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Abstract

Coral reefs are rapidly declining due to local environmental degradation and global climate change. In particular, corals are

vulnerable to ocean heating. Anomalously hot sea surface temperatures (SSTs) create conditions for severe bleaching or direct

thermal death. We use SST observations and CMIP6 model SST to project thermal conditions at reef locations at a resolution

of 1 km, a 16-fold improvement over prior studies, under four climate emissions scenarios. We use a novel statistical downscaling

method which is significantly more skillful than the standard method, especially at near-coastal pixels where many reefs are

found. For each location we present projections of thermal departure (TD, the date after which a location with steadily

increasing heat exceeds a given thermal metric) for severe bleaching recurs every 5 years (TD5Y) and every 10 years (TD10Y),

accounting for a range of post-bleaching reef recovery/degradation. As of 2021, we find that over 91% and 79% of 1 km reefs have

exceeded TD10Y and TD5Y, respectively, suggesting that widespread long-term coral degradation is no longer avoidable. We

project 99% of reefs to exceed TD5Y by 2034, 2036, and 2040 under SSP5-8.5, SSP3-7.0, and SSP2-4.5 respectively. We project

that 2%-5% of reef locations remain below TD5Y at 1.5 degrees Celsius of mean global heating, but 0% remain at 2.0 degrees

Celsius. These results demonstrate the importance of further improving ecological projection capacity for climate-vulnerable

marine and terrestrial species and ecosystems, including identifying refugia and guiding conservation efforts. Ultimately, saving

coral reefs will require rapidly reducing and eliminating greenhouse gas emissions.
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Key Points:7

• We project over 91 percent of coral reefs will now experience severe-bleaching-level8

ocean heat recurring at least once every 10 years9

• We project over 99 percent of reefs will experience severe-bleaching-level ocean heat10

at least twice per ten years by 2036 under SSP3-7.011

• We find SSP1-2.6 to be the only scenario not consistent with near-complete global12

severe degradation or loss of coral reefs13
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Abstract14

Coral reefs are rapidly declining due to local environmental degradation and global cli-15

mate change. In particular, corals are vulnerable to ocean heating. Anomalously hot sea16

surface temperatures (SSTs) create conditions for severe bleaching or direct thermal death.17

We use SST observations and CMIP6 model SST to project thermal conditions at reef18

locations at a resolution of 1 km, a 16-fold improvement over prior studies, under four19

climate emissions scenarios. We use a novel statistical downscaling method which is sig-20

nificantly more skillful than the standard method, especially at near-coastal pixels where21

many reefs are found. For each location we present projections of thermal departure (TD,22

the date after which a location with steadily increasing heat exceeds a given thermal met-23

ric) for severe bleaching recurs every 5 years (TD5Y) and every 10 years (TD10Y), ac-24

counting for a range of post-bleaching reef recovery/degradation. As of 2021, we find that25

over 91% and 79% of 1 km2 reefs have exceeded TD10Y and TD5Y, respectively, sug-26

gesting that widespread long-term coral degradation is no longer avoidable. We project27

99% of 1 km2 reefs to exceed TD5Y by 2034, 2036, and 2040 under SSP5-8.5, SSP3-7.0,28

and SSP2-4.5 respectively. We project that 2%-5% of reef locations remain below TD5Y29

at 1.5°C of mean global heating, but 0% remain at 2.0°C. These results demonstrate the30

importance of further improving ecological projection capacity for climate-vulnerable ma-31

rine and terrestrial species and ecosystems, including identifying refugia and guiding con-32

servation efforts. Ultimately, saving coral reefs will require rapidly reducing and elim-33

inating greenhouse gas emissions.34

1 Plain Language Summary35

Coral reefs face many challenges, but the most serious is climate change. Hotter36

oceans can kill corals via expulsion of their food-producing algae and eventual starva-37

tion, or by cooking them to death. We used satellite data and the latest global Earth38

system models to project when the world’s coral reefs are expected to surpass a severe39

bleaching temperature threshold at 1-kilometer-square locations. To account for post-40

bleaching coral recovery times, we project the year after which each location will expe-41

rience bleaching conditions at least once per 5 and 10 years.42

As of 2021, we estimate that over 91% and 79% of reef locations will experience43

bleaching conditions at least once per 10 years and 5 years, respectively, suggesting that44

widespread long-term coral degradation is no longer avoidable. We estimate that 99%45

of reefs will experience bleaching conditions every 5 years by 2040, 2036, and 2034 un-46

der progressively higher future emissions scenarios. These results show that we need to47

improve our ability to identify potential refuge locations for both aquatic and land species48

and ecosystems in order to guide conservation efforts, and suggest how much will be lost49

if humanity fails rapidly reduce greenhouse gas emissions.50

2 Introduction51

Coral reefs are among the most biodiverse ecosystems on the planet (Veron, 1995).52

However, over the last decade there has been a rapid global decline in coral health and53

coral cover due to both local environmental degradation (from destructive fishing prac-54

tices, overfishing, coastal development, sedimentation, nutrient over-enrichment, and chem-55

ical pollutants, and other causes) and global climate change (increasing ocean heat, sea56

levels, and ocean acidification) (De’ath et al., 2012; Hughes et al., 2017).57

Although regional bleaching events had been occasionally observed throughout the58

twentieth century (Yonge, 1930), the first mass event occurred during the 1982-83 El Niño.59

It included effects across the Indo-Pacific (Coffroth et al., 1990) and was likely more widespread60

than documented. The first global bleaching event occurred during the 1997-98 El Niño (Hoegh-61

Guldberg et al., 2017). The next global event occurred in 2010, and the third began in62
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2014 and lasted three years. Over recent decades, 33-50% of coral reefs have been largely63

or completely degraded (The International Society for Reef Studies, 2015). Overall, there64

is great concern about the current state of reefs and for their future, as humans continue65

to heat the planet (Langlais et al., 2017).66

Several prior studies have used SST outputs from global Earth system and climate67

models (hereafter global models) to assess future bleaching risk (Hoegh-Guldberg, 1999;68

Donner, 2009; Van Hooidonk et al., 2013; Frieler et al., 2013; Schleussner et al., 2016;69

Van Hooidonk et al., 2016). These studies most often report TD5Y, the year after which70

a thermal threshold is subsequently surpassed at least once per five years, at GM-like71

spatial resolution of ∼100 km2. Severe bleaching projections could better inform local72

conservation decisions if they could capture spatial structure at ∼1 km (Van Hooidonk73

et al., 2016). Downscaling global model SST projections can therefore better inform decision-74

making, and statistical downscaling compares well to more computationally expensive75

dynamical downscaling (Van Hooidonk et al., 2015). Here, we provide projections of ther-76

mal severe bleaching from an ensemble of CMIP6 global models, and at a spatial res-77

olution of 1 km. After submitting our study and while it was undergoing peer review,78

another study was published independently that also projects coral futures using CMIP679

models downscaled to 1 km resolution (Dixon et al., 2022); compared to this study, ours80

uses a more advanced downscaling methodology, considers multiple thermal thresholds81

that explicitly reference the climatological baseline, and provides projections of depar-82

ture years under multiple emissions scenarios in addition to projections referenced to global83

mean surface temperature anomalies.84

3 Data and Methods85

3.1 CMIP6 model data86

We included in the analysis one run (or “member”) from every CMIP6 model avail-87

able as of 2021/12/25 with monthly SST output for the historical experiment and the88

four future emissions scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (SSP is “Shared89

Socioeconomic Pathway,” O’Neill et al. (2014)). These four scenarios span a range of pos-90

sible collective human futures in terms of greenhouse gas emissions, in order of increas-91

ing cumulative emissions, with SSP585 being the highest; the final two digits provide the92

estimated radiative forcing in 2100 in W/m2. In what follows, we omit the punctuation93

in the emissions scenario labels. In all, the analysis included 35 members from 35 model94

groups. The model member chosen was the one with the most experiments run, with ties95

chosen alphabetically (e.g., “r1i1p1f1” over “r2i1p1f1”). We decided to use only one model96

member per model group in order to avoid multiple members from a single group from97

potentially biasing the ensemble mean. (In the Supporting Information we present re-98

sults from a different ensemble with 127 members from 27 groups.) The CMIP6 histor-99

ical experiment begins in January 1870 and runs to December 2014, while the SSP ex-100

periments start in January 2014 and run until at least 2100. We regridded all models101

to be on the same 1° grid and homogenized all time dimensions to the same mid-month102

values. The few models that ran beyond December 2099 were truncated to that month.103

Global mean surface temperature anomalies (GMSTA) were estimated using 2 m104

surface temperatures from 33 global models (available as of 2020/08/28), one member105

from each of 33 model groups, which were each regridded to the same uniform 1° grid.106

The area-weighted mean was taken for each model, and then the mean over every model107

per scenario was taken. GMSTA were calculated relative to an 1880-1900 baseline.108

3.2 Observational data109

For performing statistical downscaling and for performing degree heating week es-110

timates at 1 km scale, we use NASA/JPL Multiscale Ultrahigh Resolution (MUR) ob-111
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servational SST data from remote sensing, a 0.01°(∼1 km in the domain of our analy-112

sis) gridded daily satellite product, available from 2002 to the present, which increases113

feature resolution over existing SST analysis products with resolutions of 10-100 km. We114

average the daily MUR product into a monthly product.115

The RMS difference between MUR and the quarter-degree-gridded GHRSST Multi-116

product Ensemble median SST analysis is 0.36°C in non-Arctic regions on a daily com-117

parison basis (Chin et al., 2017). Assuming that both SST datasets are unbiased and have118

equal variance, we can then estimate the error in MUR at one standard deviation to be119

0.25°C on a daily basis, or roughly 0.05°C on a monthly basis. This should be thought120

of as lower bound on the monthly observational SST uncertainty as it excludes poten-121

tial systematic biases.122

To determine the locations of coral reefs in the global ocean, we use a 4 km reso-123

lution reef mask from the NOAA Coral Reef Watch thermal history product, v1.0(Heron124

et al., 2016), which yields 989,936 1 km reef pixels with the caveat that some 4 km reef125

pixels may not be fully populated with 1 km reefs. Any 1°coarse pixel that has fewer than126

10 global model output values (due e.g. to some models assuming a land pixel and as-127

signing a null value) is excluded from the analysis. This leaves 773,261 1 km reef pixels128

remaining.129

3.3 Degree heating week thresholds130

DHW is a thermal stress index developed decades ago by Coral Reef Watch (Liu131

et al., 2003, 2006). At a given location, the maximum monthly mean (MMM) is deter-132

mined from a climatology (the climatologically hottest month of the year). Then for each133

day the MMM is subtracted from that day’s SST, and if the result is >=1°C (i.e., a de-134

gree or more over the MMM) it is accumulated in a 12-week running sum. According135

to Coral Reef Watch, significant bleaching in corals is correlated to DHW values >4 DHW,136

and severe bleaching is likely and significant mortality can be expected above 8 DHW137

(Coral Reef Watch, n.d.). The original Coral Reef Watch DHW metric requires a 1°C138

excursion above MMM before it accumulates a daily value into DHW.139

Following all of the previous monthly projection studies (see e.g., Van Hooidonk140

et al. (2016)), we deviate from the Coral Reef Watch definition by not requiring the >=1°C141

daily excursion above MMM, which cannot be implemented using monthly time series.142

This allows fair comparisons to those previous monthly projection studies, which we will143

discuss below. Furthermore, there is evidence that not requiring the >=1°C daily ex-144

cursion above MMM increases the skill of the DHW metric at predicting bleaching (DeCarlo,145

2020; Kim et al., 2019). To calculate an approximate DHW index, we first create a monthly146

MUR SST climatology from 2003 to 2014, inclusive, which determines a MMM value at147

each 1 km coral pixel. We subtract this MMM from the SST time series at that pixel,148

setting any negative values to zero, and multiply by 4.34 to convert from months to weeks.149

We then calculate a three month running sum, producing a monthly time series of DHW150

estimates. In what follows, we will use “DHW” to also indicate units of °C-weeks.151

The original Coral Reef Watch 8 DHW severe bleaching threshold is based on a152

climatology comprised of the seven-year period of 1985-1990 plus 1993 which excludes153

SST retrievals compromised by the Pinatubo eruption (Heron et al., 2014), the mean of154

which is 1988.3. In 2015, Coral Reef Watch updated their DHW product, shifting to a155

new climatological reference period centered at 1998.5 (Liu et al., 2014). However, as men-156

tioned above, the MUR SST climatology central year is 2008.5. In the two decades span-157

ning these three climatological references, SST in coral-reef-containing waters increased158

by 0.25°C due to anthropogenic global heating, as estimated from the mean of all 1-degree-159

resolution HadISST (an observational SST record, Rayner et al. (2003); National Cen-160

ter for Atmospheric Research Staff (Eds) (n.d.)) grid cells containing coral reef locations,161

with a 10-year running mean applied to the resulting time series.162
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The effect of this anthropogenic increase in the climatological baseline is often ne-163

glected, but it has a critical impact on DHW metrics. We empirically determined the164

(linear) relationship between the climatological central year and the DHW threshold re-165

quired to keep departure year projection estimates constant (see Supporting Informa-166

tion for the detailed methodology). Using subscripts to denote the integer part of the167

climatological central years discussed above, we found that, e.g.,168

8.0 DHW1988 = 4.8 DHW2008. (1)

In other words, fully specifying a DHW threshold requires two numbers, the threshold169

and the climatological center year used to calculate it; and an 8.0 DHW thermal excur-170

sion calculated using a climatology centered in 1988 is thermally equivalent to a 4.8 DHW171

excursion calculated using a climatology centered in 2008. Similarly,172

8.0 DHW2008 = 11.2 DHW1988. (2)

The 1998 climatological baseline falls halfway between the other two baselines, and the173

2008-equivalent DHW threshold falls halfway between the other two 2008-equivalent DHW174

thresholds:175

8.0 DHW1998 = 6.4 DHW2008. (3)

The choice of climatological baseline in the Coral Reef Watch DHW thermal met-176

ric is not always made clear, but it is of equal importance to the threshold level (e.g.,177

4°C-weeks vs. 8°C-weeks) in future projections. The above equivalence relationships are178

derived in the mean over all coral reef locations, and do not capture geographic varia-179

tions. In this sense they are similar to the DHW threshold framing itself, which already180

imposes this constraint of global homogeneity.181

3.4 Statistical downscaling182

We perform statistical downscaling on the coarse-scale (1 degree) global model SST183

projections using the fine-scale (1 km) MUR SST observational dataset. The standard184

state-of-the-art method for statistical downscaling typically used in ecological projection185

studies is deterministic, and involves the following simple steps (see, e.g., Van Hooidonk186

et al. (2016)): (1) At each coarse-scale model cell, and for each month of the year, es-187

timate the climatology and subtract it from the projected time series, yielding monthly188

anomaly time series; (2) Interpolate the coarse-scale monthly anomaly time series onto189

the fine-scale (1km) observational grid; (3) At each fine-scale pixel, for each month, cal-190

culate the climatology using MUR SST data; (4) Add the results of steps 2 and 3 on a191

month-by-month and pixel-by-pixel basis, resulting in fine-scale projections. This pro-192

cedure utilizes observational data to construct the fine-scale climatology and thus can193

potentially correct systematic bias in the climate model. However, it does not use ob-194

servations in interpolation (Step 3) but instead assumes deterministic spatial dependence195

structure across the coarse and fine scales, implying that the coarse-scale anomalies are196

downscaled to the fine-scale grid in a homogeneous way through the time series and spa-197

tially. This is a fundamental limitation in the standard downscaling method.198

Here, we utilize a novel approach to statistical downscaling, which we describe in199

greater detail in Ekanayaka et al. (2022). Our motivation was to find a downscaling strat-200

egy that had more skill than the standard method described above, and that could pro-201

duce statistically meaningful uncertainty estimates.202

Let yt(si) denote the observational SST at MUR pixel si at month t, for i = 1, . . . , n,
assuming that there are a total n fine-scale pixels in our study region. Let wt(si) denote
the climate model output deterministically interpolated to MUR pixel si, i = 1, . . . , n.
We adopt the statistical downscaling method in Ekanayaka et al. (2022). In particular,
we assume:

yt(si) = µ1,t(si) + u1,t(si)
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wt(si) = µ2,t(si) + u2,t(si)

where µ1,t(si) and µ2,t(si) represent the large-scale variation and are modeled as deter-203

ministic terms for SST and model output, usually called the trend in geostatistics. Then,204

we model the joint distribution of {(u1,t(si), u2,t(si)) : i = 1, . . . , n} by using the ba-205

sis function representation of a bivariate zero-mean Gaussian process. In our analysis,206

we pooled the times series of yt(si)−ft(si) and wt(si)−w̄(si), where ft(si) represents207

the output from the standard downscaling procedure, and w̄t(si) is the average of inter-208

polated model outputs over the observational years. From these pooled time series, we209

obtain the empirical orthogonal functions (EOFs). Amongst these functions, we imple-210

ment the method in Shi and Cressie (2007) and choose EOFs with large absolute-valued211

coefficients together with ft(si) and w̄(si) as the trend terms µ1,t(si) and µ2,t(si), re-212

spectively, but use the remaining to model (u1,t(si), u2,t(si)) with random coefficients213

as in Krock et al. (2021). There are several advantages of using such a basis-function rep-214

resentation: (1) The EOFs in the trend terms are designed to describe systematic spa-215

tial departure between observational data and climate model output; (2) The other EOFs216

with random coefficients enable us to model nonstationary spatial dependence within and217

between {u1,t(si)} and {u2,t(si)}, thus enabling us to downscale the model output in-218

homogeneously at different areas (such as coastal regions) in a data-driven way; (3) Us-219

ing these basis functions effectively reduces dimensionality and makes our method com-220

putationally efficient.221

Compared with the standard downscaling method, this novel statistical downscal-222

ing method uses observational data in the joint model directly instead of using only their223

climatology. Our method allows us to simultaneously model the observational data and224

climate model output, learn their relationship and then use this relationship to produce225

downscaled projections. Ekanayaka et al. (2022) performed validation studies to com-226

pare this method with the standard downscaling method. MUR data before 2018 and227

climate model output in the Great Barrier Reef region were used as training data to fit228

the bivariate statistical model. In this methods study performed by our group, we com-229

pared the downscaled results from both the standard downscaling method and our new230

method with withheld “test” MUR data from 2018-2020. Over the region containing the231

entire Great Barrier Reef, we found that the standard downscaling method had mean232

squared error (MSE) of 0.233°C2 and the BGL method had MSE of 0.214°C2, a reduc-233

tion of 8%. However, this reduction was more pronounced when averaged only over coral234

reef locations. Figure 1 presents maps of MSE from the two downscaling methods, in a235

central region of the Great Barrier Reef. Improvement provided by the BGL downscal-236

ing method is especially evident in near-coastal regions, which is important since many237

coral reefs globally are located in near-coastal regions. Averaged over all coral reef lo-238

cations in this central region including those relatively far from the coast, the standard239

downscaling method had MSE of 0.252°C2 and the BGL method had MSE of 0.173°C2,240

a reduction of 31%.241

BGL also accomplishes our second goal of producing meaningful uncertainty es-242

timates. By using the bivariate statistical model, we are able to quantify the uncertain-243

ties associated with the downscaled projections. Note that we obtain from the bivari-244

ate model the conditional predictive distribution of yt(si)|wt(si) for i = 1, . . . , n at a245

future time point t when observational data yt(si) is not available. The downscaled pro-246

jections are corresponding to the conditional mean, while the conditional standard de-247

viation provides the associated uncertainty. Meanwhile, we note that such uncertainties248

are based on fitting the model with the training data (i.e., MUR data and climate model249

output in the observational years) and thus won’t be able to characterize uncertainty due250

to possible extreme departures of the relationship between MUR data and climate model251

output not presented in the training data in particular unprecedented and unexpected252

black swan events.253

–6–



manuscript submitted to Earth’s Future

Figure 1: Comparison between standard downscaling and BGL downscaling mean
squared error (MSE, in degrees Celsius squared) estimated from validation against with-
held 2018-2020 MUR data in a central region of the Great Barrier Reef. This comparison
was performed using SSP126 time series. Coral reef locations are indicated by the brown
translucent masking. Note the MSE improvement provided by the BGL downscaling
method that is especially evident in near-coastal regions. Averaged over coral reef loca-
tions, the standard downscaling method had MSE of 0.252°C2 and the BGL method had
MSE of 0.173°C2, a reduction of 31%.

3.5 Thermal departure projections254

We estimate projected times of thermal departure (TD) using the three pairs of255

DHW thresholds and climatological baselines introduced in Section 3.3. In what follows,256

we include projections using all three thermal metrics to provide comparability with prior257

studies, and to quantify the sensitivity of severe bleaching projections to the choice of258

climatological baseline.259

At each 1 km pixel, we concatenate the MUR data from 2002 to 2020 to the mean260

downscaled projection time series for a particular emissions scenario to create a contin-261

uous SST time series from 2002 to 2100. We then calculate the DHW time series from262

this SST time series, and calculate the year after which every subsequent five year pe-263

riod and every subsequent ten year period contains at least one heat event surpassing264

the DHW threshold, at least through 2100. We denote these two TD metrics as TD5Y265

and TD10Y. Post-disturbance coral recovery through newly-settling recruits requires 7-266

13 years (Johns et al., 2014) or even >15 years (Baker et al., 2008) if it occurs at all. Thus267

TD5Y and TD10Y are representative of a range of post-bleaching coral recovery time268

–7–
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scales from damaged but not completely destroyed ecosystems. We note that TD5Y pro-269

jections might be optimistic, since reefs require more than five years to recover after se-270

vere bleaching events, but that it is commonly used by prior studies (e.g., Schleussner271

et al. (2016); Donner (2009); Frieler et al. (2013)). We also note that our construction272

allows for TD “projections” prior to 2022, and that all TD estimates, even those occur-273

ring in the past, depend on information to 2100.274

4 Results275

Figure 2 shows the CMIP6 ensemble mean of global mean surface temperature anomaly276

(GMSTA) over the entire globe in the four emissions scenarios, which begin running in277

2014. It also shows the mean of the downscaled SST over all coral reef locations for the278

four scenarios, including observational MUR data before 2020. Note that the exception-279

ally strong 2015-2016 El Niño event is clearly apparent in the MUR SST data.280

Figure 2: (left) Global mean surface air temperature anomaly (GMSTA) projections,
relative to an 1880-1900 baseline, from the CMIP6 ensemble mean. (right) Mean SST
averaged only over coral reef locations included in the analysis, with observational MUR
data before 2020 shown within the shaded region and the downscaled CMIP6 model en-
semble projections after 2020. Colors correspond to emissions scenarios as indicated in the
legend.

Figure 3 shows global maps for two of the 24 scenarios (4 climate scenarios, 3 DHW281

metrics, and 2 return timescales) we explored: the highest thermal threshold combina-282

tion with the latest departure dates and the most optimistic climate scenario (TD5Y,283

8 DHW2008, SSP126); and the lowest thermal threshold combination with the earliest284

departure dates and most pessimistic climate scenario (TD10Y, 8 DHW1988, SSP585).285

The low-resolution representations of our high-resolution results shown in the figures demon-286

strate general TD dependence on return year, DHW threshold, and cumulative green-287

house gas emissions. It is also apparent that some coral reef regions of the world are fac-288

ing severe thermal stress earlier than others.289

Our main results are shown as cumulative histograms of 1 km2 reef locations re-290

maining under TD5Y and TD10Y (Figure 4) and “slices” through these cumulative his-291

tograms at the 30%, 10%, and 1% remaining levels (Tables 1 and 2). Dashes in the ta-292

bles signify the indicated percent remaining is not crossed before 2100. Vertical gray shad-293

ing in figures denotes the period of MUR observational data. Note that the drop in reef294

locations remaining below TD that occurs in ∼2015-2016 corresponds to warming of the295

reef locations due to the 2015-2016 El Niño visible in the SST data in Figure 2.296
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Figure 3: Global maps of thermal departure. (top) The highest thermal threshold we
considered, with the latest departure years, and the most optimistic climate scenario:
TD5Y, 8 DHW2008 threshold, and SSP126. (bottom) The lowest thermal threshold we
considered, with the earliest departure years, and the most pessimistic climate scenario:
TD10Y, 8 DHW1988 threshold, and SSP585. Maps of other scenarios are shown in the
Supporting Information.
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Figure 4: Cumulative histograms of thermal departure as a function of year, for SSP126
(black), SSP245 (blue), SSP370 (green), SSP585 (red), for a five year heat event return
timescale (TD5Y, top row) and a ten year heat event return timescale (TD10Y, bottom
row). The 1988 and 2008 climatological baselines are shown. Cyan and magenta horizon-
tal lines show the 10% and 1% fractional levels respectively; colored vertical ticks on the
y-axis indicate crossings of these levels.
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It is also useful to interpolate the departure year data using the GMSTA estimates297

displayed in Figure 2; we perform the interpolation after applying a 10-year running mean298

to the GMSTA data. Plots of departure as a function of GMSTA are shown in the Sup-299

porting Information. Tables 1 and 2 provide GMSTA points of departure beyond var-300

ious fractions of reefs lost for the four emissions scenarios. Tables 3 and 4 provide per-301

centages and number of reefs remaining below the specified thermal metric, for future302

GMSTA values.303

99% of reef locations are projected to exceed a thermal threshold of 8.0 DHW1988304

at least once every 10 years (TD10Y) by 2034, 2034, 2033, and 2030 under SSP126, SSP245,305

SSP370, and SSP585 (Table 1). In terms of GMSTA, once global heating surpasses 1.5°C306

to 1.7°C, we project that fewer than 1% of reefs will remain below TD10Y, depending307

on emissions scenario. As of 2021, fewer than 9% of 1 km2 reef locations remained be-308

low TD10Y under all emissions scenarios.309

TD5Y projections are slightly further in the future than TD10Y projections, as the310

severe bleaching must occur at least once every five years instead of once every ten years.311

99% of reef locations are projected to exceed TD5Y by 2040, 2036, and 2034 under SSP245,312

SSP370, and SSP585, corresponding to GMSTAs of 1.8°C, 1.7°C, and 1.6°C, respectively.313

Higher emissions scenarios push coral reefs over this point at lower GMSTAs due to the314

progressively steeper rates of global heating (Figure 2), possibly corresponding to less time315

for deep ocean heat uptake.316

As of 2021, fewer than 21% of 1 km2 reef locations remained below TD5Y under317

all scenarios. We project that at 1.5°C GMSTA, between 2% and 5% of reef locations318

will remain below TD5Y, and between 1% and 3% will remain below TD10Y. We project319

that at 2.0°C GMSTA, the number of reef locations remaining below TD5Y or TD10Y320

(fewer than 2700 and 2300 1 km2 locations respectively) will be closer to 0% than to 1%.321

Under all the thermal metrics, the SSP126 scenario, although still dire, projects322

a markedly better prognosis for corals than the other three emissions scenarios. Under323

TD5Y, 1% of reefs are projected to remain below the thermal threshold until 2095. Also,324

although 99% of reefs surpass the threshold under TD10Y by 2034, further losses pro-325

ceed more slowly than in the other three emissions scenarios (Figure 4).326

Table 1: Projected years and GMSTAs after which fewer than the stated percentage of 1
km2 reef locations remain below the thermal thresholds, for a return timescale of 10 years
(TD10Y)

8 DHW2008 8 DHW1998 8 DHW1988

30% 10% 1% 30% 10% 1% 30% 10% 1%

Year in twenty-first century

SSP126 25 39 17 29 16 20 34
SSP245 25 35 53 17 28 44 16 18 34
SSP370 26 33 47 19 27 39 16 19 33
SSP585 22 30 42 16 25 36 16 17 30

Global mean surface temperature anomaly (°C)

SSP245 1.4 1.7 1.9 1.2 1.5 1.8 1.1 1.2 1.7
SSP370 1.4 1.7 1.9 1.2 1.5 1.8 1.1 1.2 1.6
SSP585 1.3 1.5 1.9 1.1 1.4 1.7 1.1 1.2 1.5
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Table 2: Projected years and GMSTAs after which fewer than the stated percentage of 1
km2 reef locations remain below the thermal thresholds, for a return timescale of 5 years
(TD5Y)

8 DHW2008 8 DHW1998 8 DHW1988

30% 10% 1% 30% 10% 1% 30% 10% 1%

Year in twenty-first century

SSP126 30 75 23 32 19 25 95
SSP245 29 40 62 22 31 49 19 23 40
SSP370 29 36 53 23 30 45 19 25 36
SSP585 26 34 45 21 28 40 19 23 34

Global mean surface temperature anomaly (°C)

SSP245 1.5 1.8 2.0 1.3 1.6 1.9 1.2 1.4 1.8
SSP370 1.5 1.7 2.0 1.4 1.6 1.9 1.2 1.4 1.7
SSP585 1.4 1.6 2.0 1.3 1.5 1.8 1.2 1.4 1.6

Table 3: Percentages and numbers of reef locations remaining below the stated thresholds,
for a return timescale of 10 years (TD10Y)

8 DHW2008 8 DHW1998 8 DHW1988

1.5°C 1.7°C 2.0°C 1.5°C 1.7°C 2.0°C 1.5°C 1.7°C 2.0°C

Percent 1 km2 reef locations remaining below threshold

SSP245 26% 9% 0% 11% 3% 0% 3% 1% 0%
SSP370 24% 6% 0% 9% 1% 0% 2% 1% 0%
SSP585 15% 3% 0% 5% 1% 0% 1% 0% 0%

Number of 1 km2 reef locations remaining below threshold, out of 773K

SSP245 201K 68K 4K 83K 21K 2K 24K 6K 729
SSP370 191K 52K 9K 73K 14K 4K 17K 5K 1233
SSP585 117K 25K 6K 40K 9K 3K 10K 4K 2265

We validated our analysis by comparing the mean of the three annual maximum327

ocean heat events at each reef pixel from 2018-2020 in the downscaled SSP126 SST time328

series to the corresponding value in the MUR SST data. We found that the mean of a329

distribution of MUR values subtracted from corresponding downscaled model SST val-330

ues was -1.8°C-weeks (with a standard deviation of 1.7°C-weeks), i.e., the downscaled331

model value underestimated the MUR data by 1.8°C-weeks (see Figure S7 in Support-332

ing Information). We found similar results for the other three SSPs. This suggests that333

the projections are “conservative” in the sense that they underestimate future coral bleach-334

ing.335
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Table 4: Percentages and numbers of reef locations remaining below the stated thresholds,
for a return timescale of 5 years (TD5Y)

8 DHW2008 8 DHW1998 8 DHW1988

1.5°C 1.7°C 2.0°C 1.5°C 1.7°C 2.0°C 1.5°C 1.7°C 2.0°C

Percent 1 km2 reef locations remaining below threshold

SSP245 33% 15% 1% 17% 5% 0% 5% 2% 0%
SSP370 32% 14% 1% 15% 4% 0% 4% 1% 0%
SSP585 21% 6% 1% 9% 2% 0% 2% 1% 0%

Number of 1 km2 reef locations remaining below threshold, out of 773K

SSP245 253K 113K 7K 132K 42K 3K 42K 12K 1250
SSP370 253K 119K 16K 120K 36K 6K 34K 11K 2674
SSP585 171K 50K 12K 75K 16K 5K 21K 6K 2628
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5 Discussion and Conclusion336

In 2020, global heating (GMSTA) was 1.2°C- 1.3°C above pre-industrial levels, and337

human greenhouse gas emissions will likely push Earth to 1.5°C GMSTA sometime in338

the 2030s, according to CMIP6 model projections (Figure 2). Unless humanity accom-339

plishes climate mitigation approximating the SSP126 scenario, Earth will likely surpass340

2°C GMSTA around mid-century (e.g., Table 1). We have provided projections, with un-341

precedented spatial resolution, of future years and global heating levels beyond which342

coral severe bleaching conditions due to this anthropogenic global heating will be con-343

tinuous relative to coral recovery timescales. Novel aspects of our departure year and344

GMSTA projections include using the CMIP6 model ensemble; attaining 1 km resolu-345

tion; downscaling with an improved method; performing an end-to-end validation against346

observational data; and providing projections under six combinations of two ecologically347

relevant severe bleaching event return timescales (5 years and 10 years) and three DHW348

thresholds.349

Clarifying that complete specification of DHW thresholds requires not one, but two350

numbers facilitates apples-to-apples comparisons with prior studies. Schleussner et al.351

(2016) projected a 70–90% loss at 1.5°C and 99% loss at 2°C GMSTA, using CMIP3 global352

models (without downscaling) and a thermal criteria of TD5Y and 8 DHW1990 (the cen-353

ter of a 1980-2000 reference climatology). These results were adopted by the IPCC Spe-354

cial Report on Global Warming of 1.5°C (“Summary for Policymakers”, 2018). Using355

nearly identical thermal criteria (TD5Y and 8 DHW1988), we project a 95-98% loss at356

1.5°C and a 99.7% loss at 2°C GMSTA (Table 4).357

Donner (2009) used one global model and a thermal metric of TD5Y and 8 DHW1988358

(a 1985-2000 climatology) to project roughly 70% of coarse-scale (not downscaled) global359

model locations will surpass the metric in 2025, and 90% by 2040, under SRES B1 (sim-360

ilar to SSP245); our study projects 2019 and 2023 (Table 2).361

Frieler et al. (2013), using 19 CMIP3 models and an 8 DHW1990 (1980-1999 cli-362

matology), found that 90% of coarse grid cells surpass TD5Y at 1.5°C, and that all grid363

cells surpass TD5Y before 2°C GMSTA; our study projects over 95% TD5Y at 8 DHW1988364

and 1.5°C, and over 99.7% at 2°C (Table 4).365

Van Hooidonk et al. (2016) was the only prior study that applied statistical down-366

scaling; they downscaled CMIP5 projections to 4 km resolution and found mean TD1Y367

values (annual recurrence) of ocean heat events surpassing 8 DHW1995 (1982-2008 cli-368

matology) of 2054 for the climate scenarios RCP 4.5 and 2043 for RCP 8.5, which are369

similar to the scenarios SSP245 and SSP585 used here. Our study does not include com-370

parable metrics, and we note that annual severe bleaching might be too “conservative”371

a metric to be useful, given observed post-bleaching recovery times of about a decade.372

Dixon et al. (2022) applied statistical downscaling with MUR data to 1 km reso-373

lution and used the low thermal criteria of TD10Y and 4 DHW1988 and found 0.2% of374

reefs at 1.5°C, and 0% at 2.0°C of mean global heating. We do not use such a low ther-375

mal threshold, so we cannot perform a comparison, but we note again that projections376

of remaining reefs depend critically on choice of thermal threshold.377

Our results project an earlier decline for the world’s coral reefs than either Schleussner378

et al. (2016) or Donner (2009), but are in agreement with Frieler et al. (2013). However,379

these earlier studies used a 5-year return timescale, but a 10-year return timescale is more380

ecologically appropriate.381

There are three realms of uncertainty in our projections. The first is scenario un-382

certainty, the uncertainty over humanity’s collective future emissions; this dimension is383

spanned over the four “SSP” emissions scenarios. The second realm of uncertainty is pro-384

jection uncertainty, part of which stems from uncertainties in the global models (Lehner385
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et al., 2020). Projection uncertainty, in the context of ecological projections, can also arise386

from uncertainties in observational datasets and from the downscaling methodology. The387

two prior studies that do estimate projection uncertainty do so from the spread of in-388

dividual global models within the model ensemble (Frieler et al., 2013; Schleussner et389

al., 2016). However, we cannot apply this method directly to our downscaled results. One390

key area for future work is to understand and reduce projection uncertainty. We are cur-391

rently developing a statistical uncertainty quantification from the BGL downscaling method392

and the model ensemble (informed by comparative assessments between individual mod-393

els and observations). In addition to uncertainty quantification, skill-weighting the en-394

semble could allow better use of information, potentially improving projection accuracy,395

which could be checked in hindcast experiments. Furthermore, the current standard prac-396

tice of using what amounts to an arbitrary collection of models and taking their ensem-397

ble means creates uncertainty. To illustrate this, we performed our analysis on a sepa-398

rate CMIP6 ensemble of 127 model members from 27 model groups (Supporting Infor-399

mation Text T2 and Tables S1 and S2). The different ensemble led to slightly different400

results, for example projecting 2% of reef locations to not surpass 8 DHW1988 at TD10Y401

under SSP245, as opposed to 3%. The 127-member ensemble projects 99% of reefs to402

exceed 8 DHW1988 at TD10Y under SSP126 in 2086, as compared to 2034 for the 35-403

member ensemble; this seemingly dramatic difference can be explained by the flatten-404

ing of the cumulative histogram curve in bottom left panel of Figure 4 near this 99% re-405

maining threshold, creating a large rate of change. More serious is the possibility of misiden-406

tifying specific locations of projected refugia. This arbitrariness due to the ensemble com-407

position, which is also present in other ensemble studies, could be eliminated in the fu-408

ture via skill-weighting.409

The third realm of uncertainty is ecological uncertainty, the uncertainty in the re-410

lationship between ocean heat events and the response of coral reefs. We have spanned411

a small part of this realm by providing projections under the two severe bleaching re-412

covery timescales, and three thermal threshold metrics.413

As is the case with the prior studies, our study does not factor in additional eco-414

logic factors which could potentially mitigate or exacerbate coral reef degradation and415

loss. On shorter timescales, clouds can block sunlight, potentially reducing algal produc-416

tion of reactive oxygen species (M. E. Baird et al., 2018; Skirving et al., 2018; Roth, 2014),417

and mitigating bleaching during marine heat events (Mumby et al., 2001). Reef depth418

could also affect bleaching by reducing sunlight and water temperatures (Muir et al., 2017;419

Frade et al., 2018; A. H. Baird et al., 2018; Smith et al., 2014). Relatively high SST vari-420

ability correlates with lower bleaching risk (Safaie et al., 2018; Beyer et al., 2018). Rel-421

atively high nutrient levels correlates with higher bleaching risk (DeCarlo & Harrison,422

2019).423

On longer timescales, dispersal of coral larvae could result in establishment of pop-424

ulations in cooler regions of the future ocean (Greenstein & Pandolfi, 2008). Ocean acid-425

ification, sea-level-rise, sedimentation, and intensifying storms could further harm corals (Hoegh-426

Guldberg et al., 2007; Cohen et al., 2009; Field et al., 2011; Blanchon et al., 2009; Perry427

et al., 2018; Cheal et al., 2017).428

In this study, we do not attempt to account explicitly for highly uncertain coral429

adaptation, although our use of three climatological baselines could serve as a rudimen-430

tary proxy. Adaptation of corals and/or symbionts (such as acclimatization, symbiont431

shuffling, or genetic change) would improve coral prospects, but evidence is equivocal432

and mechanisms remain poorly understood (Baker et al., 2004; Donner et al., 2005; Parme-433

san, 2006; Hoegh-Guldberg, 2014; Chakravarti et al., 2017; Torda et al., 2017). Logan434

et al. (2021) folds potential symbiont-mediated adaptive capacity from symbiont shuf-435

fling and symbiont evolution into thermal viability projections from an ecological model,436

driven by SST output from a global climate model. Shuffling of symbionts with assumed437

thermal growth optima of up to 1.5°C above heat-sensitive symbionts allowed the model438
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to simulate thriving global reefs beyond 2100. Even under the most extreme climate sce-439

nario (RCP 8.5), 23% of simulated global reefs remained healthy under symbiont shuf-440

fling combined with symbiont evolution.441

A major focus for future work will be understanding and constraining ecological442

uncertainty. Adaptation can be included in coral projections when based on observed443

adaptation levels, as hypothetical adaptation levels lead to unconstrained projections.444

It might also be possible to constrain the coral response to ocean heat events through445

the use of empirical data, such as remotely sensed severe coral bleaching from satellite446

platforms. This could provide sufficient data to create models of the coral response that447

account for the coral locations, and could include additional predictor variables.448

Our analysis does provide projected 1 km2 locations of global coral refugia. How-449

ever, given the high degree of uncertainty, and imminent data science innovations with450

the potential to constrain this uncertainty, we choose not to highlight the identification451

of refugia in our current study, despite having created an online visualizer. We note that452

a small number of reefs are projected to persist beyond 2°C GMSTA even under the most453

stringent metric (Table 3), but that we have low confidence in the precise locations of454

these potential refugia. Indeed, we see an urgent need to further improve ecological pro-455

jection in order to attain the capacity to robustly identify refugia, including understand-456

ing the physical basis for their projected persistence, for the sake of guiding conserva-457

tion efforts. Our group plans to release improved projections in a subsequent study, which458

will include identification of refugia.459

Finally, we feel that it is no longer possible to overstate the importance of rapid460

cessation of human greenhouse gas emissions. In the absence of extremely rapid coral461

adaptation to increasing heat, which would need to occur in the simultaneous presence462

of the many additional and serious anthropogenic stressors listed earlier, our results sug-463

gest that 2°C of global heating could render Earth essentially uninhabitable to warm wa-464

ter coral reefs as we know them. Furthermore, if near-future emissions are equivalent or465

greater than SSP245, we project that by 2040 over 99% of the world’s reefs will be sub-466

ject to thermal severe bleaching conditions too recurrent for recovery (TD5Y), which will467

continue to worsen. On the other hand, if emissions approximated the SSP126 scenario468

and GMSTA were limited to 1.5°C, this level of severe bleaching might not attain and469

global conditions could stabilize on a planet with coral reefs.470
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This Supporting Information contains additional supporting text, additional supporting

figures, and additional supporting tables for our paper.

Text S1.

Here we describe the empirical determination of the sensitivity of departure year to the

DHW threshold and to the climatological baseline on which it is referenced for SSP245,

SSP370, and SSP585, from which we can derive the direct equivalence relationship be-

tween DHW threshold and climatological baseline. To do this, we began by defining five

climatological reference periods, 15 year contiguous period centered around 1970, 1980,
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1990, 2000, and 2010. Since we required more than two decades of time span in which

to perform this experiment, and the MUR SST dataset only goes back to 2002, we used

the HadISST observational dataset, which has a horizontal resolution of 1 degree, and the

global model ensemble of SST projections at the same spatial resolution. We calculated

HadISST climatologies at each reef-containing coarse grid point. We did this for SSP245,

SSP370, and SSP585. We did not include SSP126 due to the many reef locations which

depart only after 2100.

For these three climate scenarios, and for each of the five climatological baselines, we

find the year of projected departure beyond a threshold of 8 DHW at an annual return

frequency at each 1-degree reef-containing grid cell. We then find the mean value over

all the grid cells for each scenario and climatological baseline, and determine the least

squares linear fit for each scenario (Figure S1, first column). We next perform a similar

experiment, except instead of varying the climatological baseline, we choose one baseline

(2010, i.e. 2003-2017) and vary the DHW threshold (Figure S1, second column). This

determines an empirical relationship between the climatological baseline and the DHW

threshold.

While the mean departure years from each of the three SSPs have different linear rela-

tionships to climatological baseline and DHW threshold, we find that the climatologically

adjusted DHW threshold is 4.8 for each climate scenario. The largest difference between

the three pairs of numbers (0.05 DHW) corresponds to mean departure year errors of 0.11

years, 0.14 years, and 0.20 years for SSP585, SSP370, and SSP245 respectively. These

errors are negligible compared to other uncertainties in the analysis. We can use these

relationships to determine equivalent DHW thresholds for any climatological baseline.
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Text S2.

The following model groups and model members were used to produce Tables S1 and

S2 below, using the methods described in the paper:

ACCESS-CM2 r1i1p1f1, ACCESS-CM2 r2i1p1f1, ACCESS-CM2 r3i1p1f1, ACCESS-

ESM1-5 r1i1p1f1, ACCESS-ESM1-5 r2i1p1f1, ACCESS-ESM1-5 r3i1p1f1, BCC-CSM2-

MR r1i1p1f1, CAMS-CSM1-0 r1i1p1f1, CAMS-CSM1-0 r2i1p1f1, CESM2 r10i1p1f1,

CESM2 r11i1p1f1, CESM2 r4i1p1f1, CESM2-WACCM r1i1p1f1, CMCC-CM2-SR5

r1i1p1f1, CNRM-CM6-1 r1i1p1f2, CNRM-CM6-1 r2i1p1f2, CNRM-CM6-1 r3i1p1f2,

CNRM-CM6-1 r4i1p1f2, CNRM-CM6-1 r5i1p1f2, CNRM-CM6-1 r6i1p1f2, CNRM-CM6-

1-HR r1i1p1f2, CNRM-ESM2-1 r1i1p1f2, CNRM-ESM2-1 r2i1p1f2, CNRM-ESM2-1

r3i1p1f2, CNRM-ESM2-1 r5i1p1f2, CanESM5 r10i1p1f1, CanESM5 r10i1p2f1, CanESM5

r11i1p1f1, CanESM5 r11i1p2f1, CanESM5 r12i1p1f1, CanESM5 r12i1p2f1, CanESM5

r13i1p1f1, CanESM5 r13i1p2f1, CanESM5 r14i1p1f1, CanESM5 r14i1p2f1, CanESM5

r15i1p1f1, CanESM5 r15i1p2f1, CanESM5 r16i1p1f1, CanESM5 r16i1p2f1, CanESM5

r17i1p1f1, CanESM5 r17i1p2f1, CanESM5 r18i1p1f1, CanESM5 r18i1p2f1, CanESM5

r19i1p1f1, CanESM5 r19i1p2f1, CanESM5 r1i1p1f1, CanESM5 r1i1p2f1, CanESM5

r20i1p1f1, CanESM5 r20i1p2f1, CanESM5 r21i1p1f1, CanESM5 r21i1p2f1, CanESM5

r22i1p1f1, CanESM5 r22i1p2f1, CanESM5 r23i1p1f1, CanESM5 r23i1p2f1, CanESM5

r24i1p1f1, CanESM5 r24i1p2f1, CanESM5 r25i1p1f1, CanESM5 r25i1p2f1, CanESM5

r2i1p1f1, CanESM5 r2i1p2f1, CanESM5 r3i1p1f1, CanESM5 r3i1p2f1, CanESM5

r4i1p1f1, CanESM5 r4i1p2f1, CanESM5 r5i1p1f1, CanESM5 r5i1p2f1, CanESM5

r6i1p1f1, CanESM5 r6i1p2f1, CanESM5 r7i1p1f1, CanESM5 r7i1p2f1, CanESM5

r8i1p1f1, CanESM5 r8i1p2f1, CanESM5 r9i1p1f1, CanESM5 r9i1p2f1, CanESM5-
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CanOE r1i1p2f1, CanESM5-CanOE r2i1p2f1, CanESM5-CanOE r3i1p2f1, EC-Earth3

r11i1p1f1, EC-Earth3 r15i1p1f1, EC-Earth3 r1i1p1f1, EC-Earth3 r4i1p1f1, EC-Earth3-

Veg r1i1p1f1, EC-Earth3-Veg r2i1p1f1, EC-Earth3-Veg r3i1p1f1, EC-Earth3-Veg r4i1p1f1,

FGOALS-f3-L r1i1p1f1, FGOALS-f3-L r2i1p1f1, FGOALS-f3-L r3i1p1f1, FGOALS-g3

r1i1p1f1, FGOALS-g3 r2i1p1f1, FGOALS-g3 r3i1p1f1, FGOALS-g3 r4i1p1f1, GFDL-

ESM4 r1i1p1f1, GISS-E2-1-G r1i1p3f1, IPSL-CM6A-LR r14i1p1f1, IPSL-CM6A-LR

r1i1p1f1, IPSL-CM6A-LR r2i1p1f1, IPSL-CM6A-LR r3i1p1f1, IPSL-CM6A-LR r4i1p1f1,

IPSL-CM6A-LR r6i1p1f1, MCM-UA-1-0 r1i1p1f2, MIROC-ES2L r1i1p1f2, MIROC6

r1i1p1f1, MIROC6 r2i1p1f1, MIROC6 r3i1p1f1, MPI-ESM1-2-HR r1i1p1f1, MPI-ESM1-

2-HR r2i1p1f1, MPI-ESM1-2-LR r10i1p1f1, MPI-ESM1-2-LR r1i1p1f1, MPI-ESM1-

2-LR r2i1p1f1, MPI-ESM1-2-LR r3i1p1f1, MPI-ESM1-2-LR r4i1p1f1, MPI-ESM1-2-

LR r5i1p1f1, MPI-ESM1-2-LR r6i1p1f1, MPI-ESM1-2-LR r7i1p1f1, MPI-ESM1-2-LR

r8i1p1f1, MPI-ESM1-2-LR r9i1p1f1, NorESM2-LM r1i1p1f1, NorESM2-MM r1i1p1f1,

UKESM1-0-LL r1i1p1f2, UKESM1-0-LL r2i1p1f2, UKESM1-0-LL r3i1p1f2, UKESM1-

0-LL r4i1p1f2, UKESM1-0-LL r8i1p1f2, INM-CM4-8 r1i1p1f1, INM-CM5-0 r1i1p1f1.
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Figure S1. Departure year sensitivity to climatology center year (left) and degree

heating weeks (right) for SSP245 (top row), SSP370 (middle row) and SSP585 (bottom

row).
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Figure S2. Cumulative histograms of thermal departure as a function of GMSTA, for

SSP126 (black), SSP245 (blue), SSP370 (green), SSP585 (red), for a five year heat event

return timescale (TD5Y, top row) and a ten year heat event return timescale (TD10Y,

bottom row). Both DHW thresholds are shown. Cyan and magenta horizontal lines show

the 10% and 1% fractional levels respectively; colored vertical ticks on the y-axis indicate

crossings of these levels. Shading indicates the propagated MUR SST uncertainty.
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Figure S3. Global maps of thermal departure under the four emissions scenarios (from

top: SSP126, SSP245, SSP370, SSP585) for TD5Y and the 8 DHW2008 threshold.
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Figure S4. Global maps of thermal departure under the four emissions scenarios (from

top: SSP126, SSP245, SSP370, SSP585) for TD10Y and the 8 DHW2008 threshold.
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Figure S5. Global maps of thermal departure under the four emissions scenarios (from

top: SSP126, SSP245, SSP370, SSP585) for TD5Y and the 8 DHW1988 threshold.
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Figure S6. Global maps of thermal departure under the four emissions scenarios (from

top: SSP126, SSP245, SSP370, SSP585) for TD10Y and the 8 DHW1988 threshold.

February 1, 2022, 8:46pm



: X - 11

[a] [b]

Figure S7. Error distributions of the mean of the three annual maximum DHW

values calculated between 2018 and 2020 from MUR subtracted from the corresponded

value from the downscaled model ensemble, for SSP126 and using (a) the CMIP6 model

ensemble used in the paper with 35 model members; (b) The CMIP6 model ensemble

listed in Supplemental Information T2 with 127 model members.
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Table S1. Projected years and GMSTAs after which fewer than the stated percentage

of 1 km2 reef locations remain below the thermal thresholds, using the models and model

members listed in Text S2 and methods described in the paper

5Y 8 DHW2008 10Y 8 DHW2008 5Y 8 DHW1988 10Y 8 DHW1988

SSP 30% 10% 1% 30% 10% 1% 30% 10% 1% 30% 10% 1%

Year in twenty-first century

126 26 90 - 23 37 - 19 23 - 16 18 86

245 26 36 69 22 33 58 19 21 41 16 17 34

370 26 34 50 22 31 44 19 22 35 16 17 32

585 24 33 47 20 30 43 19 21 33 16 17 30

Global mean surface temperature anomalies (degrees C)

245 1.4 1.7 2.0 1.3 1.6 2.0 1.2 1.3 1.8 1.1 1.1 1.6

370 1.4 1.7 2.0 1.3 1.6 1.9 1.2 1.3 1.7 1.1 1.2 1.6

585 1.4 1.6 2.0 1.3 1.5 2.0 1.2 1.3 1.6 1.1 1.1 1.5

February 1, 2022, 8:46pm



: X - 13

Table S2. Percentages and numbers of reef locations remaining below the stated

GMSTA value (in degrees C) for a given bleaching metric, using the models and model

members listed in Text S2 and methods described in the paper

5Y 8 DHW2008 10Y 8 DHW2008 5Y 8 DHW1988 10Y 8 DHW1988

SSP 1.5 1.7 2.0 1.5 1.7 2.0 1.5 1.7 2.0 1.5 1.7 2.0

Percent 1 km2 reef locations remaining below GMSTA value

245 26% 10% 1% 19% 7% 1% 4% 1% 0% 2% 1% 0%

370 24% 8% 1% 16% 6% 0% 3% 1% 0% 2% 1% 0%

585 15% 5% 1% 11% 3% 1% 2% 1% 0% 1% 0% 0%

Number of 1 km2 reef locations remaining below GMSTA value, out of 829K

245 213K 79K 10K 161K 59K 5350 30K 11K 1796 18K 5615 384

370 205K 74K 14K 139K 51K 6248 30K 10K 1983 19K 5090 717

585 136K 51K 16K 98K 29K 8005 16K 5117 1365 10K 3102 946
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