
P
os
te
d
on

25
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
0
19
6.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Estimating historical air-sea CO2 fluxes: Incorporating physical

knowledge within a data-only approach

Val Bennington1, Tomislav Galjanic2, and Galen A McKinley3

1Lamont Doherty Earth Institute of Columbia University
2Data Science Institute at Columbia University
3Lamont Doherty Earth Observatory of Columbia University

November 25, 2022

Abstract

The ocean plays a critical role in reducing human impact on the global climate by absorbing and sequestering CO2 from the

atmosphere. To quantify the ocean’s role in the global carbon budget, we need surface ocean pCO2 across space and time, but

only sparse observations exist. The typical approach to reconstructing pCO2 is to train a machine learning approach on a subset

of the pCO2 data and available physical and biogeochemical observations. Though the variables are all related to the pCO2,

these approaches are often perceived as black boxes, as it is unclear how inputs are physically linked to pCO2 outputs. Here,

we add physics by incorporating our knowledge of the direct effect of temperature on surface ocean pCO2. We use the machine

learning algorithm XGBoost to develop a function between satellite and in-situ observations and the difference between observed

pCO2 and the pCO2 that would exist if temperature variations were the only driver of variability. We show the resulting model

is physically consistent, and performs at least as well as other data approaches. Uncertainty in the reconstructed pCO2 and

its impact on the estimated CO2 fluxes are quantified. Uncertainty in piston velocity drives flux uncertainties. The historical

reconstructed CO2 fluxes show larger interannual variability than the smoother neural network approaches, but a lesser trend

since 2005. We estimate an air-sea flux of -2.3 +/- 0.5 PgC/yr for 1990-2018, agreeing with other data products and the Global

Ocean Carbon Budget models of 2021 estimate of -2.3 +/- 0.4 PgC/yr.
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Key Points:6

• New machine learning approach incorporates physical knowledge of ocean carbon7

system into algorithms to extrapolate to global coverage.8
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Abstract12

The ocean plays a critical role in reducing human impact on the global climate by ab-13

sorbing and sequestering CO2 from the atmosphere. To quantify the ocean’s role in the14

global carbon budget, we need surface ocean pCO2 across space and time, but only sparse15

observations exist. The typical approach to reconstructing pCO2 is to train a machine16

learning approach on a subset of the pCO2 data and available physical and biogeochem-17

ical observations. Though the variables are all related to the pCO2, these approaches18

are often perceived as black boxes, as it is unclear how inputs are physically linked to19

pCO2 outputs. Here, we add physics by incorporating our knowledge of the direct ef-20

fect of temperature on surface ocean pCO2. We use the machine learning algorithm XG-21

Boost to develop a function between satellite and in-situ observations and the difference22

between observed pCO2 and the pCO2 that would exist if temperature variations were23

the only driver of variability. We show the resulting model is physically consistent, and24

performs at least as well as other data approaches. Uncertainty in the reconstructed pCO225

and its impact on the estimated CO2 fluxes are quantified. Uncertainty in piston veloc-26

ity drives flux uncertainties. The historical reconstructed CO2 fluxes show larger inter-27

annual variability than the smoother neural network approaches, but a lesser trend since28

2005. We estimate an air-sea flux of -2.3 ± 0.5 PgC/yr for 1990-2018, agreeing with other29

data products and the Global Ocean Carbon Budget models of 2021 estimate of -2.3 ±30

0.4 PgC/yr. (Friedlingstein et al., 2021).31

Plain Language Summary32

The ocean absorbs carbon dioxide from the atmosphere, moderating the human im-33

pact on the world’s climate. To quantify how much carbon dioxide is removed from the34

atmosphere by the ocean each year, we must know how much gas is exchanged at each35

location across the ocean over time. The observations necessary to quantify this gas ex-36

change are very sparse and require gap-filling in both space and time. Because of the het-37

erogeneity of this gas exchange, complex relationship between the ocean observations with38

near global coverage and ocean carbon are determined using machine learning algorithms.39

These techniques are often perceived as black boxes, where inputs are converted to out-40

puts without much explanation. Here, we develop a novel machine learning approach that41

explicitly incorporates physical knowledge of the ocean carbon cycle into the reconstruc-42

tion approach. We show that our technique results in a physically consistent model and43
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estimates the ocean carbon sink to be in similar magnitude as ocean carbon biogeochem-44

ical models.45

1 Introduction46

The ocean plays a significant role in reducing human impact on the climate by ab-47

sorbing and sequestering approximately one quarter of anthropogenic carbon dioxide (CO2)48

emissions each year (McKinley et al., 2016; Khatiwala et al., 2013; Sabine et al., 2004;49

Friedlingstein et al., 2021). Since the beginning of the Industrial Revolution, the ocean50

has absorbed about a third of the total anthropogenic emissions. The mean state of the51

ocean carbon cycle is well defined (Takahashi et al., 2009; Gloege, Yan, et al., 2021). Yet,52

the quantification of year-to-year variability and long-term changes in this carbon sink53

remains a challenge. This quantification is necessary for climate policies worldwide in54

order to separate the impact of any mitigation policies from interannual variability in55

the ocean carbon sink (Peters et al., 2017).56

To quantify the variability and trend in the ocean carbon cycle, both global ocean57

biogeochemical models (GOBMs) and statistical approaches are used. The degree to which58

these methods agree builds confidence in estimates of the ocean carbon sink, and its vari-59

ability. GOBMs are mechanistic models which incorporate our knowledge of the processes60

that control the ocean carbon cycle and the resulting air-sea fluxes of carbon dioxide.61

While the models can be compared to observations to assess performance (Hauck et al.,62

2020), they do not directly incorporate observations of the partial pressure of carbon diox-63

ide in the surface ocean (pCO2). The nine models included in the Global Carbon Bud-64

get have some significant biases and often poor correlations with independent data sets65

(Fay & McKinley, 2021). Observation-based data products reconstruct the surface ocean66

pCO2 across the global ocean in both space and time from sparse measurements using67

statistical techniques. Then, air-sea fluxes of carbon dioxide are calculated from the re-68

sulting air-sea difference (∆pCO2=pCOocean
2 -pCOatm

2 ). These data products typically69

use machine learning algorithms to develop a nonlinear function between observations70

of surface ocean pCO2 and related variables that can be observed with greater spatio-71

temporal coverage. The resulting function is then used to extrapolate pCO2 across the72

global ocean in both space and time. While the resulting observation-based products show73

higher correlations and smaller RMSE against observations than do models (Hauck et74
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al., 2020), the algorithms are often viewed as black boxes due to the purely statistical75

machine learning techniques used to extrapolate.76

Reichstein et al. (2019) state that while machine learning approaches may fit ob-77

servations well, they may be unrealistic or not be interpretable. One method to improve78

plausibility and confidence in the data-based approach of estimating global air-sea fluxes79

is to incorporate well-accepted physical knowledge into the novel machine learning ap-80

proaches. Incorporating physical knowledge within a machine learning approach is rel-81

atively new to the geosciences, but has typically been implemented using a modified cost82

function that penalizes unphysical results. Typical machine learning algorithms develop83

a function by minimizing a cost function. This cost function is usually a sum of the Mean84

Squared Error (MSE) between the predicted pCO2 and the observed pCO2 plus a reg-85

ularization term. This regularization term is used to penalize complexity in the result-86

ing algorithm, so the algorithm will generalize better. Read et al. (2019), use a neural87

network approach to predict lake temperature profiles in Lake Mendota and Sparkling88

Lake. Root mean squared error (RMSE) was smaller compared to predictions form a pro-89

cess based model. However, a standard neural network approach resulted in unphysical90

conditions at times. To improve upon the standard neural network approach, Read et91

al. (2019) modify their cost function to include a penalty for model predictions that re-92

sult in non-physical conditions: denser water on top of lighter water. Their final model93

further reduces RMSE such that the final neural network provides the best prediction94

of lake temperature profiles.95

For Lake Mendota and Sparkling Lake temperature profiles, there is a physical con-96

dition that can easily be penalized. When reconstructing heterogeneous surface ocean97

pCO2, there is no obvious way to penalize the model for a given pCO2 prediction based98

upon neighboring predictions. So how can we incorporate the physical mechanisms we99

know control the ocean carbon cycle within a machine learning approach? Previous ma-100

chine learning approaches to reconstructing surface ocean pCO2 rely on the algorithm101

to decipher the ways in which atmospheric CO2, sea surface temperature, chlorophyll-102

a, mixed layer depth climatology, sea surface salinity, winds, geographic location, and103

time of year impact the resulting surface ocean pCO2. Each of these features impacts104

pCO2. Chlorophyll-a provides a measure of the biological production that removes dis-105

solved inorganic carbon (DIC) from the surface ocean, thereby reducing surface ocean106

pCO2. Mixed layer depth is a proxy for ocean stratification. During highly stratified times,107
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the phytoplankton are held within the lit surface ocean, setting up production. During108

periods of deeper mixing, DIC from depth is brought to the surface, and an increase in109

surface ocean pCO2 occurs. However, mixed layer depths are also an indicator of tem-110

perature. Temperature has both direct and indirect effects on surface ocean pCO2. In-111

creasing (decreasing) temperatures directly result in an increase (decrease) of pCO2 (Takahashi112

et al., 2002). However, temperature variations also set up biological production via strat-113

ification and wintertime vertical mixing, processes that result in opposing pCO2 changes114

compared to the direct temperature effect on pCO2.115

Previous approaches rely on a machine learning algorithm to create a single func-116

tion that disentangles the competing effects of temperature variations by relying on other117

variables such as Chlorophyll-a (Chl-a) and mixed layer depth (MLD). At the same time,118

we do know well the direct temperature impact on pCO2 from the empirical work of Taka-119

hashi et al. (2002). Here, we develop a hybrid modeling approach that removes the well-120

known direct effect of temperature on pCO2 from our regression, and asks the machine121

learning algorithm to learn only the indirect effects of temperature on pCO2, supported122

by the information from other input variables. We introduce the pCO2-Residual approach123

and show that the resulting model does in fact capture the gross physical processes we124

know to be true. Additionally, it performs as well as the best other data-based approaches125

when compared to observations. The resulting model is used to estimate the air-sea CO2126

fluxes for 1985-2019, and uncertainties are quantified.127

2 Methods128

2.1 pCO2-Residual129

To incorporate physical knowledge of the system, we calculate a residual (pCO2-130

Residual), the difference between observed pCO2 and the purely temperature driven com-131

ponent of pCO2 (pCO2-T). We use a machine learning algorithm, eXtreme Gradient Boost-132

ing (XGBoost) (Chen & Guestrin, 2016), to develop a function between observations and133

the pCO2-Residual, to reconstruct the residual across all space and time. For the final134

reconstruction of surface ocean pCO2, we add pCO2-T back to our residual. CO2 fluxes135

are then calculated using the reconstructed pCO2.136
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2.1.1 Pre-processing SOCAT observations137

We calculate surface ocean pCO2 from the SOCAT v2021 monthly gridded fCO2138

product (Bakker et al., 2016). This is a quality-controlled dataset containing observa-139

tions of the fugacity of carbon dioxide (f CO2) in the surface ocean that is converted to140

surface ocean pCO2 according to Equation 1,141

pCO2 = fCO2 · exp
(
Patm · B + 2δ

R · T

)−1

(1)142

where Patm is the atmospheric pressure at sea level from ERA5, T is the sea surface tem-143

perature (SST) in Kelvin from the National Oceanic and Atmospheric Administration144

(NOAA) optimally interpolated SST version 2 (OISSTv2), B and δ are virial coefficients145

from Weiss (1974), and R is the gas constant (Dickson et al., 2007). The data are sparse146

in both space and time, with significant coverage gaps throughout the southern hemi-147

sphere, particularly during winter. See Gregor et al. (2019) and Gloege et al. (2021) for148

details of data coverage.149

2.2 Initial pCO2 Reconstruction150

Utilizing processed SOCAT pCO2 and the XGBoost algorithm, we do an initial global151

reconstruction of pCO2 for 1982-2019 utilizing the observations and data products in Ta-152

ble 1. This reconstruction is only used to determine the mean pCO2 at all locations over153

the period 1985-2019 that is required for calculation of the pCO2-Residual (see Section154

2.2.1).155

2.2.1 Calculating pCO2-Residual156

We calculate the temperature driven component of pCO2 (pCO2-T) via Equation157

2 (Takahashi et al., 2002),158

pCO2T = pCO2 · exp(0.0423 · (SST − SST )) (2)159

where pCO2 is mean surface ocean pCO2 from the initial pCO2 reconstruction, SST is160

temperature in Celsius from NOAA OISSTv2, and SST is the local long term mean in161

SST in Celsius from NOAA OISSTv2. The residual (pCO2-Residual) is calculated as the162

difference between observed pCO2 and pCO2T for all observations, and this process is163

shown in detail in Figure 1.164
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pCOResidual2 = pCO2 − pCO2T (3)165

We examine the properties of the residual in Figure 2. In regions such as the subtrop-166

ics, where pCO2 is primarily driven by the direct effects of temperature, mean absolute167

value of the residual is small (Figure 2a). Regions where the seasonal cycle of pCO2 is168

not dominantly controlled by temperature, such as the subpolar regions, have larger resid-169

uals. Thus, the subtropical regions have residuals on the order of 10 µatm, while sub-170

polar regions may have residuals on the order of 100 µatm. Looking at the seasonality171

of the residual in Figure 2c and 2d, we see that during local winter, the residual is large172

and positive in the subpolar regions where vertical mixing returns DIC to the surface173

waters and pCO2 is increased even though temperatures are low. During local summer,174

the subpolar regions have negative residuals, where biological drawdown of DIC reduces175

the increase in pCO2 expected from the increases in temperature. The seasonal resid-176

ual is small in magnitude in the subtropical regions where temperature is primary driver177

of surface ocean pCO2. The pCO2-Residual in the observations is approximately nor-178

mally distributed (Figure 2b), with a small positive mean. This non-zero mean is due179

to the increasing rate of sampling, with more observations occurring when the pCO2-180

Residual is larger in magnitude.181

We experimented with this approach using ensembles of four Earth System Mod-182

els, a technique developed by Gloege et al. (2021), and confirmed its ability to recon-183

struct surface ocean pCO2, providing confidence in our approach (Section S1). We found184

significance increases in the ability to reconstruct of pCO2 across the global ocean, par-185

ticularly in the poorly sampled regions in the southern hemisphere where temperature186

is a primary driver of surface ocean pCO2, as compared to when reconstructing pCO2187

without the knowledge of pCO2-T.188

2.3 XGBoost189

The machine learning algorithm XGBoost is used to reconstruct the pCO2-Residual190

across the global surface ocean for 1982-2019. XGBoost is a supervised machine learn-191

ing algorithm that utilizes Extreme Gradient Boosting (Chen & Guestrin, 2016) to pre-192

dict a target variable (y), the pCO2-Residual from multiple features, (X) such as SST,193

SSS, chlorophyll-a, and mixed layer depth. The algorithm estimates a non-linear func-194

tion such that f(X) ≈ y. The algorithm begins with a single initial guess of the pCO2-195
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Figure 1. a) Mean surface ocean pCO2 from the initial run. b) Observed satellite SST time

series from location of yellow diamond in subplot (a). c) Calculated pCO2T (blue) and observed

pCO2 (red dots) at yellow diamond located in (a). d) The calculated pCO2Residual, or the

difference between observed pCO2 and calculated pCO2T at location specified in (a).

Residual (one value for the entire globe at all times.) Then, decision trees made up of196

the features are added one by one, which adjust the initial guess to reduce the loss, or197

difference between the pCO2-Residual in the training data and the prediction. The pro-198

cess of adding trees is continued until the maximum number of trees permitted is reached,199

or when adding an additional tree does not improve the calculated cost function. Here,200

the loss function is the mean squared error (MSE) between the training data and the pre-201

dictions. The final prediction of pCO2-Residual is the sum of the initial guess and the202

result of all the decision trees.203

The features and associated pCO2-Residuals are split into validation, training, and204

testing sets. The validation set is used to optimize the hyperparameters of the algorithm,205

namely, the number of trees used and maximum depth of each tree. Our final XGBoost206

algorithm uses 1000 decision trees with a maximum depth of 7 levels. The training set207

is used to build the function between the features and the residual; i.e., the training set208

builds the decision trees. The testing set is withheld to test how well the function gen-209

eralizes. Once the hyperparameters are determined, we separate the training data from210

the test data by month. Four months are used for training, and then the next month for211

testing, similar to Gregor et al. (2019), who shift years. This is repeated throughout the212
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Figure 2. (a) Mean of the absolute value (M.A.V.) of the pCO2-Residual calculated from all

observations in the SOCAT database. (b) Histogram of the calculated pCO2-Residual from SO-

CAT observations. (c) Mean pCO2-Residual calculated for all observations during the northern

hemisphere winter (DJF). (d) Same as (c) but for southern hemisphere winter (JAS).
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dataset. This is done to reduce the number of individual cruises seen in both the train-213

ing and test data, but to train on observations from all years. We develop five models214

by shifting our initial month of testing data, and our final estimate of the residual is the215

ensemble mean of the five predictions.216

2.4 Features217

In order to reconstruct the residual across both space and time, datasets with ap-218

proximately full global coverage are used (Table 1): Sea Surface Temperature (SST) and219

Chlorophyll-a (Chl-a) from satellite; Sea Surface Salinity (SSS) from in situ data (Good220

et al., 2013); Mixed Layer Depth (MLD) climatology from Argo floats (de Boyer Montégut221

et al., 2004); and the mixing ratio of atmospheric CO2 from global stations (Masarie,222

2012). Additional interannual anomalies are derived for SST, SSS, and Chl-a by subtract-223

ing the monthly climatology of the feature from a given month’s observation. Geographic224

location and time of year are incorporated using an N-vector transformation of latitude225

and longitude and a time transformation of day of year. We tested using self organiz-226

ing maps to separate the ocean according to their feature properties into 5, 10, and 15227

biomes, but improvement was negligible, so we maintain the simpler model (Supplemen-228

tary).229

We tested the sensitivity of the reconstruction to the source of mean pCO2 (pCO2)230

used in the calculation of pCO2T with Equation 2, which is then input to the pCO2-Residual231

calculation in Equation 3. Reconstructions using LDEO pCO2 (Takahashi et al., 2009)232

and the mean pCO2 of the SeaFlux data products (Fay et al., 2021) as the pCO2 mean.233

The alternative sources of pCO2 mean did not significantly impact the reconstructed pCO2234

or resulting air-sea CO2 exchange, so we maintain the internally consistent method of235

the initial reconstruction of pCO2.236

2.4.1 Chlorophyll-a237

We utilize satellite Chlorophyll-a of GlobColour (Maritorena et al., 2010) for 1998-238

2019. We fill the missing winter months at the poles by linearly interpolating between239

the last month observed prior to the winter and the first month observed after winter.240

This results in lower chlorophyll values during winter than if we had used annual means241

to fill in the gaps. This same technique is used when any month is missing observations242
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Table 1. Summary of the products, variables, and processing steps used for feature and target

datasets.

Product Variable Abbreviation Processing

NOAA OISSTv21 Sea Surface Temperature SST -

SST anomaly SST’ SST - monthly clim

Met Office: EN42 Salinity SSS -

SSS anomaly SSS’ SSS - monthly clim

NOAA: GLOBALVIEW3 Atmospheric CO2 xCO2 -

ESA GlobColour4 Chl a Chl a Log10(Chla)

Chl a anomaly Chl a’ Chl a - monthly clim

deBoyer Montegut5 Mixed Layer Depth MLD Log10(MLD)

pCO2 Mean pCO2 pCO2 clim Equation 2

SOCATv20206 Partial pressure of CO2 pCO2 Equations 1,3

Geographic Location A sin(λ)

- B sin(µ)cos(λ)

C -cos(µ)cos(λ)

Time of Year T0 sin
(
j∗2π
365

)
- T1 cos

(
j∗2π
365

)
1 Source: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, (Reynolds et al., 2002)

2 Source: https://www.metoffice.gov.uk/hadobs/en4/, (Good et al., 2013)

3 Source: https://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2 intro.html, (Masarie, 2012)

4 Source: http://www.globcolour.info/, (Maritorena et al., 2010)

5 Source: http://www.ifremer.fr/cerweb/deboyer/mld/home.php, (de Boyer Montégut et al., 2004)

6 Source: https://www.socat.info/, (Bakker et al., 2016)
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outside of the poles. Since no full year of satellite observations are available prior to 1998,243

we use the climatology of Chlorophyll-a calculated from 1998-2019 observations at all244

locations and months prior to 1998. Within the Large Ensemble Testbed, utilizing cli-245

matological chlorophyll prior to 1998 introduced a mean uncertainty of 0.1 Pg C / yr246

to the global air-sea CO2 exchange (Section S2).247

2.5 Feature Importance248

One of the benefits of the XGBoost algorithm is the ability to determine relative249

contributions by each of the features to the final estimate of pCO2-Residual. This is called250

feature importance. This tells us the relationships between pCO2-Residual and the in-251

put features that have been identified through model training. This supports assessment252

of the degree to which known physical and biogeochemical mechanisms are embodied in253

the reconstruction. In other words, this allows us to physically interpret our algorithm.254

Here we utilize SHapley Additive exPlanations (SHAP) (Shapley, 1953) calculated us-255

ing the SHAP module in Python (Lundberg et al., 2018), to examine both local and global256

interpretability of the resulting model.257

SHAP computes the contribution of each feature to the final prediction, and solves258

the game theory problem of relative contributions of players, and therefore fairly distributed259

payouts, amongst players in cooperative games. In our case, SHAP calculates the im-260

portance of each predictor (feature) by starting with the mean values of all features, and261

the expected value of the pCO2-Residual. For a given month’s reconstruction of the pCO2-262

Residual in a single grid cell, each feature is adjusted one-by-one to the observed value263

from its mean. As the features are adjusted, the change in the expected value of the pCO2-264

Residual is calculated, and the difference from the previous expected value is determined.265

This difference is the feature importance. Since the ordering of the features matters, SHAP266

computes these attributions for every permutation of feature ordering, and final feature267

importance is the mean contribution by a given feature to the final reconstruction of the268

pCO2-Residual, across all ordering permutations.269

2.6 Independent Datasets270

Due to the fact that 80% of the observations contained within the SOCAT database271

are used to construct the method, and only 20% of the observations remain for testing,272
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we also examine how well the reconstruction method performs against independent ob-273

servations not contained within the SOCAT database. We utilize two ocean time series274

locations: Bermuda Atlantic Time-Series Study (BATS) and Hawaii Ocean Time-Series275

(HOT). We also examine how well the reconstructed pCO2 compares to observations con-276

tained only in the Lamont-Doherty Earth Observatory (LDEO) dataset (data already277

in SOCAT are removed) and the GLobal Ocean Data Analysis Project version 2 (GLO-278

DAPv2). For LDEO, pCO2 is directly measured. For the other datasets, pCO2 is cal-279

culated from observations of Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC)280

and temperature using the PyCO2SYS package in Python (Humphreys et al., 2021). Un-281

certainties for both directly measured pCO2 and indirectly calculated pCO2 are given282

in Table 3 of Gloege et al. (2021), and range from 2.5 µatm in LDEO (directly measured)283

to >12 µatm in GLODAPv2 (calculated). Given the known larger biases in some of the284

other data-based products in the 1980s, we compare to observations within the time frame285

1990-2019.286

2.7 Regression Skill287

To compare predicted pCO2 (P) to the observations (O), we examine the correla-288

tion (r), bias, root mean squared error (RMSE), mean absolute error (Mean AE), and289

median absolute error (Median AE). Bias, RMSE, Mean AE, and Median AE measure290

the size of the error in the predicted pCO2. Bias is calculated as the Mean Prediction291

- Mean Observation (bias = P−O), and simply indicates whether the regression tends292

to over- or under-estimate pCO2. A large positive (negative) bias indicates a tendency293

to overestimate (underestimate) pCO2. However, a bias of small magnitude may be due294

to large, compensating biases. RMSE measures magnitude of the predicted error, but295

penalizes larger errors and outliers. It is calculated as the square root of the mean of the296

squared errors

√
(P −O)2. The Mean AE simply determines the average of the abso-297

lute value of the error, treating each error equally. The Median AE is the most common298

value of the absolute error. The Pearson correlation coefficient (r) measures how much299

the observations and reconstruction tend to vary together, with values near +1 (-1) in-300

dicating a high tendency to vary together (opposite). It is calculated as the covariance301

between the predictions and the observations, divided by the product of their individ-302

ual standard deviations.303
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2.8 Arctic and Coastal Zones304

The pCO2-Residual product does not reconstruct coastal or Arctic Ocean pCO2,305

and thus only covers 89.6% of the global ocean. Before air-sea fluxes are calculated, coastal306

and Arctic regions not reconstructed by the data products must be filled. For consistent307

comparisons, these coastal areas are filled with the scaled coastal pCO2 climatology (Landschützer308

et al., 2020) according to Fay et al. (2021) for all data products.309

2.9 CO2 Flux Calculations310

The bulk air-sea CO2 flux (FCO2) is calculated as:311

FCO2 = Kw ·K0 · (1 − icefraction) · (pCOsea2 − pCOatm2 ) (4)312

where Kw is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr313

14C bomb flux estimate according to Wanninkhof (1992); K0 is the solubility calculated314

using EN4 salinity and OISST temperatures (Weiss, 1974); icefraction is from the OISST315

product; pCOatm
2 is calculated from NOAA’s marine boundary layer product, corrected316

for water vapor pressure using ERA5 mean sea level pressure; and pCOsea
2 is the recon-317

structed surface ocean pCO2 for a given product. For a consistent comparison Kw, K0,318

ice fraction, and pCOatm
2 from SeaFlux are used (Fay et al., 2021). The SeaFlux dataset319

(Gregor & Fay, 2021) includes Kw for 3 wind speed products: CCMPv2, ERA5, and JRA55.320

Fluxes presented are the mean flux across the three wind products.321

2.9.1 Other Observational-based products322

We compare our reconstruction error statistics and air-sea carbon dioxide flux es-323

timates to those of five other observation-based data products that use machine-learning324

or statistical modeling (Table 2). The harmonized pCO2 data products and resulting fluxes325

were obtained from SeaFlux (Gregor & Fay, 2021).326

2.9.2 Anthropogenic Carbon Flux327

Data products which incorporate observations of surface ocean pCO2 include both328

natural and anthropogenic carbon in the resulting pCO2 and CO2 flux product. This329

is the net CO2 flux (Fnet = Fnatural + Fant). Global ocean biogeochemical models ex-330

clude the natural outgassing of riverine carbon, the dominant driver of the anthropogenic331
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Product Reference

CSIR ML6 Gregor et al. (2019)

CMEMS Denvil-Sommer et al. (2019)

HPD Gloege et al. (2021)

MLS Rodenbeck et al. (2013)

MPI-SOMFFN Landschutzer et al. (2014); Landschutzer, Gruber, and Bakker (2020)

Table 2. Observational data products used for comparison (Gregor & Fay, 2021; Fay et al.,

2021)

.

air-sea CO2 flux (Aumont et al., 2001). To quantify the anthropogenic air-sea CO2 flux,332

the riverine efflux of carbon dioxide must be subtracted from our net flux. Quantifying333

the global air-sea CO2 flux due to decomposition and outgassing of riverine carbon is334

itself a complex scientific problem, one that is still being worked on. Here, as in Gloege335

et al. (2021), we use an average of three estimates: Jacbobson et al. (2007): (0.45 +/-336

0.18 PgC/yr), Resplandy et al. (2018): (0.78 +/- 0.41 PgC/yr), and Lacroix et al. (2020):337

(0.23 Pg C / yr). The combined estimated efflux due to riverine carbon is 0.49 +/- 0.26338

Pg C/yr, and we remove the efflux of 0.49 PgC/yr from the estimated annual air-sea CO2339

fluxes calculated using the Residual and other data products’ pCO2 .340

3 Results341

3.1 Model Skill342

The pCO2-Residual approach is an ensemble of five reconstructions. The test statis-343

tics for pCO2 for each of the five reconstructions and their mean are shown in Table 2.344

We have a mean test RMSE of 16.33µatm, lower than the recent data product of Gre-345

gor et al. (2019) (17.16 µatm). Each run has a relatively small bias and is highly cor-346

related with the test observations. The Mean Absolute Error (Mean AE) is near 11 µatm,347

and the Median Absolute Error (Median AE) is less than 8 µatm. For the ensemble, RMSE348

is lowest (below 10 µatm) in the subtropical regions as we would expect, and higher in349

the equatorial Pacific, Southern Ocean, and subpolar North Atlantic and subpolar North350
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Run 1 Run 2 Run 3 Run 4 Run 5 Mean

RMSE (µatm) 16.13 16.02 16.76 16.51 16.25 16.33

Bias (µatm) 0.28 0.50 -0.21 0.61 -0.30 0.18

Correlation 0.89 0.90 0.88 0.89 0.89 0.89

Mean AE (µatm) 10.88 10.87 11.20 11.13 10.92 11.00

Median AE (µatm) 7.41 7.49 7.57 7.68 7.46 7.52

Table 3. pCO2 Test statistics for each of the five ensemble members, and their mean values.

Pacific (not shown). The ensemble model bias and RMSE are stable over time, with no351

clear trends. Previous techniques have exhibited a higher bias in the 1980s (Gregor et352

al., 2019).353

The technique was also examined within the Large Ensemble Testbed (Gloege, McKin-354

ley, et al., 2021) and showed a decrease in RMSE as compared to reconstructing pCO2355

without the knowledge of direct temperature effects, both for test data and in extrap-356

olation to where we have no observations for comparison outside of the model world (Sec-357

tion S1).358

3.2 Evaluation against Independent Data359

We examine the approach’s ability to reconstruct surface ocean pCO2 in data sets360

not contained within the SOCAT data. At the ocean timeseries sites Hawaii (HOT) and361

Bermuda (BATS), reconstructed surface ocean pCO2 is highly correlated with observa-362

tions (Figure 3). This is true for all data products shown, as seasonality is well captured363

in these subtropical regions (Rödenbeck et al., 2015; Gloege, Yan, et al., 2021). The pCO2-364

Residual technique is amongst the most highly correlated at both stations and is also365

amongst the best three at capturing the variability (Figure 3a,b).366

GLODAP and LDEO are observations taken along ship transects traveled irreg-367

ularly. As the data are not located at repeat stations, the correlations are lower, because368

they represent the spatial patterns of observations as well as temporal variability and369

change. Again, the pCO2-Residual technique is amongst the top performing observation-370

based data products, with high correlations. It underestimates the amplitude of observed371
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variability, as do all techniques except JENA-MLS (Figure 3c,d). Compared to the other372

observation-based data products, the unbiased RMSE is approximately equal to that of373

the LDEO-HPD technique, which is the best-performing gap-filling technique compared374

to these data (Gloege, Yan, et al., 2021).375

3.3 Physical Mechanisms376

Machine learning algorithms are often thought of as black boxes, but the XGB al-377

gorithm allows us to dig into that “black box” and examine the relative contributions378

of features to the model prediction. The first column in Figure 4 shows the mean (1982-379

2019) importance of mixed layer depth; geographic location and day of year; SST; and380

Chl-a to the model’s prediction of the pCO2-Residual. These are the dominant controls381

of the seasonal cycle of the pCO2-Residual within the algorithm. Here, we sum the im-382

portance of geographic location and day of year (D.O.Y.), because there is no seasonal383

cycle in location, but there is geographic variation of the impact of day of year on the384

pCO2-Residual. The second column of Figure 4 examines the mean seasonal cycles of385

feature importance for each of these predictors for four biomes of Fay and McKinley (2014).386

The third column of Figure 4 shows the contributions of interannually varying predic-387

tors to the reconstructed pCO2-Residual.388

The seasonal cycle of the pCO2-Residual is largely controlled by mixed layer depth,389

which has large mean feature importance (Figure 4a), but also large seasonal variations390

away from the equator (Figure 4e-h). Deep winter mixing brings up dissolved inorganic391

carbon (DIC) and increases pCO2, whereas shallower mixed layer depths set up biolog-392

ical production and a decrease in surface DIC. During northern hemisphere winter (DJF),393

the algorithm’s estimate of the pCO2-Residual is significantly increased (decreased) by394

mixed layer depth in the northern (southern) hemisphere as expected. There is a small395

seasonal cycle in the feature importance of MLD along the equator. The geographic lo-396

cation and day of year significantly increases the pCO2-Residual on the mean in the equa-397

torial zones and decreases the pCO2-Residual in the Southern Ocean (Figure 4b). We398

see the small mean impact of these combined features in the subpolar northern regions399

is the balanced effect of significant seasonal variations in its importance to the reconstructed400

pCO2-Residual (Figure 4d-f).401
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Figure 3. Taylor diagrams (Taylor, 2001) of Correlation (along circumference), Standard

Deviation (along radii), and RMSE (grey arcs centered at red star) of 5 previous data-based ap-

proaches (HPD in blue, MPI-SOMFFN in black, CSIR ML6 in red, CMEMS in green, and MLS

in cyan) and the new pCO2-Residual technique (magenta). BATS is shown at the top left, HOT

at the top right, LDEO at bottom left, and GLODAP at bottom right.
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While the direct impacts of SST are contained within the technique itself, Figure402

4g-i show the importance of SST to the reconstructed residual. Summertime stratifica-403

tion can set up biological production, and wintertime deep mixing can bring up older,404

remineralized dissolved inorganic carbon (DIC). We see that on the mean, the algorithm405

decreases its estimate of the residual in the warm equatorial regions and along the Gulf406

Stream, and increases its estimate in colder zones (Figure 4c). Small seasonal variations407

around this mean impact exist, with decreases in the residual seen in the summer hemi-408

sphere (Figure 4e,g,h). Examining the feature importance of chlorophyll on the mean,409

we see that Chl-a has a small impact on the model’s prediction (Figure 4d); in other words,410

the magnitudes of the adjustments made because of Chl-a values are smaller than other411

features. We do see, however, a negative adjustment to the residual estimate at times412

and regions of strong biological production (Figure 4g) and smaller positive adjustments413

made in less productive regions (Figure 4e,f,h), or outside of the summer season.414

The third column of Figure 4 examines the year-to-year variations in feature im-415

portance for those features with year-to-year changes (SST anomalies, xCO2, and Chl-416

a anomalies). Interannual anomalies in Chl-a do not cause significant adjustments to the417

residual for that year in any of the biomes (Figure 4i-l). However, interannual anoma-418

lies in SST do cause significant adjustments to the predicted pCO2-Residual, particu-419

larly in the eastern equatorial Pacific. Additionally, if we examine how xCO2 is used to420

adjust the initial guess of the pCO2-Residual in our algorithm, we see that low xCO2421

during the early years of the reconstruction translates to a negative adjustment (decrease)422

in the pCO2-Residual (Figure 4i-l). As the years progress, this contribution increases and423

becomes positive and large by the later years of the reconstruction. This is expected, as424

the ocean pCO2 increases following atmospheric pCO2. pCO2-T does not account for425

the long term trend in pCO2 since this is caused by the accumulation of DIC. The al-426

gorithm must learn why there is an increase in the pCO2-Residual over time, and as shown427

here, it correctly attributes this increase to xCO2. Within the algorithm, interannual vari-428

ability in the reconstructed pCO2 Residual is largely controlled by interannual anoma-429

lies in SST in all regions. The contribution of the atmospheric CO2 mixing ratio (xCO2)430

in the pCO2-Residual prediction is homogenous in space (not shown), which distinguishes431

it from the spatially variable impacts of SST, MLD, and Chl-a (Figure 4). This is as ex-432

pected because a single global-mean atmospheric xCO2 timeseries is used as a feature433

for all spatial points.434
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This analysis demonstrates that the XGBoost algorithm allows an additional layer435

of understanding to our pCO2 reconstruction. Mixed layer depths, geographic location,436

time of year, and to a lesser extent, SST and Chl-a control the seasonal cycle of the pCO2-437

Residual within the algorithm. The long-term pCO2 trend is due to the trend in atmo-438

spheric CO2, and year-to-year variations are dominantly driven by SST.439

3.4 Uncertainty440

To quantify uncertainty in our pCO2 reconstruction, a quantile loss function is em-441

ployed within the XGBoost regression. To do this, a custom evaluation function and loss442

function are provided to XGBoost as parameters. Random noise is added to the smoothed443

gradient to improve the performance of XGBoost with quantile loss (Descamps, 2020).444

Most machine learning loss functions aim to reduce the mean absolute error between the445

predicted value and the observation. The quantile loss function, however, is used to pre-446

dict a specified quantile of the prediction, and the loss function is minimized when the447

reconstruction resides at a given quantile. A quantile is a value below which a fraction448

of observations lies. Thus, the 90% quantile for pCO2 will over-estimate the observed449

pCO2 90% of the time. We reconstruct the 5% quantile and the 95% quantile such that450

we are confident the true surface ocean pCO2 value lies between these reconstructions451

approximately 90% of the time. Thus, for a given point in space and time, the recon-452

structed pCO2 can be quantified with 90% confidence as:453

pCO2 90% CI = pCO2 ±
(pCO95th

2 − pCO5th
2 )

2
(5)454

Figure 5 displays the mean value (1985-2019) of the second half of Equation 5, the value455

added and subtracted from the pCO2 reconstruction to create confidence bounds. We456

show the magnitude of uncertainty for both the 90% (Figure 5a) and 67% (Figure 5b)457

confidence bounds. Confidence is highest, with lowest uncertainties within the subtrop-458

ical oceans (+/- less than 10 µatm at 67% confidence). Uncertainties become larger within459

the subpolar regions, and largest within the Southern Ocean and within the equatorial460

Pacific. The algorithm cannot identify whether the uncertainty arises because of a lack461

of measurements of surface ocean pCO2 or from noise in the observations. However, un-462

certainty is largest in regions that are biologically productive, which could be substan-463

tial impacted by uncertainty of 30% for Chl-a observations, and highly dynamic regions464

such as eastern upwelling zones. Uncertainty also increases where there are few obser-465
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Figure 4. Mean feature importance and seasonal cycles and interannual variations in feature

importance in sample biomes (µatm). (a) Mean feature importance of mixed layer depth. (b)

Mean feature importance of Location and Day of Year (D.O.Y.). (c) Mean feature importance

of SST. (d) Mean feature importance of chlorophyll-a. (e) Mean seasonal cycles of feature im-

portance of Location/D.O.Y., MLD, Chl, and SST in the NP STSS (North Pacific Subtropical

Seasonally Stratified) biome. (f) Same as in (e) except for the Pac Equ E biome. (g) Same as in

(e) except for the NA SPSS (North Atlantic Subpolar Seasonally Stratified) biome. (h) Same as

in (e) except for the SO STSS biome (Southern Ocean Subtropical Seasonally Stratified). (i) In-

terannual variations in feature importance for SST, chlorophyll-a, and xCO2 within the NP STSS

biome. (j) Same as in (i) except for within the Pac Equ E (eastern Equatorial Pacific) biome. (k)

Same as in (i) except for within the NA SPSS biome. (l) Same as in (i) except for within the SO

STSS biome.
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Figure 5. Mean pCO2 uncertainty within the 90% (a) and 67% (b) confidence bounds. At

a given location, the shading represents the mean value that would be added and subtracted to

form the confidence interval of reconstructed pCO2.

vations (off the southwestern tip of South America and within the Indian Ocean, for in-466

stance).467

3.5 CO2 Fluxes468

The mean air-sea CO2 fluxes reconstructed using the pCO2-Residual technique for469

1985-2019 exhibit known features (Figure 6a). The subpolar North Atlantic is a strong470

carbon sink, while the equatorial regions efflux carbon dioxide to the atmosphere. Sub-471

tropical regions are smaller carbon sinks, and the high latitude Southern Ocean and North472

Pacific are sources of carbon to the atmosphere. The globally-integrated anthropogenic473

air-sea CO2 flux has become increasingly more negative, as atmospheric CO2 concen-474

trations have increased. Using the same coastal filling and river correction for all prod-475

ucts, we find that the CO2 sink reconstructed by the pCO2-Residual approach is con-476

sistent with the other data products (Figure 6b). Year-to-year variability in the air-sea477

CO2 flux is largest in the reconstructions using the JENA MLS and pCO2-Residual ap-478

proaches.479
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Figure 6. (a) Map of mean (1985-2019) anthropogenic air-sea CO2 Flux reconstructed by

the pCO2-Residual Technique. (b) Annual mean (1985-2019) air-sea CO2 fluxes estimated by

the pCO2-Residual (magenta), HPD (blue), MPI-SOMFFN (black), CSIR ML6 (red), CMEMS

(green), and MLS (cyan) data products. Mean of the 9 GOBMs and one standard deviation

shading in grey. Harmonized observation-based data products begin in 1990 (Gregor & Fay,

2021).
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3.6 Uncertainty in CO2 Fluxes480

In order to determine the uncertainty in CO2 flux caused by our uncertainty in sur-481

face ocean pCO2, we assume zero bias in the reconstruction. This assumption is supported482

by the analysis of (Gloege, Yan, et al., 2021) and our own analysis with the Large En-483

semble Testbed (Section S1). Using a Monte Carlo approach, we randomly sample pCO2484

from a normal distribution with mean values equal to our locally reconstructed pCO2485

and standard deviation provided by the quantile loss reconstruction. We randomly sam-486

ple every 1o by 1o grid box 500 times for every month and wind product, and then cal-487

culate the local and global air-sea fluxes. Figure 7a shows the resulting mean annual stan-488

dard deviation of the air-sea flux from the Monte Carlo approach. While the pattern of489

flux uncertainty grossly mimics the pCO2 uncertainty pattern, there are differences. The490

largest flux uncertainties are not seen where the pCO2 uncertainties are largest, such as491

the equatorial Pacific. Instead, the largest flux uncertainties are seen where there are mod-492

erate pCO2 uncertainties (Figure 5) and significant piston velocities (Figure 7b). Here,493

even moderate uncertainties in pCO2 translate into larger air-sea flux uncertainties than494

the equatorial Pacific, where large pCO2 uncertainties are dampened by much smaller495

piston velocities.496

Figure 7c shows the mean of the zonally integrated CO2 flux for the three wind prod-497

ucts CCMP2, ERA5, and JRA55 (blue, orange, and green, respectively) as compared to498

the zonally integrated uncertainty, as one standard deviation of the zonally integrated499

flux from the Monte Carlo simulations (CCMP2, ERA5, and JRA55 as blue, orange, and500

green, respectively). While local standard deviations are a significant portion of the mean501

flux in some regions (e.g. subtropical North Atlantic), without a bias in the reconstruc-502

tion, the reconstructed global air-sea flux has very small uncertainties caused by the un-503

certainty in pCO2 ( 0.01 PgC/yr). However, uncertainties in the piston velocities esti-504

mated by different wind products cause a standard deviation of annual fluxes of 0.04 -505

0.10 Pg C/yr (not shown). Therefore, we estimate a total uncertainty of 0.11 Pg C / yr,506

one standard deviation, for the 67% confidence interval.507

4 Discussion508

We show that a physically realistic algorithm results when we incorporate phys-509

ical knowledge into a data based machine learning approach. By reconstructing the dif-510
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Figure 7. Uncertainty in CO2 fluxes. (a) Standard deviation of annual CO2 flux from Monte

Carlo simulations (mol C / m2 / yr). (b) Mean piston velocity, average of CCMP2, ERA5 and

JRA55 (Kw: cm/hr). (c) Mean CO2 flux by latitude band (Tg C / yr) and wind product, and

standard deviation of the mean flux caused by random sampling of pCO2 for each wind product.
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ference between observed pCO2 and the pCO2 that would result if only the direct effect511

of temperature altered surface ocean pCO2 (Figures 1,2), the pCO2 Residual approach512

requires the machine learning algorithm to learn only the indirect effects of temperature513

on pCO2. This residual is small within the temperature-controlled subtropical regions514

and larger in more dynamic ocean areas (Figure 2). This approach tackles two of the five515

major barriers to adoption of machine learning approaches within the geosciences pro-516

posed by Reichstein et al. (2019): interpretability and physical consistency. Within the517

resulting model, mixed layer depth, location, season, SST, Chl-a, and xCO2 impact the518

pCO2-Residual as we would expect (Figures 4,5), building confidence in the approach.519

MLD, location, and time of year strongly control the seasonal cycles of reconstructed pCO2,520

while atmospheric CO2 concentrations and interannual variations in SST control the in-521

terannual variations in reconstructed pCO2. We find that year-to-year variations in chlorophyll-522

a are not found to drive variability in reconstructed pCO2. This may be, in part, due523

to the small interannual variations in observed Chl-a, as observed in the North Atlantic524

(Bennington et al., 2009), but is likely also due to noise in the observations.525

The LDEO-HPD approach incorporates physical knowledge of the system by us-526

ing GOBMs as a first guess. XGBoost is used to reconstruct the model-observation dis-527

crepancy to reconstruct the full pCO2 field. That approach must rely upon both obser-528

vations and models to create a reconstruction. Any alterations to the model output would529

require the development of a new regression.530

This technique’s reconstructed pCO2 has small RMSE and high correlations when531

compared to independent observations, and is one of the best performing observation-532

based approaches based on comparison to four independent datasets (Figure 3). Uncer-533

tainties in reconstructed surface ocean pCO2 due to the algorithm are smallest in the534

subtropical ocean regions and largest in the equatorial Pacific and subpolar regions (Fig-535

ure 6), as would be expected in the technique. The pattern of uncertainty in pCO2 is536

the same as the pattern of test RMSE (not shown), and the magnitude of the global mean537

test RMSE (16.33 µatm) lies between the global mean uncertainty magnitude at the 67%538

confidence interval (9.8 µatm) and the 90% confidence interval (19.71 µatm). The re-539

sulting air-sea CO2 fluxes are in agreement with previous data-based approaches (Fig-540

ure 6), and exhibit high interannual variability, similar to MLS inversion approach (Rödenbeck541

et al., 2013). This may be due to the use of the tree-based XGBoost algorithm, as op-542
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posed to a neural network in which non-linearities are controlled by the activation func-543

tion (Baughman & Liu, 1995).544

Uncertainty in the resulting air-sea CO2 fluxes, as determined by the Monte Carlo545

approach, are largest where both piston velocities and pCO2 uncertainty are larger (Fig-546

ure 7). Although there are regions of significant local uncertainty in the flux, the uncer-547

tainty in the globally-integrated air-sea CO2 flux due to random error in pCO2 remains548

minimal (0.01 Pg C / yr). However, uncertainty due to uncertainty in the piston veloc-549

ity is larger, with annual flux uncertainty ranging from 0.04 to 0.1 PgC/yr, for a total550

uncertainty bound of 0.11 PgC/yr. This finding is in agreement with previous work that551

suggest the largest uncertainties may due to amplification of pCO2 uncertainties by winds552

(Landschützer et al., 2016; Gregor et al., 2019). Here, we have assumed no bias in the553

observations (Gloege, Yan, et al., 2021; Fay et al., 2021). However, if observational bias554

exists in any region with moderate to high piston velocities, the uncertainty would be555

significantly larger, as regional pCO2 would change in concert. The importance of sys-556

tematic bias will be explored in future work.557

While (Gregor et al., 2019) suggest ocean surface pCO2 reconstructions may have558

“hit a wall”, here we illustrate there are more techniques to consider. The LDEO-HPD559

(Gloege, Yan, et al., 2021) and the pCO2-Residual technique, both which include phys-560

ical knowledge, are the two best performers compared to 3 of the 4 independent datasets561

(Figure 3), suggesting incremental improvements are still possible, even without a sig-562

nificant increase in observations. Here we show that it is possible to incorporate phys-563

ical knowledge within a data-only technique. We have confidence in the technique not564

only from comparisons to independent observations, but also from a testbed based in Earth565

System Models (Section S1). Such interpretable techniques should allow for better in-566

tegration across differing approaches: numerical modeling, observations, and machine567

learning (Reichstein et al., 2019).568

The Global Ocean Carbon Budget 2021 (Friedlingstein et al., 2021) estimates an569

anthropogenic ocean carbon sink of -2.5 ± 0.4 PgC/yr for the period 2000-2020. The Resid-570

ual technique suggests a similar flux of -2.35 ± 0.5 PgC/yr.571
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5 Conclusions572

We develop a new machine learning approach to reconstruct global ocean pCO2,573

an approach that incorporates physical knowledge of the ocean carbonate system within574

a purely data based approach. The pCO2 Residual approach improves upon previous ma-575

chine learning approaches by removing the direct effect of temperature from the algo-576

rithm. The resulting model created using an XGBoost algorithm exhibits realistic phys-577

ical processes and suggests an air-sea exchange of carbon dioxide within the range of pre-578

vious data-based approaches and in agreement with the Global Carbon Budget 2021 (Friedlingstein579

et al., 2021). The approach will be used to further examine reconstruction uncertain-580

ties.581

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

6 Data Availability582

NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSL, Boul-583

der, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/data584

.noaa.oisst.v2.highres.html. Python scripts are made available at https://github585

.com/valbennington/JAMES pub 2022.586
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Séférian, R. (2020, Oct 27). Consistency and challenges in the ocean carbon655

sink estimate for the global carbon budget. Frontiers in Marine Science.656

Humphreys, M. P., Lewis, E. R., Sharp, J. D., & Pierrot, D. (2021). Pyco2sys v1.7:657

marine carbonate system calculations in python. Geoscientific Model Develop-658

ment Discussions, 2021 , 1–45. Retrieved from https://gmd.copernicus.org/659

preprints/gmd-2021-159/ doi: 10.5194/gmd-2021-159660

Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L., & Gloor, M.661

(2007). A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:662

1. methods and global-scale fluxes. Global Biogeochemical Cycles, 21 (1). doi:663

https://doi.org/10.1029/2005GB002556664

Khatiwala, S., Tanhua, T., Fletcher, S. M., Gerber, M., Doney, S. C., Graven, H. D.,665

. . . Sabine, C. L. (2013). Global ocean storage of anthropogenic carbon.666

Biogeosciences, 10 , 2169.667

Lacroix, F., Ilyina, T., & Hartmann, J. (2020). Oceanic co2 outgassing and biolog-668

ical production hotspots induced by pre-industrial river loads of nutrients and669

carbon in a global modeling approach. Biogeosciences, 17 (1), 55-88.670

Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and671

trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30 (10),672

1396-1417. doi: https://doi.org/10.1002/2015GB005359673

Landschützer, P., Gruber, N., Bakker, D. C. E., & Schuster, U. (2014). Recent vari-674

ability of the global ocean carbon sink. Global Biogeochemical Cycles, 28 (9),675

927-949. doi: https://doi.org/10.1002/2014GB004853676

Landschützer, P., Laruelle, G. G., Roobaert, A., & Regnier, P. (2020). A uniform677

pco2 climatology combining open and coastal oceans. Earth System Science678

–31–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Data, 12 (4), 2537-2553.679

Lundberg, S. M., Erion, G. G., & Lee, S. (2018). Consistent individualized fea-680

ture attribution for tree ensembles. CoRR, abs/1802.03888 . Retrieved from681

http://arxiv.org/abs/1802.03888682

Maritorena, S., d’Andon, O. H. F., Mangin, A., & Siegel, D. A. (2010). Merged683

satellite ocean color data products using a bio-optical model: Characteristics,684

benefits and issues. Remote Sensing of Environment , 114 (8), 1791-1804. doi:685

https://doi.org/10.1016/j.rse.2010.04.002686

Masarie, K. A. (2012). Islscp ii globalview: Atmospheric co2 concentrations. ORNL687

Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1111688

McKinley, G. A., Pilcher, D. J., Fay, A. R., Lindsay, K., Long, M. C., & Lovenduski,689

N. S. (2016). Timescales for detection of trends in the ocean carbon sink.690

Nature, 530 , 469+. doi: doi:10.1038/nature16958691
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S1. Large Ensemble Testbed Findings

Utilizing the Large Ensemble Testbed (Gloege, McKinley, et al., 2021), we analyzed how

RMSE was impacted by reconstructing the pCO2-Residual instead of pCO2. The Large

Ensemble Testbed consists of 25 ensemble members each from 4 Earth System Models.

Within this model setting, we sample model features and pCO2 at the same times and

locations as we have actual SOCAT observations, in every ensemble member. Just as

done with actual observations, an XGBoost algorithm is trained on the subset of features

and pCO2 from the models. We then reconstruct pCO2 everywhere using the resulting

functions and compare the reconstructed pCO2 to the model “truth”. Thus, the recon-

structed pCO2 can be evaluated at all times and locations simulated within the models,

not just where we have SOCAT observations. Figure S1 shows that in addition to re-

ducing the RMSE of the test data for each reconstruction (“test data”), RMSE across

the globe, where the model has never been sampled (“unseen data”), is reduced using

the pCO2-Residual approach. Note also that against both test and unseen data, the high

extreme RMSE is reduced by at least 3 µatm.

S2. Uncertainty Due to Chlorophyll Climatology

Within the Large Ensemble Testbed, we use XGBoost to reconstruct pCO2 using time-

varying chlorophyll-a (every month has modeled chlorophyll-a) and compare to when the

monthly climatology of model chlorophyll (1998 onward) is used for prior to 1998. As we

do not have satellite observations of chlorophyll-a prior to 1997, this techniques estimates

uncertainties caused by using a climatology of chlorophyll-a for the years prior to satellite

observations. The calculated air-sea CO2 flux differs significantly prior to the mid-1990s
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and decreases to approximately 0.05 PgC/yr by 2005. There is variation across the mod-

els, with the largest mean impact on the reconstruction seen within the MPI model. The

mean difference across the ESMs and time is less than 0.1 PgC/yr.

S3. RMSE, Bias, MAE in pCO2-Residual approach

The map of mean RMSE against all SOCAT observations using the pCO2-Residual al-

gorithm is shown in Figure S3. We see lowest RMSE in temperature-controlled regions,

with values less than 10 µatm, as expected, and higher RMSE outside of these regions.

S4. Test of Clustering with Self-Organizing Maps

To examine whether the regression would be improved by dividing the global ocean

into biomes, we utilized the self-organizing map package SOMPY (Moosavi et al., 2014)

(https://github. com/sevamoo/SOMPY). The global ocean was divided into 5, 10, and

15 clusters using maximum annual ice fraction, mean pCO2, mean annual sea surface

temperature, mixed layer depth, and spring mean chlorophyll (Fay & McKinley, 2014).

On the global scale, there was no added skill, quantified based on RMSE and comparisons

to independent data at BATS, HOT, LDEO, or GLODAP. We therefore maintain the

simpler model.
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Figure S1. Test RMSE for pCO2 reconstruction (ORIG, test data); RMSE at locations

not sampled by SOCAT for pCO2 reconstruction (ORIG, unseen data); Test RMSE for pCO2-

Residual approach (RESID, test data); RMSE at locations not sampled for pCO2-Residual ap-

proach (RESID, unseen data). Each boxplot contains the 100 ensemble members, 25 from each

Earth System Model of the Large Ensemble Testbed (Gloege, Yan, et al., 2021).

Figure S2. Absolute value of difference in globally-integrated reconstructed CO2 flux (PgC/yr)

when using a climatology of chlorophyll-a prior to 1998. Different colors represent the four

different ESMs.
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Figure S3. Mean RMSE (µatm) across the global ocean using the pCO2-Residual approach.
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