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Abstract

Cosmic ray neutron sensors (CRNS) allow to determine field-scale soil moisture content non-invasively due to the dependence

of aboveground measured epithermal neutrons on the amount of hydrogen. Because other pools besides soil contain hydrogen

(e.g. biomass), it is necessary to consider these for accurate soil moisture content measurements, especially when they are

changing dynamically (e.g., arable crops, de- and reforestation). In this study, we compare four approaches for the correction

of biomass effects on soil moisture content measurements with CRNS using experiments with three crops (sugar beet, winter

wheat and maize) on similar soils: I) site-specific functions based on in-situ measured biomass, II) a generic approach, III)

the thermal-to-epithermal neutron ratio (Nr) and IV) the thermal neutron intensity. Calibration of the CRNS during bare soil

conditions resulted in root mean square errors (RMSE) of 0.097, 0.041 and 0.019 m3/m3 between estimated and reference soil

moisture content of the cropped soils, respectively. Considering in-situ measured biomass for correction reduced the RMSE

to 0.015, 0.018 and 0.009 m3/m3. When thermal neutron intensity was considered for correction, similarly accurate results

were obtained. Corrections based on Nr and the generic approach were less accurate. We also explored the use of CRNS for

biomass estimation. The use of Nr only provided accurate biomass estimates for sugar beet. However, significant site-specific

relationships between biomass and thermal neutron intensity were obtained for all three crops. It was concluded that thermal

neutron intensity can be used to correct soil moisture content estimates from CRNS and to estimate biomass.
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Key Points 13 

 Cosmic ray soil moisture content measurements were most accurate when corrected 14 

with in-situ biomass or thermal neutron intensity 15 

 The effect of biomass on epithermal and thermal neutron intensity is plant-specific 16 

 Biomass could be estimated from thermal neutron intensity for three crop types, but 17 

not with the thermal-to-epithermal neutron ratio  18 



Plain language summary 19 

Water availability is a key challenge in agriculture, especially given the expected increase 20 

of droughts related to climate change. A promising non-invasive technique to monitor soil 21 

moisture content is cosmic-ray neutron sensing (CRNS), which is based on the negative 22 

correlation between the number of near-surface fast neutrons originating from cosmic 23 

radiation and the amount of hydrogen stored as soil moisture. However, hydrogen is also 24 

stored in other pools, such as biomass. These additional pools of hydrogen must be 25 

considered to accurately determine soil moisture content with CRNS. In this study, we 26 

used data from three experiments with different crops for comparing four methods for the 27 

correction of biomass effects on the measurement of soil moisture content with CRNS. 28 

We found that soil moisture content measurements were most accurate when locally 29 

measured biomass was considered for correction. We also found that changes in the 30 

amount of biomass of different crops can be quantified using thermal neutrons additionally 31 

detected by CRNS, i.e. neutrons from cosmic rays that have a lower energy than fast 32 

neutrons. A correction of biomass effects using thermal neutron measurements also 33 

provided accurate soil moisture content measurements.  34 



Abstract 35 

Cosmic ray neutron sensors (CRNS) allow to determine field-scale soil moisture content 36 

non-invasively due to the dependence of aboveground measured epithermal neutrons on 37 

the amount of hydrogen. Because other pools besides soil contain hydrogen (e.g. 38 

biomass), it is necessary to consider these for accurate soil moisture content 39 

measurements, especially when they are changing dynamically (e.g., arable crops, de- 40 

and reforestation). In this study, we compare four approaches for the correction of 41 

biomass effects on soil moisture content measurements with CRNS using experiments 42 

with three crops (sugar beet, winter wheat and maize) on similar soils: I) site-specific 43 

functions based on in-situ measured biomass, II) a generic approach, III) the thermal-to-44 

epithermal neutron ratio (Nr) and IV) the thermal neutron intensity. Calibration of the 45 

CRNS during bare soil conditions resulted in root mean square errors (RMSE) of 0.097, 46 

0.041 and 0.019 m3/m3 between estimated and reference soil moisture content of the 47 

cropped soils, respectively. Considering in-situ measured biomass for correction reduced 48 

the RMSE to 0.015, 0.018 and 0.009 m3/m3. When thermal neutron intensity was 49 

considered for correction, similarly accurate results were obtained. Corrections based on 50 

Nr and the generic approach were less accurate. We also explored the use of CRNS for 51 

biomass estimation. The use of Nr only provided accurate biomass estimates for sugar 52 

beet. However, significant site-specific relationships between biomass and thermal 53 

neutron intensity were obtained for all three crops. It was concluded that thermal neutron 54 

intensity can be used to correct soil moisture content estimates from CRNS and to 55 

estimate biomass.  56 



1. Introduction 57 

Cosmic ray neutron (CRN) sensing is a non-invasive method for soil moisture content 58 

measurement (ZREDA ET AL., 2008). By now, it has become a widely used method for soil 59 

moisture content determination and cosmic ray neutron sensors (CRNS) are operated in 60 

more than 200 locations worldwide (BOGENA ET AL., 2015; ANDREASEN ET AL., 2017b), also 61 

in regional (e.g., BAATZ ET AL., 2014; BOGENA ET AL., 2018), national (e.g., ZREDA ET AL., 62 

2012; COOPER ET AL., 2021) and continent-wide networks (e.g., BOGENA ET AL., in revision; 63 

HAWDON ET AL., 2014). The aboveground epithermal neutron intensity (energy range from 64 

~0.5 eV to 100 keV; ZREDA ET AL., 2008) is inversely related to the hydrogen content of 65 

the environment. Since hydrogen is mostly located in soil water in terrestrial 66 

environments, the measurement of the aboveground epithermal neutron intensity can be 67 

used to estimate soil moisture content (DESILETS ET AL., 2010).The sensing volume of 68 

CRNS is much larger compared to most other ground-based soil moisture sensing 69 

techniques and corresponds to a cylinder with 130 - 240 m radius and 15 – 83 cm soil 70 

depth depending on the soil moisture content (KÖHLI ET AL., 2015; SCHRÖN ET AL., 2017).  71 

It is important to note that hydrogen is also stored in other environmental pools besides 72 

soil, which may cause deviations between soil moisture content determined with CRNS 73 

and reference measurements. Common additional hydrogen sources are snow (TIAN ET 74 

AL., 2016; BOGENA ET AL., 2020), biomass (FRANZ ET AL., 2013b; BAATZ ET AL., 2015; 75 

BARONI AND OSWALD, 2015; TIAN ET AL., 2016; FERSCH ET AL., 2018; JAKOBI ET AL., 2018), 76 

ponding water (SCHRÖN ET AL., 2017), and interception by vegetation (BARONI AND 77 

OSWALD, 2015; ANDREASEN ET AL., 2016; JAKOBI ET AL., 2018) as well as the litter layer 78 

(BOGENA ET AL., 2013). The timing of the observed deviations may help to identify the most 79 

probable source of additional hydrogen affecting the epithermal neutron intensity. In the 80 

absence of snow, earlier CRN sensing studies on agricultural sites typically identified 81 

biomass as the most important reason for deviations between the CRNS derived soil 82 

moisture content and in-situ measured reference soil moisture content (e.g., BARONI AND 83 

OSWALD, 2015; TIAN ET AL., 2016; JAKOBI ET AL., 2018). Thus, the removal of the effect of 84 

biomass is crucial for accurate soil moisture content estimation especially on agricultural 85 

sites. Although methods to correct soil moisture content for the presence of biomass have 86 



been developed (e.g.,  HAWDON ET AL., 2014; BAATZ ET AL., 2015; JAKOBI ET AL., 2018), 87 

they typically require laborious biomass measurements that are often not available.  88 

To circumvent the need for laborious biomass measurements for correction, several 89 

studies attempted to directly determine the amount of aboveground biomass from 90 

epithermal CRNS measurements and in-situ soil moisture content measurements (FRANZ 91 

ET AL., 2013b; BARONI AND OSWALD, 2015). More recently, it was shown that the ratio of 92 

thermal (≤ 0.5 eV) to epithermal neutron intensity (Nr) can be used to determine 93 

aboveground biomass and to correct biomass effects on CRN measurements (TIAN ET 94 

AL., 2016; JAKOBI ET AL., 2018). The dependency of Nr on biomass was also confirmed by 95 

neutron transport modeling of a forest site (ANDREASEN ET AL., 2017a) and by a 96 

comparison of the measured Nr with vegetation indices derived from remote sensing 97 

(VATHER ET AL., 2020). However, it has not yet been investigated in detail why Nr depends 98 

on biomass and whether Nr-based correction methods can be applied for different 99 

vegetation types. Such investigations are particularly important given that the intensity of 100 

thermal neutrons also depends on soil moisture content and soil chemistry, since thermal 101 

neutrons are particularly strongly absorbed by certain elements in the soil (ZREDA ET AL., 102 

2008; ANDREASEN ET AL., 2016). In addition, recent studies have shown that the sensing 103 

volume of thermal neutrons is much smaller than in the case of epithermal neutrons 104 

(BOGENA ET AL., 2020; RASCHE ET AL., 2021). Using neutron transport simulations, it was 105 

found that thermal neutrons have a radial footprint of approximately 45 m that increases 106 

slightly with increasing soil moisture content and a sensing depth that increases from 10 107 

to 65 cm with decreasing soil moisture content from 0.50 – 0.01 m3/m3 (JAKOBI ET AL., 108 

2021). 109 

The aim of this study is to compare four approaches for the correction of crop biomass 110 

effects on CRNS soil moisture content measurements using measurements of thermal 111 

and epithermal neutron intensity, reference soil moisture content, as well as biomass 112 

development for three crops (sugar beet, maize, and winter wheat). In particular, we 113 

considered the following approaches for correction: I) local linear regression models 114 

based on epithermal neutron intensity, in-situ soil moisture content and in-situ biomass 115 

measurements, II) the empirical generic approach developed by BAATZ ET AL. (2015), III) 116 



local linear regression models based on both epithermal neutron and Nr measurements, 117 

and IV) local linear regression models based on both epithermal neutron and thermal 118 

neutron measurements. In addition, we evaluated to what extent aboveground biomass 119 

can be determined from the Nr and from the thermal neutron intensity for the three crops 120 

considered in this study. 121 

2. Materials and Methods 122 

2.1. The Selhausen experimental site 123 

The Selhausen experimental site is located in western Germany, approximately 40 km 124 

west of Cologne (50.865°N, 6.447°E) and is part of the TERENO (TERrestrial 125 

ENvironmental Observatories) Rur hydrological observatory (BOGENA ET AL., 2018). The 126 

site is located in the temperate maritime climate zone with a mean annual temperature 127 

and precipitation of 10.2 °C and 714 mm, respectively (KORRES ET AL., 2015). The 128 

experimental site consists of 52 fields managed by local farmers. The main soil type is 129 

Cambisol with a silty loam soil texture (RUDOLPH ET AL., 2015; BROGI ET AL., 2019) on top 130 

of Pleistocene sand and gravel sediments interrupted by subsurface channels of the 131 

Rhine/Meuse river system filled with finer sediment (WEIHERMÜLLER ET AL., 2007). This 132 

subsoil heterogeneity leads to characteristic biomass patterns, especially on the sand and 133 

gravel dominated fields (compare Figure 1; RUDOLPH ET AL., 2015; BROGI ET AL., 2020). 134 

The experiments presented in this study were conducted on three different fields (Figure 135 

1) with three different crops and in three years: winter wheat on field F11 in 2015 (FUCHS, 136 

2016), sugar beet on field F01 in 2016 (JAKOBI ET AL., 2018) and maize on field F52 in 137 

2018. 138 



 139 

Figure 1: Map of the Selhausen experimental site showing an overview of the fields with dominant parent 140 
material and the footprint radii (R86) of the three experiments estimated using the average soil moisture 141 
content, air humidity, pressure and vegetation height conditions, respectively (i.e., winter wheat: 132 m; 142 
sugar beet: 157 m; maize: 146 m). Furthermore, the SoilNet locations within the three fields and 143 
magnifications with 15 m radius around the CRNS are shown for winter wheat and sugar beet. For the 144 
maize experiment, the magnification shows an area with a 10 m radius around the CRNS. Base maps: ESRI 145 
World Imagery and Contributors. 146 

2.2. Auxiliary meteorological data 147 

Air temperature, relative humidity, and atmospheric pressure were measured on-site 148 

during the experiments. The absolute humidity necessary for neutron count correction 149 

was calculated from relative humidity and air pressure. Data gaps in absolute humidity 150 

and atmospheric pressure were filled based on linear regression models obtained for the 151 

entire measurement period. For this, time series of the same variables were obtained 152 

from a climate station situated next to the CRNS on field site F11 (SE_EC_001, 153 

http://teodoor.icg.kfa-juelich.de/ibg3searchportal2/index.jsp, compare Figure 1). Hourly 154 



precipitation sums were obtained from a nearby climate station ~400 m northeast of the 155 

field site F11 (SE_BDK_002). 156 

2.3. In-situ soil moisture content measurements 157 

We used SoilNet wireless sensor networks (BOGENA ET AL., 2010) for obtaining reference 158 

in-situ soil moisture content at 18 – 26 locations within each field (Figure 1). At each 159 

location, soil moisture content was measured in three depths using two soil moisture 160 

content sensors (sugar beet and maize: SMT100, Truebner GmbH, Neustadt, Germany; 161 

winter wheat: SPADE, sceme.de GmbH, Horn-Bad Meinberg, Germany). Two sensors 162 

were installed at each depth to increase the measurement volume and to identify 163 

malfunctioning sensors. Each sensor was calibrated individually to translate the sensor 164 

response into dielectric permittivity (BOGENA ET AL., 2017). The measured permittivity was 165 

related to soil moisture content with the TOPP ET AL. (1980) equation. 166 

The measurement designs at the three field sites differed because of the differently sized 167 

fields and to account for the high soil heterogeneity in the case of sugar beet (JAKOBI ET 168 

AL., 2018). For winter wheat, we installed sensors at five locations at distances of 11, 50, 169 

and 110 m from the CRNS (i.e. 15 locations), as suggested by SCHRÖN ET AL. (2017). 170 

Additionally, sensors were installed at three locations at 3 m distance from the CRNS to 171 

account for the higher sensitivity near the detector. At all locations, the measurement 172 

depths were 5, 10 and 20 cm. For sugar beet, 18 locations with measurement depths of 173 

5, 20 and 50 cm were distributed in the field. Additionally, sensors were installed at three 174 

locations at 3 m distance and at five locations at 11 m distance from the CRNS. For these 175 

locations, the measurement depths were 5, 10 and 20 cm (JAKOBI ET AL., 2018). For 176 

maize, sensors were installed at 18 locations at distances of 2, 6, 25 and 80 m from the 177 

CRNS. At 2 m distance, sensors were installed at 3 locations. At the other distances, 178 

sensors were installed at 5 locations. For all 18 locations, the measurement depths were 179 

5, 15 and 30 cm. For this experiment, we additionally installed 12 SMT100 sensors 180 

vertically at distances of < 5 m from the CRNS to determine the integral soil moisture 181 

content from 0 to 10 cm depth (Figure 1) to account for the sensitivity of CRN 182 



measurements to soil moisture content changes at shallow depths (FRANZ ET AL., 2012; 183 

KÖHLI ET AL., 2015; SCHRÖN ET AL., 2017). 184 

2.4. In-situ soil sampling 185 

Additional hydrogen pools in the soil (θoff [g/g]) modify the dependency of epithermal 186 

neutrons on soil moisture content (ZREDA ET AL., 2012) and reduce the effective sensing 187 

depth of CRNS  (e.g., FRANZ ET AL., 2012). We determined θoff alongside bulk density (ϱbd 188 

[g/cm3]) from soil samples of 30 cm length and 5 cm diameter obtained using a HUMAX 189 

soil corer (Martin Bruch AG, Rothenburg, Switzerland). Soil samples were taken at all 190 

SoilNet locations except for the 12 vertically inserted SMT100 sensors. For obtaining ϱbd, 191 

the soil cores were divided into 5 cm segments and oven-dried at 105 °C for 24 h. 192 

Subsequently, the soil samples were sieved and depth-specifically mixed for each field. 193 

Subsamples of 20 mg were taken from these bulk samples and heated to 1000 °C to 194 

obtain θoff from the weight loss using the stoichiometric ratio of oxygen to hydrogen in H20 195 

(i.e., ~7.94). In this case, θoff contains lattice water (LW [g/g]) and soil organic carbon 196 

(SOC [g/g]), which are traditionally determined separately and summed (e.g., ZREDA ET 197 

AL., 2012; SCHEIFFELE ET AL., 2020). 198 

2.5. Weighting of reference measurements 199 

KÖHLI ET AL. (2015) showed that the footprint of epithermal neutrons varies depending on 200 

soil moisture content, air humidity, air pressure, soil bulk density and vegetation height. 201 

These findings were extended for short distances (< 1 m) by SCHRÖN ET AL. (2017). In this 202 

study, we used the most recent method for vertical and horizontal weighting of in-situ 203 

reference soil moisture content measurements of which a brief description is given in the 204 

following. For a complete description of the weighting procedure, we refer to SCHRÖN ET 205 

AL. (2017).  206 

For all experiments, we first obtained the vertical weights (i.e., Wd; SCHRÖN ET AL., 2017) 207 

for each SoilNet location and measurement depth. Subsequently, Wd was used to derive 208 

a vertically weighted soil moisture content for each location and measurement time. For 209 

the vertical and horizontal weighting of in-situ ϱbd and θoff measurements, we used the 210 



average of the HUMAX sample depth-intervals, i.e., 2.5, 7.5, 12.5, 17.5, 22.5 and 27.5 211 

cm. For maize and winter wheat, the reference soil moisture content locations were 212 

determined following the radial sensitivity of CRNS. Thus, a horizontal weighting was 213 

already implicitly considered. To avoid a double weighting, we first averaged the 214 

measurements for each radius. Subsequently, the results for each radius were averaged 215 

to obtain the vertically and horizontally weighted reference soil moisture content 216 

(θreference), ϱbd and θoff. For sugar beet, the reference measurement were weighted using 217 

the location-specific horizontal weights (i.e., Wr, SCHRÖN ET AL., 2017). At each 218 

measurement time, the procedure to determine the vertical and horizontal weighting was 219 

iterated four times, which was sufficient to reach convergence. 220 

2.6. Biomass measurements 221 

During the winter wheat, maize and sugar beet experiments, we sampled above- and 222 

belowground biomass at eight, five and nine locations, respectively. At least four 223 

measurement locations were sampled in < 20 m distance from the CRNS. At each 224 

sampling location, 1 m of row was harvested, sealed air-tight, and transported to the 225 

laboratory. Here, soil residues were removed and samples were split into above- and 226 

belowground biomass, and subsequently weighed and oven-dried at ≤ 105 °C until a 227 

constant weight was reached. Due to limited oven capacity, subsamples of ~20% of the 228 

original sample weight were occasionally used. Areal average moist and dry above- and 229 

belowground biomass was calculated using the arithmetic mean of all samples. As 230 

suggested by FRANZ ET AL. (2013b), we assumed that the water equivalent contained in 231 

biomass (BWE [mm]) can be approximated by the sum of the weight loss from oven-232 

drying and the stoichiometric amount of hydrogen and oxygen contained in cellulose (few, 233 

~55.6 %):  234 

 
𝐵𝑊𝐸 = [(𝐵𝑀𝑓 − 𝐵𝑀𝑑) + 𝑓𝑒𝑤 𝐵𝑀𝑑]

1

𝑝𝑑
 𝑝𝑤

−1 (1) 

where pw is the density of water (1000 kg/m3), pd is the distance between rows (m; sugar 235 

beet: 0.465 m, winter wheat: 0.12 m, maize: 0.45 m) and BMf and BMd are the fresh and 236 

dry biomass weights per 1 m of row [g], respectively. We used Equation (1) to determine 237 



aboveground BWE (BWEa), belowground BWE (BWEb), while total BWE (BWEtot) was 238 

obtained as BWEa + BWEb.  239 

For sugar beet and winter wheat, biomass was sampled on 11 days, respectively. 240 

However, for winter wheat two of the belowground biomass samples were calculated from 241 

aboveground biomass information according to BARET ET AL. (1992). For maize, the 242 

observation period was only 3 months due to a drought-related emergency harvest and 243 

biomass was only measured at five days. Therefore, additional BWE estimates were 244 

obtained from bi-weekly leaf area index (LAI) measurements with a SS1 SunScan 245 

Canopy Analysis System (Delta-T Devices, Cambridge, United Kingdom). For this, we 246 

used an exponential model to relate BWE and LAI of maize:  247 

 𝐵𝑊𝐸𝐿𝐴𝐼 = 𝑎1𝐿𝐴𝐼
𝑏1 (2) 

where a1 and b1 are fitting parameters and BWELAI [mm] is the BWE predicted from LAI. 248 

We fitted Equation (2) for the prediction of aboveground BWE (BWEa,LAI) and 249 

belowground BWE (BWEb,LAI), while total BWE (BWEtot,LAI) was obtained as BWEa,LAI + 250 

BWEb,LAI. Linear interpolation was used to obtain BWE estimates at non-sampled times. 251 

2.7. Cosmic Ray Neutron Measurements 252 

We used different types of CRNS (i.e. CRS-1000, CRS-2000/B, mobile CRNS, 253 

Hydroinnova LLC, Albuquerque, NM, USA) with moderated and bare detector tubes for 254 

measuring epithermal and thermal neutron intensity, respectively.  For more information 255 

on the measurement principle, we refer to ZREDA ET AL. (2012). FERSCH ET AL. (2020) 256 

provide an overview of the different detector types. We collocated several CRNS in all 257 

three fields and summed up the measured neutron counts to achieve higher 258 

measurement accuracy compared to a single sensor (cf. JAKOBI ET AL., 2020). In 259 

particular, we operated 7 moderated and 3 bare neutron detectors in the sugar beet field, 260 

8 moderated and 4 bare detectors in the winter wheat field, and 4 moderated and 3 bare 261 

detectors in the maize field. 262 



Before aggregation, outliers were removed from the raw neutron count time series (Nraw) 263 

of the individual detectors, irrespective of detector type, using two filtering steps. First, 264 

extreme outliers were removed using two threshold values: 265 

 

𝑁𝑐1 = {
𝑁𝑟𝑎𝑤 > 50

𝑐𝑡𝑠

ℎ

𝑁𝑟𝑎𝑤 < 10
𝑘𝑐𝑡𝑠

ℎ

 (3) 

Second, outliers relative to the 24 hours moving average (𝑁𝑐24𝑚) ± the Poissonian 266 

uncertainty (e.g., KNOLL, 2010) associated to the 24 hours moving sum (√𝑁𝑐24𝑠) were 267 

removed: 268 

 

𝑁𝑐 =

{
 

 𝑁𝑐1 > 𝑁24𝑚 − √𝑁𝑐24𝑠

𝑁𝑐1 < 𝑁24𝑚 + √𝑁𝑐24𝑠

 (4) 

Subsequently, the filtered hourly thermal (Tc) and epithermal (Ec) neutron count rates 269 

were summed up. 270 

The measurements of some of the thermal and epithermal detectors contained larger 271 

data gaps. We obtained scaling factors (sf) for each experiment and each detector relative 272 

to the cumulative average count rate during times when all detectors of the same type 273 

(i.e. Tc or Ec) were working. The sf were used to account for missing data during 274 

summation as follows: 275 

 
𝐸𝑠 = 𝐸𝑐

1

∑ 𝑠𝑓

𝑇𝑠 = 𝑇𝑐
1

∑𝑠𝑓

 (5) 

where Es and Ts are the summed epithermal and thermal neutron count series adjusted 276 

for data gaps. 277 

Corrected epithermal neutron intensities (E) were obtained from Es by applying 278 

established correction procedures for variations in air pressure (DESILETS AND ZREDA, 279 

2003), incoming cosmic ray neutron intensity (DESILETS AND ZREDA, 2001) and air humidity 280 

(ROSOLEM ET AL., 2013). For these corrections, we used the average pressure, absolute 281 



humidity and incoming cosmic ray neutron intensity measured during each of the three 282 

experiments. The reference incoming cosmic ray neutron intensity was obtained from the 283 

neutron monitor at Jungfraujoch (JUNG; via the NMDB neutron monitor database at 284 

www.nmdb.eu). Following the experimental findings from JAKOBI ET AL. (2018), we 285 

obtained the corrected thermal neutron intensity (T) from Ts by applying corrections for 286 

pressure and absolute humidity only. 287 

2.8. The thermal-to-epithermal neutron ratio 288 

TIAN ET AL. (2016) found a positive correlation between BWEa of maize and soy bean and 289 

the ratio of thermal to epithermal neutrons (Nr). Such a correlation was also found for the 290 

sugar beet dataset used in this study (JAKOBI ET AL., 2018). In this study, we obtained Nr 291 

according to JAKOBI ET AL. (2018): 292 

 
𝑁𝑟 =

𝑇

𝐸

𝐸̅

𝑇̅
 (6) 

where 𝐸̅ and 𝑇̅ are the arithmetic means of the epithermal and thermal neutron intensity 293 

measured during each experiment, and E and T are the 12-hourly moving averages of 294 

the epithermal and thermal neutron intensity. We used linear models for relating Nr and 295 

BWEa (JAKOBI ET AL., 2018): 296 

 𝐵𝑊𝐸𝑎,𝑁𝑟 = 𝑎2𝑁𝑟 + 𝑏2 (7) 

where BWEa,Nr is the BWEa estimated from Nr and a2 and b2 are calibration parameters. 297 

We also used a linear model for relating T and BWEtot: 298 

 𝐵𝑊𝐸𝑡𝑜𝑡,𝑇 = 𝑎3𝑇 + 𝑏3 (8) 

where BWEtot,T is the BWEtot estimated from T and a3 and b3 are calibration parameters. 299 

2.9. Conversion of neutrons to soil moisture content 300 

We obtained volumetric soil moisture content (θ) from E with a modified approach 301 

following DESILETS ET AL. (2010), which showed good performance in several previous 302 

studies (e.g., RIVERA VILLARREYES ET AL., 2011; BAATZ ET AL., 2014; DONG ET AL., 2014; 303 

DIMITROVA-PETROVA ET AL., 2020): 304 



 

𝜃 =  𝜚𝑏𝑑 (
𝑝0

𝑓𝐸
𝑁0

− 𝑝1

− 𝑝2 − 𝜃𝑜𝑓𝑓) (9) 

where pi (= 0.0808, 0.372 and 0.115) are fitting parameters obtained from neutron 305 

transport modeling, f is a temporally variable correction factor (derived from biomass 306 

measurements, Nr, or T), and N0 is the epithermal neutron intensity above dry soil. In this 307 

study, we obtained N0 from the 12-hourly moving average of the epithermal neutron 308 

intensity using three different strategies: 309 

 In calibration strategy A, a single value for N0 (i.e., N0,opt) was obtained using the 310 

whole reference soil moisture content time series and assuming f = 1 (i.e. no 311 

additional correction). 312 

 In calibration strategy B, a single value for N0 (i.e., N0,bare) was obtained for the first 313 

two days of the reference soil moisture content observations and assuming f = 1. 314 

This strategy represents the typical calibration approach using campaign-style soil 315 

sampling (e.g., ZREDA ET AL., 2012).  316 

 In calibration strategy C, we obtained 12-hourly N0-values using Equation (9) and 317 

assuming f = 1. We used the resulting N0 time series for predicting biomass, Nr or 318 

T related effects on epithermal CRN measurements. 319 

For calibration strategies A and B, N0 is obtained by minimization of the root mean square 320 

error (RMSE) between the reference and the estimated soil moisture content. 321 

2.10. Biomass, Nr and thermal neutron corrections 322 

We tested four regression models for obtaining the correction factor f in Equation (9) using 323 

either BWEa (e.g., BAATZ ET AL., 2015), BWEtot, Nr (e.g., JAKOBI ET AL., 2018), or T: 324 

 𝑁0,𝐵𝑊𝐸𝑎 = 𝑎4 𝐵𝑊𝐸𝑎 + 𝑁0,𝐵𝑊𝐸𝑎=0  (10) 

 𝑁0,𝐵𝑊𝐸𝑡𝑜𝑡 = 𝑎5 𝐵𝑊𝐸𝑡𝑜𝑡 +𝑁0,𝐵𝑊𝐸𝑡𝑜𝑡=0  (11) 

 𝑁0,𝑁𝑟 = 𝑎6 𝑁𝑟 + 𝑁0,𝑁𝑟=0 (12) 

 𝑁0,𝑇 = 𝑎7 𝑇 + 𝑁0,𝑇=0 (13) 



where a4, a5, a6, and a7 [cph] are empirical factors representing the change in N0 per mm 325 

BWEa, mm BWEtot, Nr or T, respectively and N0,BWEa=0, N0,BWEtot=0, N0,Nr=0 and N0,T=0 326 

represent N0 when BWEa, BWEtot, Nr or T, respectively equal 0. Subsequently, we derived 327 

f by assuming that the changes in estimated N0 and epithermal neutron intensity are 328 

proportional: 329 

 
𝑓𝐵𝑊𝐸𝑎 = (1 + 

𝑎4
𝑁0,𝐵𝑊𝐸𝑎=0

𝐵𝑊𝐸𝑎)

−1

 (14) 

 
𝑓𝐵𝑊𝐸𝑡𝑜𝑡 = (1 + 

𝑎5
𝑁0,𝐵𝑊𝐸𝑡𝑜𝑡=0

𝐵𝑊𝐸𝑡𝑜𝑡)

−1

 (15) 

 
𝑓𝑁𝑟 = (1 + 

𝑎6
𝑁0,𝑁𝑟=0

𝑁𝑟)

−1

 (16) 

 
𝑓𝑇 = (1 + 

𝑎7
𝑁0,𝑇=0

𝑇)

−1

 (17) 

where fBWEa, fBWEtot, fNr and fT are correction factors to be used with N0,BWEa=0, N0,BWEtot=0, 330 

N0,Nr=0 and N0,T=0, respectively in Equation (9). We also obtained correction factors for 331 

BWEa and BWEtot based on the empirical generic biomass correction model of BAATZ ET 332 

AL. (2015), who found a reduction in epithermal neutron intensity of ~0.5 % per mm BWEa: 333 

 
𝑓𝐵𝑊𝐸𝑎,𝐵𝑎𝑎𝑡𝑧 = 1 + 𝐵𝑊𝐸𝑎

6.4

1215
 (18) 

 
𝑓𝐵𝑊𝐸𝑡𝑜𝑡,𝐵𝑎𝑎𝑡𝑧 = 1 + 𝐵𝑊𝐸𝑡𝑜𝑡

6.4

1215
 (19) 

where fBWEa,Baatz and fBWEtot,Baatz again are correction factors to be used in Equation (9) 334 

and the constants 6.4 and 1215 [cph] are the reduction per mm BWEa and N0 when BWEa 335 

equals 0, respectively. 336 

3. Results 337 

3.1. Data Overview  338 

Table 1 provides a summary of the basic soil properties for the three cropped fields. The 339 

bulk density generally increased with depth for all three fields, while the additional 340 

hydrogen pools θoff were relatively constant with depth. It was found that the weighted 341 



bulk densities were lower than the arithmetic mean due to the decreasing sensitivity of 342 

CRNS with increasing depth. 343 

Table 1: Soil bulk density (ϱbd), gravimetric soil moisture content (θg) and additional hydrogen pools in the 344 
soil (θoff) from the HUMAX samples taken on 6 Mai 2015 for winter wheat, 6 June 2016 and 4 November 345 
2016 for sugar beet, and 29 Mai 2018 for maize. Please note that the sugar beet soil sampling results differ 346 
in comparison to JAKOBI ET AL. (2018) and SCHEIFFELE ET AL. (2020), because the average of two sampling 347 
campaigns was used here whereas the two previous studies only used the results from the campaign on 6 348 
June.  349 

Depth 

[cm] 

Winter Wheat Sugar Beet Maize 

ϱbd 

[g/cm3] 

θg 

[g/g] 

θoff  

[g/g] 

ϱbd 

[g/cm3] 

θg 

[g/g] 

θoff  

[g/g] 

ϱbd 

[g/cm3] 

θg 

[g/g] 

θoff  

[g/g] 

0 – 5 1.188 0.200 0.033 1.34 0.194 0.027 1.242 0.176 0.048 

5 – 10 1.262 0.197 0.032 1.396 0.189 0.027 1.256 0.192 0.049 

10 – 15 1.280 0.193 0.032 1.397 0.189 0.027 1.331 0.191 0.049 

15 – 20 1.274 0.190 0.032 1.375 0.187 0.028 1.344 0.196 0.049 

20 – 25 1.280 0.190 0.032 1.429 0.178 0.026 1.358 0.202 0.05 

25 – 30 1.284 0.122 0.032 1.464 0.170 0.026 1.288 0.198 0.048 

Average 1.261 0.182 0.032 1.400 0.185 0.027 1.303 0.192 0.049 

Weighted 1.247 0.192 0.023 1.379 0.189 0.016 1.277 0.186 0.034 

 350 

Table 2: Minimum, average and maximum corrected epithermal and thermal neutron count rates measured 351 
during the experiments in sugar beet, winter wheat and maize fields. 352 

Experiment 

Corrected Epithermal Neutrons [cts/h] Corrected Thermal Neutrons [cts/h] 

Minimum Average Maximum Minimum Average Maximum 

Sugar Beet 8952 10425 11856 2076 2458 2786 

Winter Wheat 6063 7350 8542 1296 1562 1849 

Maize 4248 5273 5868 1877 2148 2499 

 353 

An overview of the precipitation, normalized neutron count rates, BWE and reference soil 354 

moisture content for the three cropped fields is given in Figure 2. The minimum, average 355 

and maximum epithermal and thermal neutron intensity after correction are provided in 356 

Table 2. Figure 2e shows that the maximum BWEb for the three crops differed strongly. 357 

Both winter wheat and maize showed relatively low maximum BWEb values (0.89 and 358 

0.85 mm, respectively), whereas the maximum BWEb for sugar beet was tenfold higher 359 



(8.23 mm). For maize, BWEa and BWEb were derived from LAI using Equation (2) (Figure 360 

3). The high R2 (≥ 0.95) indicates that LAI was a good predictor for BWEa and BWEb. 361 

Therefore, we used the LAI-derived BWE of maize in the remainder of the manuscript. 362 

363 
Figure 2: Time series of a) precipitation, b) epithermal neutron intensity (E) normalized by the average E, 364 
c) thermal neutron intensity (T) normalized by the average T, d) neutron ratio (Nr), e) aboveground, 365 
belowground and total biomass water equivalent (BWEa, BWEb and BWEtot, respectively) and f) soil 366 
moisture content obtained from the vertically and horizontally weighted SoilNet measurements (black, 367 
θreference) and the vertically weighted SoilNet measurements (grey, θvert). 368 

Figure 2f shows the vertically weighted soil moisture content measured at all SoilNet 369 

locations as well as the horizontally and vertically weighted reference soil moisture 370 

content for the three crops. The average reference soil moisture content for sugar beet 371 



and maize was notably lower (~0.17 m3/m3) compared to winter wheat (0.24 m3/m3) due 372 

to the drought conditions in 2016 and 2018. 373 

 374 

Figure 3: Relationship between leaf area index (LAI) and above- and belowground biomass water 375 
equivalent (BWEa and BWEb, respectively) for maize. The coefficients of determination (R2) and the 376 
exponential models for predicting BWE from LAI are also provided. 377 

3.2. The effect of time-variable biomass on CRNS derived soil moisture content  378 

To investigate the influence of vegetation biomass on soil moisture content estimates with 379 

CRNS, we first calibrated N0 during bare soil condition (calibration strategy B, Figure 4c, 380 

red). For all three crops, the soil moisture content estimated from the CRN measurements 381 

in this way deviated from the reference soil moisture content. This was attributed to 382 

increasing biomass associated with crop growth (Figure 4c, red areas) and resulted in a 383 

high RMSE of 0.097 m3/m3 for sugar beet, 0.041 m3/m3 for winter wheat and 0.019 m3/m3 384 

for maize. For sugar beet and winter wheat, the CRNS mostly overestimated soil moisture 385 

content, indicating that the additional hydrogen in the biomass decreased the local 386 

epithermal neutron intensity. This effect was particularly strong in case of sugar beet due 387 

to its higher above- and belowground biomass. Interestingly, CRNS mostly 388 

underestimated soil moisture content for maize, even though the progressing growth of 389 

maize should have resulted in more neutron moderation (i.e. soil moisture content 390 

overestimation). This counterintuitive result can be explained by the fact that the atomic 391 

nuclei of the high-growing maize surrounding the CRNS acted as scattering centers that 392 

effectively increased the neutron travel paths and thus the local epithermal neutron 393 



intensity (LI ET AL., 2019). In contrast to maize, winter wheat and sugar beet did not grow 394 

high enough in the near field of the detector, so this effect was not observed. 395 

Figure 4c also shows the results of calibration strategy A, which considers all reference 396 

soil moisture content data but no time-variable changes in biomass. For maize and winter 397 

wheat, the reference and CRNS derived soil moisture content showed good agreement 398 

and the RMSE was relatively low (i.e., 0.031 m3/m3 for winter wheat and 0.011 m3/m3 for 399 

maize). For sugar beet, the visual agreement was not as good, and this was supported 400 

by the higher RMSE (0.042 m3/m3). 401 

 402 

Figure 4: Time series of a) precipitation b) N0 at biomass sampling dates and c) offset between reference 403 
soil moisture content and CRNS derived soil moisture content using strategy B (i.e. bare soil calibration). 404 
CRNS derived soil moisture content using strategy A (in blue), i.e., by optimising the entire time series of 405 
reference soil moisture content, is also shown. 406 

3.3. Soil moisture content correction with local biomass measurements 407 

To quantify the effect of biomass on soil moisture content obtained with CRNS, we 408 

established linear regression models between the in-situ measured BWEa and BWEtot 409 

and the calibration parameter N0 (Figure 5). We found distinct differences in the N0 – BWE 410 

relationships for the three crops. For sugar beet and winter wheat, N0 showed a negative 411 

relationship with BWE, whereas for maize this relationship was positive for reasons 412 

already provided. For sugar beet, the slopes of the N0 – BWEa and N0 – BWEtot 413 

relationships differed more strongly compared to the other crops (Figure 5a), which can 414 

be explained by the higher amount of belowground biomass compared to maize and 415 



winter wheat (see also Figure 2e). In addition, the N0 – BWEtot relationship for sugar beet 416 

resulted in a higher R²-value compared to the N0 – BWEa relationship, indicating that the 417 

total biomass should be preferably used for correction in case of sugar beet. Figure 5 also 418 

shows that the relationship suggested by BAATZ ET AL., 2015 (i.e. a reduction of ~0.5 % of 419 

N0 per mm BWEa) was not able to represent the influence of biomass on N0, except to 420 

some extent for winter wheat. 421 

 422 

Figure 5: Scatterplots and corresponding linear regressions for predicting the change in N0 from BWEa 423 
(blue) and BWEtot (orange), respectively. The slopes of all linear fits were significantly different from 0 424 
(i.e., the two-sided p-value was < 0.05 for a test with the null hypothesis that the slope is equal to zero). 425 
Additionally, the empirical model from BAATZ ET AL. (2015) for predicting the change in N0 from BWEa is 426 
shown. 427 

In a next step, the BWEa and BWEtot regression models were used for the correction of 428 

CRNS soil moisture content using Equations (14) and (15). Figure 6 shows that these 429 

corrections were able to effectively reduce the biomass effects for all three crops. In case 430 

of winter wheat and maize, a correction based on BWEa was sufficient to obtain a low 431 

RMSE (0.018 and 0.009 m3/m3, respectively). In the case of sugar beet, a correction 432 

based on BWEtot led to a substantially lower RMSE of 0.015 m3/m3 compared to 0.032 433 

m3/m3 when only BWEa was considered. 434 

For winter wheat, the relationship of BAATZ ET AL. (2015) showed an acceptable 435 

performance in terms of RMSE in comparison to the linear regression models (Figure 6). 436 

For sugar beet, the RMSE considering biomass correction with the relationship of BAATZ 437 

ET AL. (2015) increased CRNS accuracy compared to the worst-case calibration (i.e. 438 

strategy B), but was much higher in comparison to the linear regression models (Figure 439 



6), even when BWEtot (Equation (19), RMSE of 0.048 m3/m3) was used instead of BWEa 440 

(Equation (18), RMSE of 0.071 m3/m3). As the empirical correction proposed by BAATZ ET 441 

AL. (2015) greatly relies on forest biomass data, it implicitly considers a root-shoot ratio 442 

valid for trees (i.e., in the order of ~0.2 – 0.6; MOKANY ET AL., 2006). In contrast, the root-443 

shoot ratio of crops changes with time. Sugar beet, for example, showed an increase from 444 

~0.2 to ~6 for the root-shoot ratio. Therefore, the root biomass is not adequately 445 

represented by the relationship of BAATZ ET AL. (2015). For maize, the relationship of 446 

BAATZ ET AL. (2015) resulted in a decreased accuracy due to the additional neutron 447 

scattering processes discussed earlier. 448 

 449 

Figure 6: Times series of a) precipitation, b) CRNS derived soil moisture content corrected for 450 
aboveground biomass and c) CRNS derived soil moisture content corrected for total biomass. For the 451 
biomass correction, local linear regression models (green) and the empirical approach from BAATZ ET AL. 452 
(2015) (blue) were considered. For comparison, the vertically and horizontally weighted reference soil 453 
moisture content (black) and the offset due to the bare soil calibration (red) are shown. 454 

3.4. Soil moisture content correction with the neutron ratio 455 

We also investigated the possibility of using Nr for the correction of CRNS derived soil 456 

moisture content (TIAN ET AL., 2016; JAKOBI ET AL., 2018; VATHER ET AL., 2020). For this, 457 

we established linear regression models between N0 and Nr (Figure 7) using all 458 



measurements from the observation period (Figure 7, black) and measurements on 459 

biomass measurement dates only (Figure 7, orange). For sugar beet (JAKOBI ET AL., 2018) 460 

and winter wheat, linear relationships between Nr and N0 were found when considering 461 

the whole measurement period (Figure 7a and Figure 7b). For maize, a much flatter 462 

regression slope was found (Figure 7c) and the R2 was also lower (0.06) compared to 463 

sugar beet (0.44) and winter wheat (0.52). If only days with in-situ BWE samples were 464 

considered, the R2 for sugar beet (0.77) and winter wheat (0.70) increased, while the R2 465 

for maize decreased to 0.03. Except for maize with in-situ biomass sample times only, all 466 

slopes were significantly different from 0 (p < 0.05). 467 

 468 

Figure 7: Relationships between normalized Nr and normalized N0. Additionally, the relationships when 469 
using the biomass sampling dates (orange) only are shown. Except for the relationship for maize 470 
considering only the times of BWE measurements, all linear regressions have slopes that are significantly 471 
different from 0 (i.e., the two sided p-value was < 0.05 for tests with the null hypothesis that the slopes are 472 
equal to zero). 473 

The linear regression models for predicting N0 from Nr were also used for the correction 474 

of soil moisture content estimates using Equation (16) (Figure 8). For all three crop types, 475 

the soil moisture content estimates obtained using a correction based on Nr were more 476 

accurate than the estimates obtained using calibration strategy B as indicated by the 477 

lower RMSE of 0.032, 0.022 and 0.011 m3/m3 for sugar beet, winter wheat and maize, 478 

respectively. If only Nr values at times of biomass measurements were used to derive the 479 



correction models (Figure 7, orange), similar results were obtained except for maize due 480 

to the insignificant regression model (Figure 7c). 481 

 482 

Figure 8: Times series of the CRNS derived soil moisture content corrected with Nr (green) and Nr obtained 483 
during times of biomass sampling (blue). For comparison, the vertically and horizontally weighted 484 
reference soil moisture content (black) and the offset resulting from bare soil calibration of the CRNS (red) 485 
are also shown. 486 

3.5. Soil moisture content correction with thermal neutrons 487 

In a next step, we investigated the possibility of using the thermal neutron intensity for the 488 

correction of biomass effects on soil moisture content estimation with CRNS. For this, we 489 

established linear regression models for predicting the change in the calibration 490 

parameter N0 from the thermal neutron intensity using all measurements from the 491 

observation periods (Figure 9, black) and measurements from the biomass measurement 492 

dates only (Figure 9, orange). All three crop types showed linear T – N0 relationships like 493 

the relationships between BWEtot and N0 (Figure 5), with sugar beet showing the steepest 494 

regression slope and maize showing a positive relationship between T and N0. When only 495 

the biomass measurement dates were used, higher correlations were obtained (Figure 496 

9a-c). However, the regression results were similar to the case where all data were 497 

considered. 498 



 499 

Figure 9: Relationship between normalized thermal neutron intensity and normalized N0 for (a) sugar beet, 500 
(b) winter wheat, and (c) maize (black). Additionally, the relationships if only observations at dates of 501 
biomass water equivalent (BWE) sampling (orange) were considered are shown. The slopes of all 502 
regression models were significantly different from 0 (i.e., the two sided p-value was < 0.05 for tests with 503 
the null hypothesis that the slopes are equal to zero). 504 

Subsequently, the linear regression models for predicting the change in N0 from the 505 

thermal neutron intensity were used for correcting CRNS soil moisture content estimates 506 

using Equation (17) (Figure 10). For all three crop types, the correction using thermal 507 

neutrons produced better results than the calibration strategy B as indicated by the 508 

decrease in RMSE to 0.017, 0.019 and 0.009 m3/m3 for sugar beet, winter wheat and 509 

maize, respectively. The results were similar when the linear regression models based 510 

only on days with biomass measurements were considered (Figure 9, orange). 511 

 512 

Figure 10: Times series of the CRNS derived soil moisture content corrected with thermal neutrons (green) 513 
and with thermal neutrons obtained during dates of biomass sampling (blue). For comparison, the 514 
vertically and horizontally weighted reference soil moisture content (black) and the offset obtained from 515 
bare soil calibration (red) are shown. 516 



3.6. Biomass estimation from the neutron ratio 517 

After evaluating different approaches for correcting soil moisture content estimates, we 518 

now evaluate the potential of Nr for estimating crop biomass development (TIAN ET AL., 519 

2016; ANDREASEN ET AL., 2017a; JAKOBI ET AL., 2018). The Nr for sugar beet was linearly 520 

correlated with in-situ measured BWEa (Figure 11a; JAKOBI ET AL., 2018). In contrast, the 521 

linear regressions for winter wheat and maize did not indicate significant slopes (i.e., the 522 

two-sided p values for a test with the null hypothesis that the slopes are equal to zero 523 

were > 0.05, Figure 11b and Figure 11c). This means that the prediction of aboveground 524 

biomass from Nr was not possible for winter wheat and maize in our study. TIAN ET AL. 525 

(2016) and VATHER ET AL. (2020) suggested to use uncorrected thermal and epithermal 526 

neutron intensities for the derivation of the Nr. However, this reduced the R2 of the Nr - 527 

BWEa relationship from 0.12 to 0.00 for winter wheat and from 0.92 to 0.73 for sugar beet, 528 

while it increased R2 only slightly for maize (from 0.02 to 0.04). It has to be noted that an 529 

outlier was removed for sugar beet (Figure 11a, circle with dot; also see Jakobi et al., 530 

2018). If this measurement was included in the analysis, the R2 was reduced to 0.68. 531 

Because Nr could also be influenced by changes in soil moisture content, we also 532 

investigated the Nr – soil moisture content relationship. However, we found only weak 533 

relationships for all three crops that could not be well described with linear or exponential 534 

models (Figure 11d – Figure 11f). For winter wheat and maize, the slopes of the linear 535 

regressions were significantly different from 0 (i.e., two-sided p < 0.05, Figure 11e and 536 

Figure 11f). However, the low R2-values (≤ 0.34) indicated only weak dependencies. For 537 

sugar beet, the R2 was 0.00. These results confirm previous findings by TIAN ET AL. (2016) 538 

and ANDREASEN ET AL. (2017a) that the Nr is only weakly related to soil moisture content.  539 

We observed hysteretic behavior in the soil moisture content - Nr relationship for sugar 540 

beet (Figure 11d). Similarly, the Nr – N0 relationship also showed hysteresis (Figure 7a). 541 

The color sequence showing the development of BWEtot (Figure 11d) indicates that the 542 

hysteresis could be related to sugar beet growth, which is also characterized by changes 543 

in plant structure (e.g. development of leaves and tap roots; see also Appendix A). 544 

However, the hysteresis could also be an effect of the soil (and plant) heterogeneity in 545 

field F01 (shown in Figure 1 in JAKOBI ET AL., 2018), which may affect thermal and 546 



epithermal neutron intensities differently due to the different radial footprints. We also 547 

tested if BWEb or BWEtot for sugar beet could be predicted from Nr, but found lower R2 548 

values (0.35 and 0.73, respectively) in comparison to the R2 calculated between Nr and 549 

BWEa (0.92, Figure 11a). 550 

 551 

Figure 11: Relationships of neutron ratio (Nr) normalized with the average Nr of the whole time series and 552 
measured aboveground biomass water equivalent (BWEa) of (a) sugar beet, (b) winter wheat, and (c) and 553 
maize and relationships of Nr with horizontally and vertically weighted reference soil moisture content 554 
(θreference) for (d) sugar beet, (e) winter wheat, and  (f) maize, respectively. The colouring sequences in 555 
subplots a) – c) indicate changes in θreference. The colouring sequences in subplots c) – f) indicate changes 556 
in BWEtot (linearly interpolated). Additionally, the linear regression model for deriving BWEa from Nr for 557 
the Sugar Beet experiment is shown. The slopes of the linear regressions were significantly different from 558 
0 for the relationships presented in subplots a), e) and f) (i.e., the two-sided p-value was < 0.05 for a test 559 
with the null hypothesis that the slope is equal to zero). 560 

3.7. Biomass estimation from thermal neutrons 561 

Finally, we investigated the potential of T for estimating biomass of the considered crops 562 

(Figure 12a - Figure 12c). For all three crop types, T was linearly related with in-situ 563 



measured BWEtot. R2
 was lowest for winter wheat (0.69), while it was 0.87 for sugar beet 564 

and maize. The steepest regression slope was obtained for sugar beet, while the slopes 565 

for maize and especially for winter wheat were much lower. For sugar beet, the R2 was 566 

slightly lower compared to the R2 that was found for predicting BWEa from Nr. For winter 567 

wheat, the relatively low R2
 may be related to the large equipment island, where only a 568 

thin grass cover was present and no crops were growing. Thus, soil moisture content may 569 

have been of greater importance for the thermal neutron intensity in the case of winter 570 

wheat as compared to sugar beet and maize. 571 

The scatter plots (Figure 12d–f) suggest that the thermal neutron intensity is influenced 572 

by soil moisture content, which seems to contradict our findings above. However, this 573 

apparent dependence of thermal neutron intensity on soil moisture content can be 574 

explained by the fact that for our experiments the increase of biomass usually coincides 575 

with decreasing soil water content due to increasing water demand of the crops (see 576 

Figure 2e and Figure 2f). In addition, there are also periods where the thermal neutron 577 

intensity stayed almost constant during bare field conditions, while the reference soil 578 

moisture content increased considerably (Figure 12d and Figure 12f) indicating that 579 

thermal neutron intensity was independent of soil moisture content.  580 

Since all relationships were significant, the linear regression models from Figure 12a–c 581 

were used for estimating temporally variable BWEtot for all three crop types (Figure 13). 582 

The RMSE indicated an estimation accuracy of 1.92, 0.97 and 0.98 mm for sugar beet, 583 

winter wheat and maize, respectively, which corresponded to 22, 33 and 42 % of the 584 

average interpolated BWEtot. Larger deviations were mostly associated with precipitation 585 

events, which sometimes resulted in a decrease of the thermal neutron intensity and thus 586 

underestimated BWEtot (e.g. at the end of the measurement period of sugar beet). In other 587 

periods, the thermal neutron intensity and thus BWEtot increased with precipitation (e.g. 588 

beginning of June for maize). For winter wheat, BWEtot was systematically 589 

underestimated from the end of April until the beginning of June and overestimated from 590 

the beginning of July until the end of the observation period (Figure 13). These deviations 591 

can also be identified in Figure 12b (with T ~1 and BWE ~2 – 4 mm) and can possibly be 592 

explained with a change in plant structure in the growing season. 593 



 594 

Figure 12: Scatter plots of normalized thermal neutron intensity (T) and BWEtot as well as T and the 595 
reference soil moisture content (θreference) for (a, d) sugar beet, (b, e) winter wheat, and (c, f) maize. The 596 
colouring sequence in subplots a) – c) indicate changes in θreference. The colouring sequence in subplots c) 597 
– f) indicate changes in BWEtot (linearly interpolated). All linear regressions have slopes that are 598 
significantly different from 0 (i.e., the two sided p-value was < 0.05 for tests with the null hypothesis that 599 
the slopes are equal to zero). 600 

 601 

Figure 13: Time series of precipitation and the measured (black dots), interpolated (striped lines) and 602 
thermal neutron (T) estimated (green lines) sum of the above- and belowground biomass water equivalent 603 
(BWEtot) for sugar beet, winter wheat and maize. Furthermore, the root mean square error (RMSE) and the 604 
RMSE relative to the average interpolated BWEtot are provided. 605 



4. Discussion 606 

4.1. Correction of biomass effects on soil moisture content estimates with CRNS 607 

The strategies for correcting soil moisture content estimates with CRNS for biomass 608 

effects, the associated measurement requirements, and the resulting RMSE are 609 

summarized in Table 3. We found that correcting the epithermal neutron intensities based 610 

on local linear regression models between N0 and BWE, Nr or the thermal neutron 611 

intensity led to improved performance compared to the widely used bare soil calibration 612 

(e.g., ZREDA ET AL., 2012; BAATZ ET AL., 2014; HAWDON ET AL., 2014; BOGENA ET AL., 2018; 613 

COOPER ET AL., 2021). Considering in-situ measured BWEtot always resulted in the most 614 

accurate CRNS based soil moisture content estimates, but this requires several reference 615 

soil moisture content and biomass measurements during the growing season. The 616 

second highest accuracy was achieved when thermal neutron intensity was used for 617 

correction (see Table 3). This correction approach only requires thermal neutron and soil 618 

moisture content measurements. Even though Nr was insensitive to biomass changes of 619 

winter wheat and maize in this study, the accuracy achieved using a correction based on 620 

Nr was similar to the accuracy achieved with in-situ measured aboveground biomass with 621 

the added advantage that no in-situ biomass information is required (see Table 3; TIAN ET 622 

AL., 2016; JAKOBI ET AL., 2018; VATHER ET AL., 2020). The empirical relation of BAATZ ET 623 

AL. (2015) also resulted in a considerable improvement in accuracy for sugar beet and 624 

winter wheat, and the performance could possibly be improved if an exponential instead 625 

of a linear model would be considered (e.g., HAWDON ET AL., 2014). However, the relation 626 

of BAATZ ET AL. (2015) failed to represent the effect of maize biomass on the epithermal 627 

neutron intensity, because of the observed increase in N0 with increasing biomass (see 628 

Figure 5). Nevertheless, considering the biomass effect on CRNS based soil moisture 629 

content estimates through this type of generic empirical model is still appealing because 630 

it only requires biomass estimates and no soil moisture content measurements are 631 

required (Table 3; HAWDON ET AL., 2014; BAATZ ET AL., 2015).   632 



Table 3: Calibration/correction strategies, measurement requirements and associated root mean square 633 
error (RMSE) of the CRNS derived soil moisture content estimations for the three crops. Green and orange 634 
highlight the best and second-best performance, respectively, and red highlights the worst performance in 635 
RMSE. 636 

Calibration/Correction 

strategy 

Measurement Requirements 

(in addition to epithermal CRN measurements) 

Sugar 

Beet 

Winter 

Wheat 
Maize 

RMSE [m3/m3] 

Optimized (no 

correction, strategy a) 

Multiple in-situ soil moisture contents (here continuous 

measurements) 
0.042 0.031 0.011 

Bare soil (no 

correction, strategy b) 

One in-situ soil moisture content in the beginning of 

the measurement 
0.097 0.041 0.019 

BWEa 
Multiple aboveground biomasses and in-situ soil 

moisture contents measured at the same time 
0.032 0.018 0.009 

BWEtot 
Multiple total biomasses and in-situ soil moisture 

contents measured at the same time 
0.015 0.018 0.009 

BWEa, Baatz 
One in-situ soil moisture content with low aboveground 

biomass and multiple aboveground biomasses 
0.071 0.027 0.027 

BWEtot, Baatz 
One in-situ soil moisture content with low total 

biomass and multiple total biomasses 
0.048 0.026 0.029 

Nr (Nr at BWE-dates) 
Multiple in-situ soil moisture contents and thermal 

neutron detectors 
0.032 

(0.03) 

0.022 

(0.023) 

0.011 

(-) 

T (T at BWE-dates) 
Multiple in-situ soil moisture contents and thermal 

neutron detectors 
0.017 

(0.018) 

0.019 

(0.02) 

0.009 

(0.011) 

 637 

The improved accuracy of the soil moisture content estimates after correction using the 638 

thermal neutron intensity or Nr may potentially also be explained by the shallower 639 

penetration depth of thermal neutrons (JAKOBI ET AL., 2021) compared to epithermal 640 

neutrons (FRANZ ET AL., 2012; KÖHLI ET AL., 2015; SCHRÖN ET AL., 2017). It is possible that 641 

the corrections considering thermal neutrons (i.e., also Nr) compensate for the vertical 642 

soil moisture content heterogeneity. To this end, reference soil moisture content 643 

information in depths < 5 cm was not available in our experiments and thus not considered 644 

in the vertical weighting function for epithermal neutrons of SCHRÖN ET AL. (2017). This 645 

would be consistent with earlier studies that reported the strong influence of vertical soil 646 

moisture content heterogeneity on the accuracy of soil moisture content estimation from 647 

epithermal neutrons (FRANZ ET AL., 2013a; BARONI ET AL., 2018; SCHEIFFELE ET AL., 2020) 648 

and suggested to additionally install point sensors for estimating a field-representative 649 

shape of the soil moisture content profile (SIGOUIN ET AL., 2016; BARONI ET AL., 2018; 650 

SCHEIFFELE ET AL., 2020). 651 



4.2. Biomass estimation with CRNS 652 

The experiments with three crop types showed that Nr cannot generally be used for the 653 

prediction of aboveground biomass, as suggested in earlier studies (TIAN ET AL., 2016; 654 

ANDREASEN ET AL., 2017a; JAKOBI ET AL., 2018; VATHER ET AL., 2020). The estimation of 655 

aboveground biomass from Nr was possible for sugar beet, but not for winter wheat and 656 

maize in this study (Figure 11). In contrast, the estimation of total biomass (above- and 657 

belowground biomass) from thermal neutron intensity alone was possible for all 658 

investigated crops. However, the empirical relationships between thermal neutron 659 

intensity and biomass varied considerably between the three crops (Figure 12a-c). A 660 

possible explanation for this could be a variation in soil chemistry that affected the 661 

intensity of the thermal neutrons differently for the three investigated fields (ZREDA ET AL., 662 

2008). However, this is unlikely as the three fields are very close to each other and with 663 

the same geology, so that the differences in soil chemistry are only marginal. Therefore, 664 

we assume that the relationship between the thermal neutron intensity and biomass is 665 

mainly plant-specific, i.e. influenced by plant structure. 666 

Furthermore, we found that the observed correlation between thermal neutron intensity 667 

and soil moisture content (Figure 12d-f) is only apparent due to the simultaneous 668 

development of biomass. This finding is supported by the study of TIAN ET AL. (2016) in 669 

which thermal neutron intensity also increased mainly with increasing biomass (see 670 

Figure 4 in TIAN ET AL., 2016). Since snow is expected to affect thermal neutron intensity 671 

in a similar way as vegetation cover, our interpretations are also supported by findings 672 

from DESILETS ET AL. (2010). They showed that the thermal neutron intensity increased 673 

strongly with the onset of snow precipitation, while the epithermal neutron intensity 674 

decreased. This finding was verified using neutron transport simulations, where a ~2.5 675 

fold increase in thermal neutron intensity for increasing snow thickness up to ~3 g/cm2 676 

was found as compared to snow free conditions (see Figure 4 in ZWECK ET AL., 2013). In 677 

contrast, the reduction in thermal neutron intensity due to increasing soil moisture content 678 

from ~0.10 – 0.45 m3/m3 can be approximated from neutron transport simulations 679 

presented in Figure 2 of ZREDA ET AL. (2008) and is expected to amount up to ~20 % only, 680 

depending on soil chemistry. Consequently, the thermal neutron intensity should be 681 



affected more strongly by crop biomass than soil moisture content, thus opening the 682 

possibility of biomass estimation from thermal neutron intensity as shown in our study. 683 

4.3. Vegetation influence on neutron intensities 684 

Figure 14 summarizes important vegetation-related processes controlling the epithermal 685 

and thermal neutron intensity. In case of bare soil conditions (Figure 14a), thermal 686 

neutrons are mainly produced in the ground. In case vegetation is present, the epithermal 687 

neutron intensity is decreased by moderation of biomass, resulting in additional 688 

production of thermal neutrons (Figure 14c). Moreover, in case large amounts of 689 

belowground biomass are present (e.g., as for sugar beet), thermal neutron production in 690 

the ground is additionally enhanced (Figure 14b). When the detector is surrounded by tall 691 

vegetation (e.g., as for maize), the greater density of scattering centers (i.e., atomic nuclei 692 

of the biomass) increases the local neutron density, resulting in a higher neutron detection 693 

probability (LI ET AL., 2019). This phenomenon was observed for maize in this study 694 

(Figure 5c), but not for the other crops. This indicates that the neutron intensity also 695 

depends on the vegetation structure and the detector position relative to the vegetation. 696 

 697 

Figure 14: Summary of important vegetation related processes for thermal and epithermal neutrons for (a) 698 
bare soil, (b) sugar beet, (c) winter wheat, and (d) maize. 699 



5. Conclusions and Outlook 700 

In our study we used sugar beet, winter wheat, and maize, to analyze the effect of crop 701 

biomass on estimating soil moisture content with CRNS. We found that correcting the 702 

influence of vegetation using local linear regression models based on the calibration 703 

parameter N0 consistently improved the accuracy of soil moisture measurements with 704 

CRNS. The best performance in terms of RMSE was obtained when both the above- and 705 

the belowground biomass were considered for correction. When only the aboveground 706 

biomass was considered, the performance decreased when high amounts of 707 

belowground biomass were present (i.e., in the case sugar beet). The empirical linear 708 

relationship of BAATZ ET AL. (2015) also improved measurement accuracy, except for 709 

maize where the accuracy was considerably lower after correction. In contrast, a 710 

vegetation correction based on the thermal-to-epithermal neutron ratio (Nr) or thermal 711 

neutron intensity always improved the accuracy of soil moisture content measurement 712 

with CRNS. Different from results presented in earlier studies (TIAN ET AL., 2016; JAKOBI 713 

ET AL., 2018), Nr was not consistently related to changes in aboveground biomass. 714 

However, we found that the thermal neutron intensity could also be used to predict 715 

changes in the total biomass (i.e., the sum of above- and belowground biomass water 716 

equivalent - BWEtot). 717 

For future studies, we suggest to investigate the dependency of thermal neutrons on 718 

different biomass and vegetation structures in more detail. To this end, irrigation 719 

experiments or neutron transport simulations could allow for the investigation of the 720 

neutron intensities with constant soil moisture content and changing biomass/vegetation 721 

structures (and vice versa). The influence of the vegetation structure (i.e., the density of 722 

stalks, fruit bodies and the plant height) should also be investigated using neutron 723 

transport modelling. Similarly, forest sites are interesting to consider as we anticipate a 724 

different behavior of thermal neutrons in comparison to sites were all hydrogen sources 725 

are at the same height or below the detectors (ANDREASEN ET AL., 2017a; ANDREASEN ET 726 

AL., 2020; JAKOBI ET AL., 2021).   727 



Appendix A – Hysteresis in the sugar beet experiment 728 

For sugar beet, we found hysteretic behavior in the Nr – N0 (Figure 7a), Nr – soil moisture 729 

content (Figure 11d) and the thermal neutron intensity – soil moisture content (Figure 730 

12d) relationships. Here, we investigate this hysteresis in more detail. From Figure A15a-731 

c, it can be seen that the hysteresis also occurred in the epithermal neutron - soil moisture 732 

content relationship. In this case, three stages with different slopes can be identified. The 733 

coloring indicates that the different responses were related to the growth of biomass with 734 

the largest effect from belowground biomass (e.g., Figure A15b at E = 0.9 and θreference = 735 

0.3). Similarly, the thermal neutron intensity was strongly influenced by belowground 736 

biomass (Figure A15e).  737 

Figure A1 shows that the hysteresis in the epithermal neutron intensity can be effectively 738 

removed with corrections considering in-situ measured BWEtot, Nr or the thermal neutron 739 

intensity, which is also indicated by the improvement in soil moisture content estimation 740 

in comparison to the bare soil calibration (i.e., calibration strategy B; see Table 3). 741 

However, the relation to soil moisture content was changed when Nr was used for 742 

correction. This may be related to the different footprints of thermal and epithermal 743 

neutrons and could possibly be accounted for by refitting the parameters pi (Equation (9); 744 

DESILETS ET AL., 2010), as shown in earlier studies. For instance, RASCHE ET AL. (2021) 745 

found that the sum of thermal and epithermal neutrons could be used for soil moisture 746 

content estimation if pi were refitted. In this context, it has to be noted that KÖHLI ET AL. 747 

(2021) showed that Equation (9) is over-parameterized and suggested that their 748 

reformulated equation should be much better suited for parameter fitting. However, this 749 

was beyond the scope of our study. 750 



 751 

Figure A15: Relationships of the epithermal (a) – c)) and thermal neutron (d) - f)) intensities relative to 752 
their respective mean of the whole time series and reference soil moisture content for the Sugar Beet 753 
experiment. The colouring sequences indicate changes in biomass water equivalent (BWE, linearly 754 
interpolated), differentiated in aboveground BWE (BWEa; a) and d)), belowground BWE (BWEb; b) and 755 
e)) and the sum of above- and belowground BWE (BWEtot: c) and f)). 756 



 757 

Figure A1: Relationships of the epithermal neutron intensities corrected for the influences of the sum of 758 
above- and belowground biomass water equivalent (BWEtot), the thermal-to-epithermal neutron ratio (Nr) 759 
and the thermal neutron intensity (T) relative to their respective mean of the whole time series for sugar 760 
beet. For comparison also Equation (9) is shown (using f = 1 and N0,BWetot=0, N0,Nr=0 and N0,T=0, respectively).  761 
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