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Abstract

Stimulated reservoir volume (SRV), the high-permeable fracture network created by hydraulic fracturing, is essential for fluid

production from low-permeable reservoirs. However, the configuration of SRV and its impacting factors are largely unknown.

In this work, we adopt the stochastic discrete fracture network method to mimic natural fractures in subsurface formations and

conduct a global sensitivity analysis with the Sobol method. The sensitivity of different fracture properties, including geometrical

properties (fracture lengths, orientations and center positions), mechanical properties (fracture roughness and fracture strength),

fracture sealing properties (probabilities of open fractures and segment lengths) and the fracture intensity, are investigated in

two and three-dimensional fracture networks. JRC-JCS model is adopted to identify critically stressed fractures. We find that

critically stressed fractures compose the backbone of SRV, while partially open fractures can significantly enlarge the size of

SRV by connecting more critically orientated fractures. The fracture roughness is the most influential factor for the total length

(area) of critically stressed fractures. For the relative increase of SRV (RI) in 2D/3D fracture networks, the probability of open

fractures is the most significant factor. The fracture lengths and center positions are essential factors for RI in 2D fracture

networks but insignificant in 3D fracture networks. This work provides a realistic scenario of the subsurface structure and

systematically investigates the influential factors of SRV, which is useful for estimating the size of SRV and predicting shale gas

reservoirs’ production in an accurate and physically meaningful way.
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Abstract

Stimulated reservoir volume (SRV), the high-permeable fracture network cre-

ated by hydraulic fracturing, is essential for fluid production from low-permeable

reservoirs. However, the configuration of SRV and its impacting factors are

largely unknown. In this work, we adopt the stochastic discrete fracture net-

work method to mimic natural fractures in subsurface formations and conduct

a global sensitivity analysis with the Sobol method. The sensitivity of different

fracture properties, including geometrical properties (fracture lengths, orienta-

tions and center positions), mechanical properties (fracture roughness and frac-

ture strength), fracture sealing properties (probabilities of open fractures and

segment lengths) and the fracture intensity, are investigated in two and three-

dimensional fracture networks. JRC-JCS model is adopted to identify critically

stressed fractures. We find that critically stressed fractures compose the back-

bone of SRV, while partially open fractures can significantly enlarge the size of

SRV by connecting more critically orientated fractures. The fracture roughness

is the most influential factor for the total length (area) of critically stressed frac-
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tures. For the relative increase of SRV (RI) in 2D/3D fracture networks, the

probability of open fractures is the most significant factor. The fracture lengths

and center positions are essential factors for RI in 2D fracture networks but

insignificant in 3D fracture networks. This work provides a realistic scenario of

the subsurface structure and systematically investigates the influential factors

of SRV, which is useful for estimating the size of SRV and predicting shale gas

reservoirs’ production in an accurate and physically meaningful way.

Keywords

Simulated reservoir volume; Discrete fracture network; Global sensitivity anal-

ysis; Geomechanics; Fracture sealing; Geometrical properties

Highlights

• Stimulated reservoir volume (SRV) formed in two and three-dimensional

fracture networks are investigated.

• Systematic sensitivity analysis of different fracture properties on the for-

mation and development of SRV is conducted.

• Critically stressed fractures form the backbone of SRV and partially open

fractures enlarge the size of SRV significantly.

1. Introduction

In low permeability formations, such as shale reservoirs, natural fractures1

and hydrofractures form complex fracture networks and provide a highly per-2

meable pathway for fluid transportation. The complex fracture network formed3

through hydraulic fracturing is named stimulated reservoir volume (SRV), which4

contributes to shale gas production (Mayerhofer et al., 2010).5
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To accurately estimate SRV and figure out the key factors that impact the6

size of SRV is nontrivial. Currently available methods to estimate SRV include7

microseismic monitoring, tiltmeter measurement, electromagnetic imaging and8

numerical models. Microseismic monitoring records real-time seismic signals9

and estimate the approximate range of three-dimensional (3D) SRV from the10

microseismicity map (Warpinski et al., 2001; Maxwell et al., 2002; Fisher et al.,11

2004; Maxwell et al., 2009; Warpinski et al., 2009; Zhang et al., 2019; Liu et al.,12

2021). Microseismic events are created mainly by shear slippages of natural13

fractures around hydrofractures (Albright et al., 1982; Warpinski et al., 2001;14

Rutledge and Phillips, 2003). The enhanced pore pressure can reduce the effec-15

tive stress and cause the critically oriented fractures to become critically stressed16

and slide. Tiltmeter measurement (Astakhov et al., 2012) uses a surface tilt-17

meter array to measure the micro-deformation of the surface, which can only18

provide a much coarser resolution compared with microseismicity maps. The19

electromagnetic imaging method monitors hydraulic fractures in reservoirs by20

identifying the contrasts between the electromagnetic properties of the injected21

proppants and the subsurface (LaBrecque et al., 2016). Nowadays, this method22

is at the initial state in lab experiments without field applications. Numerical23

models usually simulate the multi-stage multi-cluster fracturing process cou-24

pling the hydrofracture propagation, fluid flow, and the activation of natural25

fractures (Ren et al., 2016; Wu and Olson, 2016). Significant simplifications26

of the hydraulic fracturing process and geological structures must be made in27

numerical models to make the simulation computationally solvable. Therefore,28

the complexity of natural fracture networks is usually essentially relaxed.29

The stimulated reservoir volume is mainly composed of two types of fractures30

activated in the hydraulic fracturing operation. One type is tensile fractures31

caused by elevated pore pressure, higher than the minimum principal stress. The32
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other type is shear fractures attributed to shear slippage, where the elevated pore33

pressure does not exceed the minimum principal stress but is still large enough to34

cause the shear failure of preexisting fractures (Maulianda et al., 2014; Wu et al.,35

2019). Activated natural fractures (both tensile and shear failed fractures) serve36

as the high-permeable pathway for the fluid pressure propagation. Therefore,37

preexisting natural fractures are essential for the formation of SRV.38

The geometrical and mechanical properties of natural fractures can impact39

the size of SRV significantly. However, such investigations are rarely conducted.40

One important reason is that with current technologies, such as borehole im-41

ages (Prioul and Jocker, 2009), outcrop observations (Abouelresh and Babalola,42

2020), 3D seismic techniques (Rijks and Jauffred, 1991) , crosswell imaging tech-43

niques (Wilt et al., 1995; Ellefsen et al., 2002), it is almost impossible to have44

a comprehensive mapping of natural fractures in the subsurface. Therefore,45

a detailed configuration of SRV is also unavailable. Furthermore, fractures are46

usually partially sealed instead of being completely sealed. The complex process47

of crystal growth can result in different sealing patterns, such as massive sealing48

deposits, thin rinds or veneers that line the surfaces of open fractures, and bridge49

structures that span otherwise open fractures (Laubach et al., 2004; Lander and50

Laubach, 2015). The impacts of partially open fractures have rarely been con-51

sidered in the formation of SRV due to the large scale difference between the52

fracture sealing and fracture networks (Zhu et al., 2021a). A few preliminary53

works use the discrete fracture network method to mimic the fracture sealing54

and the Coulomb failure criterion to distinguish the critical and non-critical55

stressed fractures (Zhu et al., 2021a,b). They find that partially open fractures56

can significantly enlarge the size of SRV by connecting more critically orientated57

fractures. In this research, we further extend the study in Zhu et al. (2021b)58

and aim to investigate the impact of different fracture properties, including ge-59

4



ometrical properties, mechanical properties and fracture sealing properties, on60

the formation and development of SRV.61

We adopt the stochastic discrete fracture network (SDFN) model method62

(Lei et al., 2017) to mimic natural fracture networks in the subsurface. By63

implementing the JRC-JCS model proposed by Barton (1973), we can identify64

the critically stressed fractures under a given global stress state. This work fo-65

cuses more on shear fractures and only considers one large tensile hydrofracture66

caused by hydraulic fracturing. In reality, there might be several tensile frac-67

tures in one hydraulic fracturing cluster (Marder et al., 2015; Raterman et al.,68

2018), but it is usually hard to predict.69

We adopt the JRC-JCS model instead of the commonly used Coulomb fail-

ure criterion (COULOMB, 1773) because for planar discontinuity surfaces, like

a sawn or ground surface, Coulomb failure criterion is a good option to represent

the relationship between the peak shear strength τp and the normal stress σn

(Barton et al., 1995; Im et al., 2018; Mattila and Follin, 2019). However, a nat-

ural fracture surface in rocks can never be smooth but rough. The undulations

and asperities on a natural fracture surface can significantly impact the shear

behavior of fractures. In general, a rough surface increases the shear strength

and make it more difficult to have shear failures. Barton (1973) proposed an em-

pirical relationship to model the shear strength of rock discontinuities (Barton,

1973; Barton and Choubey, 1977).

τp = (σn − Pp)tan(φr + JRClog10(JCS
σn

)), (1)

where φr is the residual friction angle; JRC is the joint roughness coefficient;70

JCS is the joint wall compressive strength; JRC varies between 0-20, where71

0 refers to perfectly smooth surface and 20 is the roughest possible joint with-72

out actual steps. If fractures have not been weathered, i.e. fresh fracture,73
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JCS equals the uniaxial compressive strength of rocks and this value decreases74

with increasing weathering grades. To determine the proper values for pa-75

rameters in Eq.1 is nontrivial, which depends on many factors, such as rock76

types, weathering grades, scales, cementations (Barton and Bandis, 1990; Mari-77

nos et al., 2005). Furthermore, Eq. 1 ceases to have any practical meaning for78

(φr + JRClog10(JCSσn
) > 70◦ (Marinos et al., 2005).79

Fracture properties considered in this work include three geometries proper-80

ties (fracture lengths, orientations and positions of fracture centers), two factors81

related to fracture sealing (the probability of open fractures and the segment82

length), two mechanical properties (fracture roughness and fracture compressive83

strength) and one factor of relative fracture intensity. Each factor is represented84

by a key parameter in the corresponding distribution or definition. Details of85

each factor are introduced in the next section. In total, eight factors that may86

impact the formation and development of SRV are considered, and factors are87

assumed to be independent of each other. A surrogate model is obtained by fit-88

ting results of 50,000 realizations, and then a global sensitivity analysis with the89

Sobol method is conducted. Local stress perturbations induced by interactions90

of neighbouring fractures are neglected mainly because numerical calculations of91

stress fields are expensive in complex discrete fracture networks with thousands92

of realizations. In addition, fractures usually need to be close enough to have a93

significant stress perturbation (Thomas et al., 2017).94

The remainder of this paper is organized as follows: Section. 2 introduces95

the techniques to construct a typical 2D and 3D fracture networks to mimic96

subsurface formations. The identification of SRV through incorporating the97

JRC-JCS failure criterion. The method of sensitivity analysis is introduced as98

well. Sections. 3 presents results of Sobol sensitivity analysis of each factor99

on the formation and development of SRV. Section. 4 discusses the insights of100
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the work on fluid transportation. Important conclusions are summarized in101

Section. 5.102

2. Materials and Methods103

This section introduces the construction of a typical two/three-dimensional104

subsurface formation and the procedures to identify stimulated reservoir vol-105

umes. The Sobol method for global sensitivity analysis is introduced.106

2.1. 2D/3D stochastic discrete fracture networks107

The detailed mappings of fracture networks in the subsurface are usually un-108

available with current technologies, such as outcrop observations, wellbore imag-109

ing, and 3D seismic mappings. A stochastic discrete fracture network model is110

a practical method to mimic the natural fracture networks with simplified ge-111

ometries but preserve essential topological relationships. In this research, a 2D112

fracture is represented by a line segment, and a square plate represents a 3D113

fracture for simplicity. As Jing and Stephansson (2007) pointed out, the signifi-114

cance of the fracture shape decreases with an increase in the fracture population115

size. A square plate is convenient to mimic fracture sealing introduced later.116

Three main geometrical properties of fractures are considered, including frac-

ture lengths (2D)/ sizes (3D), orientations, positions of fracture centers. Each

geometrical property is described with a widely used statistical distribution

(Bonnet et al., 2001). A power-law distribution is implemented to describe

fracture lengths,

n(l) = αl−a, (2)

where n(l)dl is the number of fractures with lengths ranging from [l, l+dl], α is117

the proportionality coefficient and a is the power-law exponent. The minimum118

and maximum fracture length used in the power-law distribution is 1 m and119
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100,000 m. In 3D fracture networks, we generate a unit square with its side120

length equal to 1 m, then perform the scaling operation on the square with a121

scale factor of l to change their sizes. Through a simplistic fractal model, we122

have derived that the power-law exponent has to be larger than one (Zhu et al.,123

2021c). For most cases, the exponent ranges between 2 and 3 (Bour and Davy,124

1997; Bonnet et al., 2001).125

The fracture orientations follow von Mises–Fisher distributions (Kemeny and

Post, 2003; Whitaker and Engelder, 2005)

f(~x, ~µ, κ) = C(κ) exp(κ~µT~x), (3)

where C(κ) is the normalization constant. ~µ and κ are the mean direction and126

concentration parameter, respectively. The parameter κ controls the concen-127

tration degree of the distribution around the mean direction ~µ. When κ = 0,128

the von Mises–Fisher distribution degenerates to a uniform distribution. When129

κ is large, the distribution is approximate to a normal distribution and con-130

centrates around the angle ~µ with 1/κ analogous to σ2. In this research, we131

choose ~µ = [1, 0] for 2D fracture networks and ~µ = [1, 0, 0] for 3D fracture132

networks. From a collection of natural outcrop maps (Zhu et al., 2021c), 2D133

fracture networks usually have their orientations scattered and the correspond-134

ing κ is smaller than 3. In this work, we consider a wider range of κ from 0 to135

20.136

The positions of fracture centers are sampled from a uniform or fractal spa-137

tial density distribution. The fractal spatial density distribution (Meakin, 1991;138

Darcel et al., 2003) introduces clustering effects in the network, which is charac-139

terized by a fractal dimension FD. Real fracture networks are usually clustered,140

and a fractal spatial density distribution can better describe it (Darcel et al.,141

2003; Zhu et al., 2021c). For 2D fracture networks, the fractal dimension FD142
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varies between 1.1 and 2.0. For 3D fracture networks, the corresponding fractal143

dimension varies between 2.1 and 3.0.144

It is difficult to estimate the fracture intensity in the subsurface from avail-145

able 1D or 2D measurements (Dershowitz, 1984). However, real subsurface146

fracture networks should have a much higher fracture intensity than the inten-147

sity at percolation if their outcrop maps show good geometrical connectivity.148

In reality, most outcrop maps are well connected (Zhu et al., 2021c,f). There-149

fore, we check the cluster in this research and take the fracture intensity at the150

percolation (formation of a spanning cluster) as the reference. We considered151

different fracture intensities and described them by a ratio between the number152

of fractures at termination and the number of fractures at percolation. This153

ratio is denoted as FI for 2D and 3D fracture networks and varies between 0.8154

and 2.6. Therefore, the fracture intensity is larger than the fracture intensity155

at percolation, and good global connectivity is reached in most cases.156

Fig. 1 shows the examples of generated 2D and 3D fracture networks. The157

fracture networks are generated with an in-house built, open-source software,158

HatchFrac (Zhu et al., 2021d).159

2.2. Identification of stimulated reservoir volume160

Without losing generality, we assume a stable strike-slip stress state (Shmin <161

Sv < Shmax). Similar analysis can be extended to a normal or reverse stress162

state. The injected fluid pressure of hydraulic fracturing is set as the reference163

stress, i.e. Pf = 1. The other important stresses are: the maximum horizon-164

tal stress Shmax = 1.3Pf , the minimum horizontal stress Shmin = 0.8Pf , the165

vertical stress Sv = 1.1Pf ; the reservoir pressure is uniformly distributed in166

considered domain with Pp = 0.5Pf . In this work, we only consider one pri-167

mary hydrofracture in one hydraulic fracturing cluster (Green line segment and168

square in Fig. 1). The elevated pore pressure caused by hydraulic fracturing is169

9



(a) (b)

Figure 1: Examples of 2D and 3D fracture networks. For the 2D fracture network (left), the red
line segments form the connected spanning cluster. The blue line segments correspond to all
other locally connected clusters. The green line segment represents the primary hydrofracture.
The fracture orientations follow a uniform distribution (κ = 0), lengths obey a power-law
distribution (a = 3.0), positions of fracture centers are uniformly distributed (FD = 2.0).
The relative ratio of fracture intensity is 2.0. For the 3D fracture network (right), the red
polygons form the connected spanning cluster. The blue squares correspond to all other locally
connected clusters. The green square represents the primary hydrofracture. The fracture
orientations follow a uniform distribution (κ = 0), lengths obey a power-law distribution
(a = 3.0), positions of fracture centers follow a fractal spatial density distribution (FD = 2.5).
The system size is 100 for the 2D fracture network and 10 for the 3D fracture network to have
a better visualization. The relative ratio of fracture intensity is 1.5.

assumed to be constant along the hydraulic fracture and decreases linearly with170

increasing distance. Stress states are critical for the formation of SRV, but they171

are strongly case-dependent and here we only analyze a typical scenario.172

JRC-JCS failure criterion (Eq. 1) is implemented to identify critically/non-173

critically stressed fractures, where the residual friction angle φr is set as 30174

degrees. JRC varies between 0 (perfectly smooth) and 20 (roughest). JCS175

varies between 0.5Pf and 18.5 Pf .176

Fracture sealing is simulated by dividing 2D fractures into small segments.

Each small segment can be sealed and can block the flow of the fluid. The

degree of fracture sealing is controlled by two parameters, the probability of

open fractures (Po) and the segment length (Lse). The segment length is the

minimum unit of fracture sealing, which can reach a millimeter in reality, but

is impractical in the numerical simulation because of the limited computation
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capacity. Therefore, we choose decreasing segment lengths from 1 m to 0.2 m

to show the impact of the segment length. 3D fractures are divided into small

grids to mimic the fracture sealing. Detailed introduction of this method can

be found in (Zhu et al., 2021a,b). The probability of open fractures is defined

as:

Po = Lopen
Ltotal

, (4)

where Lopen is the total length of open fractures and Ltotal is the total length177

of all fractures. In a 3D fracture network, the fracture length is replaced with178

the fracture area.179

In this research, we consider a 100 m × 100 m square domain for 2D for-180

mations and a 50 m× 50 m× 50 m cubic system for 3D formations. From mi-181

croseismicity observations, the SRV usually shows an elongated shape in most182

cases (Shaffner et al., 2011; Raterman et al., 2018). Therefore, we assume the183

farthest distance where the injected fluid pressure can propagate is 20% of the184

system size on each side of the hydrofracture.185

After generating discrete fracture networks, we can identify stimulated reser-186

voir volume (SRV) based on the given stress state and JRC-JCS criterion. The187

SRV comprises two main parts: one is the critically stressed fractures, and the188

other is the partially open fractures. Critically stressed fractures form the back-189

bone of SRV, while partially open fractures can further enlarge SRV. Fig. 2(a)190

shows the SRV composed of critically stressed fractures. Red fractures are crit-191

ically stressed fractures, and they are connected to the primary hydrofracture192

directly or indirectly. Therefore, the elevated pore pressure in the hydrofracture193

can propagate to those fractures. The purple fractures are critically orientated194

fractures because they are not connected to the primary hydrofracture, and the195

high fluid pressure cannot be transmitted to purple fractures. Fig. 2(c) shows196

the SRV composed of both critically stressed fractures and partially fractures.197
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Partially open fractures have enlarged the SRV by connecting more critically198

orientated fractures to the hydrofracture and making them critically stressed.199

The total lengths of permeable fractures in Figs. 2(a) and (c) are denoted as200

Lcs and Lcso , respectively. Lcs is 2026 m, and Lcso is 5078 m. Fig. 2(b) show201

the SRV composed of critically stressed fractures in 3D. Fig. 2(d) show the SRV202

composed of critically stressed fractures plus partially open fractures. The total203

areas of permeable fractures (red fractures) in Figs. 2(b) and (d) are denoted204

as Acs and Acso. The system size is 10 m in Figs. 2 (b) and (d) for demonstra-205

tion because it is difficult to visualize a 3D fracture network with thousands of206

fractures in a large system. Acs is 513 m2, and Acso is 1810 m2. In linear flow,207

the flux from the matrix to fractures is proportional to the fracture area (Bello208

et al., 2010; Haider et al., 2020), suggesting that partially sealed fractures can209

increase reservoir production by enlarging the stimulated reservoir volume.210

In this research, we demonstrate the contribution of partially open fractures211

by performing a full-scale, embedded discrete fracture network model simula-212

tion with UNCONG software (Li et al., 2015). For simplicity, all critically213

stressed fractures and partially open fractures are assigned with a permeabil-214

ity of 10 darcies, and sealed fractures are impermeable. The matrix has a low215

permeability of 0.05 micro darcies. The primary hydrofracture is replaced with216

a horizontal production well to implement boundary conditions and schedule217

control conveniently. The initial reservoir pressure is set as 300 bar, and the218

bottomhole pressure is set as 100 bar and kept constant. We simulate the219

production for ten days and compare the production difference with and with-220

out partially open fractures. Detailed input parameters are listed in Table. 1.221

Fig. 3(a) shows changes of the gas formation volume factor and gas viscosity222

with pressure. Figs. 3 (b) and (c) show the relative permeability curves in the223

matrix and fractures, respectively.224
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(a) (b)

(a) (b)

(c) (d)

Figure 2: Demostration of 2D/3D SRV composed of only critically stressed fractures (a,b)
or critically stressed fractures plus partially open fractures (c,d). The probability of open
fractures is 0.5 for both 2D and 3D fracture networks. The fracture surface is assumed to
be smooth (JRC = 0). In 2D fracture networks (a,c), the red line segments form the SRV.
The purple fractures are critically orientated fractures. The green line segments are open
fractures, and the blue line segments are sealed fractures. In 3D fracture networks (b, d),
open and sealed fractures are not shown for better visualization. The red squares form the
SRV, and the purple squares are critically orientated fractures.
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Figure 3: (a) Changes of the formation gas volume factor (Bg) and gas viscosity (Visg) with
pressure; (b) The relative permeability curve in the matrix; (c) The relative permeability
curve in fractures

Figs. 4 (a) and (b) show the pressure distribution of two scenarios after225

ten days of production, where one only consider the critically stressed fractures226
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Table 1: Input parameters for the simulation
Matrix permeability, km, [µd] 0.05

Matrix porosity 0.05
Fracture permeability, kf , [d] 10

Fracture porosity 1.0
The coefficient of water compressibility, [bar−1] 3.15e-6

The coefficient of water viscosity compressibility, [cP · bar−1] 2.10e-6
Initial water satuation 0.5

Initial reservoir pressure, Pi, [bar] 300
Constant bottomhole pressure, [bar], 100

(a) (b) (c)

0 1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

Scenario 1

Scenario 2

Figure 4: (a) Pressure distribution in Scenario 1, where the SRV comprises critically stressed
fractures only. (b) Pressure distribution in Scenario 2, where the SRV comprises critically
stressed plus partially open fractures. (c) The comparison of the total production of gas in
two scenarios

and the other one consider both critically stressed and partially open fractures.227

Figs. 4 (c) shows the comparison of the total production of gas in these two228

scenarios. The simplified simulation is different from an actual production case.229

However, it straightforwardly demonstrates the significant contribution of par-230

tially open fractures by connecting more critically orientated fractures and en-231

larging the size of SRV. The total length in the first scenario is 2026 m, while232

this value is 5078 m in the second scenario. The ratio of the total fracture233

length between the two scenarios is 2.51, and the ratio of the total production234

of gas in the two scenarios is 2.05. Therefore, the shale gas production is pro-235

portional to the fracture length in the connected cluster. In 3D, the production236

is proportional to the total fracture area.237

In the following sections, we will systematically analyze the impact of each238

fracture property by implementing the global sensitivity analysis. The factors239
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include three geometrical properties (the exponent of the power-law distribu-240

tion (a), the fractal dimension of the fractal spatial density distribution (FD),241

the concentration parameter in a von Mises–Fisher distribution (κ)), two fac-242

tors related to the fracture sealing (the probability of open fractures (Po) and243

the segment length (Lse)), two factors related to the mechanical properties of244

fracture surfaces (joint roughness coefficient (JRC) and joint wall compressive245

strength (JCS)) and one relative fracture intensity (FI). In 2D fracture net-246

works, three essential parameters are selected as the response parameters: the247

total length of connected critically stressed fractures, Lcs, the total length of248

connected critically stressed fractures plus partially open fractures, Lcso, and249

the relative increase of fracture length, RI2D. For 3D fracture networks, the250

fracture area replaces the fracture length, and the corresponding response pa-251

rameters are Acs, Acso and RI3D.252

The relative increase is defined in Eq. 5, which represents the contribution

of partially open fracture on enlarging the size of SRV.

RI2D = Lcso − Lcs
Lcs

(5)

In 3D fracture networks, a similar formula is applied with the fracture length253

replaced with the fracture area. A detailed summary of factors and responses are254

listed in Tables. 2 and 3. Five hundred cases with each factor randomly chosen255

from the given interval (Table. 2) are simulated for the following sensitivity256

analysis. For each considered case, the results are averaged over 100 random257

realizations for stabilization.258

2.3. Global sensitivity analysis259

This research evaluates the impact of each factor and their interactions with

the Sobol’ indices (IM, 1993). To simplify the notation without losing generality,
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Table 2: Factors in the global sensitivity analysis
Factor Range Property Definition
a [2, 3]2/3D Fracture length The exponent of a power-law distribution

FD [1.1, 2]2D, [2.1, 3]3D Position of fracture centers The fractal dimension of a
fractal spatial density distribution

κ [0, 20]2/3D Fracture orientation The concentration parameter
in a von Mises–Fisher distribution

FI [0.8, 2.6]2/3D Fracture intensity The ratio between the number of fractures
at termination and at percolation

Po [0.2, 0.8]2/3D Fracture sealing The ratio of the total length/area
of open fractures and total fractures

Lse [0.2 m, 1 m]2D, 1 m3D Fracture sealing The minimum unit of fracture sealing

JRC [0, 20]2/3D Fracture roughness Joint roughness coefficient
in the JRC-JCS model

JCS [0.5, 18.5]P 2/3D
f Fracture strength Joint wall compressive strength

in the JRC-JCS model
Note: superscripts, 2D, 3D and 2/3D, refer to 2D fracture networks, 3D fracture networks, and both 2D and 3D

fracture networks.

Table 3: Responses in the global sensitivity analysis
Response Dimension Definition
Lcs 2D The total length of critically stressed fractures

Lcso 2D The total length of critically stressed
plus partially open fractures

RI2D 2D Ratio between (Lcso − Lcs) and Lcs
Acs 3D The total area of critically stressed fractures

Acso 3D The total area of critically stressed
plus partially open fractures

RI3D 3D Ratio between (Acso −Acs) and Acs
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we assume the input variables are uniformly distributed in [0,1]. Therefore, the

support of the input set with n variables is a n-dimensional unit hypercube

S = [0, 1]n. The Sobol method is a variance-based method, which represents a

deterministic model, Y = f(X), as a sum of elementary functions:

f(x1, x2, . . . , xn) = f0 +
n∑
i=1

fi(xi)+
∑

1≤i<j<n
fij(xi, xj)+ · · ·+f1,2,...,n(xi,x2,...,xn)

(6)

This expansion is unique under conditions:

∫ 1

0
fi1...isdxik = 0, 1 ≤ k ≤ s, {i1, . . . , is} ⊆ {1, . . . , d}, (7)

This means f0 is constant, which equals to the expected value of f(X). X is the260

input vector composed of n random variables ( X = {x1, x2, . . . , xn}), which261

are mutually independent.262

Analogously, the model’s total variance can be decomposed as the sum of

the variances of the summands.

V ar(Y ) =
n∑
i=1

Di(Y ) +
∑

1≤i<j<n
Dij(Y ) + · · ·+D1,2,...,n(Y ), (8)

where Di(Y ) = V ar[E(Y | xi)], Dij(Y ) = V ar[E(Y | xi, xj)] −Di(Y ) −Dj(Y )

and so on for higher order interactions. The decomposition of the variance leads

to the Sobol’ indices as follows, which can be adopted as a sensitivity measure.

Si = Di(Y )
V ar(Y ) , Sij = Dij(Y )

V ar(Y ) , . . . (9)

The Sobol’ indices represent the relative contribution of each factor or their263

combinations. The index concerning individual factor xi is called the first-order264

Sobol’ index (Si). Multiple-term indices, e.g. Sij , i 6= j, are referred to as265

higher-order Sobol’ indices (interaction indices), which account for the effects266
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of interactions of the factor pair xi and xj .267

The total Sobol’ index of input factor xi, denoted STi , is the sum of all the

Sobol’ indices involving this factor:

STi = Si +
∑
i 6=j

Sij +
∑

j 6=i,k 6=i,j<k
Sijk + · · · =

∑
l∈#i

Sl (10)

where #i are all the subsets of {1, . . . , n} including i. In practice, when n is268

large, only the total Sobol’ indices (total effects), the first-order Sobol’ indices269

(the main effects) and the second-order Sobol indices (the interaction effects)270

are computed.271

In this work, we use a surrogate model to represent the deterministic model272

described in Section 2.2. The surrogate model is a third-order polynomial func-273

tion obtained through an ordinary least squares regression with 500 cases. After274

obtaining the surrogate model, 250,000 samples are collected with a Latin hy-275

percube sampling method to evaluate the global sensitivity of the response con-276

cerning each factor and interactions between factors. The analysis is conducted277

with a open-source Matlab software, UQLAB (Marelli and Sudret, 2014).278

3. Results279

This section analyses the impact of each factor and interactions between280

different factors on the formation and development of SRV. The formation and281

development of SRV is represented by three response parameters (Lcs, Lcso and282

RI2D in 2D fracture networks and Acs, Acso and RI3D in 3D fracture networks).283

The sensitivity analysis with each factor as the response is conducted separately.284

3.1. Sensitivity analysis in 2D fracture networks285

The variations of Lcs, Lcso and RI2D in 500 cases are shown in Figs. 5 and286

6. In Fig. 5, Lcs and the corresponding Lcso are linked with a line segment to287
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demonstrate the difference between these two values in each case. The mean288

value of Lcs and Lcso are 398.3 m and 1762.5 m. Therefore, it is obvious289

that partially open fractures can enlarge the size of SRV and contribute to290

production. The mean value of the relative increase of SRV is about 4. However,291

the mean value can be sensitive to extreme values. A median value may be closer292

to reality, which is 0.42 in 500 cases.
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Figure 5: Lcs and Lcso variations in 500 scenarios
293

Fig. 7 shows results of the global sensitivity analysis with the total length294

of critically stressed fractures (Lcs) as the response. Fig. 7(a) shows the good-295

ness of the multivariate polynomial fit, which has an R-square value of 0.95296

between the simulation results and predictions. The first order Sobol’ indices297

(Fig. 7(c)) reflect the sensitivity of the individual factor. For the total length298

of critically stressed fractures, Lcs, the fracture roughness (JRC), the expo-299

nent of the power-law distribution (a) and the concentration parameter in the300

von Mises–Fisher distribution (κ) are the most influential factors. The frac-301

ture sealing factors (Po and Lse) are irrelevant to Lcs because critically stressed302

fractures only depend on the JRC-JCS model. The fracture sealing can impact303
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Figure 6: RI2D variations in 500 scenarios

the shear slippage if it significantly changes rock strength at the failure plane.304

However, in this research, factors are assumed to be independent of each other.305

The second-order Sobol’ indices show interactions between factors and the top306

five pairs of factors are shown in Fig. 7(d), including a− JRC, a− κ, FI − κ,307

FI − JRC and a − JCS. After considering interactions between factors, the308

total Sobol’ indices shows the total effect of each factor in Fig. 7(b). The Sobol’309

index of each factor has increased due to interactions between factors, but the310

relative ranking is the same. The fracture roughness has an essential impact on311

the total length of critically stressed fractures. From correlation analysis, the312

correlation coefficient between JRC and Lcs is -0.34. Therefore, JRC has a313

negative correlation with Lsc. A rougher fracture surface (a larger JRC value)314

can enlarge the general friction angle as shown in the JRC-JCS model, making315

the failure harder.316

Fig. 8 shows results of the global sensitivity analysis with the total length of317

critically stressed plus partially open fractures (Lcso) as the response. Fig. 8(a)318

shows the goodness of the multivariate polynomial fit, which has an R-square319
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Figure 7: Sensitivity analysis with Lcs as the response. (a) The multivariate polynomial fit
of Lcs in 500 cases. (b) The total Sobol’ indices show the total effect of each factor. (c) The
first-order Sobol’ indices show the main effect of each factor. (d) The second-order Sobol’
indices show the interaction effects of factors.

value of 0.95 between the simulation results and predictions. According to the320

first order Sobol’ indices (Fig. 8(c)), the exponent of the power-law distribution321

(a), the fractal dimension of the fractal spatial density distribution (FD) and322

the probability of open fractures (Po) are the most influential factors. The323

least influential factors are the concentration parameter (κ), joint compressive324

strength (JCS), and the segment length (Lse). The top five pairs of factors are325

shown in Fig. 8(d), including Po − a, a − FD, FI − Po, Po − Lse and FI − a.326

After considering the interactions between factors, the total Sobol’ indices shows327

the total effect of each factor in Fig. 8(b). The Sobol’ index of each factor has328

increased due to the interaction between factors, but the relative ranking is329
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the same. The exponent of the power-law distribution has the essential impact330

on Lcso. A larger exponent means more small fractures dominate the system.331

From simple correlation analysis, we find the correlation coefficient is 0.34, which332

means that the exponent has a positive correlation with Lcso and more small333

fractures can make Lcso larger.
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Figure 8: Sensitivity analysis with Lcso as the response
334

Fig. 9 shows results of the global sensitivity analysis with the relative increase335

of SRV (RI2D) as the response. Fig. 8(a) shows the goodness of the multivariate336

polynomial fit, which has an R-square value of 0.95 between the simulation337

results and predictions. Based on the first order Sobol’ indices (Fig. 8(c)), the338

exponent of the power-law distribution (a), the fractal dimension of the fractal339

spatial density distribution (FD) and the probability of open fractures (Po) are340
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the most influential factors. The least influential factors are the concentration341

parameter (κ), the joint compressive strength (JCS), and the segment length342

(Lse). The top five pairs of factors are shown in Fig. 8(d), including Po − κ,343

a − JRC, Po − a, a − FD and Po − Lse. After considering the interactions344

between factors, the total Sobol’ indices shows the total effect of each factor in345

Fig. 8(b). Compared with the result in Fig. 8, impacts of each factor on RI2D346

are almost the same as impacts on Lcso. The interactions between factors do347

not change the sensitivity ranking. The exponent of the power-law distribution348

has the essential impact on RI2D. The correlation coefficient between a and349

RI is 0.16, indicating a positive correlation. Therefore, the contribution from350

partially open fractures is more significant in fracture networks dominated by351

small fractures.352

In summary, mechanical properties, such as fracture roughness (JRC) and353

fracture strength (JCS), and fracture orientations (κ) are essential to trigger354

shear slippage of natural fractures and form the backbone of SRV. Partially open355

fractures can connect more critically orientated fractures and enlarge the size of356

SRV. After considering partially open fractures, fracture sealing properties and357

geometrical properties of fractures become essential, such as Po (the probability358

of open fractures), a (the fracture length) and FD (the fracture center positions).359

3.2. Sensitivity analysis in 3D fracture networks360

In 3D fracture networks, we consider seven factors, excluding the segment361

length because of the limited computational capacity. In addition, from the362

analysis in 2D fracture networks, the segment length does not significantly im-363

pact the formation and development of SRV.364

The variations of Acs, Acso and RI are shown in Figs. 10 and 11. In Fig. 10,365

Acs and the corresponding Acso are linked with a line segment in each case366

to show the difference between these two values. Compared with 2D cases,367
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Figure 9: Sensitivity analysis with RI2D as the response

the partially open fractures have more significant enlargement of SRV in 3D368

fracture networks. The mean value of Acs and Acso are 2962 m2 and 34688 m2.369

Therefore, partially open fractures can significantly enlarge the size of SRV and370

contribute to production. The mean value of the relative increase of SRV is371

about 11, and the median value is 8.5 in 500 cases, which are much higher than372

the values in 2D fracture networks.373

Fig. 12 shows results of the global sensitivity analysis with the total area of374

critically stressed fractures (Acs) as the response. Fig. 12(a) shows the goodness375

of the multivariate polynomial fit, which has an R-square value of 0.96 between376

the simulation results and predictions. The first order Sobol’ indices (Fig. 12(c))377

reflect the sensitivity of individual factors. The most influential factors are378
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Figure 10: Acs and Acso variations in 500 scenarios
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Figure 11: RI3D variations in 500 scenarios

the fracture roughness (JRC), the concentration parameter (κ), and the joint379

compressive strength (JCS). This observation is similar to the result in 2D380

fracture networks. The probability of open fractures (Po) is irrelevant to the381

critically stressed fractures because the JRC-JCS model completely constrains382

the critically stressed states. In contrast with 2D fracture networks, fracture383
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geometrical properties, a and FD, do not change the response significantly. The384

second-order Sobol’ indices show the interactions between factors, and the top385

five pairs of factors are shown in Fig. 12(d), including κ − JRC, FI − JRC,386

JRC − JCS, κ− JCS and FI − κ. After considering the interactions between387

factors, the total Sobol’ indices shows the total effect of each factor in Fig. 12(b).388

The Sobol’ index of each factor has increased due to the interaction between389

factors, but the relative ranking has not changed. The fracture roughness has390

an essential impact on the total length of critically stressed fractures. From391

correlation analysis, the correlation coefficient between JRC and Acs is -0.57.392

Therefore, JRC has a negative correlation with Asc. A rougher fracture surface393

(a larger JRC value) can enlarge the general friction angle as shown in the394

JRC-JCS model, making the failure harder.395

Fig. 13 shows results of the global sensitivity analysis with the total length396

of critically stressed fractures plus the partial open fractures (Acso) as the re-397

sponse. Fig. 13(a) shows the goodness of the multivariate polynomial fit, which398

has an R-square value of 0.98 between the simulation results and predictions.399

According to the first order Sobol’ indices (Fig. 13(c)), the probability of open400

fractures (Po), the relative fracture intensity (FI) and the concentration pa-401

rameter (κ) are the most influential factors. However, Po is the most dominant402

factor compared with all other six factors. The top five pairs of factors with403

interaction effects are shown in Fig. 13(d), including Po−κ, FI−Po, Po−JRC,404

Po−a and a−FD. After considering the interactions between factors, the total405

Sobol’ indices shows the total effect of each factor in Fig. 13(b). The results406

are not changed with the first order Sobol’ indices. The correlation coefficient407

between Po and Acso is 0.73, indicating a strong positive correlation between408

these two parameters, and more open fractures lead to a larger SRV.409

Fig. 14 shows results of the global sensitivity analysis with the relative in-410
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Figure 12: Sensitivity analysis with Acs as the response

crease of SRV (RI3D) as the response. Fig. 14(a) shows the goodness of the411

multivariate polynomial fit, which has an R-square value of 0.99 between the412

simulation results and predictions. The results are similar to the results of Acso.413

The second-order Sobol’ indices are small, indicating negligible interactions be-414

tween factors. The probability of open fractures is the most significant factor415

in the relative increase of SRV. All other six factors are insignificant. The cor-416

relation coefficient between Po and RI3D is 0.71, indicating a strong positive417

correlation.418

In summary, mechanical properties of fractures, fracture roughness (JRC)419

and fracture strength (JCS), and fracture orientations (κ) are essential to the420

formation of critically stressed fractures. Partially open fractures can signifi-421
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Figure 13: Sensitivity analysis with Acso as the response

cantly enlarge the SRV by connecting more critically orientated fractures. The422

important factors include the probability of open fractures (Po), fracture in-423

tensity (FI), and fracture orientations (κ). The probability of open fractures424

(Po) is the most dominant factor among all six factors. Fracture geometrical425

properties, fracture length (a), and center positions (FD) are insignificant for426

SRV enlargement in 3D fracture networks.427

3.3. Comparison of results in 2D and 3D fracture networks428

The global sensitivity analysis results are similar for both 2D and 3D frac-429

ture networks in terms of the total length (area in 3D) of critically stressed430

fractures. The fracture roughness (JRC), fracture orientations (κ), fracture431

28



(d)(c)

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0
3
D

(a) (b)

3D

Figure 14: Sensitivity analysis with RI as the response

strength (JCS) are important for the formation of critically stressed fractures.432

For the contribution of partially open fractures, represented by Lcso, Acso, RI2D433

and RI3D, the probability of open fractures (Po) are the most significant factor434

for both 2D and 3D fracture networks. However, important geometrical prop-435

erties of fractures, i.e. fracture length (a) and fracture center positions (FD),436

have significantly different behaviors in 2D and 3D fracture networks. This phe-437

nomenon is partially due to the different effects of geometrical properties on the438

connectivity of 2D and 3D fracture networks.439

The connectivity of a fracture network is essential for the formation of SRV.440

Fracture geometries can impact the connectivity of fracture networks at perco-441

lation (Zhu et al., 2021e). Here, the percolation state refers to the formation442
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of a spanning cluster in the fracture system. This work defines relative frac-443

ture intensity as the ratio between the total number of fractures at termination444

and at percolation. This value varies from 0.8 to 2.6. Therefore, for most445

cases, the global connectivity of the fracture network is good since a spanning446

cluster is formed in the system. From our recent analysis of 80 natural out-447

crop maps (Zhu et al., 2021c,f), we found that 3D subsurface fractures have to448

be pervasive if their outcrop maps show good geometrical connectivity. Most449

natural outcrop maps have a spanning cluster formed and show good geomet-450

rical connectivity(Zhu et al., 2021c). Therefore, it is close to reality that the451

real subsurface fracture networks have their RI larger than 1, which means the452

three-dimensional fracture networks have a much higher fracture intensity than453

the intensity at percolation. It is also meaningful to discuss SRV when fractures454

are well-developed because formations with sparse fractures cannot yield good455

production after the hydraulic fracturing operation.456

Clustering effects and small fractures usually have negative impacts on the457

global connectivity of fracture networks (Zhu et al., 2021e). However, in this458

work, the correlation coefficients of a − RI2D and FD − RI2D are 0.16 and -459

0.07 (slightly negative), which means that small fractures and clustering effects460

can enlarge the size of SRV. This inconsistency is possibly due to differences461

between global and local connectivity. For SRV, the local connectivity close to462

the hydrofracture is more important than the global connectivity of the entire463

system. For global connectivity, large fractures are essential for long-distance464

interactions, especially for sparse fracture systems. However, for local connec-465

tivity, especially in this work, where most fracture networks have a spanning466

cluster formed, the impact of large fractures are not significant. Clustering467

effects cannot contribute much to global connectivity but can enhance local468

connectivity(Zhu et al., 2018). Therefore, small fractures and clustering effects469
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are beneficial to the relative increase of SRV (RI2D) in 2D fracture networks.470

For 3D fracture networks, both fracture lengths and clustering effects are471

insignificant for the relative increase of SRV (RI3D). 3D fracture networks are472

not sensitive to clustering effects as observed in Zhu et al. (2021e). Therefore,473

their impact on the formation of SRV is also insignificant. Variations of frac-474

ture lengths in 3D fracture networks are also negligible but significant in 2D475

fracture networks. This phenomenon is partially caused by the convenient in-476

teractions between three-dimensional fractures because they can intersect the477

other fractures in a volume, but 2D fractures are constrained in the same plane.478

For 3D fracture networks with a high fracture intensity, fracture lengths and479

center positions of the fracture network are not significant to enhance the local480

connectivity. Instead, the probability of open fractures Po is significant for SRV481

development because it determines the hydraulic connectivity of fracture net-482

works. Fracture orientations are also crucial because they affect the mechanical483

response of natural fractures.484

4. Discussions on the fluid transportation485

For formations with ultra-low permeabaility, such as shale gas reservoirs or486

enhanced geothermal systems, the hydraulic fracturing operation is necessary487

to extract fluid economically. Hydrofractures and stimulated natural fractures488

(SRV) provide the main permeable pathway for fluid flow. Real fractures are489

complex in terms of their irregular shapes, complex rough surfaces, the tortu-490

osity of flow paths in fractures and stress impacts on the hydraulic apertures.491

However, among all complexities, the configuration of SRV has the most sig-492

nificant impact on fluid transportation because it quantifies the connected per-493

meable fractures. However, the detailed configuration of SRV is unavailable494

with current technologies. The commonly adopted idealized configuration of495
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SRV is an orthogonal fracture network around the hydraulic fractures (Fisher496

et al., 2002, 2004). This configuration is not physically meaningful for most497

stress states because natural fractures perpendicular to hydraulic fractures are498

parallel to the minimum principal stress. Substantial fluid pressure is required499

to overcome the maximum principal stress and make those natural fractures500

critically stressed. In reality, it is almost impossible to reach such a significant501

condition of fluid pressure.502

This work provides a preliminary framework for identifying SRV configu-503

rations by constructing subsurface formations with stochastic discrete fracture504

networks and implementing the JRC-JCS failure criterion. Although actual505

subsurface structures are largely unknown, two aspects of efforts can be empha-506

sized to make the model more realistic and trustworthy. One is to constrain507

the discrete fracture network model with more available data, including geolog-508

ical and geomechanical data. Geological data include outcrop observations and509

seismic maps. If rock types and structural settings of the surface outcrops and510

subsurface formations are similar, outcrops can be regarded as relevant to the511

subsurface formation, and the statistical rules summarized from outcrop maps512

can constrain the model of subsurface formations. Seismic maps can provide in-513

formation of large faults (at least tens of meters) due to their limited resolution.514

However, the associated small-scale damage zones around the fault can be esti-515

mated based on the self-similarity of fault segments and statistical distributions516

of inner and outer damage zones (Kim et al., 2004; De Joussineau and Aydin,517

2007). Geomechanical data include current stress states and stress histories.518

The current stress state is essential for identifying the critically stressed natural519

fractures, while stress histories can further constrain the fracture properties,520

such as fracture orientations and sealing degrees. The other aspect is to find521

the appropriate failure criterion for particular formations. For example, differ-522
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ent rock types for different reservoirs should be considered, such as shale and523

granite for shale gas reservoirs and geothermal systems. The thermal impact on524

the failure of a specific rock type can also be significant due to the large tem-525

perature difference between the injected fluid and formation rocks. Interactions526

between fractures are neglected, considering the computation cost in this work.527

However, this impact is significant if fractures are close to each other, especially528

for formations with abundant natural fractures. In addition, global and local529

stress states can significantly change the hydraulic aperture and impact fracture530

conductance.531

A potential application of this work is to estimate the size of SRV and predict532

shale gas production in an accurate and physically meaningful way. Production533

prediction is one of the essential issues in shale gas development. However, in534

currently available methods, such as empirical methods (Arps, 1945), analyti-535

cal methods (Clarkson and Pedersen, 2010) and numerical simulation methods536

(Shabro et al., 2011), detailed SRV structures are neglected or significantly537

simplified, which brings enormous uncertainties on the results and difficulties538

in analyzing sensitivities. After optimizing the model with the two aspects539

mentioned above and combining existing SRV estimation methods, such as mi-540

croseismic monitoring and electromagnetic imaging, this work provides detailed541

procedures to construct realistic structures of the subsurface formation and iden-542

tify SRV under a given stress state. With the realistic SRV configuration and543

appropriate up-scaling methods, the numerical simulation or analytical solu-544

tions (Patzek et al., 2013) on a reservoir scale is possible and can be optimized545

to be more physically meaningful. The knowledge on influential factors from546

this work can further guide the history match of production data and analyze547

the well performance.548
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5. Conclusions549

In this work, we mimic typical 2D and 3D formations with a stochastic dis-550

crete fracture network modelling method. By implementing the JRC-JCS failure551

criterion, we identify the SRV under a given stress state. We further system-552

atically investigate the impact of different fracture properties on the formation553

and development of SRV. The fracture properties include geometrical proper-554

ties (fracture lengths, center positions, and fracture orientations), mechanical555

properties (fracture roughness and strength), fracture sealing properties (the556

probability of open fractures and the segment length) and fracture intensity.557

Key conclusions are summarized below.558

• Critically stressed fractures compose the backbone of SRV. Partially open559

fractures can enlarge the size of SRV by connecting more critically orien-560

tated fractures and contribute to the production significantly.561

• For the total length (area in 3D) of critically stressed fractures, mechanical562

properties (fracture roughness (JRC) and strength (JCS)) and fracture563

orientations (κ) are the most important factors. Geometrical properties564

(fracture length (a) and center positions (FD)) are important for SRV in565

2D fracture networks, but insignificant in 3D fracture networks.566

• For the total length of critically stressed fractures plus partially open567

fractures and the relative increase of SRV in 2D fracture networks, the568

probability of open fractures (Po), fracture length (a), and center posi-569

tions (FD) are the most important factors. For 3D fracture networks, the570

probability of open fractures (Po), the fracture intensity (FI) and fracture571

orientation (κ) are the essential factors.572

• SRV formed in 2D fracture networks are sensitive to fracture lengths (a)573

and positions of fracture centers (FD), but SRV formed in 3D fracture574
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networks are insensitive to these geometrical properties. Real fracture575

networks are always three-dimensional instead of two dimensional. There-576

fore, to accurately estimate SRV or have a good production prediction, it577

is particularly important to accurately assess the fracture sealing degree,578

fracture intensity, and fracture orientations of the subsurface fracture net-579

works.580
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