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Abstract

Since the advent of particle-track methods, it has been understood that the energy loss rate of an ion changes continuously along
the particle trajectory, and that energy loss rate in turn affects etching rate. As fission particles slow down and stop, their energy
loss rate also drops, which in turn reduces their along-track etching velocity. Conversely, the conceptual model that underlies
the way we interpret track length data is based on a more simplified paradigm of a constant along-track etching velocity, vT,
with the track tip marking the transition to bulk crystal etching, vB, at its maximum etchable extent. We present a new model
for the etching and revelation of confined fission tracks that incorporates and attempts to quantify variable along-track etching
velocity, vT(x). The model attempts to fully represent the track-in-track (TINT) revelation process, consisting of etchant
penetration along semi-tracks intersecting the polished grain surface, expansion of etchant channels to intersect latent confined
tracks, etching of confined tracks, and finally selection by the analyst of tracks suitable for measurement. We successfully use
the model to fit step-etching data for spontaneous and unannealed and annealed induced confined tracks in Durango apatite.
All model fits support a continuous decrease in etching velocity toward track tips, and lead to a series of insights concerning
the theory and practice of fission-track thermochronology. Etching rates for annealed induced tracks in Durango apatite are
much faster than those for unannealed induced and spontaneous tracks, impacting the relative efficiency of both confined track
length and density measurements, and suggesting that high-temperature laboratory annealing may induce a transformation in
track cores that does not occur at geological conditions of partial annealing. However, we are still investigating to what degree
that pattern holds for other apatite varieties. The model also quantifies how variation in track selection criteria by analysts,
which we approximate as the ratio of along-track to bulk etching velocity at the etched track tip (vT/vB), is likely to play a
first-order role in the reproducibility of confined length measurements, and may explain the bulk of the variability observed in
inter-laboratory calibration exercises. The concept of a “fully etched track” is subjective. Finally, the model illustrates how a
substantial proportion of tracks that are intersected are not measured, which in turn indicates that length biasing is likely to

be an insufficient mathematical basis for predicting the relative probability of detection of different track populations.
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“The easiest length measurement there is”

D.

14
12

10

Etch code

DUR-2 (unannealed)

Etching protocol

- —o— 7M, 20s, 21°C
—— 0.7%, 420s, 20°C
- —0o—o— 0.4M, 70s, 25°C
—0—H 1.1M, 70s, 20°C
- —0— 5%, 50s, 20°C
HEH  1.6M, 40s, 24°C
- —i— 6.5%, 45s, 20°C
o 22°C
- OO HOOHO-CHEDOHC—O-CH 5.5M, 20s 21°C
D=0 20°C
- —o— 24°C
HOHY 5w, 20 28°C
- =CO-O= =0 22°C
—— OO 21°C
L L 1 J not reported

13 14 15 16 17

Length (um)

Ketcham, Carter and Hurford, 2015

C.

Years since trained

40

32

30

25

20

15

10

DUR-2 (unannealed)
Years since trained

Length (pm)




What does step etching tell

Odd results from “follow-each-
track” step etching...

* Bulk etching velocity only
reached after 25 seconds(!) in
unannealed induced tracks

* Mean lengths 0.4 um longer if
detected after 10 vs. 20 seconds

e Spontaneous and annealed
induced tracks very different at
10 s, indistinguishable after 25 s

e Apparent jump in etch rate
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TRACK ETCH RATE, Vy {4 / HOUR)

Etch rate along track is linked to energy loss rate

Energy loss rates for various possible 238U fission pairs
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Side view QOverhead section view

To figure out etching rates of _ -
TINT confined tracks, T — =
we need to model: Cs

5s B
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To figure out etching rates of
TINT confined tracks,
we need to model:
1. Penetration and then widening of semi-tracks

2. Intersection/revelation of confined latent tracks
3. Etching out of latent tracks
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Generate lots of track intersections...
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.. and calculate the track length distribution...

Etched Lengths

10
Length (um)



What measured length
distributions really are

* Right side of length
distributions: longest
etched lengths

e Left side: which tracks
analyst picks

* 10-15 sec: visibility
e 20 sec: shape, tips, etc.
* Grayed bars: tracks

intersected but not
selected.

From Ketcham and Tamer, 2021
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Fitting the modelsto =f oo 0o 4 b
the data N [ A
* Tricky, as much is randomized : R
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Fitting the models to
the data

* Tricky, as much is randomized

* Semi- and latent track L, ¢, 0

* Intersection time and depth

* Impinged point along latent track
e Leads to transitory minima

* Method: simplex, minimize y, 2
e Randomize 10°-107 tracks
* Use many starting points

* Fitted parameters:
e Latent length

* VTmax

e Core length
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Fitting the models to
the data

* Tricky, as much is randomized Residuals of model fits
* Semi- and latent track L, ¢, o

. . 4 SU 9] 1A235 IA270 1A280
* Intersection time and depth ;
* Impinged point along latent track s -
* Leads to transitory minima g’
@ 0
* Method: simplex, minimize x> £-
e Randomize 10°-107 tracks 2
. . 3
e Use many starting points 4
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* Fitted parameters: S S S S S S S S S S S S S N S S
* Latent length Constant Core  © Linear

* VTmax

* Core length
* Models fit pretty well



Fitting the models to
the data

* Tricky, as much is randomized
* Semi- and latent track L, ¢, 0
* Intersection time and depth
* Impinged point along latent track
e Leads to transitory minima

Method: simplex, minimize vy, 2
* Randomize 10°-107 tracks
* Use many starting points

* Fitted parameters:
* Latent length

VTm ax

* Core length
Models fit pretty well

Unannealed look different than
annealed...
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This contradicts how we’ve
thought of tracks for >40 years

8 Underetched

Laslett et al 1984

The “Fully etched tracks” model

Tamer et al. 2019
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and p(intersection) = p(measurement)



This contradicts how we’ve
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Why it matters

* Our conception of tracks comes closer to reality
* Lo, Anti-length biasing, left vs. right
* Focus on source of reproducibility

* It paves the way for redoing FT based on computer
vision



Why it matters
* Our conception of tracks comes closer to reality
* Lo, Anti-length biasing, left vs. right
* Focus on source of reproducibility
* It paves the way for redoing FT based on computer
vision
* But there’s a LOT of work to do — —

* More apatites with different etching

* More levels of annealing
* Both spontaneous and induced

* Etching and annealing anisotropy -




