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Abstract

A simple yet flexible and robust algorithm is described for fully partitioning an arbitrary dataset into compact, non-overlapping

groups or classes, sorted by size, based entirely on a pairwise similarity matrix and a user-specified similarity threshold. Unlike

many clustering algorithms, there is no assumption that natural clusters exist in the dataset, though clusters, when present,

may be preferentially assigned to one or more classes. The method also does not require data objects to be compared within any

coordinate system but rather permits the user to define pairwise similarity using almost any conceivable criterion. The method

therefore lends itself to certain geoscientific applications for which conventional clustering methods are unsuited, including two

non-trivial and distinctly different datasets presented as examples. In addition to identifying large classes containing numerous

similar dataset members, it is also well-suited for isolating rare or anomalous members of a dataset. The method is inductive,

in that prototypes identified in representative subset of a larger dataset can be used to classify the remainder.

1



Generated using the official AMS LATEX template v6.1 two-column layout. This work has been submitted for
publication. Copyright in this work may be transferred without further notice, and this version may no longer be
accessible.

The Pairwise Similarity Partitioning algorithm: a method for unsupervised partitioning of
geoscientific and other datasets using arbitrary similarity metrics

Grant W. Pettya
a Atmospheric and Oceanic Sciences, University of Wisconsin-Madison

ABSTRACT: A simple yet flexible and robust algorithm is described for fully partitioning an arbitrary dataset into compact, non-
overlapping groups or classes, sorted by size, based entirely on a pairwise similarity matrix and a user-specified similarity threshold.
Unlike many clustering algorithms, there is no assumption that natural clusters exist in the dataset, though clusters, when present, may
be preferentially assigned to one or more classes. The method also does not require data objects to be compared within any coordinate
system but rather permits the user to define pairwise similarity using almost any conceivable criterion. The method therefore lends itself to
certain geoscientific applications for which conventional clustering methods are unsuited, including two non-trivial and distinctly different
datasets presented as examples. In addition to identifying large classes containing numerous similar dataset members, it is also well-suited
for isolating rare or anomalous members of a dataset. The method is inductive, in that prototypes identified in representative subset of a
larger dataset can be used to classify the remainder.

1. Introduction

a. Background

In the Earth science disciplines in which multivari-
ate observational datasets arise, it is sometimes desirable
to group dataset members into discrete, non-overlapping
classes with distinct properties or interpretations. For ex-
ample, the pixels in remote sensing images of the Earth’s
surface might be classified according to land use or type,
such as open water, forest, bare ground, snow, etc., usually
based on the spectral and/or textural properties determined
from the image (Talukdar et al. 2020).
The assignment of classifications to the members of a

dataset is usually supervised in the sense that a labeled
training dataset with known interpretation is available to
help define the criteria utilized to classify new data and
to assess and refine the overall quality of the classification
algorithm (Bruzzone and Demir 2014). A number of dis-
tinct methods for supervised classification exist, including
artificial neural networks, classification trees, support vec-
tor machines, 𝑘-nearest neighbor, random forest, and naive
Bayes (Abiodun et al. 2018; Hush and Horne 1993; Loh
2011; Maulik and Chakraborty 2017; Prasath et al. 2017;
Belgiu and Drăguţ 2016; Bielza and Larranaga 2014).
Though less common, there are applications in which

labeled data are unavailable and/or it is desirable to allow
the dataset itself to suggest natural groupings of dataset
members. In such cases, unsupervised classification is
employed (Olaode et al. 2014). Most unsupervised clas-
sification schemes are based on cluster analysis, in which
the intent is usually to identify natural groupings of dataset
members from regions of higher sample density relative to
the surrounding multidimensional space (Duran and Odell

Corresponding author: Grant W. Petty, gwpetty@wisc.edu

2013; Kaufman and Rousseeuw 2009). Researchers have
utilized cluster analysis to redefine climate zones by iden-
tifying natural groupings of multivariate climate records
(Fovell and Fovell 1993; Unal et al. 2003) among other
Earth sciences applications.
Common cluster analysis methods include connectivity-

based or hierarchical clustering (Murtagh and Contreras
2012), centroid-based clustering (e.g, 𝑘-means; Kanungo
et al. 2002), density-based clustering (e.g., DBSCAN;
Kriegel et al. 2011), and others. Unsupervised cluster
analysis generally requires the user to specify one or more
parameters governing the clustering algorithm, such as the
expected number of clusters and/or the target radius of
the cluster in observation space. A number of the most
widely used algorithms are described and compared, with
demonstration code, in the online Scikit-learn documenta-
tion (Pedregosa et al. 2011; Scikit-learn 2022).
There are situations in which the most common assump-

tions of clustering algorithm do not hold. First, it may be
desirable to partition a dataset in a manner that does not
necessarily presume the existence of distinct density max-
ima. Second, it may be necessary to employ a similarity
metric other than distance between points in a coordinate
space or any of the other standard metrics available as op-
tions in some clustering libraries. For both reasons, there
are applications for which the mostly widely used cluster-
ing algorithsm are ill-suited.

b. Motivation

Petty and Li (2013) (hereafter PL) required a static grid-
ded global land classification based on similarities in the
climatological background microwave brightness temper-
ature variations measured by the Tropical Rainfall Mea-
suring Mission (TRMM) Microwave Imager (TMI; Kum-
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merow et al. 1998). They computed spatially gridded one-
year means and covariances of the 7-channel brightness
temperatures, after excluding scenes containing precipita-
tion. The purpose of the classification was to partition the
entire land surface of the Earth into a small set of discrete
classes within each of which the mean and covariance of
all observations combined was as similar as possible to the
means and covariances within each geographic grid box
assigned to the class. The class-wide mean and covariance
would then serve as a reasonable approximation to the lo-
cal geophysical noise term that must be accounted for in
the multichannel retrieval of light or frozen precipitation
from individual observations.
Standard clustering techniques are not well suited to this

problem for the following reasons:

• Mean background brightness temperaturesT resolved
on the relatively coarse geographic grid utilized by PL
typically represent an admixture of highly variable
land surface properties and are therefore distributed
on a continuum in observation space, with no guar-
antee that “natural” clusters will emerge in the form
of distinct density modes.

• Classification based on noise characteristics requires
one to take into account not only the observed mean
T but also the observed covariances 𝚺𝑇 for each grid
box. The latter are usually far from diagonal and are
strongly scene-dependent. For example, a grid box
that contains mixture of land and water will exhibit
a very different covariance than one with the same
mean brightness temperature but that is affected by
variable amounts of snow and ice over the course of a
year or longer. It is the combination of T and 𝚺𝑇 that
determines the degree of statistical overlap in back-
ground brightness temperatures for two different grid
cells and thus the practical degree of similarity. The
required calculation does not lend itself to a represen-
tation of dataset members as points in a coordinate
space as required by most clustering methods.

PL therefore devised and utilized, but did not describe
in detail, a heuristic unsupervised classification algorithm
to create a static global map of empirical land classes at
1◦ resolution in latitude and longitude. To the author’s
knowledge, it does not resemble any other clustering or
classification algorithm inwide use. Its goal is to efficiently
subdivide the entire dataset into self-similar classes based
on a user-specified similarity threshold that is enforced
on the members of every class. The method is notable
for its conceptual and computational simplicity and ability
to accommodate an arbitrary, externally-defined metric of
pairwise similarity.

c. Overview

In the following section, the partitioning algorithm itself,
henceforth referred to as the Pairwise Similarity Partition-
ing (PSP) algorithm, is described. Section 3 demonstrates
the application of PSP to two mock datasets intended to
facilitate understanding of the key properties of the al-
gorithm. Section 4 demonstrates its application to two
dissimilar geoscientific datasets. The first is an update of
the problem undertaken by PL, as described above. The
second consists of a time series of 74 years of 6-hourly
meteorological analysis maps. Section 5 offers a summary
and conclusions.

2. The Algorithm

a. General characteristics

As previously noted, a wide variety of clustering and
partitioning algorithms exist, many of which have become
standard tools in the data sciences. Before proceeding with
the computational details of the PSP algorithm, a few key
characteristicsmay be highlighted to facilitate comparisons
with existing methods. In particular,

• It is a strict partitioning algorithm, with each dataset
member being assigned to one and only one class.

• It is centroid-based, choosing specific dataset mem-
bers to serve as “prototypes” for a particular class.

• Classes are found in order of decreasing size, with the
first class capturing the most dataset members and the
final classes typically capturing solitary outliers.

• It is inductive: the prototypes can be used to clas-
sify additional members not seen during the initial
analysis.

• It has a single parameter—a similarity threshold—
that determines the minimum similarity of members
in each class relative to that class’s prototype. The
same parameter thus also indirectly controls the total
number the classes obtained.

• It is deterministic: presented with the same dataset,
in any order, it will find the same initial groupings for
any particular value of the similarity threshold.

• Unlike most clustering algorithm, it finds the first
complete class on the first pass through the algorithm
loop. Subsequent passes address the as-yet unclas-
sified members. It is thus iterative only in the sense
that one pass is required for each class found; no op-
timization or gradient descent procedure is involved.
Iteration continues until the last dataset member is
classified.

• Unlike the case for most partitioning algorithms, the
pairwise similarity metric employed is external to the
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algorithm and may be defined by the user according
to the task at hand.

While some other clustering algorithms share some of
the above features, none is known to the author to share
all of them. The flexibility of the similarity metric and the
enforcement of a known similarity threshold on all result-
ing classes are among the most important distinguishing
features of the PSP algorithm. Depending on the prob-
lem considered, these same features can make it difficult
to undertake apples-to-apples comparisons with other par-
titioning algorithms.

b. Similarity function

A prerequisite for—but separate from—the PSP scheme
itself is an arbitrary user-defined function that computes the
similarity between the 𝑖th and 𝑗 th objects in the dataset,
denoted here as d𝑖 and d 𝑗 . Specifically,

0 ≤ 𝑓 (d𝑖 ,d 𝑗 ) ≤ 1,

where 𝑓 (d𝑖 ,d𝑖) = 𝑓 (d 𝑗 ,d 𝑗 ) ≡ 1, and 𝑓 (d𝑖 ,d 𝑗 ) = 𝑓 (d 𝑗 ,d𝑖) <
1 for any pair of members that is not to be considered
identical. Any pair of objects such that 𝑓 (d𝑖 ,d 𝑗 ) = 0 is
considered to be perfectly dissimilar. Note that the formal
definition of a metric additionally requires that

𝑓 (d𝑖 ,d𝑘 ) ≤ 𝑓 (d𝑖 ,d 𝑗 ) + 𝑓 (d 𝑗 ,d𝑘 );

however, it is unclear, without further investigation,
whether that condition has any practical relevance to the
PSP.
For example, a problem that requires partitioning of data

based on conventional Euclidean distance between dataset
members might choose

𝑓 (d𝑖 ,d 𝑗 ) =
1

1− ‖x𝑖 −x 𝑗 ‖
, (1)

where x𝑖 is the position of the 𝑖th data point in a con-
ventional multidimensional coordinate system. There are
other possible functions that accomplish the same thing;
the only requirement is that the function mononotically in-
crease from 0 to 1 as the Euclidean distance decreases to
zero. Equation (1) is utilized in the first mock data example
in Section 3a.
But other similarity functions are possible. For example,

if one attribute of the data object d𝑖 happens to be a unit
vector û𝑖 representing the local orientation of a vector field,
then onemight define the degree of similarity in orientation
as

𝑓 (d𝑖 ,d 𝑗 ) =
û𝑖 · û 𝑗 +1
2

, (2)

Given an observed or modeled vector field, it could then
be partitioned into discrete regions based on approximate

local direction of the field. Equation (2) is utilized in the
second mock data example in Section 3b.
For the application of PL involving 𝑛-channelmicrowave

brightness temperature variability in geographic grid cells,
the relevant similarity metric is far more complicated. It
is defined in terms of the degree of overlap between two
𝑛-variate Gaussian distributions characterized by vector
means µ𝑖 and µ 𝑗 and covariances 𝚺𝑖 and 𝚺 𝑗 . It is given
by

𝑓 (d𝑖 ,d 𝑗 ) = exp
(
b𝑇 Ab− 𝑐

4

) [
2𝑛 |A|

|𝚺𝑖 |
1
2 |𝚺 𝑗 |

1
2

] 1
2

, (3)

where

A = (𝚺−1
𝑖 +𝚺−1

𝑗 )−1

b = 𝚺−1
𝑖 µ𝑖 +𝚺−1

𝑗 µ 𝑗

𝑐 = µ𝑇
𝑖 𝚺

−1
𝑖 µ𝑖 +µ𝑇

𝑗 𝚺
−1
𝑗 µ 𝑗 .

This similarity metric is utilized Section 4a.
Finally, the fourth example in Section 4b utilizes the

Pearson correlation coefficient to group 500 hPa height
maps, in which case the similarity function is simply

𝑓 (d𝑖 ,d 𝑗 ) =
Corr(di,dj) +1

2
. (4)

c. Similarity matrix

Given a dataset with 𝑁 members, the primary input to
the classification algorithm is the similarity matrix S, the
𝑖, 𝑗 th element of which is 𝑠𝑖 𝑗 = 𝑓 (d𝑖 ,d 𝑗 ). It is thus an
𝑁 ×𝑁 symmetric matrix whose diagonal elements 𝑠𝑖𝑖 = 1
and whose off-diagonal elements 0 ≤ 𝑠𝑖 𝑗 ≤ 1.
The ability to store S entirely in random-access memory

(RAM) for efficient access is the most important practical
limitation on the size of 𝑁 that can be accommodated. As
32-bit floating point precision is more than sufficient for
the elements of S, the maximum memory requirement for
S is approximately 4𝑁2 bytes, or about 37 GB for 𝑁 = 105.
In certain cases, one might be able to reduce the storage
requirement by up to a factor of four by replacing float-
ing point values with unsigned 1-byte or 2-byte integers
and scaling the threshold range discussed below accor-
diningly. For significantly larger datasets, it will be shown
that subsampling can be utilized to obtain initial classes,
with the remaining data then being efficiently assigned to
those classes.
Once S is available, the algorithm requires a single user-

specified parameter: a similarity threshold 0 < 𝑇 < 1 that
controls the acceptable maximum degree of dissimilarity
of members occupying any class as compared to the class’s
prototype. An initial 𝑁 × 𝑁 boolean similarity matrix is
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Fig. 1. A minimal working Python implementation of the basic classification algorithm. It requires the similarity matrix S (simmat) and user-
specified similarity threshold 𝑇 (thresh) as inputs.

then defined as
B0 = S > 𝑇,

where for computational purposes False=0 and True=1. If
8-bit integers are used, then the memory requirement of
B0 is one-fourth that of S.

d. The algorithm

Given the boolean matrix B0, the first iteration of the
algorithm then proceeds as follows:

1. Each row of B0 is summed. The row with the largest
sum determines the prototype member of the first
class, as it is the member that is similar (to within
the specified threshold 𝑇) to the most other members
of the dataset. The prototype serves as the centroid of
the class, though not necessarily in a Euclidean sense.

2. The columns in the selected row that are non-zero
(True) determine the members of the class.

3. All rows and columns of B0 corresponding to the
above members are deleted, leading to a reduced ma-
trix B1 whose dimensions are (𝑁 − 𝑛1) × (𝑁 − 𝑛1),
where 𝑛1 is the number of members that were as-
signed to the first class in the previous step.

The cycle repeats to obtain successive class prototypes
and class members and updated boolean matrix B𝑖 . The
iteration terminates when all dataset members have been
assigned to a class.
A useful analogy might be made to principle compo-

nent analysis (PCA). In PCA, each successive eigenvector
explains the maximum possible fraction of the remaining
variance, subject to the orthogonality requirement. In the
PSP method, each successive class captures the maximum
possible number of remaining dataset members, subject to
the similarity threshold.
A minimal working implementation in Python is shown

in Fig. 1. The algorithm requires remarkably few lines of
code owing to the vectorization capabilities of the Numpy
library.

e. Algorithm properties

Notable properties of the above algorithm include the
following:

• The first prototype always consists of the member that
is similar (to within 𝑇) to the most other members of
the dataset.
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X

Y

Ntotal = 3000

Fig. 2. A sample of the mock data used in the demonstration of classifi-
cation based on Euclidean distance.

• The first class therefore always captures the most
densely populated regions of the data space on the
scale of 𝑇 .

• Subsequent classes are successively smaller and
consist of members satisfying the similarity con-
straint after all previously assigned members of the
dataset have been removed from further considera-
tion. Therefore, when a member is similar to more
than than one class prototype, it is assigned to the
earlier class. For the same reason, subsequent classes
might or might not be associated with local density
maxima.

• The determination of 𝑘 classes requires 𝑘 passes
through the cycle desribed in the previous subsection.

• Because the first iteration requires operations on the
largest matrix B0, it also requires the most compu-
tational time. With each subsequent iteration, B𝑖 is
smaller and requires computation in proportion to the
reduced array size 𝑁2

𝑖
. Typically, the total execution

time is dominated by the earliest few iterations.

To summarize, the algorithm returns an ordered series
of classes of non-increasing size, with the last of these
commonly containing very few members or even just one.
The disposition of those outlier classes—whether to dis-
card them or merge them with the nearest larger class—is
a decision made by the user depending on the needs of the
application and is discussed below.

3. Application to Mock Datasets

a. Example classification based on Euclidean distance

To aid in visualizing algorithmbehavior, the first demon-
stration of PSP uses Euclidean distance (1) as the similarity
metric applied to a randomly generated two-dimensional

Class  1   N=821 Class  2   N=718 Class  3   N=499

Class  4   N=272 Class  5   N=159 Class  6   N=152

Class  7   N=100 Class  8   N= 95 Class  9   N= 94

Fig. 3. Identification of the first nine classes based on a Euclidean
distance threshold applied to the data in Fig. 2. Black dots indicate the
prototype member defining each class.

dataset. A representative subset, consisting of 𝑁 = 3000
points, is depicted in Fig. 2. For the initial classification
of this subset, the similarity threshold 𝑇 was chosen to be
0.3.

1) Initial pass

Fig. 3 depicts the results of the first nine iterations, with
black dots marking the prototype member for each class
as it is found. The first three classes immediately find the
three major modes in the distribution of points, with the re-
maining classes filling in between and capturing the points
on the edges of the distribution. By the end of the ninth
pass, only 90 points, or 3%, of the original 3000 remain
unclassified. These are captured by 13 additional classes
for a total of 22 (Fig. 4a), with the last three containing
only one member each.

2) Optional reassignment

It is possible that the initially defined classes are satis-
factory, and no additional action is needed. But we usually
prefer to use the prototypes determined in the first pass
to reassign all dataset members, based on the nearest (or
most similar) prototype. This is a simple, efficient opera-
tion based on a reduction of the originalmatrixS to a𝑁×𝑀

matrix S′, where 𝑀 is the number of classes found, and the
columns correspond to the class prototypes. It is then only
necessary to find, for each row, the column correspond-
ing the maximum similarity. This is accomplished with
just one line of code using the Python/Numpy argmax()



6

Fig. 4. The results of subsequent operations on the classification
results for the data in Fig. 2. a) The initial fully classified dataset, with
class numbers (ordered by size) shown. Class 21 is assigned to a single
outlier and falls outside the domain of the plot. b) The classification
following reassignment (reconsolidation) to the nearest class prototype.
c) Reduction of classes from 20 to 10 by reassigning data in the smallest
classes to the nearest larger class. d) Posterior assignment of a larger
dataset (𝑁 = 30000) to the 10 classes in (c).

function. The results of this reassignment are shown in
Fig. 4b. As long as the complete set of original prototypes
is retained, the new classes are guaranteed to satisfy the
original similarity threshold𝑇 . After reassignment, classes
are usually no longer strictly ordered according to size, so
sorting and relabeling classes by size is a recommended
additional step.

3) Disposition of outliers

The value of having 22 classes for 3000 points may be
questionable when the first 10 classes, say, account for 98%
of the dataset. An important consideration with applica-
tion of this algorithm to almost any natural dataset—as
with many other clustering algorithms—is what to do with
classes containing very fewmembers. Possibilities include
the following:

1. Discard the associated data elements as unwanted out-
liers.

1

1

2

2

3

3

4

4
5

5

6
6

7

7

8

8

9

9

10

10

Prototypes for N=180,000
Prototypes for N=60,000

Fig. 5. Comparison of class prototypes derived from a large dataset
consisting of 1.8×105 points (blue dots and labels) with those obtained
from a random subset of 6×104 points (magenta).

2. Retain even the smallest classes, perhaps to single
them out as interesting examples of “rare” phenomena
(see Section 4b).

3. Truncate the valid list of classes to the largest 𝑘 and
reassign all members of the discarded classes to a
single catch-all (𝑘 +1)th class.

4. Truncate the list of classes to the largest 𝑘 and reas-
sign the members of discarded classes to the retained
classes based on the nearest (most similar) prototype.
Note that that the expanded classes will no longer be
deliminated by the prescribed similarity threshold 𝑇 ,
as seen in Fig. 4c.

The option chosen will depend on the needs of the ap-
plication. For example, in PL’s application discussed in
Section 4a, it is essential that all land grid cells remain in
play, which eliminates option 1. It is also necessary that
classes contain enough grid cells to occupy a meaningful
land area in order to permit adequate satellite sampling,
which eliminates option 2. Finally, the purpose of PL’s
classification is to ensure that noise statistics for each grid
cell are well captured by the class mean and covariance,
which would likely not be the case for a single catch-all
class. This leaves option 4 as the optimal choice for their
application.

4) Expanding the dataset size

As previously noted, computer memory requirements
typically become problematic as 𝑁 approaches ∼105.
There are two ways to accommodate larger datasets:

• Careful implementation of memory-mapped arrays;
e.g., using Numpy’s memmap() function. While this
in principle solves the problem of accommodating
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arrays larger than the available RAM on the users’s
computer, there is a large cost in processing time, due
to the inherently slow nature of disk access.

• Initial classification based on a representative sub-
set of the data, with the remaining data then being
assigned to the nearest class prototypes.

Here we briefly demonstrate the second approach. If we
consider the dataset in Fig. 2, containing 𝑁 = 3000 points,
to be a random subset of a larger datasetwith𝑁full = 3×104,
then the resulting assignments can be seen in Fig. 4d. Later,
we will consider the robustness of the class definitions
when subsetting is employed.
An important question is whether classification based

on subsampling leads to similar outcomes relative to direct
classification of the entire dataset. To examine this issue, a
dataset consisting of 1.8×105 points—a statistically identi-
cal superset of the data already considered in this section—
was processed on a desktop Linux server with 128 GB of
RAM and just able to accommodate the 121 GB similarity
matrix S. Memory-mapped arrays were implemented to
help manage intermediate results when calculating S. The
creation of S itself required approximately 1.5 hours of
wall clock time. The classification itself, executed entirely
in RAM, required just over an hour. The first 10 class
prototypes are depicted in Fig. 5 as blue dots.
The same procedure, but without the use of memory-

mapped arrays was conducted on a subset consisting of
6×104 points, requiring 13.4 GB for S and thus potentially
within the reach of common laptop computers equipped
with only 16 GB of RAM. The computation of S required
23 s, and the classification required 15 s. The resulting pro-
totypes are shown asmagenta dots in Fig. 5. We see that the
prototypes obtained from the subset are very close to those
from the full dataset; thus assignment of the full dataset to
prototypes derived from the subset would lead to similar
but not identifical classifications, with only points near the
boundaries between classes being affected. Classes 6 and
7 are seen to reverse order, but only because these were
already of similar size.

5) Varying the similarity threshold

The PSP algorithm has only one adjustable parame-
ter, the similarity threshold 𝑇 . The number—and thus
granularity—of classes can be adjusted at will by varying
this threshold. For 𝑇 = 0, all data points are encompassed
by a single class. For 𝑇 → 1, every point becomes the
sole member of its own class, and the number of identi-
fied classes equals the number of points. For less extreme
variations in 𝑇 , the effect is illustrated in Fig. 6.
Regardless of the choice of 𝑇 , there are usually outliers

in a dataset that initially get assigned to very small or even
single-member classes. The total number of classes re-
sulting from a first-pass classification is thus an unreliable

a) T = 0.15

Ntotal = 30000

1

2
3

4

5

b) T = 0.20
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2
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4

5

67

8

9

c) T = 0.30
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2
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9
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d) T = 0.35
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27

Fig. 6. The effect of varying the similarity threshold𝑇 , shown here after
reassignment as described in Section 3a2.

guide. While outlier classes can be eliminated in princi-
ple by sufficiently reducing 𝑇 , this almost always results
in the earlier classes becoming too large to be useful. 𝑇
should therefore be chosen first to optimize the distinctions
between the earlier major classes. Truncation and, if de-
sired, reassignment can then be used to eliminate unwanted
outlier classes.
Thus, unlike some other machine learning schemes hav-

ing multiple parameters, there is only a one-dimensional
space that needs to be explored to find a value of 𝑇 that
comes closest to achieving the user’s objective. For any
dataset whose precomputed 𝑁 ×𝑁 similarity matrix S can
be accommodated by the user’s computer, it typically takes
only seconds to compute and examine the results of each
value of 𝑇 . Trial and error is therefore an viable strategy
for choosing 𝑇 .

6) Comparison with k-means

In this first demonstration of the PSP algorithm, we are
using the traditional Euclidean distance for the similarity
metric. It therefore offers an opportunity to compare the
PSP resultswith those from themore familiar k-means clus-
tering algorithm, whose results for 10 clusters are shown in
Fig. 7. The k-means partitioning of the dataset is qualita-
tively similar to that obtained from PSP, as seen in Fig. 4d.
Nevertheless, several differences may be noted, some of
which may be important depending on the application.
These include the following:

• Unlike PSP, k-means does not sequentially determine
classes in order of maximum points encompassed but
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Fig. 7. The k-means algorithm applied to the same mock dataset as in
Fig. 4d. Dots indicated the cluster centroids.

rather globally optimizes all centroids to minimize
the sum of the squared distances from the centroids.
Centroids and their corresponding classes thus have
no intrinsic ranking by importance. They may how-
ever be sorted by size as in Section 4b.

• The centroids obtained from k-means do not corre-
pond to specificmembers of the dataset, so themethod
does not directly allow one to examine a ‘prototype”
member of the class. One would instead need to
search for the member closest to any given centroid.

• k-means is less prone to creating classes or clusters
that straddle gaps or thin spots in the data distribution,
as seen for PSP in Fig. 6b for classes 8 and 9, for
example. This is because k-means penalizes distance
from the centroid, whereas PSP is sensitive only to
the number of points within a bounding radius in
similarity space.

• Unlike PSP, which is deterministic, k-means begins
with a random initialization of centroids and then it-
eratively optimizes those centroids. The final result
depends on the initialization, and one typically con-
ducts several runs and selects the result with the best
mean-squared error.

• With k-means, one cannot impose strict constraints
on the maximum acceptable distance between points
within a cluster. The effective radius may vary sub-
stantially between clusters.

• Due to the above characteristic, k-means also does not
assign distinct clusters to outlier cases. This is a dis-
advantage if one is specifically interested in anomaly
detection (see Section 4b).

Fig. 8. Field of data elements consisting of unit vectors pointing at the
red dot positioned above the plane.
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Fig. 9. Results of the classification of the grid elements in Fig. 8
according to the similarity criterion (2). Only the first nine classes of 29
are numbered. a) Initial classes. b) Classes after reassignment.

All such differences are moot when the goal is to clas-
sify a dataset based on something other than Euclidean
distance. There are of course other clustering algorithms
besides k-means, including those documented and com-
pared by Scikit-learn (2022). Those that can accommodate
arbitrary non-Euclidean similarity metrics—e.g., Agglom-
erative Clustering—have other major differences from PSP
with respect to both objective and generality.

b. Classification based on relative orientation

The secondmock dataset illustrates the ability of the PSP
algorithm to classify data elements based on properties
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Unsupervised Classification Based on Microwave Emissivity Covariance from GMI
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Fig. 10. Results of the classification of geographic grid boxes using similarity criterion (3) applied to means and covariances of multichannel
microwave pseudoemissivity.

other than relative positions in a coordinate space. It is
also a case for which the data field is homogeneous—there
are no distinct modes of the type that would be sought
out by a traditional clustering algorithm. For this purpose,
we construct a 160×160 grid of elements (𝑁 = 25 600) in
a 2-dimensional plane, each of which is associated with a
unit vector. Each vector is directed toward a common point
depicted as a red dot in Fig. 8.
Using the similarity criterion given by (2), the results for

𝑇 = 0.93 are shown in Fig. 9a. The first four classes capture
a large share of the members. There is no competition be-
tween them, and due to the symmetry of the setup, all four
are of exactly equal size. Classes 5–9 then capture most
of the remainder, leaving a few for the remaining classes
10–29 (not labeled) to pick up. In this example, there
is no significance to the precise ordering of classes, and
the highly unequal distribution of classes sizes beyond the
first eight is potentially misleading. This case illustrates
especially well the desirability of reassigning classes as de-
scribed earlier, producing the final classifications shown in
Fig. 9b. With all members now being assigned to the near-
est prototype, the numerical distribution among classes is
nowmore equitable, with the initially much smaller classes
having reclaimed “territory” back from the larger classes.

4. Applications to Earth Sciences Problems

We now turn to demonstrations of the PSP algorithm
applied to non-trivial Earth Sciences datasets. It is beyond
the scope of this paper to elaborate on the scientific contexts
or significance of the specific applications. The focus here
is strictly on illustrating the behavior and potential uses of
the PSP method.

a. Land surface classification based on microwave covari-
ances

Here we adapt the procedure utilized by PL for TRMM
to the newerGlobal PrecipitationMeasurement (GPM)Mi-
crowave Imager (GMI) 2014 (Hou et al. 2014). The intent
is facilitate the discrimination of the passive microwave
signature of falling precipitation from background bright-
ness temperatures that vary strongly in both time and space
(Petty 2013). Related but methodologically distinct efforts
are described by Aires et al. (2011) and Turk et al. (2021).

1) Setup

The starting point consists of precipitation-free mi-
crowave brightness temperatures for nine channels (10,
19, 23, 36, and 89 GHz in two polarizations) accumulated
over the six-year period from 1 June 2014 through 31 May
2020. Multichannel “pseudoemissivities” were computed
for each satellite pixel, defined as the brightness temper-
atures divided by the local surface skin temperature as
reported by the ERA5 Reanalysis (Hersbach et al. 2020).
From the nine-channel pseudoemissivities, a single

global mean and covariance was first computed for the
combined land area. The first three eigenvectors of the
covariance matrix, accounting for over 98% of the total
variance, were then utilized to transform the individual ob-
servations from nine to only three dimensions. For each
1◦×1◦ latitude-longitude grid cell containing land, means
and 3× 3 covariances were constructed from the trans-
formed data.
After excluding ocean-only grid cells and polar regions

not covered by the satellite swath, the warm-season dataset
consisted of 𝑁 = 64,800 grid cells requiring classification.
Additional smaller datasets were constructed for transi-
tional (𝑁 = 9,799) and cold-season (𝑁 = 7,055) grid-cells,
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defined according to skin-temperature thresholds of 278 K
and 268 K, respectively. Only the warm-season results are
discussed here.
The similarity metric (3) was used to compute the ma-

trix S, which required 15.6 GB of RAM. Because of the
unusually complex similarity calculation, it took ∼1 hour
to compute this modest-sized array.
As discussed in Section 3a, trial and error is efficient

enough for subjectively choosing an optimal threshold. 𝑇 =

0.55 was found to yield useful groupings of land areas in
the early (largest) classes, though the initial pass yielded
45 distinct classes, some with only a single member. The
six largest classes were retained, and all remaining grid
boxes were reassigned as usual based on the most similar
class prototype.

2) Results

The result of the above procedure is depicted in Fig. 10.
The six classes visibly capture geographically meaning-
ful distinctions. Class 1, the largest class, encompasses
most moderately vegetated land areas (e.g., savannah and
agricultural lands) on every continent. Class 2 is clearly
identified with grid cells containing significant fractions
of open or standing water, including all coastlines as well
as some wetter interior portions of northern Canada and
Asia. Class 3 is found in the arid interiors of Australia and
Asia, as well as on the margins of the African and Arabian
deserts. Class 4 appears to be associated primarily with
heavily forested areas, not only the rainforests of Africa,
South America, southeast Asia, and Indonesia, but also the
extensive temperate and boreal forests of North American
and Asia. Class 5 is found primarily in the Saharan and
Arabian deserts as well as the largely sand dune-covered
Taklimakan Desert in western China. Finally, Class 6 is
mostly found at the transitions from Class 1 (moderate
vegetation cover) to Class 3 (arid).
It must be emphasized that the physical descriptions of-

fered above are unimportant for the purposes of this clas-
sification and need not be validated or defended. The sole
practical value in this particular exercise lies in the group-
ing of land areas according to theirmultichannel microwave
brightness temperature variability for the purpose of char-
acterizing the noise background for precipitation retrievals.
Nevertheless, it is reassuring that this esoteric concern ap-
pears to lead to classifications that are readily associated
with known geographic characteristics.

b. Clustering of Weather Maps

As an example of an entirely different geophysical ap-
plication, we turn our attention to the unsupervised clas-
sification or grouping of weather maps. There is a long
history of attempts to forecast weather by finding past
weather patterns—analogues—that match current patterns
and therefore provide insight into future developments.

Fig. 11. Class size vs. class number resulting from application of
the PSP algorithm to 500 hPa height maps from the NCEP Reanalysis.
a) Initial results. b) Following reconsolidation. c) Following sorting by
class size. d) Comparison with k-means clustering for the same number
of classes.

The analogue method mostly failed to live up to expecta-
tions, in large part because of the rarity of sufficiently accu-
rate matches in the historical record, though some progress
has been made in overcoming this handicap (Van den Dool
1989; Hamill et al. 2015).
Here we focus on a different question: can the PSP algo-

rithm be utilized to identify certain weather patterns that
are unusually common or, perhaps more interestingly, un-
usually rare? The second case can be regarded as a form of
anomaly detection; i.e., the identification of notable out-
liers in a dataset that may have special significance (Chan-
dola et al. 2009). In other data science contexts, anomalies
might be associated with erroneous or fraudulent records.
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In the present context, they might represent weather pat-
terns that are so rare as to be worthy of further study. The
relevant property of the PSP algorithm is its automatic as-
signment of outliers to classes of their own. A data object
that is the sole member of a class is by definition one that
is less similar than the chosen threshold 𝑇 to every other
object in the dataset.

1) Setup

For the sake of illustration only, we utilize 500 hPa height
fields over the continental United States from the National
Center for Environmental Prediction (NCEP) Reanalysis
1 (Kalnay et al. 1996). This field is chosen because it is
commonly regarded by meteorologists as one of the most
representative depictions of the general state of the atmo-
sphere in the mid-troposphere. The dataset employed here
covers the period 1 January 1948 through 31 December
2021 at 6-hourly intervals. The sample thus consists of
𝑁 = 108,116 gridded maps of geopotential height. The
maps are low-pass filtered and subsampled at 10◦ lati-
tude/longitute intervals to reduce both the data volume and
the importance of small-scale features in this demonstra-
tion.
There are different measures of similarity that could be

employed, and they lead to different results. One possi-
bility is the root-mean-squared difference between gridded
maps, which favors matches for which both the amplitudes
and shapes of the height fields are similar. It is also the
traditional Euclidean distance in a 45-dimensional space,
corresponding to the 5× 9 grid size of the subsetted map
arrays. For this problem, we instead used the Pearson cor-
relation coefficient, and thus (4), so as to again demonstrate
the complete flexibility one has in the choice of similarity
metric.
The matrix S in this case required 43 GB of RAM,

and the algorithm completed the classification in about
20 minutes using a threshold 𝑇 that corresponded to a
correlation coefficient 𝑟 = 0.992 according to (4). Since
anomaly detection is one prospective goal, this threshold
was chosen by trial and error to yield a small but non-zero
number of single-member classes after reassignment.

2) Results

The initial pass resulted in 2,178 prototypes and as-
sociated classes ranging in size from 8,114 members to
just one, with almost 500 classes in the latter category
(Fig. 11a). Members were then reassigned as usual, lead-
ing to substantial changes in the membership of each class
(Fig. 11b), including many additions to previously small
classes. Finally, the modified classes were sorted and rela-
beled by size, yielding the distribution showing in Fig. 11c,
with Class 1 now containing only 2,197members, and only
the final 13 classes containing one member each.

The prototypes for Classes 1 through 6, encompassing
the most common height patterns in the dataset and collec-
tively accounting for 8% of the total record, are depicted
in Fig. 12. We observe that the most commonly occur-
ring patterns exhibit north-south height gradients generally
consistent with the time of year but without marked wave
structure.
Figure 13 depicts a representative sample of six of the

13 single-member classes. Each of these is notable in
being “dissimilar” (𝑟 < 0.992) from every other member
in the dataset. A common feature of these exceptional
cases is that the gradient in 500 hPa height is remarkably
flat relative to the more common cases. From a mete-
orological standpoint, this implies an unusually uniform
lower-atmospheric thermal structure across the region.
Finally, Fig. 14 depicts all members of a single randomly

chosen six-member class. Interestingly, it does not consist
of six independent occurrences of the same height pattern
scattered across 74 years but rather a single episode that
persisted over at least 30 consecutive hours. Thus, the
occurrence of the pattern in question is as rare as that of any
single-member class but is, unlike the others, apparently
prone to some degree of persistence.
It must be emphasized that the point here is not to un-

dertake an in-depth meteorological analysis of the classifi-
cation results but rather to illustrate the potential utility of
the algorithm for objectively identifying both common and
rare dataset members for possible further study. Among
other things, one might look at whether specific patterns
occur with changing frequency over the time period cov-
ered by the record and which might be especially prone to
persisting over longer periods of time.

3) Comparison with k-means

The same dataset was also passed to the standard k-
means algorithm with the requested number of clusters set
to match that found by the PSP algorithm. Note that the
clustering criterion used by k-means is the Euclidean dis-
tance in 45-dimensional space, not correlation coefficient,
so we cannot exactly compare results. However, we can
look at the sorted distribution of cluster sizes in Fig. 11d.
The distribution is far flatter than the PSP results, with the
largest cluster containing only 105 members (as compared
to 2,197 for PSP after reassignment) and the smallest class
containing 7. The vast majority of classes have between
30 and 90 members.
Even allowing for the different similarity metric, it is

clear that k-means does not impose a reasonably pre-
dictable and invariant similarity threshold—i.e., cluster
radius in Euclidean terms—across classes. As a result,
we lose much of the ability to characterize the relative fre-
quency of different patterns by reference to a reasonably
constant similarity threshold. That includes the ability to
isolate single outliers, which are a natural product of the
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PSP algorithm. When the goal is specifically to control the
minimum degree of self-similarity within clusters and/or
meaningfully characterize the relative frequency of occur-
rence of particular patterns subject to a rigid similarity
constraint, the PSP method seems preferable to k-means.

5. Conclusions

This paper presented a remarkably simple yet flexible
and robust unsupervised classification—the Pairwise Sim-
ilarity Partitioning (PSP)method—for efficiently partition-
ing a multivariate dataset into compact, non-overlapping
groups or classes based on a user-specified threshold of
mutual similarity and sorted by size. It does not resemble
any other classification or clustering algorithm known to
the author.
Unlike many algorithms, PSP does not necessarily as-

sume that there are “natural” clusters—i.e., multiple dis-
tinct density modes—present in the dataset. It also does
not require data objects to be referenced to any coordinate
system, as required for example for the determination of
Euclidean distance. Rather, the user has the freedom to
define pairwise similarity arbitarily, subject only to the ba-
sic rules outlined at the beginning of Section 2. As long as
those rules are satisfied, it does not appear to be possible
for the algorithm to fail, and it requires just one iteration
per class found, starting with the largest.
A significant practical limitation is the computer mem-

ory required for the 𝑁 × 𝑁 similarity matrix, which be-
gins to pose a problem for many desktop computers as
the dataset size approaches 105. But the method is induc-
tive, in that much larger datasets can be accommodated
by retroactively assigning new members to classes previ-
ously determined froma representative subset, based on the
most similar class prototype. At least in a two-dimensional
domain, it was shown that the determination of class pro-
totypes (or centroids) is relatively insensitive to training
on a subset, provided that the subset is large enough to be
statistically representative while still being within reach of
a computer equipped with only 16 GB of RAM.
It was also shown that the algorithm could be meaning-

fully applied to four distinctly different datasets, includ-
ing two non-trivial geoscientific datasets, using distinctly
different similarity metrics. When applied to gridded
statistics of microwave multichannel brightness temper-
ature variability, the resulting classifications bore obvious
relationships to known regions of desert, forest, coastlines,
etc. It bears emphasizing that the unusual similarity metric
(3) was both specific and essential to the context for this
analysis while also being impossible to replicate using any
other standard partitioning or clustering algorithm.
When applied to a 74-year record of gridded weather

data, the method readily identified both very common and
very rare patterns of 500 hPa height fields. Obvious future
extensions of this work include 1) examining other regions

(e.g., the entire northern hemisphere) and/or meteorolog-
ical variables (e.g., 850–500 hPa thickness) of interest to
atmospheric dynamicists to identify common and rare pat-
terns of possible meteorological or climatological signif-
icance; 2) looking for trends or interdecadal variations in
the frequency of occurrence of specific patterns, and 3)
examining the relative stability or persistence over time of
a particular pattern.
Throughout this paper, the focus has been on the ini-

tial description and demonstration of what appears to be
a novel data analysis tool. While the examples provide
are drawn from the Earth sciences, there is no obvious
reason to limit its application to any specific discipline.
The sole requirement is the ability to define a meaning-
ful metric of pairwise similarity, whether between images,
hyperspectral pixels within a set of images, weather maps,
atmosphere temperature and humidity profiles, or even text
documents.
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Fig. 12. Prototypes of the most-populous six classes of 500 hPa height patterns identified in the 74-year NCEP Reanalysis record.
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Fig. 13. Six of the 13 single-member classes of 500 hPa height patterns identified in the 74-year NCEP Reanalysis record.
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Fig. 14. All six members of a single arbitrarily selected six-member class of 500 hPa height patterns identified in the 74-year NCEP Reanalysis
record.


