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Abstract

Flood hazard mapping and the design of many water infrastructures are commonly based on the use of a single hydrologic

variable, the design instantaneous peak flow. However, the entire flood hydrograph (or at least the flood volume) is needed

in many circumstances, including the evaluation of potential risks in dam safety analysis, the design of detention basins, the

application of inundation methods or of river levee failure. While many efforts have been made in the last decades to improve

the peak flow estimation in a generic section of a river network, procedures for the systematic estimation of flood volumes in

ungauged sections over large regions are not consolidated yet. In this paper, the estimation of the flood volumes in ungauged

basins is developed, based on the Flood Reduction Function (FRF), a parsimonious representation of the flood hydrograph

structure. The FRF is a volume-duration relationship that allows to easily extract flood hydrographs based on few parameters,

that exhibit marked regularity. Based on data from 87 basins (763 station-years of flood hydrographs) in the Northwest Italy,

a two-parameter FRF has been considered to build a regionalized estimation procedure. The estimation of FRF parameters in

ungauged basins has been obtained with different procedures. Results suggest that the multiple linear regression model can be

an effective method to estimate the FRF in ungauged basins, producing nearly unbiased predictions and design hydrographs

which reasonably resemble the observed ones.
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Key Points: 

• A parsimonious regional statistical model to estimate flood hydrographs in ungauged sites is 

proposed. 

• New observations of flood volumes in 87 river sections in Italy are used, along with several 

attributes of the upstream watersheds. 

• Design hydrograph shapes in ungauged basins can be estimated from hydro-geomorphologic 

basin features through linear multiple regressions. 
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Abstract 

Flood hazard mapping and the design of many water infrastructures are commonly based on the use 

of a single hydrologic variable, the design instantaneous peak flow. However, the entire flood 

hydrograph (or at least the flood volume) is needed in many circumstances, including the evaluation 

of potential risks in dam safety analysis, the design of detention basins, the application of inundation 

methods or of river levee failure. While many efforts have been made in the last decades to improve 

the peak flow estimation in a generic section of a river network, procedures for the systematic 

estimation of flood volumes in ungauged sections over large regions are not consolidated yet. 

In this paper, the estimation of the flood volumes in ungauged basins is developed, based on the Flood 

Reduction Function (FRF), a parsimonious representation of the flood hydrograph structure. The FRF 

is a volume-duration relationship that allows to easily extract flood hydrographs based on few 

parameters, that exhibit marked regularity. Based on data from 87 basins (763 station-years of flood 

hydrographs) in the Northwest Italy, a two-parameter FRF has been considered to build a regionalized 

estimation procedure. The estimation of FRF parameters in ungauged basins has been obtained with 

different procedures. Results suggest that the multiple linear regression model can be an effective 

method to estimate the FRF in ungauged basins, producing nearly unbiased predictions and design 

hydrographs which reasonably resemble the observed ones. 

 

Plain Language Summary 

Regional statistical analyses allow to obtain estimates of hydrologic variables related to ungauged 

sites or basins. We suggest here to study the maximum flood volumes for given durations and reach 

a state-of-the-art regional estimation method, starting from a new dataset of flood hydrographs in NW 

Italy.  We use a representation of flood volumes called flood reduction function (FRF), that resembles 

the intensity-duration curve built for the extreme rainfall and is computed similarly from the raw data. 

As for the design rainfall events, the design hydrographs can analytically derive from an analytical 

form of the FRF. Local empirical 2-parameter curves are built on 87 stations and different statistical 

frameworks are applied, to try to relate the FRF parameters to hydro-geomorphological features of 

the basins. A rather simple multiple linear regression model is the preferred one, which connects FRF 

curves to indices of extreme rainfall and to basin features connected to the watershed lag time. 

Applying the regional model selected, we obtain reasonably shaped design hydrographs, as compared 

to the observed ones.  

 



 

 

1 Introduction 

Modern hazard and flood risk analysis, used in the design of flood mitigation infrastructures, must 

rely on reliable information about hydrograph volume and shape, in addition to the peak flow value. 

While the estimation of design flood peaks in ungauged basins has a long history (Gumbel, 1945; 

Cunnane, 1988; Castellarin et al., 2012) and many operational models are currently available, 

methods to estimate flood volume (and hydrograph shape) are still limited and not well consolidated 

(see e.g. Tomirotti et a., 2017,  Brunner et al., 2017). Historical records usually include only annual 

maximum peak flows and even if hydrograph tracks are available on paper, they require a 

digitalization effort. With a very limited availability of flood volume data in many countries, no 

wonder is the lack of regional statistical characterizations of such complex curves.  

Nowadays, design hydrographs are typically determined with indirect methods (e.g., rainfall-runoff 

procedures), while their direct evaluation (i.e., based on discharge observations) is not so useful, since 

many interesting watersheds are ungauged. Since most of the available studies only focus on the 

volume estimation, leaving the hydrograph shape to a subjective choice (e.g., triangular, rectangular, 

etc.), Yue et al. (1999) underline that a multivariate joint probability distribution should be applied, 

due to the positive correlation between flood peak and volume. In the same direction, copula-based 

bivariate modelling of peak and volume have been developed: see Bacova Mitková and Halmová 

(2014), Salvadori and De Michele (2007), Zhang and Singh (2006) among others. Xiao et al. (2009) 

propose a different approach, i.e., a Multi-characteristic Synthesis Index, with the aim of 

simultaneously accounting for different hydrograph features (e.g., peak and volume for 1, 3, 7, etc. 

days of duration), in order to define an “overall” design hydrograph. Yue et al. (2002) describe the 

design hydrograph with a 2-parameter Beta function, defined by the centroid and the variance of the 

flood hydrograph. On the simulation side, Mediero et al. (2010) developed a Monte-Carlo 

methodology for generating flood hydrographs, consistent with the available statistical properties of 

the peak, volume and duration. More recently, Requena et al. (2016)  presented a bivariate procedure 

to extend flood series through the generation of  peak-volume samples, while Brunner et al. (2017) 

estimate the synthetic hydrograph using a dimensionless lognormal probability distribution, scaled 

according to flood peak and volume values, modelled through a bivariate copula. In the field of urban 

drainage, a derived distribution approach had been proposed by Guo and Adams (1998), who obtained 

the distribution of peaks and volumes in analytical form starting from the distribution of rainfall 

events. This approach has not been substantially followed on natural basins. 

A different and less common approach to characterize flood volumes relies on the use of the flood 

reduction function (FRF), which describes, for a given return period, the maximum flood volume in 

a given duration regardless of the hydrograph shape (e.g. Bacchi et al., 1992). The FRF curve is 



 

 

conceptually similar to the average intensity-duration-frequency (IDF) function used to represent 

rainfall depths for a given duration (Grimaldi et al., 2011). Analogously to the design hyetograph in 

the “Chicago” method, the design hydrograph shape can be constrained to present partial volumes 

compatible with the form of the FRF. However, the shape of the curves over time (hydrograph and 

hyetograph) are both undetermined. 

Whatever the adopted model, to devise a design flood hydrograph in ungauged basins (i.e., where 

few or no observations are available) specific procedures to estimate the model’s parameters are 

required. These approaches are commonly referred to as Regional Statistical Models and have been 

developed for many hydrological variables, e.g. mean annual flow, seasonal flow regime, flow 

duration curves and low flows, flood peaks (Blöschl et al., 2013). Application of regional models to 

flood volumes are indeed quite rare, as the only available approach, to our knowledge, is that of 

Tomirotti and Mignosa (2017). In this paper, we address the regionalization of the flood hydrograph 

volume via the Flood Reduction Function schematization, using data of empirical FRF obtained in 

87 watersheds in the upper Po river basin, in the North West of Italy. 

 

2 Methodology 

2.1 Flood Reduction Function (FRF) 

Flood reduction function (FRF) is a curve representing, for a given duration D, the maximum value 

of the average discharge QD computed on all the possible time windows of duration D over a period 

of interest. The curve is usually normalized by the instantaneous maximum discharge, QPEAK (e.g., 

QD=0), of the same period as: 

 𝜀𝐷 =
𝑄𝐷

𝑄𝑃𝐸𝐴𝐾
= 

1

𝑄𝑃𝐸𝐴𝐾
max(

1

𝐷
∫ 𝑄(𝜏)
𝑡+𝐷

𝑡

𝑑𝜏)  (1) 

In the practical applications the period of interest for the selection of maxima is usually the year and 

the observations of Q are recorded at discrete time steps (e.g., 10 minutes). For a specified value of 

D, εD is also referred to as the “flood reduction ratio”. Following the classical approach used for flow 

duration curves and intensity-duration-frequency curves (Chow, 1951), the empirical FRF is 

computed for all the available years, normalized by the corresponding annual maximum. 

Subsequently, they are averaged over the years, to obtain a basin representative 𝜀𝐷̅̅ ̅ curve (see fig. 1b) 

to be used in practical applications. 

Over the years, for each duration D one computes a sample of 𝜀𝐷𝑗  values (j=1…N) so that a statistical 

treatment would enable to estimate a quantile 𝜀𝐷,𝑇 . This can be done for each duration and, in 



 

 

principle, the probability distribution may vary among durations. However, it has been shown 

(Franchini and Galeati, 2000) that it is generally acceptable to use a unique probability distribution 

for all durations D. This enables to use a simple expression for the estimation of the quantile of the 

flood volume for design purposes, as:  

                                              𝑊𝐷,𝑇 = 𝜀𝐷̅̅ ̅ 𝑄𝑇 𝐷                                                             (2) 

In (2) 𝑄𝑇 is the quantile of the flood peak for a given return period, that can be represented as 𝑄𝑇 =

𝑄̅  ·  𝐾𝑇 according to the index method (Darlymple, 1960). This entails that the non-dimensional 

probability distribution of flood peaks,  𝐾𝑇, is adopted as the non-dimensional distribution of the 

flood volumes, regardless of the duration D of interest. 

Eq. (2) can be used to build synthetic design hydrographs by derivation of the volume function: 

 𝑄̂(𝑡) =
𝑑𝑊

𝑑𝑡
= 𝑄𝑇 ⋅ 𝜀𝐷̅̅ ̅ + 𝑡 ⋅ 𝑄𝑇 ⋅ 𝜀𝐷̅̅ ̅′ (3) 

where 𝑄̂(𝑡) is the synthetic hydrograph and 𝜀𝐷̅̅ ̅′ indicates the first derivative of ε with respect to the 

duration D. It is important to stress the conceptual difference between the chronological time t and 

the duration D, the latter being essentially a moving time window. 

According to the UK National Environmental Research Council (NERC, 1975), the average FRF can 

be represented by a 2-parameter curve: 

 𝜀𝐷= 
𝑄𝐷,𝑇
𝑄𝑇

 = (1 + 𝑏 ⋅ 𝐷)−𝑐 , (4) 

where b and c are parameters to be determined. The dependence on the return period is, again, only 

concentrated in the peak flow 𝑄𝑇, so that the form of the curve (4) is independent on the return period. 

In the scientific literature, other analytical forms of the FRF have been proposed: Franchini and 

Galeati (2000) compared different analytical models (the NERC; the geomorphoclimatic model by 

Fiorentino et al., 1987; the stochastic model by Bacchi et al., 1992) against the empirical FRFs of 12 

basins in central Italy.  All the models showed a reliable fitting to the observed FRF, although the 

geomorphoclimatic model was more complex to apply. As the NERC function allows double 

curvature and it is compatible with a conceptual framework (see Section 2.2), we have considered the 

NERC as the best choice for an analytical FRF to be regionalized, although the results obtained in 

this work can be easily generalized to other kind of functions. 

 

Summarizing, one can use the empirical FRF at a gauged location and eq. (3) to obtain a single 

representative form as a design hydrograph. The procedure can be summarized with a few steps 

sketched in Figure 1: 



 

 

1. starting from a discharge time series (fig. 1a) for each year, the empirical FRF of eq. (1) can 

be computed by considering different time windows (fig. 1b, thin grey lines); 

2. the average empirical FRF is then obtained by averaging the individual values for each 

duration (fig. 1b, black dots); 

3. the analytical NERC model (eq. 4) is fitted to the average FRF, providing an analytical 

representation of the FRF (fig. 1b, solid blue line); 

4. a synthetic hydrograph consistent with eq. (4) can be built from the fitted FRF. 

To apply step 4, it is first necessary to define the peak position as, with respect to the duration D, if 

the peak is at t=0, the hydrograph shape is that represented as a red solid line in Figure 1c. To obtain 

a symmetric hydrograph, as the red dashed line of Figure 1c, the equation must be rewritten as: 

 𝑄̂(𝑡) = 𝑄𝑇 ⋅ [(1 + 𝑏t)
−𝑐 − cbt(1 + 𝑏𝑡)−𝑐−1] (5) 

Of course, both the hydrograph forms are consistent with the same FRF, (i.e., eq. 3 and eq. 5 lead to 

the same 𝜀𝐷 values) when recomputing the volumes over moving time windows.  

Considering two asymmetrical limbs, a more general analytical form of the hydrograph shape can be 

written as: 

 𝑄̂(𝑡)

{
 
 

 
 
(1 +

𝑏

1 − 𝑟
|𝑡|)

−𝑐

−
𝑏 ⋅ 𝑐

1 − 𝑟
|𝑡| (1 +

𝑏

1 − 𝑟
|𝑡|)

−𝑐−1

     𝑡 < 0

(1 +
𝑏

𝑟
𝑡)
−𝑐

−
𝑏 ⋅ 𝑐

𝑟
𝑡 (1 +

𝑏

𝑟
𝑡)
−𝑐−1

                                𝑡 ≥ 0

 (6) 

where the shape depends on the "skew" parameter r (0 ≤ 𝑟 ≤ 1). The symmetric hydrograph (with 

central peak) is generated from eq. (6) with r=0.5. The “initial peak” hydrograph is obtained with 

with r=0. An example of asymmetrical shape is the blue curve shown in Figure 1c, obtained with r = 

0.68.  

Some authors (Tomirotti and Mignosa, 2017) let the r parameter vary with the hydrograph duration, 

after considering various real hydrographs on large rivers. In this study, the parameter r is considered 

constant for each basin, i.e., it is independent of D. The reasons of this choice are discussed later. It 

should also be clarified that here, unlike in the work by Tomirotti and Mignosa (2017), the skew 

parameter r is the meaning of the ratio between the time after the peak and the duration D. 

A specific analysis on the hydrograph shape is offered in Section 5.1, as an additional validation to 

the proposed method. 

 



 

 

 

 

Figure 1: Example of FRF hydrograph analysis for the Stura di Lanzo at Torino basin. a) Time series 

of discharge values recorded at 30’ resolution. b) Empirical annual FRFs (thin-grey lines), empirical 

average FRF (black dots) and NERC analytical FRF (b=0.05627, c=0.55830). c) NERC hydrograph 

obtained from FRF of panel b) with r = 0.68 (solid blue line) compared to the reference hydrograph 

(black line) and the single event observed hydrographs (grey lines). Red dashed and solid curves 

show symmetrical NERC hydrograph (r=0.5) and NERC hydrograph with instantaneous initial peak 

(r=1), respectively. 

 

Basically, the regionalized methods presented in this paper address the step 3 of the above procedure 

in ungauged basins. The following section provides the theory and in Section 3 the application in 

North-West of Italy demonstrates the feasibility. 



 

 

2.2 Estimation of the Flood Reduction Function in ungauged basins 

As mentioned in the Introduction, while regionalization of peak flow values is a consolidated practice, 

with many procedures available, much less can be found in literature as regards the regionalization 

of other hydrograph-related characteristics. Something different from the regionalization of peaks can 

be found in NERC (1975), where the non-dimensional (with respect to the mean annual daily flood) 

FRF values at 3 and 10 days (AR3 and AR10 respectively) were related to catchment characteristics 

through linear regressions. The analysis was based on a sample of 64 stations and an initial set of 4 

catchment descriptors; the final regional models to estimate AR3 and AR10 resulted both function of 

the stream slope. Much later, another approach was proposed by Maione et al. (2003) and later 

followed by Tomirotti and Mignosa (2017), for the regional estimation of the FRF (named Flood 

Duration Frequency in the original paper). Maione et al. (2003) used a single-parameter FRF (Bacchi 

et al., 1992) to correlate this parameter to the watershed area by a linear regression fitted on 8 gauged 

basins in the Po basin (Italy) with 46 years of average record length. More recently, Brunner et al. 

(2018) tested different approaches for regionalization of the a synthetic normalised hydrograph shape. 

A total of 24 different approaches were tested to estimate the 10 parameters of a synthetic design 

hydrograph form proposed in the paper. They were linear regression techniques, nonlinear regression 

models, i.e., random forest, bagging and boosting, spatial proximity approaches and methods based 

on homogeneous regions. Strictly speaking, the FRF concept was not used. 

The foundations of the procedures proposed here lie in a conceptual interpretation of the NERC Flood 

Reduction Function proposed by Silvagni (1984) who connected parameters b and c of the NERC 

curve to the parameters of the rational formula (Mulvaney, 1851). In practice, assuming that the peak 

QT can be estimated considering a rectangular design rainfall over the basin, with duration equal to 

the time of concentration tc, Silvagni (1984) suggested that also QD,T could be estimated through the 

rational formula but using a rainfall event having duration tc+D. Assuming that the design rainfall 

intensity iT(d) for a given  duration d and return period T can be expressed using a two-parameter IDF 

curve iT(d)=aTdn-1 (e.g. Koutsoyiannis et al., 1998), the author obtained a ‘rational’ FRF expression 

as: 

 

ε𝐷 =
𝑄𝐷,𝑇
𝑄𝑇

=
𝑖𝑇(𝑡𝑐 + 𝐷)𝐴𝜑

3.6
(
𝑖𝑇(𝑡𝑐)𝐴𝜑

3.6
)

−1

= 

=
𝑎𝑇 ∙ (𝑡𝑐 + 𝐷)

𝑛−1

𝑎𝑇 ∙ 𝑡𝑐
𝑛−1 = (1 +

𝐷

𝑡𝑐
)
𝑛−1

, 

(7) 

where A is the basin area and φ is the runoff coefficient. Comparing eq. (7) with eq. (4) one can 

recognize that the parameters of the NERC FRF can assume the meaning of: 



 

 

 𝑏 =
1

𝑡𝑐
      𝑒      𝑐 = 1 − 𝑛. (8) 

Eqs. (4) and (8) can be used, in principle, to estimate b and c only from the IDF parameter n and the 

time of concentration tc. By inverting the procedure, Franchini e Galeati (2000) observed that using 

several empirical FRFs to estimate tc with the conceptual analogy of Silvagni (1984) the results were 

significantly different from those obtained estimating tc with the most common equations in literature. 

They suggested that the parameter b of the NERC equation cannot be directly linked to the usual 

basin time of concentration. Rather, 1/b “should be interpreted as a more general critical time, 

characteristic of the basin response” in the FRF framework. In the following, we will then refer to the 

parameter 1/b, whose values can be referred to an intuitive meaning of “tc”. 

The method of Regional Analysis proposed here is essentially built through the institution of relations 

between the two parameters of the NERC FRF and several basin characteristics. Three different 

regional statistical approaches are applied to an extensive dataset of hydrographs and Flood Reduction 

curves, to allow the estimation of the FRF parameters in ungauged basins. In particular, the methods 

considered are: the multiple linear regression (LR; e.g., Montgomery et al., 2001), the Canonical 

Correlation Analysis (CCA; e.g. Ouarda et al., 2000) and the Alternating Conditional Expectation 

algorithm (ACE; e.g. Breiman and Friedman, 1985). In all the techniques the basin characteristics, 

referred to as descriptors, include geographical, morphological and climatic basin attributes. These 

are related to the basins upstream of the available gauging stations and can be easily computed in any 

ungauged basin by means of GIS procedures.  

For each regionalization approach tested, several alternative models, based on different subsets of 

descriptors, have been implemented, and subsequently ranked, according to their prediction 

performances, e.g., by the Adjusted R-square (R2
adj). The most significant models are further 

validated with a visual checking of the results, and with a leave-one-out cross-validation procedure 

(see Hastie et al., 2009). In the following, the details of the applications are presented, and a final 

assessment of the most convenient method is discussed. 

  

2.2.1 Multiple linear regression 

Multiple linear regressions have been widely used to regionalize hydrological variables. An example 

of a prediction equation is: 

 ŷ = β0 + β1x1 +⋯+ βpxp (9) 

where 𝑦̂ is the (FRF) parameter to regionalize, x is a basin descriptor and β is its corresponding 

regression coefficient. In this work, the ordinary least squares method (e.g., Montgomery et al., 2001) 



 

 

is used and the model considers both the NERC parameters b and c as the regionalized variable  𝑦̂. 

Different possible transformations (log, Box-Cox (Box and Cox, 1964)) have been considered for 

both the variables set x and y, e.g. considering y=c and y=b or y=ln(b) or y=1/b or y=ln(1/b). Only 

the most significant results are reported here, and, for instance, no transformation of c has provided 

satisfactory results.  

Regarding the covariates x, a preliminary analysis of their frequency distribution showed that some 

of them are markedly skewed, and that the logarithmic and Box-Cox transformation can be effective 

to correct the skewness. For each set of transformations (on y and x), all the possible combinations of 

2 and 3 descriptors have been computed, obtaining about 6,000 combinations. On the obtained results, 

the regression models are tested for significance (t-Student test at 5%), multicollinearity (VIF test, 

see Montgomery et al., 2001) and residual analysis (normal probability plot and homoscedasticity). 

The subset of the results passing all the tests is then ranked according to the R2
adj computed on the 

variables back transformed to their original units. The Section 3.2 of this paper thoroughly describes 

the results of application of this procedure. 

 

2.2.2 Canonical Correlation Analysis (CCA) 

Canonical correlation analysis (CCA) is a method to explore relationships between two multivariate 

sets of variables, that are here represented by FRF parameters (b-1 and c) and by the basin descriptors. 

The CCA allows one to determine which is the linear combination of the variables of the latter group 

most correlated to a linear combination of the variables of the former group. CCA is widely used in 

statistic: e.g. multivariate regression and factorial discriminant analysis are special cases of the CCA 

method (Ouarda et al., 2001). Approaches belonging to this family are commonly applied in 

hydrology since the works of Snyder (1962) and Wong (1963). More recently Ouarda et al. (2000) 

developed a CCA-based procedure to assess the joint regional estimation of spring flood peaks and 

volume for Northern Canadian basins.  

To resume the functioning of the CCA, let X be the n x p matrix of basins descriptors, where n is the 

number of basins in the dataset and p is the number of the considered descriptors, and let Y be the n 

x 2 matrix of the FRF parameters. The predicted parameters 𝐘̂ = [
1

𝑏̂
𝑐̂] can be computed as 

 𝐘̂ = 𝜚 ∙ [𝒙 − 𝒙̅]𝚲 ∙ 𝐁−𝟏 + 𝐘̅ (10) 

where the descriptors of the ungauged basin are included in vector x while each column of  𝒙̅ is the 

mean value of the corresponding descriptors in X, computed from the n gauged basins of the 

calibration dataset. Similarly, 𝐘̅ is the vector of mean values of the FRF parameters computed from 



 

 

the n gauged basins of the dataset. Two matrices of canonical variables are defined: U=[𝒙 − 𝒙̅]𝚲 and 

V=[𝒀 − 𝒀̅]𝐁. The canonical correlation between the jth pair of canonical variables is then: 

                                                   𝜚 =
𝑐𝑜𝑣(𝑢𝑗,𝑣𝑗)

√𝑣𝑎𝑟(𝑢𝑗)𝑣𝑎𝑟(𝑣𝑗)
                                                             (11) 

Matrices Λ and B contain the canonical coefficients, scaled to make the covariance matrices of the 

canonical variables the identity matrix, and ϱ is the square root of the corresponding eigenvalue 

(Ouarda et al., 2001). 

The aim of the CCA is thus to find the coefficients a and b that maximize ϱ.  

The results of the CCA application are reported later, in Section 3.3. 

 

2.2.3 Alternating Conditional Expectation algorithm (ACE) 

The Alternating Conditional Expectation (ACE) algorithm has been proposed by Breiman and 

Friedman  (1985a, 1985b) as a non-parametric model to find those transformations that produce the 

best-fitting additive model. Considering y and x1,…,xp  respectively as the response and the predictors 

random variables, the ACE algorithm provides a mapping function t for each variable which defines 

a set of non-parametric transformations. The prediction variable is then obtained as  

 𝑦̂ = 𝑡y
−1 [𝑡x1(𝑥1) + 𝑡x2(𝑥2) + ⋯+ 𝑡xp(𝑥𝑝)] (12) 

where 𝑡y
−1 is the inverse of the mapping function of the variable y, and 𝑡x𝑖 is the mapping function of 

the ith descriptor. The optimal transformations are achieved through an iterative series of 

optimizations. While the reader can refer to Breiman and Friedman (1985) for the algorithm details, 

it is worth recalling the practical procedure through a graphical example reported in Figure 2: after 

the mapping functions have been computed, the two descriptors x1 and x2 of the ungauged basin are 

entered in the respective mapping functions to obtain their transformed values; their sum is then back-

transformed with the ty mapping function to obtain the final estimate.  



 

 

 

Figure 2: Example of ACE application: x1 and x2 are 2 independent variables and tx1 and tx2 their 

non-parametric transformations; y is the dependent variable obtained as back-transformation of ty. 

The mapping functions are represented in blue dots as they are computed for each sample value. 

 

 

With respect to the linear regression, the ACE approach can automatically detect possible efficient 

non-linear transformation of the variables (both x and y), so that no preliminary transformations are 

applied. The mapping function ty has been forced here to be linear, to ensure a more robust inversion 

of ty; no constraints are instead applied to the descriptors. All the numerical analyses have been 

performed with the R package “acepack” (Spector et al., 2016).  

The results of the ACE application are reported in Section 3.4, later in this paper. 

 

3 Case study and regional model building 

3.1 Case study and data preparation  

The methodologies presented in the previous section have been used to build regional models of the 

FRF curves in an area of about 25.000 km2 in the North-West of Italy. The case study has been 

organized by assembling a new dataset of flood hydrographs, extracting flood waves from the 

continuous discharge time series originally recorded in 87 gauging stations of the Regional Agency 

for Environmental Protection (ARPA Piemonte). The dataset has been initially compiled using 

information available from previous, partially unpublished, studies that reported data manually 

collected by the former Italian Hydrographic Service. In particular, they consist in: 

• 26 time series of hydrometric levels obtained from digitalization (at 15’) of data recorded by 

analogic gauges during the period 1928-1994. These water levels have been transformed into 

discharge values using previously obtained rating curves for these stations (Claps et al., 2010); 

• FRFs obtained by considering the three major events in a single year (analogic procedure) for 

18 gauges between 1928 and 1994. 

• New data, from 2000 to 2015, available in digital format with a time resolution of 10’ to 30’.   



 

 

In all cases, annual records with more than 30% of missing values in a single year were discarded. 

However, incomplete years (with less than 30% missing values) were further investigated: if no 

significant precipitation was found during or before the gap periods, the river was considered in low-

flow conditions during these gaps and the record was considered reliable for the flood hydrograph 

extraction. 

Altogether, the dataset reaches a total of 87 gauging stations with at least 6 years of record over the 

period 1928 – 2015, resulting in a total of 763 station-year records, with average length of 15 years 

and maximum length of 64 years. The spatial distribution of the gauges is shown in Figure 3a, while 

data availability over time is summarized in Figure 3b. All the data used in terms of annual FRFs, as 

well as the main characteristics of the 87 basins, are available in a web-gis (www.resba.it). 

As a preparatory step for the regional statistical analyses, we computed the empirical mean annual 

FRFs in all of the 87 stations and then we fitted the empirical curves with the NERC model of eq. (4). 

The best-fitting curve was obtained by numerical least square minimization, using the MATLAB® 

function “fit” (with the default “trust-region” algorithm; Moré & Sorensen, 1983).  Parameters b and 

c are then jointly estimated and constrained to be non-negative. The final fitting of the NERC curve 

to the empirical average FRF resulted adequate for all the basins, with a mean coefficient of 

determination R2
adj equal to 0.995. 

For all 87 watersheds, almost 100 basin attributes were available, as already published in the work 

by Gallo et al. (2013). The set of geomorphological descriptors was obtained by processing the NASA 

SRTM (Shuttle Radar Topography Mission) Digital Elevation Model (Farr et al., 2007), sampled at 

a 100 meters spatial resolution. A subset of descriptors to be used in the regional analyses has been 

selected, as described in Table A.1 in Appendix. The procedure for selecting subsets of descriptors is 

widely detailed in Cordero (2019). 

http://www.resba.it/


 

 

 
Figure 3: a) Geographical location of the 87 gauging stations in the database. b) Years with available 

data (after quality checks) for each gauge. Gauge codes allow to access the watershed descriptors in 

Gallo et al., 2013 and in the above mentioned web-gis. 

 

 

3.2 Regional model calibration 1: Multiple linear regression 

In pursuing the goal to reconstruct the NERC parameters 1/b and c for ungauged basins, both were 

considered as prediction variables in multiple linear regressions. Observations of b and c were the 

values fitted to the average FRF curve for each station in the data preparation step discussed above. 

All the possible combinations of 2 and 3 basin attributes (Table A.1 in Appendix) were used as set 

of covariates in the multiple regressions, including some variants where 1/b, c and the covariates 

were transformed. The best-performing models obtained are reported in  

Table 1, together with some goodness of fit indicators, i.e. the adjusted coefficient of determination, 

R2
adj, and the relative root mean squared error, 𝑅𝑅𝑀𝑆𝐸 =

√∑(𝑦𝑖̂−𝑦𝑖)
2𝑛−1

𝑦̅
. For operational purposes, 

when different models reached similar performances the preferred one has been that based on 

“simpler” descriptors (i.e., easier to compute). This is the case of models 1 and 2 in  



 

 

Table 1. Despite the high performance of the models subjected to Box-Cox transformation in 

limiting the skewness of residuals (see Cordero, 2019), considering the overall performances we 

suggest concluding with the choice of the models ID 1 and ID 5 of  

Table 1, where the log-transformation of the x variable is applied.  

For both c and 1/b, the descriptors emerging in the best regressions are substantially the same. It is 

also clear that, despite the high correlation between b-1 and c (see ID=9 in Table 1), the most robust 

way to estimate b is not as a function of c, as shown in the results of ID = 10. 

 

Table 1: best regionalization linear models for 1/b e c. From left to right: model identification, 

transformation applied to independent variables, number of independent variables, dependent 

variables (y), independent variables (x), coefficients (β), R2
adj and RRMSE. The last 2 models refer 

to 1/b estimated directly from c. For the meaning of symbols, see the Appendix. 

 

ID Transformation N. descriptors y x      β  R2
adj RRMSE 

1 
Natural 

logarithm 
3 c 

ln (Havg) 

ln (LDP) 

ln (IDFn) 

4.8403 

-0.58869 

0.13813 

0.80202 

0.5879 0.40 

2 Box-Cox 3 c0.1635 

Havg
0.6938

 

LDP-0.2929 

IDFn1.9984 

1.1436 

-0.0019 

-0.3648 

0.6423 

0.5487 0.41 

3 
Natural 

logarithm 
2 c 

ln (Havg) 

ln (LDP) 

2.9990 

-0.4190 

0.1421 

0.5626 0.42 

4 Box-Cox 2 c0.1635 
Havg

0.6938
 

LDP-0.2929 

1.1943 

-0.0013 

-0.3609 

0.5417 0.41 

5 
Natural 

logarithm 
3 ln(1/b) 

ln (kufa) 

ln (LDP) 

ln (LDPs) 

3.7285 

-2.0775 

0.5006 

-0.7715 

0.4287 0.74 

6 Box-Cox 3 (1/b)0.0851 

Havg
0.6938

 

kufa
0.5423 

LDP-0.2929 

1.9611 

-0.0008 

-0.2048 

-0.8146 

0.3797 0.76 

7 
Natural 

logarithm 
2 ln(1/b) 

ln (Havg) 

ln (LDP) 

4.7943 

-0.6859 

0.6986 

0.3491 0.79 



 

 

ID Transformation N. descriptors y x      β  R2
adj RRMSE 

8 Box-Cox 2 (1/b)0.0851 
Havg

0.6938
 

LDP-0.2929 

1.6236 

-0.0008 

-0.7506 

0.3311 0.80 

9 b estimated from observed c ln(1/b) ln (c) 
3.4589 

1.2908 
0.6190 0.61 

10 
b estimated from c estimated by 

model n.1 
ln(1/b) ln (c ̂) 

3.4589 

1.2908 
0.2856 0.84 

 

 

The best models found (ID=1 for c and ID=5 for b-1) have the expressions: 

 𝑙 𝑛 (
1

𝑏
) = 3.7285 − 2.0775 ⋅ 𝑙 𝑛(𝑘𝑢𝑓𝑎) + 0.5006 ⋅ 𝑙 𝑛(𝐿𝐷𝑃) − 0.7715 ⋅ 𝑙 𝑛(𝐿𝐷𝑃𝑠) (13) 

 𝑐 = 4.8403 − 0.58869 ⋅ 𝑙 𝑛(𝐻𝑎𝑣𝑔) + 0.13813 ⋅ 𝑙 𝑛(𝐿𝐷𝑃) + 0.80202 ⋅ 𝑙 𝑛(𝐼𝐷𝐹𝑛) (14) 

Again, the descriptors definition is reported in Table A.1 in Appendix. A graphical representation of 

the performances of eq. (13) and (14) is shown in Figure 4, that reports a comparison between the 

observed and predicted FRF parameters. 

 

 

Figure 4: Estimated versus empirical values of parameter 1/b (a) and c (b) based on the linear 

regionalization model of eq. (13)-(14). 

 

 



 

 

3.3 Regional model calibration 2: CCA  

The CCA method is applied considering again all the possible combinations of 2 and 3 descriptors. 

This time they have been reduced to a benchmark set that includes the 10 most robust and easy to 

compute descriptors selected by an iterative pruning procedure. This procedure deletes, at each 

iteration, the descriptors most correlated to each other. The set of 10 descriptors selected is reported 

in Table 2.  

Figure 5 shows, for both parameters b-1 and c, the values obtained from the local estimates versus 

those obtained from the regional CCA estimate built using a 10-descriptors model. All the model 

coefficients (aj, bj and the mean values 𝑥̅𝑗  and 𝑦̅𝑗  ) are reported in Table 2. The fitting performances 

are: R2
adj = 0.4432 and RRMSE = 0.7314 for b-1, and R2

adj =0.58 and RRMSE = 0.3993 for c. 

 

 

Figure 5: values obtained from local estimates of 1/b (a) and c (b) versus those obtained from the 

CCA regional model based on 10 descriptors (see Table 2).  

 

Table 2: coefficients of the best CCA model based on 10 descriptors. Descriptors meaning is reported 

in Appendix. 

 

 

Descriptors 𝒙j a1 a2 

A 430.68 -5.1894∙10-4 -5.8926∙10-5 

Havg 1290.50 -1.4485∙10-3 2.3539∙10-4 

Xb 403985.71 6.2250∙10-6 2.9468∙10-6 

Yb 4976076.19 3.4813∙10-6 1.7074∙10-6 



 

 

Dd 0.64 1.3540 2.9862 

LDP 44.04 8.0066∙10-3 2.2960∙10-2 

MAP 1239.83 -2.7431∙10-3 -5.9138∙10-4 

IDFa 24.03 0.1003 -4.2900∙10-3 

IDFn 0.46 11.9365 0.4314 

cf 0.44 -0.7036 -3.4828 

 𝒚̅j b1 b2 

1/b 18.5718 -0,0264 0,0865 

c 0.5628 3,8355 -2,7990 

𝝔  0.7781  

 

Among the top 10 combinations that use only 2 or 3 descriptors (see Table ), similarly to the number 

of independent variables used in the previous method, the most significant model from a hydrological 

and practical point of view is ranked eighth, based on ϱ. For this model, the coefficients aj, bj, the 

mean values 𝑥̅𝑗  , 𝑦̅𝑗  and the canonical correlation ϱ are summarized in Table 4.  However, R2
adj and 

RRMSE are respectively -0.1 and 1.03 for b-1 and 0.39 and 0.48 for c and the model is therefore not 

explanatory.  

 

Table 3: top 10 combinations (ranked by ϱ values) that use only 2 or 3 descriptors. 

Ranking Descriptors 𝝔 

1 Havg, kufa, FourierB2 0.74699 

2 Havg, Lca12h, cv[rr] 0.74650 

3 Havg, kufa, cv[MAP] 0.74586 

4 Havg, Lca3h, cv[rr] 0.74253 

5 Havg, kufa, cv[rr] 0.74153 

6 Havg, kufa, IDFn 0.74109 

7 Havg, Rs, cv[rr] 0.74026 

8 Havg, Rs, IDFn 0.73923 

9 Havg, kufa, Lca12h 0.73903 

10 Havg, kufa, Lca3h 0.73852 

 

Figure 6 shows the fitting performances of model n. 8 in Table 3. 

 

 



 

 

Table 4: coefficients of the best CCA model based on 3 descriptors. Descriptors meaning is reported 

in Appendix. 

 

 

Descriptors 𝒙j a1 a2 

Havg 1290.50 -0.0023 0.0018 

Rs 2.1834 -0.3847 -0.2578 

IDFn 0.46 7.5196 -26.0262 

 𝒚̅j b1 b2 

1/b 18.5718 -0.0379 0.0821 

c 0.5628 4.1778 -2.2565 

𝝔  0.7392  

 

 

Figure 6: values obtained from local estimates of 1/b (a) and c (b) versus those obtained from the 

CCA regional model based on 3 descriptors (Table 4). 

 

3.4 Regional model calibration 3: ACE  

For the ACE algorithm application, as in the case of multiple regressions, all the possible 

combinations of 2 and 3 descriptors have been considered. Preliminary data transformations are not 

applied in this case, since the ACE algorithm already searches for an optimal transformation. The 

best models found for c and b-1, ranked by R2
adj, are listed in Table 5. The mapping functions of the 

highest performing models are shown in Figure 7. Estimated values of b-1 and c are finally compared 

to the observed ones in Figure 8.  

Results are quite interesting and are fully commented on in the Discussion Section.  



 

 

Table 5: best ACE models among all possible combination of 2 and 3 descriptors ranked by R2
adj. 

ID n. descriptors y x 
mapping 

functions 
R2

adj RRMSE 

1 3 c Havg, LDP,IDFn * 0.6483 0.36 

2 3 b-1 A,Havg, Ff * 0.4881 0.70 

3 2 c Havg, LDP Figure 7a 0.6115 0.39 

4 2 b-1 Havg, LDP Figure 7b 0.4306 0.75 

*for the sake of brevity, the mapping functions are not reported. They are available in 

Cordero (2019). 

 

 

Figure 7: a) Best ACE model to estimate FRF c parameter among all possible combination of 2 

descriptors (ID 3 of Table 5). b) Best ACE model to estimate FRF b-1 parameter among all possible 

combination of 2 descriptors (ID 4 of Table 5). 

 



 

 

 

Figure 8: Estimated versus empirical values of parameter 1/b (a) and c (b). On panel a) ACE regional 

model for FRF parameter 1/b (ID 4 in Table 5); on panel b) ACE regional model for FRF parameter 

c (ID 3 in Table 5). See Table 2 for R2
adj and RRMSE. 

 

5 Discussion  

Before undertaking comparative analyses among the result obtained with the three methods applied, 

we point out that for all models the leave-one-out cross-validation procedure has been applied. The 

main goal is to check the correct reproduction of the observed mean Flood Reduction Functions, but 

some considerations is also applied to the form of the hydrographs.  

First of all, the cross-validation has been applied to check the model performances in the reproduction 

of the FRF parameter, i.e., 1/b and c. Considering the multiple Linear Regression models of eqs. (13) 

– (14) and applying the leave-one-out cross-validation procedure, prediction performances worsen, 

as expected. For the parameter 1/b, R2
adj drops from 0.4287 to 0.3669 and the RRMSE rises from 

0.74 to 0.78; for the parameter c, the R2
adj changes from 0.5879 to 0.5374 and the RRMSE increases 

from 0.40 to 0.42. Overall, the performance degradation looks not very significant.  

To better inform the comparisons, we have plotted the variations between the whole observed curves 

and the estimated ones. In Figure 9 each line represents the difference, ∆εD, between the predicted 

(regional in panel a; cross-validated in panel b) and observed εD for all durations D. Each curve refers 

to a specific station. Figure 9 shows that the performances in cross-validation are basically 

indistinguishable from those obtained with the pure regional model, in which the data of the 

“prediction” station are also used to fit the model. Panels (c) and (d) of the same Figure 9 reports the 

relative errors obtained, that are bounded within +/-10% for most of the basins and also for the longer 

durations. A slight underestimation bias must also be acknowledged. 



 

 

 

 

Figure 9: regional estimation expressed by eq. 13 and 14 for FRF parameter 1/b and c, respectively. 

a) difference between regionalised FRF and observed FRF. b) difference between regionalised FRF 

after cross-validation and observed FRF. c) and d) box plot of the relative error (𝜺𝑫,𝒎𝒐𝒅𝒆𝒍 −

𝜺𝑫,𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅)/𝜺𝑫,𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 respectively for fitted FRF and regionalised FRF after cross-validation. 

 

The application of the CCA method produces average differences, in terms of FRF, that are even 

smaller, if we consider the 10-parameter model (results not shown). However, for some basins there 

are severe underestimates of the observed curve, exceeding 30% in a few cases, and which go over 

the 40% in cross-validation. For this reason, also considering the high number of parameters required, 

this method is deemed not so efficient in the domain of this regional analysis. 

The application of the non-linear ACE models produces interesting results. In cross-validation, results 

confirm that the models with two descriptors are more robust than those with three independent 

variables. The passage from 3 to 2 descriptors has also a positive effect on the R2
adj values. After 

cross-validation, the best model for parameter c is the 2-descriptors one with R2
adj = 0.5377 (for the 



 

 

3 descriptors the R2
adj is 0.525). The RRMSE remains almost constant between the 3-variable and the 

2-variable models (from 0.43 to 0.42 for c and from 0.82 to 0.83 for b-1).  

The results of the FRF regional estimation for ACE models is shown in Figure 10, where the panels 

(a) and (b) refer to the ∆εD curves computed before and after the cross-validation, respectively. 

Despite the high RRMSE of the individual parameter estimates, the overall errors on the FRF curves 

estimation remain limited. 

 

Figure 10: results of the ACE Regional model: ID=3 and ID =4 from Table 5. The graphs report the 

differences, over the duration D, between: (a) regionalised FRF and observed FRF, and (b) between 

regionalised FRF after cross-validation and observed FRF.  

 

Summarizing the results obtained, the multiple linear regression globally leads to errors slightly larger 

than those obtained by ACE (compare fig. 9 and 10). However, the linear regression model is much 

easier to apply and less sensitive to extrapolation. To safely apply ACE models in extrapolation, the 

transformation curves should be first approximated with a polynomial of degree higher than 4, hence 

leading to a degradation of the model performances. The recommended models are, in conclusion, 

linear regressions with three descriptors.   

 

5.1 Design hydrograph shape 

As a final step of the analysis, we have evaluated the impact of the FRF estimation errors on the 

design hydrograph. We have compared the “regional” hydrograph (i.e., the one based on regionalized 

parameters) to a “reference” hydrograph, obtained from observations. As there is no established 

procedure to define what a “reference hydrograph shape” is, we have overlapped a sequence of 



 

 

suitable observed high-flow hydrographs, normalized by their peak value and centred around their 

time to peak. On this sample of standardized hydrograph shapes we have computed an average shape. 

The high-flow hydrographs were selected from the full-length discharge time series using a threshold 

so that the local peak is equal or greater than the 50% of the mean annual maximum of flow.  

Using this approach, we have estimated the (constant) skew parameter r, by numerically minimising 

the deviations between the FRF-based hydrograph and the empirical average shape.   

After application of the regional analysis, two examples of comparisons are computed, as reported in 

Figure 11. The regional hydrograph (red line) is plotted against the reference hydrograph (bold black 

line);  the thin black lines represent the real recorded hydrographs (after standardization). In both 

cases the fitting is reasonably good, although in panel a) one can notice that the regional hydrograph 

does not fit the quasi-convex shapes of the rising and falling limbs. However, if we consider the local 

NERC hydrograph (i.e., based on local parameters; blue line), we can notice that the FRF model itself 

is not fully adequate to represent the average hydrograph shapes. Sticking on the NERC model and 

fitting it to the observations, one can recognize that the regional hydrograph has very good 

performances in reproducing the ‘local’ NERC FRF function. Overall, almost all the investigated 

basins show a good fitting, and the maximum relative error of the regional estimates, computed in 

terms of differences between the area under the reference hydrograph and the one under the regional 

curve, does not exceed 30%. 

As regard the skew parameter r, we have computed it for all stations and we have observed that it 

assumes rather constant values over the case study area. Slightly larger values of r just occurred for 

basins with higher average elevation. In a concrete application we then suggest that the value of r can 

be taken from a neighbour gauged basin, at least until a specific regional procedure is built for this 

parameter, which can be matter for future investigations. 

 



 

 

 

Figure 11: Comparison between NERC synthetic flood hydrographs built using the proposed regional 

model (red curve) and the analytical FRF (blue curve), compared to the empirical average hydrograph 

(black curve). Bormida a Cassine watershed (code: BORCA, area 1516.25 km2, mean elevation 493 

m asl, r=0.68) on panel a), Stura di Lanzo at Torino watershed (code: SLATO, area 879.97 km2, mean 

elevation 1368 m asl, r=0.60) on panel b). 

 

6 Conclusions 

Flood hazard management and particularly the design of mitigation infrastructures requires to account 

for the flood volume, in addition to the flood peak design value. However, statistical methods to 

estimate the flood volume or the shape of the flood hydrograph are still not consolidated, due to the 

conceptual difficulty in representing the hydrograph shape in a simple way and to the scarcity of data. 

These difficulties are exacerbated in ungauged basins. This paper addresses this problem adopting 

the Flood Reduction Function (FRF) as a powerful and parsimonious representation of the link 

existing between hydrograph volume and duration. The FRF can be used to “summarize” the 

hydrographs characteristics in a few parameters, easy to be estimated also in ungauged basins, that 

are then used to build synthetic design hydrographs with minimal assumptions of their shape. The 

FRF approach can also be used in gauged basins to “regularise” a sequence of observed hydrographs 

and to allow one to compute, in a systematic and reproducible way, a single representative mean 

hydrograph shape. 



 

 

The work presented here shows that a simple parametrization of the FRF function, known as NERC 

function, can be regionalized, using a set of basin attributes derived from terrain analysis, land use 

features and climatic indexes. Different regionalization methods (multiple linear regression, 

canonical correlation analysis, alternating conditional expectation algorithms) were tested here, with 

the result that a rather simple multiple linear regression model can provide satisfactory estimation 

performances for the set of basins considered. The use of the NERC regionalized parameters has also 

allowed us to assess the model capability to build synthetic hydrographs for each of the investigated 

basins, that have been compared to the average empirical hydrograph observed in the same gauging 

station.  

In conclusion, with the reasonably good results obtained we have shown that the estimation of flood 

hydrograph in ungauged basins can be performed through regionalization techniques like those used 

for the frequency analysis of flood peaks, and with minimal additional assumptions. However, as the 

records of flood hydrographs are much shorter than the corresponding record of flow maxima, an 

effort to both collect new data and made available existing records is required to properly support all 

the practical applications that involve the management of flood volumes. 
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Appendix  

Table A.1: List of the geomorphological, climatological and soil descriptors used in the regional 

analyses. 

Attribute 

category 
Attribute Notation Units Description 

Geomorphological 

East coordinate of the basin’s 

centroid (WGS84 UTM32N) 
Xb m Reference System: WGS84 (EPSG: 4326). 

North coordinate of the basin’s 

centroid (WGS84 UTM32N) 
Yb m Reference System: WGS84 (EPSG: 4326). 

Basin area A Km2 
The area required for channel initiation has been 

set to 1 Km2. 

Basin mean elevation Havg m a.s.l. - 

Length of longest drainage path LDP Km 

Path included between the outlet and the furthest 

point from it, placed on the edge of the basin 

watershed and identified by following the 

drainage directions. 

Mean slope of longest drainage 

path 
LDPs - 

Ratio between the difference between basin 

maximum and minimum elevation of the basin to 

the LDP. 

Drainage density Dd Km-1 
Ratio between the total length of the river network 

to the basin area. 

Shape factor Ff - 
Ratio of the basin area to the square of the length 

of the main channel. 

Width function kurtosis Kufa - 

The width function is defined by counting the 

number of pixels having equal distance from the 

gauging station. This distance is measured 

following the drainage path. The 4th statistical 

moment of the width function has been computed. 

Slope ratio Rs - 

Ratio of average slope of streams of two adjacent 

orders u and u+1. Streams are numbered 

according to the Horton's criterion. 

Climatological 

Mean a parameter of the IDF 

curve 
IDFa mm h-1 

Scale factor of the IDF curve. The average value 

over the basin area has been calculated. 

Mean n parameter of the IDF 

curve 
IDFn - 

Scaling exponent of the IDF curve. The average 

value over the basin area has been calculated. 

Mean coefficient of L-skewness 

for 3-hours duration 
Lca3h - 

Coefficient of L-skewness for 3-hours duration. 

The average value over the basin area has been 

calculated. 

Mean coefficient of L-skewness 

for 12-hours duration 
Lca12h - 

Coefficient of L-skewness for 12-hours duration. 

The average value over the basin area has been 

calculated. 

Mean annual precipitation over 

the basin 
MAP mm 

Total mean annual precipitation (Bartolini et al., 

2011). 

Spatial coefficient of variation of 

the mean annual precipitation 
cv [MAP] mm - 

Coefficient of variation of the 

rainfall regime over the basin 
cv [rr] - 

Calculated from the 12 mean monthly rainfall 

depths, computed using monthly data from 

(Bartolini et al., 2011). 

Mean Fourier coefficient B2 of 

the rainfall regime 
FourierB2 - 

Mean values of the B2 coefficient of the Fourier 

series representation of the rainfall regime. The 

reader can refer to Gallo et al. (2013) for details 

about the meaning of the B2 coefficient. 

Soil Mean permeability index cf 
 

% 

Permeability index used in the Vapi project 

(Villani, 2003). This coefficient has been obtained 

by classification of permeability value in flood 

conditions by balancing the rational formula. The 

average value over the basin area has been 

calculated. 
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