yukselen-Aksoy and Kaya (2010) (Eq. (7) in their study). However, for those soils that do not 197 

have a plasticity index, such as sand, their SSA were assumed according to typical values for 198 



those types of soils. 199 

 200 

2.2 Artificial neural network model 201 

The ANN is one of the supervised ML models (Fan et al., 2021). Figure 2 shows a typical 202 

structural ANN model that contains one input layer, three hidden layers and one output layer. 203 

In the input layer, the number of neurons equals the number of input variables. The number of 204 

neurons in the hidden layers determines the nonlinear degree of the designed model. In the 205 

present study, only one neuron is used in the output layer as a regression model, which 206 

represents the predicted volumetric UWC. For each neuron in the ANN, the output vector can 207 

be determined by Eq. (1) (Dongare et al., 2012), 208 

,

1

( )
I

k r k r

r

y f x
=

=                              (1) 209 

where, yk is the output of neuron k; xr is the input values from neurons of previous layer; ωr,k is 210 

the weight of each input value. The weight will be optimized in the forward and backward 211 

propagation process. f(•) is the activation function used to increase the nonlinear property 212 

during the propagation. In the present study, the ‘ReLu’ function is used as the activation 213 

function for the hidden layers and the ‘Linear’ activation function is used for the output layer. 214 

As can be seen from the architecture of ANN model, comparing to traditional statistical 215 

models, the advantage of using ANN model is that the model releases the fixed mathematical 216 

equation by combining the linear equation and activation function at each neuron. Therefore, 217 

no prior knowledge is required to predefine the relationship between the input variables and 218 

prediction target.  219 

 220 

2.3 Bayesian optimization  221 

The ANN model does not need any predefined relationship between the input and output 222 

variables; however, the final performance is heavily influenced by the architecture of the ANN 223 

model. A few hyperparameters inside the ANN model may influence its final prediction 224 

performance, such as the batch size, number of hidden layers, number of neurons in each layer, 225 

the type of optimizer and corresponding learning rate. In the present study, a Bayesian 226 

optimization method is used for tuning these hyperparameters to maximize the model’s 227 



performance. 228 

The Bayesian optimization used in this study is adopted from the scikit-optimization 229 

package (Head et al., 2018). In particular, the Bayesian optimization process aims to solve the 230 

optimization problem as shown in Eq. (2). As the target function f(x) represents the loss value 231 

of ANN model that cannot get the gradient directly, a surrogate function is used to approximate 232 

the objective function. This surrogate function is represented by the Gaussian Processes in the 233 

present study. The next optimal hyperparameters are found by this surrogate function. After that, 234 

the surrogate function will be updated with the corresponding loss value. After repeating the 235 

inference and updating process for a certain number of iterations, the most optimal 236 

hyperparameters (x*) can be finally determined (Wu et al., 2019). 237 

* arg min ( )
x

x f x=                             (2) 238 

where, x is the hyperparameters of the ANN model; f(x) is the loss value of the ANN model 239 

applying on the test set; arg min is the objective function that aims to find the hyperparameters 240 

x to make the function f(x) minimum. 241 

 242 

2.4 k-folder cross validation 243 

k-folder cross validation is a statistical method that used for ANN model’s performance 244 

evaluation. The k-fold validation technique guarantees all samples in the dataset to be 245 

considered for both training and validation processes. The process of k-fold cross validation is 246 

illustrated in Fig. 3. The original dataset is randomly shuffled before the splitting. The shuffled 247 

dataset is split into five folds. After that, each fold is sequentially treated as test set and the rest 248 

folds are used to train the ANN model. For example, Fig. 3 shows the first cross validation 249 

which uses the fold 1 data set as test set and the rest folds data as training set. In the present 250 

study, the 5-folder cross validation is adopted. Therefore, the ANN model is trained and 251 

evaluated five times. 252 

 253 

3. Data analysis and modelling results 254 

3.1 Data distribution and correlation 255 

As discussed earlier, in the present study four influencing factors are used for the prediction 256 



of volumetric UWC (θu) in frozen soils (i.e., the SSA, ρd, θinit, and Temp). Table 2 summarizes 257 

the statistical properties of the considered features and θu, including the mean, standard 258 

deviation, minimum and maximum values. The preliminary data analysis shows the data range 259 

of the collected data, which also provides a reference for the application range of the final 260 

prediction model. 261 

Figure 4 presents the histogram plots of the considered variables as well as the prediction 262 

target. As can be seen from Fig. 4(a), most of the collected samples have a SSA lower than 200 263 

m2/g. However, there are a few samples whose SSA is larger than 600 m2/g. The distribution of 264 

initial volumetric water content is denser than that of SSA. Most samples’ θinit values are within 265 

0.1 to 0.6 m3/m3. The dry density value ranges from 0.26 to 1.93 g/cm3 with a mean value at 266 

1.41 g/cm3. Although the lowest temperature in the collected dataset is -64 °C, most samples 267 

were tested in the temperature range of 0 to -30 °C. Only a few samples whose testing 268 

temperature below -30 °C were collected. These samples are reserved in the model to fully 269 

utilize the collected data. In the end, the final UWC of the collected samples ranges from 0.00 270 

to 0.91 m3/m3. 271 

Figure 5 shows the correlation relationship among the input variables and the output. The 272 

highest correlation among the input variables is between the dry density and initial volumetric 273 

water content (-0.79), followed by the SSA (-0.62). However, well defined correlations were 274 

not observed between any input variable and the volumetric UWC. This demonstrates that the 275 

UWC prediction cannot rely on any single factor. 276 

 277 

3.2 Bayesian optimization and training results 278 

50 iterations were conducted for the Bayesian optimization as illustrated in Fig. 6. It 279 

represents the optimization process that the ANN was trained multiple times with different 280 

inferred hyperparameters. The objective of the optimization process is to increase the R-squared 281 

value when predicting the samples’ UWC in the test set. The R-squared value is defined in Eq. 282 

(3). The closer of the predicted UWC to its measured counterpart, the higher R-squared value 283 

would be. 284 

2 1 res

tot

SS
R

SS
= −                                (3) 285 



in which, 286 

2( )res i i

i

SS y y= −                              (4) 287 

2( )tot i

i

SS y y= −                              (5) 288 

where, SSres is the sum of squares of residual, and SStot is the sum of squares of the original 289 

dataset; yi is the measured UWC of each sample, and �̅� is the corresponding average value; 𝑦�̂� 290 

is the predicted UWC. 291 

The R-squared value of the test set increased from around 0.61 to 0.82. In the end, an ANN 292 

model with 64 batch size, 2 hidden layers with 128 neurons in each layer, and a learning rate at 293 

0.004 was determined. 294 

The optimal hyperparameters that obtained from Bayesian optimization were used to 295 

determine the final ANN model. The model was then evaluated with the original dataset by 296 

using 5-folder cross validation. The final performance of the ANN model at each fold can be 297 

seen in Fig. 7(a) and one of the prediction results is shown in Fig. 7(b). The results indicate an 298 

overall good performance of the ANN model, considering that the collected UWC data were 299 

determined under different experimental scenarios. In particular, folders 1, 2 and 4 achieve a R-300 

squared value for the test set around 0.8. The average R-squared value among the five folders 301 

is 0.76. 302 

 303 

3.3 Factor importance to the ANN model 304 

Although the ANN model performs well, it is often criticized as a ‘black box’ since it cannot 305 

reveal the internal relationships among the input variables and prediction target. To solve this 306 

issue, a ML model interpreter, the SHAP interpretation (Lundberg and Lee, 2017) is adopted 307 

together with the LightGBM model trained with the balanced training dataset, to interpret the 308 

contribution of each influencing factor. SHAP presents a way to calculate the additive feature 309 

importance score for each factor (Strumbelj and Kononenko, 2010). The higher the importance 310 

score, the more important is the factor towards the final ML model prediction. The SHAP 311 

interpretation method together with decision-tree based ML algorithms have been widely used 312 

in the civil engineering applications, including some scenarios where highly correlated 313 



variables exist, such as the explanation of the failure of reinforced concrete (Mangalathu et al., 314 

2020) and the roadway segment crashes (Wen et al., 2021). 315 

Figure 8 shows the overall importance of the influencing factors considered on the UWC. 316 

It can be inferred that temperature has the largest impact, followed by the SSA. Furthermore, 317 

the initial water content has the lowest influence on the final UWC. The specific individual 318 

influence of each variable can also be analyzed by the adopted SHAP technique. As shown in 319 

Fig. 9, a positive influence of temperature on the UWC can be observed. This means that the 320 

UWC values are higher at higher temperature. Similar trends can also be observed for the SSA, 321 

i.e., larger SSA is related to higher UWC. These are consistent with general observations. 322 

However, the influence of dry density and initial water content is more controversial than other 323 

variables, which indicates that their influence is also dependent on other variables. 324 

 325 

4. Comparison of the ANN model and two traditional models 326 

4.1 Models description 327 

Many models for the estimation of the UWC in frozen soils have been proposed in the 328 

literature. They can be generally classified into three types; namely, (i) empirical models, e.g., 329 

linear, power, and exponential relationships between UWC and subzero temperature and soil 330 

physical properties; (ii) models that employ SWCC expressions to represent the relation 331 

between UWC and subzero temperature, based on the similarity between frozen soils and 332 

unsaturated soils; (iii) physical and theoretical models, which take advantage of soil 333 

particle/pore size distribution, capillarity, adsorption, salt exclusion, and thermodynamic 334 

theories. In the present study, two models from the first two categories are selected and 335 

compared with the above developed ANN model. The physical and theoretical models are 336 

complex for use. Therefore, no model from this category is selected for comparison. 337 

The first model is empirical and was proposed by Anderson and Tice (1972). They 338 

suggested that the UWC can be conveniently expressed as a function of subzero temperature 339 

by a simple power curve with two constants, which can be estimated from soil SSA. This 340 

empirical power relationship is one of the most widely used model in the literature. The model 341 

is expressed in terms of volumetric UWC (θu) below, 342 



0.264ln 0.2618 0.5519ln 1.449 ln( )

/100
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=
           (6) 343 

where, wu is the gravimetric UWC; T is the subzero temperature, °C; ρd is soil dry density, g/cm3. 344 

The second model is based on the similarity between the SFCC and SWCC. This concept 345 

has been used in many studies (e.g., Nishimura et al., 2009; Liu and Yu, 2014; Ren et al., 2017; 346 

Teng et al., 2020). For example, Liu and Yu (2014) employed the Fredlund and Xing (1994) 347 

SWCC expression (Eq. (7)) to represent SFCC. The cryogenic suction in frozen soils is 348 

correlated with the subzero temperature through the Clapeyron equation, as shown in Eq. (8). 349 

In addition, there are many empirical relationships between the Fredlund and Xing model 350 

parameters (i.e., a, n, m, and ψres) and soil physical properties in the literature (e.g., Zapata et 351 

al., 2000; Witczak et al., 2006; Chin et al., 2010). For example, the relationships proposed by 352 

Zapata et al. (2000) are summarized in Table 3. Although these empirical relationships were 353 

developed on unsaturated soils, they are used to calculate the model parameters (a, n, m, and 354 

ψres in Eq. (7)) for frozen soils in the present study, assuming that there is exact similarity 355 

between unsaturated soils and frozen soils. After then, the volumetric UWC can be determined 356 

through Eq. (7), 357 
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where, ψcryo is the cryogenic suction in kPa; ψres is the cryogenic suction at the residual state, 360 

kPa; θinit is the initial volumetric UWC, m3/m3; L is the latent heat of fusion of water (L = 334 361 

kJ/kg); ρw is the density of water (ρw = 1000 kg/m3); T0 is the normal freezing temperature of 362 

water (T0 = 0 °C). The calculated cryogenic suction versus subzero temperature relationship by 363 

Eq. (8) is approximately linear with a slope of about 1225 kPa/°C, when the subzero 364 

temperature is not too low (Ren, 2019). 365 

For comparing the above two traditional UWC models with the developed ANN model in 366 



the present study, four different types of soils were selected. It should be noted that the UWC 367 

datasets of these four soils were not included in the training or validating process when 368 

developing the ANN model. They are only used in the comparison of ANN prediction versus 369 

traditional models. In other words, these four soils provide completely independent datasets for 370 

comparing the three models, and therefore providing objective assessment of the model 371 

performance. Among the four soils, three soils are plastic and the last soil is non-plastic. It 372 

covers a variety of soil types, such as sand, silt, and high plastic bentonite. Their SSA is in a 373 

wide range, with the minimum of 3 m2/g for fine sand and the maximum of 380.6 m2/g for 374 

bentonite, as shown in Table 4. Therefore, the selected four soils are good representatives for 375 

model comparison. In addition, the soil physical properties that are essential for employing the 376 

three models are summarized in Table 4. 377 

 378 

4.2 Comparison results 379 

Figure 10 summarizes the prediction results by the two traditional models and the ANN 380 

model on four different soils with significantly different physical properties. It can be seen that 381 

the Fredlund and Xing (1994) model (with its parameters calculated by the empirical 382 

relationships suggested by Zapata et al. (2000)) is not able to provide accurate estimation of the 383 

UWC for these four soils. This approach typically overpredicts the UWC for plastic soils but 384 

underestimates those for non-plastic soils. The Anderson and Tice (1972) model provides 385 

reasonable predictions for silt; however, the estimations for the other three soils are poor. In 386 

addition, this model results in unreasonably high UWC value when the subzero temperature is 387 

close to 0 °C (see Fig. 10(c)). Meanwhile, the UWC values of the four soils predicted by the 388 

ANN model are close to the measured data points, suggesting that the performance of the pre-389 

trained ANN model is good. 390 

Figure 11 presents the comparison between the ANN model and the two traditional models; 391 

the measured UWC values are plotted on the abscissa. This figure clearly shows that the UWC 392 

values predicted by the two traditional models deviate from the 1:1 line, with most of the data 393 

outside the ±15% absolute percentage error lines. In other words, the two models either over- 394 

or under-estimate the UWC of the four soils. However, the prediction results by the ANN model 395 

are closer to the 1:1 line, compared with the two traditional models. This suggests that the ANN 396 



model outperforms the two traditional models, and has higher prediction accuracy. 397 

For better illustration, the root mean squared error (RMSE) for the three models is shown 398 

in Fig. 12. It clearly shows that the ANN model generally has much smaller RMSE values for 399 

the four soils, compared with the other two models. The Anderson and Tice (1972) model 400 

provides fair estimations for three types of soils but fails on the bentonite. The Fredlund and 401 

Xing (1994) approach had the worst overall performance among the three models, which means 402 

soil specific calibrations are crucial for the performance of this model. 403 

 404 

5. Discussion 405 

5.1 Concerns regarding the ANN model development 406 

There are a variety of internal and external factors that influence the UWC in frozen soils. 407 

Therefore, estimating UWC is ideally suited by ML models such as ANN, which is good at 408 

learning the highly nonlinear relationships among complex factors. In the present study, an 409 

ANN model was established and trained based on the UWC data collected from the literature. 410 

The amount of UWC data used in this study, however, is still limited. This is because the 411 

influencing factors that were considered in various published studies in the literature are 412 

different and sometimes arbitrary. This limitation contributes to the discrepancies among the 413 

collected data. Therefore, there is a need to set up large and reliable database for UWC, which 414 

can facilitate the establishment of robust and widely applicable ML models for UWC estimation. 415 

A search of more than 100 articles in the literature resulted in 20 articles (and 73 soils in 416 

total) that contain the proper types of data. In order to obtain enough amount of data for 417 

developing the ANN model, UWC data were selected regardless of the testing methods, 418 

hysteresis effect, freeze-thaw cycles, or salt concentrations. This on one hand highlights the 419 

versatility of the developed ANN model. On the other hand, ignoring hysteresis means that both 420 

freezing and thawing UWC data were used. This partially contributes to prediction error. For 421 

example, the data point (i.e., 0.181 m3/m3) in Fig. 10(b) is on the freezing branch, which is at 422 

higher position than many other data points that are on the thawing branch. However, this 423 

limitation can be alleviated if the experimental UWC data on freezing and thawing branches 424 

are separately collected and used for establishing ANN models. Another issue that influences 425 

the predicting accuracy of the developed ANN model is that the experimental data (used for 426 



training and validation) themselves have some fluctuations or discrepancies. For example, the 427 

discrepancy originated from the fact that different measurement techniques yield different 428 

UWC values even for the same soil sample.  429 

It is possible to use part of the data collected from the 20 articles, such that more 430 

influencing factors (e.g., salinity and sand/silt/clay fraction) can be included to develop ANN 431 

models. However, the present study limited its goal to use as much data as possible to ensure a 432 

stable and reliable ANN model. A smaller range of data used for model development would also 433 

limit its application scope and yield less reliable estimation results. In addition, Pham et al. 434 

(2019) opinioned that including additional specific information to input features could affect 435 

the representative capacity of the model because such information, in some cases, could not be 436 

easily obtained in practice. The way to develop an ANN model with more influencing factors 437 

essentially follows the same framework highlighted in the present study. Once more data are 438 

available, the present ANN model can be easily extended in the future for improving its capacity 439 

and performance. 440 

Géron (2017) pointed out that in ANN modeling several hyperparameters, such as the 441 

ANN structure, number of training steps and regularization coefficient, should be aligned. 442 

Determining the most suitable combination of hyperparameters for a given task can be 443 

challenging. The developed ANN model shows good performance on the test dataset. The 444 

model performance may be further improved by developing ensemble or stacked models, 445 

applying transfer learning, or performing domain knowledge modification (Zhong et al., 2021). 446 

In addition, according to Zhong et al. (2021), the first step for developing a sound ANN model 447 

is to build a large, consistent source dataset. Unfortunately, such a large dataset is currently not 448 

available for the UWC data in the literature. 449 

In the present study, four influencing factors (i.e., SSA, dry density, initial volumetric water 450 

content and temperature) were employed as the input variables for estimating UWC. The SHAP 451 

analysis shows that temperature and SSA are the two factors that significantly influence the 452 

UWC in frozen soils, which is in agreement with general observations. It also indicates that the 453 

initial water content does not have significant effect on UWC. In addition, the effect of density 454 

(or void ratio) on UWC is not predominant, which is consistent with the study by Wang et al. 455 

(2017b). 456 



 457 

5.2 The strengths and limitations of different models 458 

The Anderson and Tice (1972) model is empirical and simple. It uses the SSA and subzero 459 

temperature as two independent variables for the calculation of UWC. Although this model was 460 

established based on several soils with a variety of SSA values, it was not able to accurately 461 

predict the UWC of three of the four selected soils. Therefore, this model should be further 462 

improved using additional experimental data on different types of soils. It is likely a robust 463 

correlation could be achieved between the UWC and SSA, and its parameters by including 464 

additional experimental results. Another limitation of this model is that it yields a UWC value 465 

of infinity when the subzero temperature approaches to 0 °C. This problem has also been 466 

observed by other researchers (e.g., Michalowski, 1993; Qin et al., 2008). 467 

Using the Fredlund and Xing (1994) SWCC expression in the estimation of the UWC in 468 

frozen soils is a semi-empirical approach and lacks theoretical foundation. This approach 469 

employs the similarity between the SFCC and SWCC, and directly replaces the suction in 470 

unsaturated soils by the cryogenic suction in frozen soils, which is calculated from subzero 471 

temperature by using the Clapeyron equation. The validity of the Clapeyron equation generally 472 

involves two assumptions; (i) thermodynamic equilibrium at the pore ice–water interface in the 473 

frozen soil, and (ii) the pore ice pressure is equal to the atmospheric pressure. In spite that these 474 

assumptions have been widely accepted as reasonable working hypotheses by many studies, 475 

some aspects of the underlying theory have been recently disputed in the literature (Vogel et al., 476 

2019; Zhang et al., 2021a). For example, it is likely that the thermodynamic process in freezing 477 

soil is non-equilibrium, and pore ice pressure may deviate from the atmospheric pressure in 478 

unsaturated frozen soil or when overburden pressure is present. More discussions related to the 479 

similarity between freezing and drying processes are available in Ren and Vanapalli (2019). It 480 

should also be noted that for this model, its parameters were determined based on empirical 481 

relationships, which were derived from unsaturated soils. The failure of using this model in the 482 

reliable prediction of UWC data suggests that the similarity and differences between the SFCC 483 

and SWCC deserves more rigorous investigations. 484 

Mu (2017) suggests that the empirical and SWCC-derived models may not provide reliable 485 

UWC values over a wide temperature range due to lack of consideration of the influence of 486 



both capillarity and adsorption. Furthermore, the effect of initial soil void ratio (which 487 

influences the capillarity) on the UWC was not explicitly considered in these models. On the 488 

other hand, the ANN model considered the effect of void ratio by incorporating the dry density 489 

as an input variable. In addition, the empirical models lack a theoretical basis in terms of 490 

continuum thermodynamics (Qin et al., 2008). Furthermore, although some of these models 491 

have been successfully employed to best-fit the measured UWC data, they are not readily to be 492 

used since the fitting parameters are generally based on a limited number of soils data. As a 493 

result, it is not surprising that these fitting parameters cannot be used for estimating the UWC 494 

of other soils such as the four types of soils analyzed in this study. 495 

The comparison between the above two traditional models and developed ANN model 496 

shows better performance of the latter. The ANN model has good applicability in frozen soils. 497 

It can be applied to estimate the UWC of a variety of soils that were not employed for 498 

developing the ANN model, and that of the soils used for training the model. However, one 499 

limitation of the ANN model is that monotonic estimation of UWC cannot be guaranteed. For 500 

example, it can be seen from Fig. 10(d) that a spike exists and the predicted UWC does not 501 

strictly monotonically decrease with the decrement of temperature. The reason is that while 502 

ANN model uses thousands of neurons to free from a fixed statistical model, there is no strict 503 

equation to guarantee its output to be monotonic versus the temperature. Hence, the ANN model 504 

predicts the UWC at each temperature separately. Making the ANN model realizing the 505 

monotonicity in datasets requires more studies (Bandai and Ghezzehei, 2021). 506 

The model from the third category (i.e., physical and theoretical model) was not selected 507 

for comparisons. This is because such models generally involve several theories, assumptions, 508 

parameters and approximations, resulting in inconvenient use of these models. Compared with 509 

the macroscopic empirical and semi-empirical models from the first two categories, the physical 510 

and theoretical models consider microscopic perspectives including in certain models at 511 

molecular levels. For example, the theoretical model proposed by Watanabe and Mizoguchi 512 

(2002) separately calculate the UWC in soil pores and that exists on particle surfaces as film 513 

water. The former is based on pore size distribution and Gibbs-Thomson effect, and the latter 514 

takes advantage of the specific surface area and thickness of the water film. The sum of the two 515 

is the total UWC in the frozen soil. Similar concepts have been widely employed by recent 516 



studies. However, as pointed by Fisher et al. (2019) that in order to use such models on natural 517 

soils, detailed information of the soil properties is needed. They include such as the pore size 518 

diameters and distribution, specific surface area, surface energy of the ice–water interface, 519 

dielectric permittivity, and Hamaker constant, which would own multiple values since soil is a 520 

complex and heterogeneous porous system (Watanabe and Mizoguchi, 2002). As a result, the 521 

application of such models can be challenging. 522 

 523 

6. Summary 524 

The effects of climate change on the permafrost and seasonally frozen regions and the 525 

increasing civil infrastructure construction in these regions have stimulated extensive research 526 

studies related to the behaviors of frozen soils in recent years. It is well-known that unfrozen 527 

water and pore ice coexist in the frozen soil as a result of complex soil-water interactions. The 528 

relative quantity of the unfrozen water and ice has paramount influence on the physical and 529 

mechanical properties of frozen soils, as well as on the transport of energy, water and solutes in 530 

cold regions. Due to this reason, a variety of techniques have been developed and employed to 531 

measure the unfrozen water and ice contents in frozen soils, and many models have also been 532 

proposed for the estimation of UWC in the past several decades. These proposed models are 533 

generally based on using soil physical properties, the similarity between frozen soils and 534 

unsaturated soils, and / or physical and theoretical mechanisms. 535 

Many factors influence the UWC in frozen soils. These factors include such as soil physical 536 

and chemical properties, stress sate, and temperature. The complex effects of these factors result 537 

in a highly nonlinear relationship between these factors and UWC. In addition, the relative 538 

contribution of each factor on UWC is not well-understood. Furthermore, the previously 539 

developed statistical models generally can only incorporate a few influencing factors and 540 

therefore have limited predicting capability. Such limitations, however, can be effectively 541 

addressed by using ML algorithms, such as the ANN models. 542 

In the present study, extensive UWC data of various types of soils tested under various 543 

conditions were collected through a comprehensive search of the literature. An ANN model for 544 

estimating the UWC in frozen soils was developed following the proposed modeling framework. 545 

The ANN model was established by using the PyTorch package and its hyperparameters were 546 



optimized with Bayesian optimization. The developed ANN model showed good performance 547 

on the test dataset. In addition, it was compared with two traditional statistical models for UWC 548 

prediction on four independent types of soils. The results indicated that the ANN model 549 

achieved better UWC prediction performance than its counterparts, which include the empirical 550 

model and semi-empirical model exploiting the similarity between frozen soils and unsaturated 551 

soils. Detailed discussions on the developed ANN model, and the strengths and limitations of 552 

different types of models were also presented. The present study demonstrates the potential of 553 

ML model to provide reliable prediction of the UWC in frozen soils. In addition, the large 554 

amount of UWC data collected and the developed ANN model will be great assets for future 555 

studies. 556 
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Table 1. Unfrozen water content testing information from the literature 

Data origin No. of Soils Internal factors (Soil main physical information) External factors SFCC branches Testing methods 

Smith and Tice (1988) 25 SSA θinit ρd / T Thawing NMR, TDR 

Suzuki (2004) 1 SSA θinit ρd Organic content, EC, Fraction T Thawing NMR, TDR 

Yoshikawa and Overduin (2005) 2 SSA θinit ρd / T Freezing NMR, FDR, TDT 

Watanabe and Wake (2009) 4 SSA θinit ρd Porosity, Cu, EC, Ignition loss T Thawing NMR 

Ma et al. (2015) 2 SSA θinit ρd LL, PL, Fraction T Thawing NMR 

Kruse and Darrow (2017) 6 SSA θinit ρd Cation treatment, CEC, PSD T Both NMR 

Wang et al. (2020a) 1 SSA θinit ρd LL, PL, Fraction T Thawing NMR 

Zhou et al. (2020) 1 SSA θinit ρd LL, PL, Fraction, Salinity T Thawing NMR 

Lovell (1957) 3 SSA* θinit ρd LL, PI, PSD T // Calorimetry 

Akagawa et al. (2012) 4 SSA* θinit ρd LL, PL, PI T Both NMR 

Wen et al. (2012) 1 SSA* θinit ρd LL, PL, Fraction T // NMR 

Zhou et al. (2015) 1 SSA* θinit ρd LL, PL, Fraction T Both NMR 

Mu (2017) 1 SSA* θinit ρd LL, PL, PI, Fraction T, F-T, Stress state Both TDR 

Chai et al. (2018) 1 SSA* θinit ρd LL, PL, PI, PSD, Salinity, pH T Thawing NMR 

Mao et al. (2018) 1 SSA* θinit ρd LL, PL, Porosity, Fraction T Freezing EC measurement 

Kong et al. (2020) 5 SSA* θinit ρd LL, PL, PI, Fraction T Freezing NMR 

Li et al. (2020) 3 SSA* θinit ρd PSD T Both NMR 

Ren and Vanapalli (2020) 5 SSA* θinit ρd LL, PL, PSD, Porosity T, F-T Both FDR 

Teng et al. (2020) 3 SSA* θinit ρd LL, PL, Fraction T Both NMR 

Wang et al. (2021) 3 SSA* θinit ρd LL, PL, PSD T Thawing NMR 

Note: SSA: Specific surface area; SSA*: Calculated SSA based on soil plasticity index (PI). The SSA values of a few soils are assumed, since their PI are not available; 

θinit: Initial volumetric water content; ρd: Dry density (For the soil in Chai et al. (2018), its ρd value was obtained by personal communication); T: Temperature; EC: 

Electrical conductivity; Fraction: Sand/Silt/Clay fraction by weight; Cu: Uniformity coefficient; LL: Liquid limit; PL: Plastic limit; CEC: Cation exchange capacity; PSD: 

Particle size distribution curve; F-T: Freeze-thaw cycles; /: Not available; //: Unknow.  

 



 

Table 2. Statistical properties of the collected data 

Item Unit Mean Std Min Max 

SSA m2/g 91.33 145.00 0.90 714.00 

θinit m3/m3 0.39 0.16 0.07 0.83 

ρd g/cm3 1.41 0.36 0.26 1.93 

Temp °C -6.15 7.31 -64.00 0.00 

θu m3/m3 0.12 0.11 0.00 0.91 

 

 

 

Table 3. Correlations between the Fredlund and Xing model parameters and soil 

index properties 

FX model 

parameter 
Plastic soils (PI > 0) Non-plastic soils (PI = 0) 

a (kPa) 
3.35

0.00364*( ) 4*( ) 11a wPI wPI= + +  
0.751

60
0.8627*( )a D

−
=  

n 
0.14

[ 2.313*( ) 5]*n wPI m= − +  7.5n =  

m 
0.465

0.0514*( ) 0.5m wPI= +  60
0.1772*ln( ) 0.7734m D= +  

ψres (kPa) 32.44*exp(0.0186*( ))*res wPI a =  60
/ ( 9.7*exp( 4))res a D = + −  

200
*wPI P PI=  

where, P200 is the percentage passing the #200 U.S. standard sieve, as a decimal; PI is plasticity 

index, as a percentage; D60 is the particle size corresponding to 60% passing by weight, mm. 

 

 

 

 

  



Table 4. The four soils selected for model comparison 

Soil ID P200 
PI 

(%) 

SSA 

(m2/g) 

θinit 

(m3/m3) 

ρd 

(g/cm3) 
Data origin 

Silt 0.854 11.7 16.6 0.416 1.60 Zhou et al. (2020) 

Loess 1 19.0 75.3 0.512 1.29 Mu (2017) 

Bentonite 1 127.9 380.6 0.387 1.60 Kong et al. (2020) 

Fine 

sand 
0.23† 3.0 0.331 1.57 Li et al. (2020) 

†: This value is the D60 (Unit: mm). 
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Fig. 1. Framework for unfrozen water content prediction 

 

 

 

 

Fig. 2. Structure of ANN model with input layer, hidden layer, and output layer 
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Fig. 3. Illustration of k-folder cross validation 

  



  

(a) Specific surface area (b) Initial volumetric water content 

  

(c) Dry density (d) Temperature 
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Fig. 4. Histogram plot of the input variables and prediction target 

 

  



 

Fig. 5. Correlation map among the input variables and prediction target 

 

 

 

 

Fig. 6. Bayesian optimization process 

 

  



 
 

(a) Prediction results of five folds (b) Predicted water content in fold 2 

Fig. 7. Results of ANN model 

 

 

 

 

Fig. 8. Overall importance of the considered factors on the unfrozen water content 

  



 

 

Fig. 9. Individual impact of the considered factors on the unfrozen water content 

 

 

 

Fig. 10. Comparison between the ANN model and two traditional models



 

Fig. 11. Comparison of prediction accuracy of the ANN model and two traditional models 

  



 

Fig. 12. The RMSE for the ANN model and two traditional models on four soils 

 


