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Abstract

Data Assimilation (DA) is a powerful tool to optimally combine uncertain model simulations and observations. Among DA

techniques, the Particle Filter (PF) has gained attention for its capacity to deal with non-linear systems and for its relaxation of

the Gaussian assumption. However, the PF may suffer from degeneracy and sample impoverishment. In this study, we propose

an innovative approach, based on a Tempered Particle Filter (TPF), aiming at mitigating PFs issues, thus extending over time

the assimilation benefits. Flood probabilistic maps derived from Synthetic Aperture Radar data are assimilated into a flood

forecasting model through an iterative process including a particle mutation in order to keep diversity within the ensemble.

Results show an improvement of the model forecasts accuracy, with respect to the Open Loop (OL): on average the RMSE

of water levels decrease by 80% at the assimilation time and by 60% two days after the assimilation. A comparison with the

Sequential Importance Sampling (SIS), is carried out showing that although SIS performances are generally comparable to the

TPF ones at the assimilation time, they tend to decrease more quickly. For instance, on average TPF-based RMSE are by

20% lower compared to the SIS-based ones two days after the assimilation. The application of the TPF determines higher CSI

values compared to the SIS. On average the increase in performances lasts for almost 3 days after the assimilation. Our study

provides evidence that the application of the variant of the TPF enables more persistent benefits compared to the SIS.
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Abstract13

Data Assimilation (DA) is a powerful tool to optimally combine uncertain model simulations and observations.14

Among DA techniques, the Particle Filter (PF) has gained attention for its capacity to deal with non-linear15

systems and for its relaxation of the Gaussian assumption. However, the PF may suffer from degeneracy and16

sample impoverishment. In this study, we propose an innovative approach, based on a Tempered Particle Filter17

(TPF), aiming at mitigating PFs issues, thus extending over time the assimilation benefits. Flood probabilistic18

maps derived from Synthetic Aperture Radar data are assimilated into a flood forecasting model through an19

iterative process including a particle mutation in order to keep diversity within the ensemble. Results show an20

improvement of the model forecasts accuracy, with respect to the Open Loop (OL): on average the RMSE of21

water levels decrease by 80% at the assimilation time and by 60% two days after the assimilation. A comparison22

with the Sequential Importance Sampling (SIS), is carried out showing that although SIS performances are23

generally comparable to the TPF ones at the assimilation time, they tend to decrease more quickly. For24

instance, on average TPF-based RMSE are by 20% lower compared to the SIS-based ones two days after the25

assimilation. The application of the TPF determines higher CSI values compared to the SIS. On average the26

increase in performances lasts for almost 3 days after the assimilation. Our study provides evidence that the27

application of the variant of the TPF enables more persistent benefits compared to the SIS.28

Plain Language Summary29

In this study, flood extent maps derived from satellite imagery were assimilated into a flood forecasting30

model with the aim to improve its short- to medium-range predictions. In a previous study we used a Data31

Assimilation technique based on Sequential Importance Sampling (SIS). While the assimilation of satellite-32

derived data improved the model predictions over several time steps, it was shown that such improvements did33

not persist over time and issues known as degeneracy and sample impoverishment led to suboptimal results.34

To mitigate the issues related to the application of the SIS, here we introduce a novel approach based on the35

so-called Tempered Particle Filter. This approach is based on iterative assimilations and updates of the initial36

model conditions. Our results show that the new method outperforms the previous one: water level errors over37

the model domain are substantially reduced up to 3 days following the assimilation and the accuracy of the38

flood extent maps is improved for up to 3 days. Moreover, the punctual water level and discharge accuracy are39

also improved. Therefore, the application of the proposed data assimilation approach not only mitigates the40

SIS-related issues, but it also enables longer lasting model improvements.41

Introduction42

Every year, floods cause important social and economic losses and the trend is increasing. Tellman et43

al. (2021) show that worldwide the population exposed to floods has increased by 20%–24% from 2000 to44

2015, thereby highlighting the need for accurate and timely forecasts of water depth, discharge, flood wave45

propagation and flood extent to help reducing or preventing the adverse effects of floods. Flood forecasting46
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models are commonly used to generate short- to mid-term predictions. However the accuracy of such predictions47

can be affected by multiple factors contributing to the overall model uncertainty. This challenge represents one48

of the major unsolved scientific problems (Blöschl et al., 2019). The assimilation of independent observations,49

such as field gauging data or satellite observations, can help reducing these uncertainties (Liu & Gupta, 2007).50

The last decade has seen a substantial increase in the number of Earth Observation (EO) satellites providing51

a synoptic overview of the flooding situation at increasingly high frequency. Despite possible errors in the52

interpretation of the SAR data (Chen et al., 2018; Grimaldi et al., 2020; Zhao et al., 2021) that should be53

masked out before any use of these data, frequent observations of flood extent and water depth represent54

substantial added value, especially over poorly gauged or ungauged catchments. For example, SAR data are55

relevant for observing inundation extent because of their day-night and quasi all-weather capability. As a56

consequence, several methods enabling an effective assimilation of such observations [e.g., Revilla-Romero et57

al. 2016; Hostache et al. 2018; Andreadis & Schumann 2014; Garcia-Pintado et al. 2015] for improving the58

predictive capability of flood models have been introduced and investigated in recent years. The most widely59

used methods are based on the Kalman Filter and its variants [e.g. Revilla-Romero et al. (2016); Annis et al.60

(2021); Wongchuig-Correa et al. (2020)] and they assume that the distributions of observation and model errors61

are Gaussian, which is not often the case when dealing with real word data (van Leeuwen et al., 2019).62

Particle Filters (PFs) have gained attention within the research community because of their ability to63

handle non-linear and non-Gaussian systems (van Leeuwen et al., 2019). PFs approximate the prior and the64

posterior probability distribution functions (PDFs) with an ensemble of model states also called particles. An65

equal weight is assigned to each particle a priori. Next, as a result of the assimilation, weights are updated to66

represent the posterior probability given the observations. The principal limitation of PFs is the difficulty to deal67

with high-dimensional systems. The weights may vary significantly across particles and in the ultimate case only68

one particle will have a weight close to unity while the other particles will have negligible weight. As a result the69

ensemble may collapse. This well-known issue in PFs is often referred to as degeneracy. Degeneracy could lead70

to an erroneous approximation of the posterior distribution (Garćıa-Pintado et al., 2013) and a sub-optimal use71

of the assimilation filter. Resampling methods [e.g Gordon et al. (1993)] have been used to prevent the collapse72

of the ensemble: particles with significant weights are replicated and non-significant particles are discarded.73

Even though resampling is powerful in reducing degeneracy, it often comes with a sample impoverishment and74

a poor representation of the actual uncertainty of the system (Moradkhani et al., 2012). After few iterations,75

replicated particles will hardly diversify and particles will again collapse into a single or few particles. According76

to Snyder et al. (2008), the number of particles should grow exponentially with the dimension of the system,77

otherwise the PF may suffer from degeneracy. Of course, a higher number of particles implies an increased78

computational cost which may hamper the use of DA in near real-time application. As a consequence, it is79

important to minimize the weight variance so that each particle keeps a significant weight.80

Hostache et al. (2018) and Di Mauro et al. (2021) recently developed, following a similar previous work by81

Giustarini et al. (2011), a data assimilation framework based on Sequential Importance Sampling (SIS), a variant82
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of PFs that enables an efficient assimilation of SAR data into a hydrodynamic model. In their experiment, the83

rainfall forcing and the SAR data are assumed to represent the only sources of uncertainty. While Di Mauro et84

al. (2021) showed that the SIS method provides good results when the assumptions are indeed satisfied, they85

also highlight the need for a method to mitigate degeneracy and sample impoverishment. The assimilation via86

a SIS tends to degenerate with only a few particles getting significant weights as a result of the assimilation. A87

preliminary attempt to mitigate the degeneracy consisted in using a tempering coefficient for the inflation of the88

posterior probability. The likelihood was raised to the power of a coefficient whose value enables a substantial89

increase of the likelihood variance. However, using this coefficient to inflate the likelihood only partially solved90

the degeneracy issue, and sometimes at the cost of a decrease in prediction accuracy.91

In the literature, in order to mitigate the mentioned PF-related issues, the following approaches have been92

adopted:93

1. Using a correct proposal density to steer particles in such a way that they obtain similar weights (Doucet94

et al., 2001);95

2. Localizing PFs (Van Leeuwen, 2009; Reich, 2013);96

3. Combining the PF with the Ensemble Kalman filter (Van Leeuwen, 2009; Potthast et al., 2019; Frei &97

Kunsch, 2013);98

4. Moving the particles from the prior to the posterior by applying a smooth transition process (Beskos et99

al., 2014).100

In this study, the research focuses on the 4th type of approach. We adopt and evaluate a novel enhanced PF101

following the results of the previous studies by Di Mauro et al. (2021) and Hostache et al. (2018). The novel DA102

approach, called tempered particle filter (TPF), applies tempering coefficients to inflate the likelihood within103

an iterative process so that the Bayes’ formula is respected (Beskos et al., 2014). Based on the method first104

proposed by R. M. Neal (1996), we use the implementation of Herbst & Schorfheide (2017) in this paper. The105

iterative assimilation approach is based on successive Sequential Importance Resamplings (SIRs) and particle106

mutations. The mutations enable the ensemble to regain diversity after each resampling step and are based107

on a Metropolis Hasting (MH) algorithm. To the knowledge of the authors, this methodology has never been108

applied in hydrological sciences and, more specifically, for improving flood simulations. We hypothesize that the109

proposed innovative DA methodology enables the mitigation of some PF limitations, namely sample degeneracy110

and sample impoverishment, while preserving the assimilation performances in terms of flood extent, discharge111

and water level simulations.112

In this study, we also further investigate the additional benefits that come from this new approach. Accord-113

ing to Dasgupta et al. (2021a), degeneracy plays a crucial role in the persistence of the assimilation benefits over114

several time steps. Therefore the TPF approach could also help improving the persistence of the assimilation115

benefits. Moreover, DA algorithms often assume that the observations as well as the model predictions are un-116

biased. Many authors pointed out the importance of bias removal before the DA, but it is not a straightforward117

–4–



manuscript submitted to Water Resources Research

procedure, especially in model forecasts (De Lannoy et al., 2007). Bias can depend on the model structure118

or parameters, on the initial conditions, or on forcing errors (especially when the forcings are derived from a119

forecast model, as in this study). In this context, we hypothesize that the new approach based on a TPF enables120

the reduction of bias in the model predictions and we test this hypothesis. To enable a meaningful evaluation121

and to verify whether the new approach outperforms the previous one, the TPF performance is compared to122

that of the SIS.123

In this study, we carry out twin experiments based on a synthetically generated data-set with controlled124

uncertainty. The SAR observations are synthetically generated from the simulated flood extent maps and125

assimilated into a coupled hydrologic-hydraulic model. Two different background ensembles, i.e., Open Loops,126

are drawn and used: in the first case the ensemble encompasses the synthetic truth most of the time, in the127

second case the ensemble is most of the time outside the ensemble range. The objectives of this study are128

therefore i) to evaluate whether the proposed method can mitigate degeneracy, ii) to evaluate whether the129

proposed framework improves the prediction accuracy and increases the persistence of the assimilation benefits,130

iii) to evaluate the efficiency of the method in reducing forecast bias. The paper is structured as follows:131

section 1 describes the materials and methods, section 2 showcases and discusses the results and 3 draws the132

conclusions of the study.133

1 Materials and Methods134

The first part of this section presents the structure of the flood forecasting system. The second part135

describes the proposed assimilation framework based on a TPF. The experimental design, case study, and the136

performance metrics used within this experiment are introduced in the last part.137

1.1 The flood forecasting model138

We use the ERA5 data-set (Hersbach et al., 2019) to derive the forcing of the flood forecasting system.139

Rainfall and 2 m air temperature at a spatial resolution of approximately 25 km and a temporal resolution of140

1 hour are used as inputs to the flood forecasting system. A conceptual hydrological modelling (SUPERFLEX)141

coupled with a hydraulic model (LISFLOOD-FP) approach has been adopted: the run-off estimated with the142

hydrological model is used as input to the shallow water hydraulic model. In this study, the rainfall-runoff143

model SUPERFLEX (Fenicia et al., 2011) is a lumped conceptual model (Figure 1) and is composed of three144

reservoirs: an unsaturated soil reservoir with a storage SUR representing the root zone, a fast reservoir with145

storage SFR representing the fast responding components (e.g., the riparian zone and preferential flow paths),146

and a slow reservoir with storage SSR representing slow responding components (e.g., deep groundwater). A lag147

function is used at the outlet of the unsaturated soil reservoir to enable a delayed hydrological response of the148

basin under intense rainfall conditions. The hydraulic model is based on LISFLOOD-FP (Bates & Roo, 2000;149

J. Neal et al., 2012) and simulates flood extent, water level and discharge within the hydraulic model domain.150
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ERA5 rainfall time series are used to generate the synthetic truth and are also perturbed to generate an151

Open Loop (OL) simulations consisting in 32 particles. These 32 particles are then used as input to the flood152

forecasting model to obtain the ensemble of flood extent maps. We adopt the method proposed and detailed153

in Di Mauro et al. (2021) to generate synthetic observations from model results. The flood extent map of the154

synthetic truth together with a real SAR observation are used to compute Probabilistic Flood Maps (PFMs)155

where each pixel represents the probability to be flooded given the recorded backscatter values. During the156

analysis (i.e., assimilation) step, the generated PFMs are assimilated into the ensemble of wet-dry maps via the157

TPF to obtain the updated particles. The following section describes the data assimilation framework.158

1.2 Data assimilation framework159

PFs are based on Bayes’ theorem:160

p(xk | yk) = p(yk | xk)

p(yk)
p(xk) (1)

The observation y at time k, which is the probability to be flooded given the SAR backscatter value, is combined161

with the forecasts of the numerical model x at time k. The posterior probability p(xk | yk) is computed by162

multiplying the prior probability density function p(xk), which is the probability of the model before any163

observation is taken into account, with the likelihood p(yk | xk) that is the probability density that the model164

state xn produces the observation. In PFs the prior PDF is drawn from an ensemble of model states of size N165

Figure 1. Scheme of the SUPERFLEX model used in this study. The hydrological model is based on three reservoirs:

and unsaturated soil reservoir (SUR), a fast run-off reservoir (SFR) and a slow run-off reservoir (SSR). The discharge

deriving from the 3 reservoirs are: QUR, QFR, QSR. A triangular lag function with a base length equal to 2 · trise

is applied at the outflow of the unsaturated soil reservoir. EU and P represents the potential evaporation and rainfall

respectively.
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called particles. Eq. 2 represents the computation of the prior probability:166

p(xn) ≈
N∑

n=1

1

N
δ(xk − xk

n) (2)

where δ is the Dirac delta function. Inserting Eq. 2 into Eq. 1 leads to the posterior probability formula:167

p(xk | yk) ≈
N∑

n=1
Wnδ(x

k − xk
n) where Wn = p(yk|xk)

p(yk)
(3)

The weights Wn, hereafter called global weights, were computed by the multiplication of the pixel-based local168

weights wn
i , according to the formula by Hostache et al. (2018), assuming that observation errors are independent169

across space. Di Mauro et al. (2021) showed that the set of particles tends to degenerate: after the assimilation,170

the number of particles with significant weight is reduced to a few and the posterior distribution is poorly171

approximated. Di Mauro et al. (2021) made a first attempt to reduce degeneracy using a tempering coefficient172

γ according to the formula:173

p(xk | yk) =
(
p(yk | xk)

p(yk)

)γ

p(xk) with γ ∈ [0, 1] (4)

This technical solution enables inflating the posterior variance so that several particles keep significant174

weight. In the current study we aim to further improve the application of the likelihood tempering. The175

proposed method relies on the factorisation of the likelihood through an iterative approach according to the176

following formula:177

p(yk | xk)

p(yk)
=

K∏
k=1

(
p(yk | xk)

p(yk)

)γs

(5)

where 0 < γs < 1 for each iteration s, and
∑S

s=1 γs = 1.178

This factorization enables application of the Bayes’ theorem iteratively so that the transition from the prior179

to the posterior probability is smoothly processed. For instance, after one iteration the factorization leads to180

the following equation:181

p(yk | xk) =

S∏
s=2

(
p(yk | xk)

p(yk)

)γs (
p(yk | xk)

p(yk)

)γ1

p(xk) =

S∏
s=2

(
p(yk | xk)

p(yk)

)γs

p1(x
k | yk)p(xk) (6)

and:182

p1(x
k | yk) ≈

N∑
n=1

W (1)
n δ(xk − xk

n) with W (1)
n =

(
p(yk | xk)

p(yk)

)γ1

(7)

At each iteration s, the tempering coefficient γs enables inflation of the likelihood variance and reduction of183

the weight variance, therefore reducing degeneracy. The exponent γs is computed so that it allows to keep184

a substantial number of particles with significant weights at each SIS step. This is carried out through the185

computation of γs providing a target value of the ensemble inefficiency ratio (InEff), defined as follows:186

InEff(γs) =
1

N

N∑
n=1

(W s
n(γs))

2 (8)

If InEff(1) ≥ r∗ (where r∗ is a predefined target) then γs is the solution to InEff(γs) = r∗ otherwise187

γS = 1−
∑S−1

s=1 γs, and the iterations are finished.188
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Figure 2. Flow chart of the DA framework where synthetic probabilistic flood maps are generated from flood extents,

derived from a truth run, and assimilated within the same flood forecasting model. The flood forecasting model is

represented with a grey rectangle, mathematical operations with a white rectangle, state variables, input and observations

with a blue ellipse.

After each iteration s, the particles with high weights are resampled using the SIR algorithm proposed189

by Gordon et al. (1993). Particles are replicated proportionally with their weights: those with an associated190

low importance weight are replaced with replicas of those having higher weight. After resampling, particles are191

equally weighted.192

Next, a mutation is applied to the fast run-off reservoir level (SFR), a variable of the hydrological model,193

24 hours prior to the assimilation to regain diversity within the particle ensemble and the mutated value is194

used as initial condition for a subsequent model simulation over the 24 hours preceding the assimilation time.195

Mutating the hydrological state variable 24h prior to the assimilation time and carrying out the related model196

simulation is done in order to update the hydrological and hydraulic models in a more consistent way. Indeed,197

it is important to remind here that the water depths simulated by the hydraulic model at a certain time are198

the result not only of the current upstream streamflow condition but also of the past time series of upstream199

streamflow conditions.200

This mutation is carried out using a MH algorithm, based on a random perturbation via the steps of201

Markov chain Monte Carlo (MCMC) methods. The MH is based on two steps: first, draw a new particle from202

a proposal density q(x∗) as x∗ ∼ q(x | xk−1
j ), and then calculate the MH acceptance ratio:203
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α =

(
p(yk | x∗) p(x∗)

p(yk | xk
j ) p(x

k
j )

)(
q(xn | xk−1

i )

q(x∗ | xk−1
j )

)
(9)

Many possibilities are available for choosing q(x∗). Here we make use of the one equal to the prior to simplify204

the evaluation of α. The acceptance ratio becomes:205

α =

(
p(yk | x∗)

p(yk | xk
j )

)
(10)

where xk
j represents the particles with high weight that have been resampled. A random variable u ∼ U [0, 1]206

is drawn and the mutated particle is accepted if α > u, otherwise we keep the particle as before its mutation.207

Applying the MCMC requires to draw samples from the posterior which can be burdensome because the prior208

is unknown. The prior can be rewritten using the prior at time k − 1 as:209

p(xk) =

∫
p(xk | xk−1)p(xk−1)dxk−1 ≈

∫
p(xk | xk−1)

1

N

N∑
n=1

δ(xk−1−xk−1
i )dxk−1 ≈ 1

N

N∑
n=1

p(xn | xk−1
n ) (11)

With this formulation we can write the posterior at first iteration as follows:210

p1(x
k | yk) =

[
p(yk | xk)

p(yk)

]γ1
1

N

N∑
n=1

p(xk | xk−1
n ) (12)

As proposed by Herbst & Schorfheide (2017), the mutation is carried out based on a proposed innovation211

p(x∗ | xk−1) = N(0, c2k · σ), with ck being a scaling factor given by the following equation:212

cn = cn0

(
0.95 + 0.10 · e20·(α−0.4)

1 + e20·(α−0.4)

)
(13)

The mutation step is repeated for l = 1, .., NMH . In our study NMH = 2.213

In detail, the method is structured according to the following time steps (Figure 2):214

• Ensemble forcing are used as input to the flood forecasting model;215

• The hydrodynamic simulations are carried out over the 24 hours prior to the assimilation.216

• Calculate p(y|xi) for each particle i and find γ1 such that InEff(1) ≥ r∗.217

• Particles are resampled using the tempered weights. The particles after resampling that are duplicates218

of particles with high weights are perturbed at time ta-24 hours.219

• New hydrodynamic simulations with the mutated levels of the SFR are carried out during the 24 hours220

prior to the assimilation.221

• The likelihood of the mutated particles pmu(y | x) is compared to the likelihood of the resampled particles222

pre(y | x).223

• The resampled particles are replaced by the mutated particles if the ratio of the two is larger than a value224

randomly taken from the interval [0, 1].225

• The mutation step is repeated twice.226

• The iteration with a new tempering coefficient is realized.227
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Figure 3. Study area of the synthetic experiment (left). Black dots correspond to the points where evaluation of the

DA performances is carried out (”Severn at Bewdley” and ”Severn at Saxons Lode”). Ensemble time series of discharge

in Saxons Lode and assimilation times (right). Gray lines correspond to the Open Loop (OL), the red line corresponds

to the synthetic truth, the green line corresponds to the mean of the OL. The dashed lines correspond to the different

assimilation time steps performed independently every 24 hours from 19/07 00:00 to 28/07 00:00.

• The entire process is repeated until the sum of the tempering coefficients is equal to unity.228

1.3 Experimental design, case study and performance metrics229

The study area is the lower river Severn located in the United Kingdom (Figure 3, on the left). To230

analyze the filter performances at different assimilation times, SAR images have been synthetically generated231

[see Di Mauro et al. (2021)] every 24 hours from 07/19 00:00 to 07/28 00:00 (Figure 3, on the right) and the232

10 corresponding independent assimilations are carried out and evaluated. The flood event has been simulated233

using the rainfall and temperature (ERA-5 dataset) time series corresponding to the July 2007 event as input234

data to the flood forecasting system.235

Further details concerning the hydrological and hydraulic model set-up as well as the study area of the236

synthetic experiment, are provided in our previous study (Di Mauro et al., 2021). In this study, the ensemble237

contains 32 particles. The proposed TPF is characterised by a particle mutation at each iteration. The mutation238

step could have a key-role, especially when the ensemble is biased with respect to the observations. On the239

one hand, in the SIS case the weighted mean (also called expectation) is based on the initial particles of the240
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ensemble meaning that if the truth falls outside the ensemble range the expectation cannot reach the synthetic241

truth. On the other hand, in the TPF case the particles can mutate and move outside the initial ensemble242

range. This way the expectation can potentially reach the synthetic truth. For evaluating the capability of the243

TPF to compensate for bias within the ensemble, two different cases are investigated. The difference between244

the OL and the synthetic truth (O) rainfall time series averaged over the flood event period (K) represents the245

mean bias error (MBE, equation 14) and it is used to estimate the bias. For a ”markedly” biased case MBE is246

0.92 mm
h while for a ”limited” bias case the MBE is 0.14 mm

h , meaning that the error of the markedly biased247

case is 6.56 times larger than for the other case.248

MBE =
1

K

K∑
k=1

(OLk −Ok) (14)

In the limited case the synthetic truth is most of the time within the ensemble range; in the other case249

the ensemble is conspicuously biased and the synthetic truth falls outside the ensemble range most of the time.250

The assimilation steps are performed at the same time for both cases and the same observations are used.251

Results are analyzed according to different spatial (global and local) and temporal scales (at the assimilation252

time and for the subsequent time steps). The filter performances are evaluated in terms of predicted flood253

extent and water depth maps, as well as local discharge and water levels time series. The performance metrics254

are assessed by comparing the results of the TPF with those of the OL. Moreover, the TPF is compared with255

the SIS method applied in our previous study Di Mauro et al. (2021).The local evaluation of the prediction256

accuracy of water levels and discharge is performed by comparing the simulated discharge and water level time257

series with respect to the synthetic truth.258

The following performance metrics are used:259

• Confusion matrices: a matrix providing the number of false negatives (under-prediction) and false positives260

(over-prediction), together with correct positives and negatives;261

• Contingency maps: maps comparing the simulated flood map with the synthetic truth map;262

• Critical success index (CSI): a metric that evaluates the accuracy of the flood map predictions and is defined263

as the ratio between the number of pixels correctly predicted as flooded over the sum of predicted flooded264

pixels (correct positives, false positives and false negatives). It ranges from 0, complete disagreement, to265

one, perfect match;266

• Root mean square error (RMSE): it is given by the square root of the mean of the squares of the deviations267

of the predicted water levels against the synthetic truth over the hydraulic model domain. It evaluates268

the prediction errors of a state variable, in our case the water levels.269

270
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Figure 4. Contingency maps of the Open Loop (left) and after the assimilation (right) for three different assimilations

at time 07/23 00:00, 07/24 00:00, 07/25 00:00. Red pixels correspond to over-prediction (false positives) errors, yellow

pixels to under-prediction (false negatives) errors, pixels correctly classified as not-flooded are in grey and when the

contrary occurs pixels are in blue.

2 Results and discussions271

2.1 TPF-based assimilation performances272

2.1.1 Flood extent map predictions273

The flood extent maps are evaluated via different performance metrics: the contingency maps, the CSI and274

the confusion matrix. The contingency map is derived from the comparison between the simulated flood extent275

map ( i.e. expectation) and the validation map which is derived from the synthetic truth simulation in our case.276

The contingency maps, corresponding to 3 different assimilation time steps (rising limb, peak, falling limb), are277

shown in Figure 4.278

Yellow and red pixels correspond to errors of under-prediction (when the model wrongly predicts the pixels279

as not-flooded) and over-prediction (the opposite case), respectively. In Figure 4, the reported images for280

each assimilation time correspond to the OL (on the left) and the TPF analysis (on the right). Over-prediction281

represents the most frequent type of error and it is significantly reduced as a result of the TPF-based assimilation.282

The decrease of wrongly predicted pixels is quantified in the confusion matrix reported in Table 1. In line283

with Figure 4, after any of the three assimilation time steps, the number of over-prediction errors is reduced by284

90% or more, while the number of under-predicted pixels increases in the upstream part of the river. However,285

they represent only 0.3% or less of the total number of flooded pixels.286

Time series of CSI are also used to evaluate the TPF performances (Figure 5). They allow to evaluate287

the predicted flood extent maps not only at the assimilation time step (as for the contingency maps and the288

confusion matrices) but also for subsequent time steps. Moreover, they provide an assessment of the persistence289

of the improvements over longer lead times after the assimilation. Figure 5 shows the time series of CSI before290

(black line) and after (blue line) the assimilation of SAR images taken during the rising limb (07/23 00:00),291
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Method 07/23 00:00 07/24 00:00 07/25 00:00

PF PN PF PN PF PN

Open TF 7497 0 9374 0 8390 1

Loop TN 2441 260974 1356 260182 1219 261302

TPF
TF 7475 22 9374 22 8378 13

TN 204 263211 78 261460 30 262491

Table 1. Confusion matrix of the Open Loop and Tempered Particle Filter analysis for three different time steps

(07/23 00:00, 07/24 00:00, 07/25 00:00): TF= flooded pixels in the truth map, TN= not-flooded pixels in the truth map,

PF= predicted flooded pixels, PN=predicted non-flooded pixels.

Figure 5. Hourly time series of the Critical Success Index of the Open Loop (black line) and Tempered Particle Filter

analysis (blue line) due to the assimilation of 3 different images: during the rising limb (07/23 00:00), at the peak (07/24

00:00) and during the falling limb (07/25 00:00).

at the peak (07/24 00:00) and during the falling limb (07/25 00:00) of the flood event. This figure shows an292

improvement of the analysis compared to the OL not only at the assimilation time but also over subsequent293

time steps: on average, CSI improvements persist for more than 3 days after the TPF application.294

2.1.2 Water level and discharge predictions295

To further investigate the TPF assimilation performance we evaluate water level and discharge predictions.296

This evaluation is carried out first at specific points along the river Severn: in Bewdley (the gauge station located297

at the upstream boundary of the hydraulic model domain), and in Saxons Lode (within the hydraulic domain).298

In Figures 6, the discharge at Bewdley (on the left) and at Saxons Lode (on the right) are plotted. The analysis299

expectation of discharge (blue line) moves closer to the synthetic truth (red line) at the two stations as a result300

of the assimilation showing a substantial improvement of the predictions. Here we show the results from the301

assimilation on July 23th 00:00 as an illustrative example since the other assimilations produce similar effects.302
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Figure 6. Time series of discharge at the peak at Bewdley and at Saxons Lode with the assimilation of an image

at 07/23 00:00. The vertical dashed lines indicate the time of the assimilation. The gray lines correspond to the OL

particles, the green line to the OL mean, the light blue lines to the analysis particles and the blue line to the analysis

expectation. The synthetic truth is represented by a red line.

In Figure 6, it can be observed that the degeneracy is mitigated. At the assimilation time, the analysis particles303

are very similar and close to the synthetic truth, but rapidly regain diversity, thereby avoiding degeneracy. After304

more than 3 days, the particles returns to their initial trajectories (i.e. the OL) mainly because precipitation305

uncertainty seems to prevail in the forecasts from that moment on.306

To generalize the evaluation made for the gauging stations, we evaluate the accuracy of water level pre-307

dictions globally, using time series of RMSE computed over the entire hydraulic model domain. This index has308

been calculated at the assimilation time and for subsequent time steps, in order to assess if the assimilation309

benefits persist in time. In Figure 7, the RMSE of the analysis is lower than the OL and this improvement310

lasts for more than 3 days following the assimilation. As for the CSI plots, the improvements of RMSE start311

dropping more quickly for the assimilation during the falling limb (07/25 00:00) in Saxons Lode compared to312

the assimilation of the SAR image at the peak or during the rising limb. The standard deviation of the errors313

has also been computed in order to evaluate the accuracy of the second moment. In this case the standard314

deviation represents the dispersion of the errors (given as the difference between the expectation and the true315

water levels). Results show that the TPF application determines less dispersed and more clustered results316

around the synthetic truth.317
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Figure 7. Hourly time series of the standard deviation of the errors due to the assimilation of 3 different images:

07/23 00:00, 07/24 00:00, and 07/25 00:00. The standard deviation of the errors as difference between the OL and the

true water levels (black line) and as difference between the analysis expectation and the true water levels (blue line).

Figure 8. Hourly time series of the RMSE. Black line refers to the OL and blue line to the analysis results after the

assimilations of 3 different images (07/23 00:00, 07/24 00:00, and 07/25 00:00).

2.2 Comparison between TPF- and SIS-based assimilation experiments with unbiased back-318

ground319

We showed in section 2.1 that the TPF improves the predictions of water levels and discharge, as well as320

flood extent. In this section, the new TPF-based DA framework is compared with the SIS approach previously321

proposed by Di Mauro et al. (2021). To do so, we apply the SIS method as proposed in Di Mauro et al. (2021)322

on the same 32 background particles (i.e., OL) and the same synthetically generated flood extent observations.323

The choice of comparing the TPF with this SIS is related to the fact that other methods reported in Di Mauro324

et al. (2021) were providing comparable performances, and therefore, SIS has been chosen as a benchmark. In325

terms of flood extent, the comparison is realized using the hourly time series of the CSI index (Figure 9).326

In Figure 9, the blue line corresponds to the CSI of the forecast obtained from the TPF-based case,327

the orange line to the one obtained from the SIS-based case and the black line to the one of the OL. The328

3 plots correspond respectively to the assimilation on July 23 00:00, july 24 00:00 and July 25 00:00. The329
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Figure 9. Comparison of the hourly time series of the Critical Success Index of the OL (black line), TPF analysis

(blue line) and SIS analysis (orange line) due to the assimilation of 3 different images: 07/23 00:00, 07/24 00:00, and

07/25 00:00.

Figure 10. Hourly Root Mean Square Error (RMSE) time series. The black line represents the RMSE of the OL,

the blue line the TPF-based RMSE and the orange line the SIS-based RMSE. 3 different assimilation cases are plotted:

07/23 00:00, 07/24 00:00, and 07/25 00:00.

CSI values obtained when assimilating an image during the rising limb are systematically higher for the TPF.330

When the image is assimilated close to the peak and during the falling limb, CSI values of the TPF and SIS-331

based assimilation are very similar at the assimilation time and for subsequent time steps. After 2 days, the332

performance of the SIS becomes substantially worse than that of the TPF.333

We have also compared the performances of the SIS and the TPF using time series of RMSE (Figure 10).334

As expected, the RMSE time series exhibit very similar trend to the CSI: the RMSE is lower with the TPF335

experiment when assimilating an image during the rising limb. For the other two assimilation steps RMSE336

values are comparable, but performances of the SIS decrease more rapidly, especially after 2 days. Overall,337

Figures 9 and 10 clearly show the beneficial effects of the TPF assimilation on the long-term.338

Table 2 reports the ratios between the analysis-RMSE and the OL-RMSE for each assimilated SAR image339

and for different lead times. These ratios were calculated at each hour and for all the different assimilation340
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dates. In the table the values at the assimilation time and for lead times of 6 hours, 1 day, 2 days, 3 days and 4341

days are reported. The ratios obtained with the TPF method are shown in the gray cells. The cyan cells contain342

the ratios obtained with the SIS experiment. The last row of the table shows the mean of the RMSE ratios over343

the different assimilation times at given prediction lead times. The lower the RMSE ratio values, the better344

the performance. Ratios of RMSEs lower than unity indicate that the assimilation improves forecasts. Table 2345

shows that the TPF-based ratios are most of the time substantially lower than those of the SIS-based ones. For346

instance, the SIS-based mean ratios for 3 and 4 days of lead times are almost twice that of the TPF-based one.347

The benefit of the TPF-based assimilation persists for more than 4 days after the assimilation time. Moreover,348

the TPF-based ratios are always lower than unity, whereas the SIS-based ratios get also values higher than349

unity.350

Table 2. Ratios between the analysis and Open Loop RMSE for each assimilation date and for various lead times.

Gray cells refer to the TPF-based method, cyan cells to the SIS-based method.

Image Lead time

date 0 6 hours 1 day 2 days 3 days 4 days

07/19 0.25 0.24 0.25 0.24 0.23 0.26 0.20 0.22 0.59 0.57 0.80 0.83

07/20 0.23 0.26 0.22 0.26 0.19 0.22 0.60 0.57 0.83 0.85 0.90 1.08

07/21 0.19 0.22 0.28 0.24 0.62 0.57 0.77 0.85 0.79 1.10 0.76 1.26

07/22 0.27 0.25 0.30 0.29 0.35 0.35 0.31 0.36 0.23 0.39 0.27 0.67

07/23 0.16 0.35 0.15 0.36 0.05 0.36 0.18 0.39 0.27 0.70 0.43 0.84

07/24 0.15 0.09 0.19 0.09 0.31 0.13 0.25 0.42 0.08 1.58 0.41 2.52

07/25 0.08 0.13 0.11 0.16 0.29 0.42 0.63 1.58 0.78 2.57 0.78 2.96

07/26 0.17 0.23 0.17 0.25 0.25 0.20 0.54 0.24 0.63 0.38 0.64 0.72

07/27 0.11 0.18 0.12 0.16 0.26 0.24 0.38 0.41 0.49 0.69 0.56 1.20

07/28 0.15 0.24 0.23 0.29 0.36 0.41 0.54 0.69 0.63 1.26 - -

Mean 0.17 0.21 0.19 0.22 0.25 0.29 0.39 0.48 0.44 0.85 0.58 1.1

351

2.3 Comparison between TPF- and SIS-based assimilation experiments with biased back-352

ground353

In this last experiment, we use the same set-up as in the previous experiment but with the exception of a354

modified OL. We have introduced a perturbation error to the ERA-5 rainfall time series so that the bias in the355

ensemble is 6.56 times larger than in the previous case. The ensemble has significant bias and the synthetic truth356

is most of the time located outside of the ensemble range as can be see in Figure 11. For the evaluation of the357
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Figure 11. Discharge time series ensemble at Bewdley (on the left) and at Saxons Lode (on the right). The OL

particles are represented with gray lines, the synthetic truth is represented by the red line. The OL expectation is in

green. In this case, the ensemble is markedly biased; the synthetic truth falls outside the ensemble range most of the

time.

results, the same performance indices and the same plots are used. The ratios between the analysis-RMSE and358

the OL-RMSE for each assimilated SAR image and for different lead times are reported in the Table 3. At the359

assimilation time and for more than one day after that, the TPF-based assimilation is capable of substantially360

reducing the forecast bias. The SIS is less efficient in that respect, as RMSE ratios are larger for the SIS-based361

assimilation. For longer lead times, the error in water levels increases due to the bias in the rainfall ensemble362

and the RMSE ratios of the TPF-based and the SIS-based assimilation become similar. This is clearly visible363

in Figure 12 that shows the RMSE time series on July 23th, 24th, and 25th at 00:00. When the bias is limited364

and the synthetic truth falls inside the ensemble range most of the time, as in the previous case (Figure 7), the365

forecast improvement lasts for longer lead times. However, when the ensemble is markedly biased (Figure 12),366

the TPF improves the results at the assimilation time but the level of improvement degrades more quickly367

compared to the limited biased case.368

369

At the assimilation time, the TPF always improves the accuracy of the results of the flood forecasts370

(in terms of flood extent, water levels, discharge) with respect to the OL and it is comparable to the SIS371

performances. An important aspect that emerges from the results is the persistence of the assimilation benefits.372

They remain significant even 3 days after the TPF assimilation when compared to the SIS performances;373

nonetheless, performances start degrading with the onset of rainfall over the headwater catchment and rainfall374

uncertainty prevails in the forecast uncertainty. Moreover, the accuracy of the results is higher when the375
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Table 3. Ratio between the analysis and Open Loop of the the RMSE for each assimilation date and for various lead

times for a markedly biased case. Gray cells refer to the TPF-based method, cyan cells to the SIS-based method.

Image Lead time

date 0 6 hours 1 day 2 days 3 days 4 days

07/19 0.19 0.42 0.13 0.42 0.10 0.44 0.26 0.52 0.82 0.53 0.94 0.58

07/20 0.29 0.44 0.25 0.46 0.21 0.52 0.72 0.53 0.88 0.59 0.91 0.67

07/21 0.47 0.52 0.49 0.53 0.54 0.53 0.70 0.59 0.82 0.68 0.71 0.82

07/22 0.47 0.53 0.49 0.52 0.53 0.59 0.70 0.68 0.82 0.83 0.88 0.95

07/23 0.32 0.31 0.31 0.29 0.30 0.26 0.47 0.38 0.71 0.57 0.81 0.64

07/24 0.17 0.26 0.20 0.27 0.39 0.38 0.61 0.57 0.71 0.64 0.78 0.70

07/25 0.15 0.38 0.21 0.43 0.41 0.57 0.55 0.64 0.65 0.71 0.76 0.80

07/26 0.16 0.57 0.18 0.59 0.28 0.64 0.44 0.71 0.61 0.81 0.68 0.87

07/27 0.24 0.52 0.16 0.55 0.34 0.70 0.68 0.96 0.83 1.05 0.78 1.04

07/28 0.34 0.70 0.36 0.77 0.51 0.96 0.65 1.05 0.58 1.04 - -

Mean 0.26 0.46 0.24 0.48 0.34 0.56 0.55 0.66 0.72 0.74 0.81 0.79

Figure 12. Hourly RMSE time series for a markedly biased ensemble case. The black line represents the RMSE of

the OL, the blue line the RMSE after the TPF application and the orange line the RMSE after the SIS application.

Assimilation at 07/23 00:00, 07/24 00:00 and 07/25 00:00 are plotted.

observations are assimilated after flood peak when inflow errors are dominating and flood extent is becoming376

more sensitive to changes in water depth due to the connectivity between the river channel and its floodplain377

(Dasgupta et al., 2021b). We argue that the marked improvement in the forecast skill is due to the update of378

the initial conditions of the hydrological model including SFR 24 h prior to the assimiliation time. Better initial379

conditions of the model forecast are defined at each assimilation time. The runoff that is used as upstream380

boundaries of the hydraulic model is a function of the storage SFR of the hydrological model. Updating the SFR,381

and consequently the fast run-off, represents an effective way to increase the long-lasting effects of DA since382

runoff has the highest uncertainty deriving from poorly known rainfall as already pointed out by Matgen et al.383

–19–



manuscript submitted to Water Resources Research

(2010). This aspect, together with the mitigation of degeneracy, as hypothesized by Dasgupta et al. (2021a),384

could explain the longer-term persistence of DA benefits via the TPF.385

In the markedly biased ensemble case, although the particles move towards the synthetic truth after the386

TPF application, the amount of rainfall entering the system is too large and the update of the reservoir level387

is not able to compensate for the error in the rainfall forcing. As a consequence, results obtained using the388

TPF are sometimes similar to those obtained using the SIS, or even slightly less satisfying when the rainfall389

intensity is high and rainfall uncertainty dominates the system. The improvements resulting from the update390

of the initial conditions are then vanished after a few days and the model moves back to the OL state. To391

increase the time window of the assimilation benefits, the update of hydrological model state variable could392

be completed by a forcing update or by a parameter update, as in Cooper et al. (2019) where channel friction393

is updated togheter with a state variable, but with the consequent risk of multiple acceptable solutions of the394

system according to the equifinality concept (Beven & Freer, 2001).395

3 Conclusions396

In this paper, we have proposed a new approach based on a Tempered Particle Filter (TPF) to assimilate397

flood extent maps into a flood forecasting system. The objective of this new data assimilation framework is to398

mitigate degeneracy and sample impoverishment, well known issues in particle filtering. We have evaluated the399

performances of the filter in two different cases: with a limited forecast bias and with a more important forecast400

bias. In addition, the TPF has been compared with the a standard Particle Filter, namely the Sequential401

Importance Sampling (SIS) as used in previous studies (Hostache et al., 2018; Di Mauro et al., 2021). The402

following key conclusions are drawn from our experiments:403

1. At the time of the assimilation, forecasts are very accurate locally: the forecast overlaps the synthetic404

truth for all the different assimilation cases and for both analysed locations. Results are very satisfying at405

a larger scale as well: RMSE and CSI improve systematically as a result of the assimilation. On average,406

RMSE values decrease by 80% whereas CSI values increase by 30% as a result of the assimilation;407

2. Results are also satisfying across time: the CSI and RMSE are improved up to 3 days after the assimilation;408

3. Performances are improved compared to the OL and the SIS filter. The benefits of the newly introduced409

TPF-based assimilation are longer persisting when compared to the effects obtained with assimilation410

techniques used in the previous studies;411

4. The new assimilation framework significantly outperforms the SIS. SIS performance indices are generally412

comparable to the TPF ones at the assimilation time, but they tend to drop more rapidly, in general 2413

days after the assimilation. For example, TPF-based RMSE are 20% lower compared to the SIS-based414

ones, 2 days after the assimilation;415
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5. When the ensemble is markedly biased results are significantly improved by the TPF at the assimilation416

times and for few days after. Afterwards, TPF and SIS based results are similar because the model state417

update cannot compensate for a too large bias in the precipitation ensemble.418

The proposed data assimilation framework based on a TPF holds promise for improving prediction accuracy419

for longer lead times. In this study, we have shown a synthetic experiment where rainfall and SAR observations420

are the only sources of uncertainty. In a future study, it will be interesting to apply and evaluate this enhanced421

approach on a real test case in a weakly controlled environment.422
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