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Abstract

* This work documents ICON-ESM 1.0, the first version of a coupled model based 19 on the ICON framework 20 * Performance

of ICON-ESM is assessed by means of CMIP6 DECK experiments 21 at standard CMIP-type resolution 22 * ICON-ESM

reproduces the observed temperature evolution. Biases in clouds, winds, 23 sea-ice, and ocean properties are larger than in

MPI-ESM. Abstract 25 This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-26 pled model

based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-27 structured, icosahedral grid concept. The ICON-A

atmosphere uses a nonhydrostatic dy-28 namical core and the ocean model ICON-O builds on the same ICON infrastructure,

but 29 applies the Boussinesq and hydrostatic approximation and includes a sea-ice model. The 30 ICON-Land module

provides a new framework for the modelling of land processes and 31 the terrestrial carbon cycle. The oceanic carbon cycle and

biogeochemistry are repre-32 sented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin-33 up of a

base-line version at a resolution typical for models participating in the Coupled 34 Model Intercomparison Project (CMIP). The

performance of ICON-ESM is assessed by 35 means of a set of standard CMIP6 simulations. Achievements are well-balanced

top-of-36 atmosphere radiation, stable key climate quantities in the control simulation, and a good 37 representation of the

historical surface temperature evolution. The model has overall bi-38 ases, which are comparable to those of other CMIP models,

but ICON-ESM performs 39 less well than its predecessor, the Max Planck Institute Earth System Model. Problem-40 atic

biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean 41 zonal wind field. In the ocean, sub-surface

temperature and salinity biases are of con-42 cern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres.

ICON-43 ESM V1.0 serves as a basis for further developments that will take advantage of ICON-44 specific properties such

as spatially varying resolution, and configurations at very high 45 resolution. 46 Plain Language Summary 47 ICON-ESM is

a completely new coupled climate and earth system model that ap-48 plies novel design principles and numerical techniques.

The atmosphere model applies 49 a non-hydrostatic dynamical core, both atmosphere and ocean models apply unstruc-50 tured

meshes, and the model is adapted for high-performance computing systems. This 51 article describes how the component

models for atmosphere, land, and ocean are cou-52 pled together and how we achieve a stable climate by setting certain tuning

parameters 53 and performing sensitivity experiments. We evaluate the performance of our new model 54 by running a set

of experiments under pre-industrial and historical climate conditions 55 as well as a set of idealized greenhouse-gas-increase

experiments. These experiments were 56 designed by the Coupled Model Intercomparison Project (CMIP) and allow us to
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com-57 pare the results to those from other CMIP models and the predecessor of our model, the 58 Max Planck Institute for

Meteorology Earth System Model. While we diagnose overall 59 satisfactory performance, we find that ICON-ESM features

somewhat larger biases in 60 several quantities compared to its predecessor at comparable grid resolution. We empha-61 size

that the present configuration serves as a basis from where future development steps 62 will open up new perspectives in earth

system modelling. 63
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Abstract25

This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-26

pled model based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-27

structured, icosahedral grid concept. The ICON-A atmosphere uses a nonhydrostatic dy-28

namical core and the ocean model ICON-O builds on the same ICON infrastructure, but29

applies the Boussinesq and hydrostatic approximation and includes a sea-ice model. The30

ICON-Land module provides a new framework for the modelling of land processes and31

the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are repre-32

sented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin-33

up of a base-line version at a resolution typical for models participating in the Coupled34

Model Intercomparison Project (CMIP). The performance of ICON-ESM is assessed by35

means of a set of standard CMIP6 simulations. Achievements are well-balanced top-of-36

atmosphere radiation, stable key climate quantities in the control simulation, and a good37

representation of the historical surface temperature evolution. The model has overall bi-38

ases, which are comparable to those of other CMIP models, but ICON-ESM performs39

less well than its predecessor, the Max Planck Institute Earth System Model. Problem-40

atic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean41

zonal wind field. In the ocean, sub-surface temperature and salinity biases are of con-42

cern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-43

ESM V1.0 serves as a basis for further developments that will take advantage of ICON-44

specific properties such as spatially varying resolution, and configurations at very high45

resolution.46

Plain Language Summary47

ICON-ESM is a completely new coupled climate and earth system model that ap-48

plies novel design principles and numerical techniques. The atmosphere model applies49

a non-hydrostatic dynamical core, both atmosphere and ocean models apply unstruc-50

tured meshes, and the model is adapted for high-performance computing systems. This51

article describes how the component models for atmosphere, land, and ocean are cou-52

pled together and how we achieve a stable climate by setting certain tuning parameters53

and performing sensitivity experiments. We evaluate the performance of our new model54

by running a set of experiments under pre-industrial and historical climate conditions55

as well as a set of idealized greenhouse-gas-increase experiments. These experiments were56

designed by the Coupled Model Intercomparison Project (CMIP) and allow us to com-57

pare the results to those from other CMIP models and the predecessor of our model, the58

Max Planck Institute for Meteorology Earth System Model. While we diagnose overall59

satisfactory performance, we find that ICON-ESM features somewhat larger biases in60

several quantities compared to its predecessor at comparable grid resolution. We empha-61

size that the present configuration serves as a basis from where future development steps62

will open up new perspectives in earth system modelling.63

1 Introduction64

ICON-ESM (V1.0) is the first release of the ICOsahedral Non-hydrostatic Earth65

System Model that is developed at the Max Planck Institute for Meteorology (MPI-M).66

It is based on the ICON framework, a joint development of MPI-M, the German Weather67

Service (Deutscher Wetterdienst, DWD), the Karlsruhe Institute for Technology, and other68

partner institutions in Germany and Switzerland. It should be noted that the non-hydrostatic69

part is currently only applicable to the atmospheric component. ICON-ESM combines70

the ocean ICON-O (Korn, 2017) and atmosphere ICON-A (Giorgetta et al., 2018) com-71

ponents of the ICON modelling system together with ICON-Land, including the Jena72

Scheme for Biosphere-Atmosphere Coupling in Hamburg JSBACH 4, a complete re-write73

of the land model JSBACH 3 (Reick et al., 2021, 2013), and the ocean biogeochemistry74
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module Hamburg Ocean Carbon Cycle (HAMOCC6) (Ilyina et al., 2013). The ocean and75

atmosphere are coupled using the newly developed coupling software Yet Another Cou-76

pler (YAC; Hanke et al., 2016).77

At MPI-M, ICON-ESM succeeds the well-established Max Planck Institute for Me-78

teorology Earth System Model (MPI-ESM; Mauritsen et al., 2019) with its component79

models for the atmosphere European Center Hamburg Model (ECHAM6) (Stevens et80

al., 2013) and the Max Planck Institute Ocean Model (MPIOM) (Jungclaus et al., 2013),81

the land model JSBACH 3 (Reick et al., 2013, 2021), and the ocean biogeochemistry mod-82

ule HAMOCC6 (Ilyina et al., 2013). Together with its predecessors, MPI-ESM1.2 has83

represented three decades of successful model development (see Mauritsen and Roeck-84

ner (2020)). The development of a completely new model system is an answer to the re-85

quirement for increasing resolution, the need for conservation for the representation of86

chemical tracers in the atmosphere, and for appropriate scalability on high-performance87

computers (HPC).88

In general, the development of ocean and atmosphere models has taken innovative89

approaches in the last two decades regarding numerical algorithms, the grid lay-out, and90

the adaptation to high-performance computing systems. While previous generations of91

atmosphere models employed mainly spectral transform models, many new developments,92

in particular those aiming at very high spatial resolution, moved to grid-point methods.93

The advantages of the latter are more effective data communication (Staniforth & Thuburn,94

2011), higher efficiencies at very high resolution (e.g., Satoh et al. (2014); Wedi (2014)),95

and quasi-homogeneous resolutions avoiding the overly strong grid-size convergence near96

the poles (Staniforth & Thuburn, 2011). Prominent examples of this new class of mod-97

els are the Non-hydrostatic Icosahedral Atmospheric Model (NICAM, Satoh et al. (2014))98

launched by the Japan Agency for Marine Earth Science and Technology, and the Model99

for Prediction across scales (MPAS) first developed at the National Center for Atmo-100

spheric Research (Skamarock et al., 2012). An overview on dynamical core development101

is given in Ullrich et al. (2017). In ocean models, unstructured grids provide flexibility102

with respect to resolving the geometry of the basins and allow for highly varying reso-103

lution distribution (Danilov, 2013). Applications of these novel models include region-104

alized settings realized in The Unstructured Grid Finite Volume Community Ocean Model105

(FVCOM, Chen et al. (2003)), and global configurations with highly varying resolution106

using the Finite-Element/volumE Sea ice-Ocean Model (FESOM) (Sein et al., 2017; Scholz107

et al., 2019), and the MPAS ocean model (Petersen et al., 2019). Formulations on un-108

structured meshes also face difficulties, e.g., spurious modes or generally higher costs per109

degree of freedom (Staniforth & Thuburn, 2011; Danilov, 2013), but progress in recent110

years has proposed solutions (e.g., with respect to spurious modes in Korn and Danilov111

(2017)), and (component) models based on unstructured grids are now used in CMIP6112

climate simulations (Golaz et al., 2019; Semmler et al., 2020).113

While the innovative properties of ICON-ESM will be most beneficial in very high-114

resolution coupled configurations, we present here, as a first step to introduce ICON-ESM115

to the scientific community, the physical model at a resolution that can be called “stan-116

dard” in the context of climate simulations for the ongoing Coupled Model Intercom-117

parison Project (CMIP6, Eyring et al. (2016)). We describe a set-up with 158 km grid118

spacing in ICON-A and 40 km in ICON-O. Focusing on typical climate change exper-119

iments, i.e. at least century-long simulations with parameterized physics, the set-up de-120

scribed here offers an efficient configuration for simulations of past, present and future121

climates, and large ensembles. It also forms the basis for higher-resolution versions as122

well as for configurations using specific properties of the ICON system, for example grid123

refinement in ICON-O (Logemann et al., 2021) or nesting in ICON-A (Klocke et al., 2017).124

In this manuscript, we present the first results of ICON-ESM and provide an examina-125

tion of the model characteristics in a set of experiments following the CMIP6 Diagno-126

sis, Evaluation, and Characterization of Klima (DECK) protocol and include an ensem-127
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ble of five CMIP6 “historical” simulations (Eyring et al., 2016). We compare and eval-128

uate the simulations with observations and reanalysis data as well as other models par-129

ticipating in CMIP6 and MPI-ESM.130

Typically, model tuning happens initially at the component model level, such as131

on ICON-A (Giorgetta et al., 2018) and on ICON-O (Korn P. et al., ”ICON-O: The ocean132

component of the ICON Earth System Model - global simulation characteristics and lo-133

cal telescoping capability”, manuscript submitted to JAMES, Korn22 hereafter). Cou-134

pled together, these completely new ICON components for ocean, sea-ice, land and at-135

mosphere repeatedly revealed unexpected behavior that required detailed investigations136

and major tuning efforts, which we partly describe in this manuscript (section 3). In the137

following, we provide information on the general circulation models for atmosphere and138

ocean, the sea-ice model, the ocean biogeochemistry module, the land model, and the139

coupler. Then we describe the spin-up and tuning of the coupled system that has led to140

the pre-industrial control simulation (piControl) under constant forcing agents. Eval-141

uation in comparison with observations and reanalyses data is based on the last decades142

of a small ensemble of CMIP6 historical simulations and the model’s climate sensitiv-143

ity characteristics are assessed in idealized global warming experiments (i.e., the 1 %CO2144

yr−1 increase experiment (1pctCO2) and the experiment with an abrupt four-fold CO2145

concentration (abrupt4xCO2)). We discuss tuning choices in section 5 and end with a146

summary and conclusion (section 6).147

2 Model overview148

The ICON model system (Zängl et al., 2015) provides common infrastructure (e.g.149

grid construction and output handling) and, in part, common numerical operators for150

the component models. A common feature is the basic grid construction based on un-151

structured, icosahedral grids. The grids for both the ICON-A and ICON-O model are152

created by recursively dividing the original twenty triangles of the icosahedron. This is153

done by bisecting the edges (Figure 1b). The vertices at each step are projected at the154

Earth sphere. The primary cells are triangles, while the dual cells are hexagons, except155

for the original twelve pentagons of the icosahedron which remain. A detailed descrip-156

tion of the process is given in H. Wan et al. (2013) and Giorgetta et al. (2018). The spring157

dynamics grid optimization is applied on both grids. This is a grid optimization process158

that aims to smooth the grid in order to improve the numerical behavior of the model159

(see Tomita et al. (2001) and Tomita et al. (2002)). The grids are symmetrized with re-160

spect to the equator by reflecting the northern hemisphere to the south. The equatorial-161

symmetric grid has been tested with the ICON-O for shallow water set-ups and showed162

reduced errors (Korn & Linardakis, 2018). Local asymmetries in grids can be the cause163

of increased numerical errors (Weller et al., 2009). For the icosahedron, these asymme-164

tries occur most profoundly in the vicinity of the pentagons (Korn & Linardakis, 2018).165

It is desirable to keep these “hot” spots away from areas where large velocities may oc-166

cur, for example due to the orography. Therefore the grid was rotated 37o eastwards, to167

avoid placing a pentagon over the Himalaya region. In the set-up presented here, the res-168

olution for the ICON-A grid is 158 km, measured as the square root of the average tri-169

angle area, with a total of 20480 triangles (the R2B4 grid in Table 1 of Giorgetta et al.170

(2018)). The ICON-O grid has an average resolution of 40 km and 235403 triangles, the171

land triangles being removed to reduce memory and computing resources. The choices172

for horizontal and vertical resolutions reflect necessities for efficiently running the set-173

up for hundreds or thousands of years. The atmosphere’s horizontal resolution is com-174

parable to the T63 version of MPI-ESM-LR (Mauritsen et al., 2019) and the ocean’s glob-175

ally uniform resolution of 40km is close to the “TP04” grid used in MPI-ESM-HR (Müller176

et al., 2018). The 40 km ocean resolution is barely “eddy permitting”, but allows for pas-177

sages and straits to be adequately resolved.178
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The bathymetry was interpolated from the Shuttle Radar Topography Mission (SRTM)179

3 PLUS dataset (Becker et al., 2009), adjusted to conform with the sea-land mask given180

by the Global Land Cover Characterization (GLCC) 2.0 dataset (GLCC, 2018)). The181

ICON-O sea-land mask is then projected to the coarser ICON-A grid, allowing for tri-182

angles to be partially ocean.183

The numerical schemes of the atmosphere and the ocean share commonalities but184

feature also significant differences. Identical in both components is the spatial discretiza-185

tion of differential operators such as divergence and curl through mimetic methods (cf.186

Korn (2017)). This takes advantage of identical grid structures and the Arakawa-C-type187

staggering of variables. The staggering necessitates reconstructions and interpolations188

to connect variables that are located at different grid positions to calculate fluxes. This189

is accomplished in ICON-O by the novel concept of Hilbert space admissible reconstruc-190

tions (for details see Korn (2017), Korn and Linardakis (2018)). The development of the191

atmosphere’s dynamical core required different choices and therefore ICON-A relies on192

several interpolation methods (see Zängl et al. (2015)).193
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Figure 1. Schematic representation of the model components of the ICON-ESM (a) and the

construction of the grid through the bisection process (b).

2.1 Atmosphere194

The atmosphere component of the ICON-ESM is the icosahedral nonhydrostatic195

atmospheric general circulation model ICON-A. The model version used here is similar196

to version 1.3.00 described in detail by Giorgetta et al. (2018), which was evaluated by197

Crueger et al. (2018). Modifications with respect to this earlier version are described be-198

low. The dynamical core of the model (Zängl et al., 2015) and the transport scheme are199

shared with a configuration used for numerical weather prediction (NWP) at the DWD.200

Other variants of the ICON atmosphere model include the option to interactively cou-201

ple to the Aerosol and Reactive Trace gases scheme ART (Rieger et al., 2015) and a con-202

figuration including the upper atmosphere (UA-ICON, Borchert et al., 2019). The ICON-203

A descretization is based on an Arakawa-C grid finite difference approach, which pro-204

vides better scaling behavior compared to the spectral method utilized by the previous205

ECHAM atmosphere model. These superior scaling capabilities of ICON have enabled206

global storm-resolving simulations down to a horizontal grid resolution of about 2.5 km207

(Stevens et al., 2019).208

The model configuration used here differs from the NWP variant in particular with209

respect to the physics package, which was adopted from the ECHAM6 general circula-210
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tion model (Stevens et al., 2013) used in the MPI-ESM (Giorgetta et al., 2013; Maurit-211

sen et al., 2019). The physics parameterizations include the PSrad radiation scheme of212

Pincus and Stevens (2013), a scheme for turbulent vertical diffusion based on a total tur-213

bulent energy approach as proposed by Mauritsen et al. (2007), a convection parame-214

terization based originally on the Tiedtke (1989) mass flux scheme, a parameterization215

for the representation of stratiform clouds including microphysics based on a scheme by216

U. Lohmann and Roeckner (1996) and cloud cover diagnosed following Sundqvist et al.217

(1989), a representation of the effects of gravity waves and blocking from sub-grid scale218

orography following Lott (1999), and the Hines (1997) parameterization of the effects219

of non-orographic gravity waves. Adaptations of the original ECHAM parameterization220

schemes for the use in ICON-A are described by Giorgetta et al. (2018). As in the lat-221

ter publication, we use ICON-A here with a horizontal grid resolution of 158 km. In the222

vertical, the model employs a terrain following hybrid sigma-height grid with 47 layers223

extending to a model lid at 83 km. The lowermost layer has a thickness of 40 m. In to-224

tal 6 layers cover the altitude range up to about 1 km, 23 layers up to about 16 km, and225

39 layers up to about 50 km. Also the prescription of solar irradiance, radiatively active226

trace gases, and aerosols is unchanged with respect to the description provided by Giorgetta227

et al. (2018).228

Compared to the ICON-A version 1.3.00 described by Giorgetta et al. (2018) the229

following modifications have been made. (A) The coupling of the physical processes has230

been serialized completely using the following sequence: (1) radiative effects by terres-231

trial longwave and solar shortwave radiation, (2) vertical diffusion with implicitly cou-232

pled land surface processes, (3) non-orographic gravity wave drag, (4) subgrid-scale oro-233

graphic (SSO) effects, (5) cumulus convection, and (6) cloud microphysics. This improved234

the numerical stability and allowed to increase the model time step from 10 to 15 min-235

utes. Furthermore, the time step for radiation, the only process not computed at every236

model time step, was shortened from 120 to 90 minutes. (B) The non-orographic grav-237

ity wave and SSO effects were re-tuned. Here, new SSO parameters for the statistical238

description of the unresolved terrain were used, which resolve both issues discussed in239

section 4.7.1 of Giorgetta et al. (2018), i.e. the error in the azimuthal angle of the un-240

resolved mountains, and the standard deviation of unresolved orographic height, which241

is now computed with respect to the resolved sloped terrain. Additionally, a weighting242

factor for the non-ocean fraction has been introduced to account for the fact that the243

SSO parameters are computed for the area fraction that is land or lake or glacier, i.e.244

non-oceanic. (C) The physical processes were re-tuned for a balanced top-of-atmosphere245

(TOA) radiation and in order to minimize the systematic errors in Atmosphere Model246

Intercomparison Project (AMIP) simulations.247

In step (B), tuning parameters gkdrag , which scales the magnitude of the orographic248

gravity wave drag, and gkwake, which scales the blocking of low-level flow by unresolved249

orography, were tested with values in the range of 0.01 to 1 with the following goals: The250

first target was to reduce the systematic error in zonal mean zonal wind in boreal win-251

ter (December, January, February, DJF) at 60o N at 10 hPa. The secondary target was252

then to minimize errors in the zonal mean zonal wind in boreal summer (June, July, Au-253

gust, JJA) as well as errors in annual mean pressure at sea level and annual mean zonal254

wind stress at the ocean surface. This led to new default parameters gkdrag = 0.05 and255

gkwake = 0.05, instead of gkdrag = 0.10 and gkwake = 0.01 (Giorgetta et al., 2018).256

The tuning parameters for the non-orographic gravity wave drag remained as in Giorgetta257

et al. (2018).258

In step (C) a range of tests was conducted with modifications in tuning parame-259

ters for fractional cloud cover, entrainment of environmental air in convective plumes,260

overshooting mass flux fraction at the top of convection, and cloud microphyiscs. From261

all tests a configuration with three modifications was chosen, compared to Giorgetta et262

al. (2018): The entrainment coefficients for deep and shallow convection were set to entrscv =263
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entrpen = 0.0003 m−1 (compared to entrscv = 0.003 m−1 and entrpen = 0.0002 m−1),264

and the convective mass flux fraction across the level of neutral buoyancy at the top of265

convection was reduced to cmfctop = 0.1 (compared to cmfctop = 0.2). The critical266

relative humidities for condensation near the surface (crs) and in the upper troposphere267

(crt) were kept unchanged. This configuration performed best following a similar eval-268

uation as presented in Giorgetta et al. (2018). However, it should be noted that other269

tested configurations were equally acceptable concerning the radiation balance at the top270

of the atmosphere, which was the primary tuning goal.271

The resulting atmospheric model configuration provided the starting point for the272

development of the coupled model system in the pre-industrial control experiment, which273

lead to additional changes of tuning parameters for dynamics as well as physics, as de-274

scribed in Section 3 and reviewed in the discussion section.275

2.2 Ocean276

ICON-O, the ocean general circulation model that provides the ocean component277

of ICON-ESM, solves the hydrostatic Boussinesq equations. These dynamical equations278

are also referred to as the “primitive equations”. The state vector consists of horizon-279

tal velocity, the oceanic tracers potential temperature and salinity, as well as the sur-280

face elevation. The primitive equations are solved on the triangular ICON grid with an281

Arakawa C-type staggering that places tracers at the circumcenter of a triangular cell282

and the normal component of the velocity vector at the midpoint of the cells edge. The283

vertical coordinate-axis is given by the z-coordinate (or geopotential height). The two-284

dimensional triangles are simply extended by a height-based dimension. This generates285

three-dimensional prisms. The number of vertical levels depends on the topography and286

varies from cell to cell Nz = Nz(K). The grid used here applies 64 vertical levels with287

spacing varying between 10 m in the upper 100 m and 250 m in the deep ocean. The level288

thickness is constant in time, except for the surface layer with its varying sea surface el-289

evation. The latter and the varying sea-ice draft dictates limits for the allowed “thin-290

ness” of the surface layer. To overcome this limitation, we are presently implementing291

the z* coordinate, where the vertical coordinate is scaled in proportion with the sea-surface292

elevation (Adcroft & Campin, 2004).293

The subgrid scale closure for velocity uses a biharmonic operator based on the vec-294

tor Laplacian with a viscosity coefficient that scales with the square root of edge length295

times cell center distance to the third power. Eddy-induced diffusion and eddy-induced296

advection are parameterized following Redi (Redi, 1982) and Gent-McWilliams (GM)297

(P. Gent & McWilliams, 1990), respectively. We employ the variational approach of S. Griffies298

et al. (1998) and S. Griffies (1998). The discretization of the variational approach is, how-299

ever, different from the triad approach of S. Griffies et al. (1998) and uses inherently un-300

structured grid methods. The Hilbert-space-compatible reconstructions and mimetic dif-301

ferential operators of ICON-O’s dynamical core provide a discrete Hilbert space that al-302

lows a direct and structure-preserving discretization of the eddy parameterization. Full303

details are given in Korn (2018). Since the 40km ocean grid used here is barely eddy-304

permitting, we keep the GM scheme switched on using a default GM thickness diffusiv-305

ity parameter κ of 400 m2s−1, which is constant throughout the water column.306

As equations of state that approximates the density as a function of potential tem-307

perature, salinity and depth we use the UNESCO-80 formulation. For the parameter-308

ization of turbulent vertical mixing, ICON-O offers different choices: a Richardson-number-309

dependent parameterization (Pacanowski & Philander, 1981) (PP) including an addi-310

tional wind-mixing formulation as in MPIOM, the KPP scheme (Large et al., 1994), or,311

as the standard setting used here, a scheme based on a prognostic equation for turbu-312

lent kinetic energy (TKE) that implements the closure suggested by Gaspar et al. (1990).313

In the interior ocean, where vertical mixing is induced by breaking internal waves, the314
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standard TKE scheme requires a constant value of turbulent kinetic energy, which is set315

to 10−6m2s−2 in the simulations described here. As part of our ongoing development316

work, the TKE scheme is presently implemented into the Community Vertical Mixing317

CVMix library (S. M. Griffies et al., 2015; Van Roekel et al., 2018) and extended by the318

Internal Wave Dissipation Energy and Mixing (IDEMIX) scheme (Olbers & Eden, 2013).319

IDEMIX describes energy transfers from internal wave sources to sinks and includes the320

effects of internal tides and near-inertial-wave induced mixing. Further extensions in-321

clude a parameterization of Langmuir circulation following Axell (2002). Vertical dis-322

sipation and vertical diffusion are discretized implicitly. The transport of potential tem-323

perature, salinity, and the biogeochemical tracers is accomplished by a flux-corrected trans-324

port method with a Zalessak limiter, which utilizes flux calculation by compatible re-325

constructions (Korn, 2017). The free surface equation is solved implicitly in time with326

an iterative solver based on the conjugated gradient method. The remaining state vari-327

ables are discretized explicitly. For details we refer to Korn (2017). ICON-O’s time step-328

ping applies a semi-implicit Adams-Bashford-2 scheme. In the present configuration, the329

ocean’s time step is 30 minutes, which is also the frequency of data exchange with the330

atmosphere.331

2.3 Sea Ice332

The sea-ice model consists of a dynamic and a thermodynamic component that are333

called once at every ocean time step. The thermodynamics of the ICON sea-ice code,334

which describe the freezing and melting of sea ice, have been adopted from MPI-OM (Notz335

et al., 2013) and employ a single-category, zero-layer formulation (Semtner, 1976). For336

many climate-scale research questions, this simple setup has proven sufficient in com-337

parison with more complex models (Notz, 2020). The sea-ice dynamics are based on the338

sea-ice dynamics component of the Finite Element Sea Ice Model (FESIM, Danilov et339

al., 2016), which uses the standard elastic-viscous-plastic (EVP) formulation. As ICON-340

O applies an analogue of an Arakawa C-grid and FESIM uses an Arakawa A-grid type341

staggering, an interpolation between the ICON-O grid and the FESIM sea-ice dynam-342

ics is necessary. Furthermore, an additional rotation of the oceanic and atmospheric vari-343

ables is required, because ICON-O uses local coordinates, whereas FESIM is based on344

rotated geographic spherical coordinates. Besides the computational overhead, the cou-345

pling between FESIM and ICON-O introduces numerical diffusion, e.g. at least three grid346

cell wide passages are required to allow a sea-ice transport. To overcome those limita-347

tions we are currently working on the integration of a newly developed sea ice dynamic348

model (Mehlmann & Korn, 2021).349

2.4 Ocean Biogeochemistry350

In ICON-ESM, ocean biogeochemistry is represented by HAMOCC6, which sim-351

ulates biogeochemical tracers in the water column and in the upper sediment (Ilyina et352

al., 2013; Paulsen et al., 2017; Mauritsen et al., 2019). In the water column, currently353

at least 20 biogeochemical tracers are prognostically calculated, generally following an354

extended nutrient, phytoplankton, zooplankton, and detritus (NPZD) approach, also in-355

cluding dissolved organic matter, as described in Six and Maier-Reimer (1996). The co-356

limiting nutrients consist of phosphate, nitrate, silicate and iron. A fixed stoichiometry357

for all organic compounds is considered. Phytoplankton is represented by bulk phyto-358

plankton and diazotrophs (nitrogen fixers; Paulsen et al. (2017)). Particulate organic mat-359

ter (POM) is produced by zooplankton grazing on bulk phytoplankton and enters the360

detritus pool. Export production is separated explicitly into CaCO3 and opal particles,361

each sinking with its own sinking velocity. The POM sinking speed can be assigned us-362

ing one of the three implemented methods: constant speed, linearly increasing speed with363

depths below the euphotic zone (also known as the ‘Martin curve’; Martin et al. (1987))364

or calculated using the recently developed M4AGO scheme (Maerz et al., 2020). The rem-365
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ineralization of detritus throughout the water column is either aerobic (if seawater oxy-366

gen concentration > 0.5 µmolL−1) or anaerobic by denitrification and sulphate reduc-367

tion. The upper sediment is resolved by 12 biologically active layers and a burial layer368

and simulates the dissolution and decomposition of particulate inorganic and organic mat-369

ter and the diffusion of pore water constituents. The HAMOCC model is also part of370

the MPI-ESM and has been extensively evaluated in previous single-model, e.g. Ilyina371

et al. (2013); Paulsen et al. (2017); Müller et al. (2018); Mauritsen et al. (2019); Maerz372

et al. (2020) and multi-model studies, e.g. Bopp et al. (2013); Kwiatkowski et al. (2020);373

Séférian et al. (2020).374

Within the HAMOCC core subroutines, only the biological and chemical sources375

and sinks, as well as tracer sinking and ascending are computed. Therefore, when im-376

plementing HAMOCC6 (the model version used in MPI-ESM CMIP6 simulations) in ICON-377

ESM, the HAMOCC6 interface to the ocean and atmosphere components was adjusted378

to the ICON-ESM infrastructure accordingly. This adjustment includes the transport379

of biogeochemical tracers with the same routines and numerical schemes as the physi-380

cal tracers of the ICON-O model. As in previous model versions, it was ensured that all381

chemical constituents in HAMOCC are mass conserving within computational precision382

in this implementation.383

2.5 Land384

ICON-Land is a novel framework developed at MPI-M for the modeling of land pro-385

cesses in ICON that clearly separates model infrastructure from land surface process de-386

scriptions. It features a flexible scheme of land surface tiling and object-oriented organ-387

ization of physical and biogeochemical processes. Apart from the ICON-ESM configu-388

ration, ICON-Land is used in the ICON-A atmosphere configuration and can also be run389

in a land stand-alone mode (see e.g. Nabel et al., 2020). The ICON-Land implementa-390

tion used in the ICON-ESM v1, comprises physical and biogeochemical processes pro-391

vided by the JSBACH 4 land model, a port of JSBACH 3.2 (Reick et al., 2021) to the392

ICON-Land framework. Previous JSBACH versions have represented the land compo-393

nents of the MPI-ESM versions used in CMIP5 (Giorgetta et al., 2013) and CMIP6 (Mauritsen394

et al., 2019).395

Compared to Reick et al. (2021), JSBACH 4 features certain improvements of the396

physical processes at and below the surface, including a five-layer snow scheme and the397

phase change of water within the soil (Ekici et al., 2014; de Vrese et al., 2021). Also in-398

cluded are the options to calculate the soil thermophysical properties depending on the399

soil water content and the general properties depending on the organic matter content400

of a given soil layer. Surface runoff and sub-surface drainage from ICON grid cells are401

routed through a hydrologic discharge model (Hagemann & Dümenil, 1997) using a novel402

method for generating river directions (Riddick, 2021); the resulting river discharge is403

coupled as freshwater flux to the ocean via the YAC coupler (see section 2.6). Surface404

temperature of lakes is computed by a simple mixed-layer scheme including ice and snow405

on lakes (Roeckner et al., 2003). The surface energy balance and the soil thermal lay-406

ers on land are coupled implicitly to the vertical diffusion scheme of ICON-A.407

In the model version discussed in this study, biogeochemical processes in JSBACH408

4 are simplified relative to JSBACH 3 (Reick et al., 2021). Natural vegetation dynam-409

ics (Brovkin et al., 2009) coupled to land-use transitions (Reick et al., 2021), as well as410

the coupling of terrestrial carbon and nitrogen cycle (Goll et al., 2017) have not yet been411

ported from JSBACH 3, but are planned to be ported into future ICON-ESM versions.412

In the piControl and historical simulation ensemble (section 4), natural vegetation and413

anthropogenic land cover change have been prescribed by annual maps of cover fractions414

on 11 Plant Functional Types (PFTs) based on Pongratz et al. (2008) and transient crop415
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and pasture fractions derived from the land use harmonization (LUH) LUH2 v2h (Hurtt416

et al., 2019) as described in Mauritsen et al. (2019).417

2.6 Coupling418

Ocean and atmosphere processes run concurrently. The data exchange between the419

two horizontal grids is implemented using the Yet Another Coupler (YAC) coupling li-420

brary (Hanke et al., 2016) in version YAC1.5 (Hanke & Redler, 2019). Fig. 1 depicts a421

schematic view of the model components and the exchange of coupling fields. The com-422

ponents of the wind- and velocity vectors are interpolated using Bernstein-Bézier poly-423

nomials following Liu and Schumaker (1996) to better represent the vorticity. Target cells424

for which this interpolation method fails due to an incomplete interpolation stencil near425

land-sea borders are interpolated using a 4-nearest-neighbour arithmetic average inter-426

polation. The river discharge is remapped to the target grid in a way that each source427

cell containing a river discharge value is assigned to a coastal target cell on the ocean428

grid. All other fields are interpolated using first-order conservative remapping. To avoid429

problems with the conservation of the field properties with this method, the grids and430

masks of the model components are constructed such that any unmasked source cell is431

always covered by unmasked target cells The weights required for the remapping are cal-432

culated by YAC at the start of each run. This calculation is based on the grid informa-433

tion provided by the model.434

The atmosphere component provides the zonal and meridional components of the435

wind-stress separately over ice and over water, the surface fresh water flux as rain and436

snow over the whole grid cell and evaporation over the ocean fraction of the cell, short-437

and longwave radiation and latent and sensible heat fluxes over the ocean, sea ice sur-438

face and bottom melt potentials, the 10 m wind speed and sea level pressure. The ocean439

provides the sea surface temperature, the zonal and meridional components of velocity440

at the sea surface as well as ice- and snow thickness, and ice concentration. The data441

exchange encompasses aggregation, averaging and re-partitioning of the exchange fields.442

YAC routines are called at every model time step of the respective model component,443

and data are accumulated inside the YAC library. The model setup is configured such444

that every 1,800 seconds, the coupling period, the aggregated data are averaged and sent445

to the respective receiving processes. This coupling period has to be an integer multi-446

ple of the time steps of the model components taking part in this exchange.447

2.7 Computational configuration and performance448

All simulations were performed with the bullx DLC 720 high performance comput-449

ing system for Earth system research (HLRE-3) of the “Deutsches Klimarechenzentrum”450

(DKRZ). The simulations utilize 120 “Broadwell” compute nodes of the system named451

“Mistral”, which include 36 processing units each.452

The domain decomposition is performed separately for ocean and atmosphere: the453

ocean decomposition at 40 km horizontal resolution, which includes only ocean grid points,454

and the global atmosphere decomposition at 158 km horizontal resolution. The sea-ice455

model is included in the ocean code and runs on its own FESIM grid (see section 2.3),456

which is coupled directly to the ICON-O grid. The land model works within the ICON-457

A decomposition. The YAC coupling library is linked to each of the two components of458

the ICON model (atmosphere/land and ocean/sea-ice) and performs the aggregation,459

averaging and re-partitioning of the exchange fields using their respective decomposition.460

Due to this technical setup, the load balancing has to be optimized for these two461

major components, only. The heavy workload due to multiple tracers in configurations462

with HAMOCC requires different weightings for run with and without ocean biogeochem-463

istry. The best compromise between shortest return time and parallelization overhead464
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was obtained for a load balancing of 74 nodes (2664 mpi-processes) for running ocean465

and sea-ice (without HAMOCC) on the 40 km grid and concurrently using 46 nodes (1656466

mpi-processes) for atmosphere and land on the 158 km grid. With this configuration we467

achieve an average performance of ten simulation years in one batch-job executing within468

roughly two hours. Without any queuing-time at the machine (depending on the load469

of the machine, or by assigning high-priority to the job-chain) it results in a performance470

of up-to 120 simulated years per day. A hybrid configuration using mpi- as well as openmp-471

(shared memory) parallelization was tested and exhibited less performance on the DKRZ472

machine, which is probably due to partly missing optimizations in the code. In the runs473

including HAMOCC, the best optimization was achieved for a load balancing of 46 nodes474

for atmosphere and land and 154 nodes for the ocean (physics and biogeochemistry) and475

sea ice. An average performance of 40 simulated years per day was achieved with this476

configuration.477

3 Tuning and spin-up478

3.1 Tuning principles and targets479

Model tuning is an integral part of the model development process (Mauritsen et480

al., 2012). Since there are many similarities between ICON-ESM and MPI-ESM regard-481

ing physical parameterizations and the sea-ice thermodynamics, the tuning process prof-482

ited from several generations of MPI-ESM development (Mauritsen et al., 2012, 2019;483

Jungclaus et al., 2013; Notz et al., 2013). In the coupled system, a first-order tuning goal484

is to achieve stable climate conditions to minimize drifts in the piControl climate used485

as reference for climate change simulations. A near-zero top-of-atmosphere energy-flux486

balance is required as well as long-term stable circulation, for example the Atlantic Merid-487

ional Overturning Circulation (AMOC) in the ocean. Furthermore, it is desired to match488

the model results with the observed climate conditions for the second half of the 19th489

century and with the temperature evolution over the 20th century. Based on experience490

gained in the tuning of the stand-alone ocean and atmosphere set-ups (Giorgetta et al.,491

2018), a small number of parameters associated with the parameterization of specific pro-492

cesses were selected for tuning (Table 1). In the atmosphere these parameters are mainly493

related to convection, clouds, and subgrid-scale orographic processes, and largely over-494

lap with parameters used in the tuning of the atmosphere stand-alone model (see Sec-495

tion 2.1). Parameters modified for tuning purposes in the ocean include the coefficient496

for isoneutral diffusion K and the coefficient for eddy-induced advection κ in the Gent-497

McWilliams closure (Korn, 2018). Apart from albedo settings in the atmosphere, the sea-498

ice model contains two main parameters that we use to tune the overall mean state of499

the sea-ice cover. One of these parameters describes the change in ice-thickness distri-500

bution during freezing (leadclose 1), and the other parameter describes the change in501

ice-thickness distribution during melting (leadclose 2/3) as described in Notz et al. (2013).502

3.2 Spin-up and tuning history503

The ocean initial conditions for temperature and salinity were taken from the Po-504

lar Science Center Hydrographic Climatology data set PHC 3.0 (Steele et al., 2001). First,505

a 200-year long stand-alone ICON-O simulation was carried out using the atmospheric506

climatology forcing and the respective bulk formulae described in Marsland et al. (2003).507

Starting from the restart fields obtained from the stand-alone ocean simulation, several508

experiments with different tuning choices were conducted, partly sequentially with pa-509

rameter changes on the fly, partly in parallel to study difference in drift behavior. The510

final tuning sequence is documented in Fig. 2.511

The start of the coupled simulation (slo1304) is characterized by a large drift, where512

both atmosphere and ocean are cooling and the TOA radiation balance is negative (2513

b). Introducing background tropospheric aerosols in the run slo1307 led to even stronger514
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Table 1. Parameters used for tuning the coupled model.

ICON Parameter Symbol Value Reference Description

Atmosphere

crs r0,surf 0.978 Giorgetta et al. (2018) critical relative humidity for condensation (surface)

crt r0,top 0.8 Giorgetta et al. (2018) critical relative humidity for condensation (upper troposphere)

entrpen ε1 0.00015m−1 Nordeng (1994) entrainment in deep convection

gkdrag G 0.03 Lott (1999) subgrid-scale orographic (SSO) gravity wave drag

gkwake Cd 0.03 Lott (1999) SSO low-level blocking

gklift C1 0.7 Lott (1999) SSO lifting

Ocean

K K 400 m2s−1 Korn (2018) Redi isoneutral diffusion

κ κ 400 m2s−1 Korn (2018) GM eddy-induced advection

sea ice

leadclose 1 cmelt 0.5 Notz et al. (2013) ice area change during melting

leadclose 2/3 cfreeze 0.666 Notz et al. (2013) ice area change during freezing

decrease in global mean surface air temperature (GSAT) that required counter-tuning.515

This was achieved by increasing the critical relative humidities for condensation crs and516

crt and the entrainment parameter entrpen which led in particular to a reduction of global517

mean cloud fraction and an increase of net incoming radiation at the TOA. While this518

resulted initially in overly strong warming, the long-term drift cooled the model to ac-519

ceptable values and we finally obtained a solution with small overall drift even in the deep520

ocean (2 c). While this may appear as a very straightforward tuning process, a large num-521

ber (order 100) of further model experiments with different parameter settings and sim-522

ulated lengths of a few years to several hundreds of years have been performed to arrive523

at this spin-up sequence. The influences of some of the tuning choices on the simulated524

climate are discussed in several parts of the model evaluation of Section 4 and in sec-525

tion 5.526

A bug-fix related to erroneous snow accumulation in a few grid points required an527

update of the code in run slo1325 without noticeable effects on the climate. This sim-528

ulation was carried out for another 500 years, where we defined the start of the piCon-529

trol simulation. The starting point of piControl was also used to initialize the DECK ex-530

periments 1pctCO2 and abrupt4xCO2, and one realization of the historical simulations.531

Further realizations were started from different dates of piControl. In addition, an AMIP532

simulation was included using the same code version as the coupled experiments.533

After the completion of the DECK experiments presented in this paper, a coding534

error was detected in the vertical diffusion of ICON-A. The bug is related to the way ocean535

currents are taken into account in the wind-stress calculation. The effects of the error536

turned out to be time-step and grid-size dependent and had detrimental effects in a very537

high-resolution (5km) coupled proto-type model. At the low resolutions applied here,538

we were able to identify typical effects of this error (e.g. some changes in the represen-539

tation of the equatorial current system in the ocean), but most of the analyzes and il-540

lustrations presented here remain largely unaffected. The most notable effect is an even541

stronger variance of the ENSO time series, but we diagnosed otherwise very similar char-542

acteristics of the variability (not shown). We have concluded that the bug must be fixed543

but changes to the results were too minor to justify a repetition of the DECK experi-544

ments and their post-processing. All conclusions regarding benefits and shortcomings545

of the ICON-ESM DECK simulations presented here remain unaffected.546

The tuning of the ocean biogeochemistry was carried out after the tuning of the547

coupled setup. A first-order tuning goal for the ocean biogeochemistry in an ESM is to548

limit significant drifts in the biogeochemical tracer fields and fluxes in the piControl run.549
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Figure 2. Spin-up history of the coupled simulation: time series of global mean surface air

temperature (a), top-of-atmosphere (TOA) radiation flux (b), and volume-averaged ocean tem-

perature (c) evolution from a sequence of simulations leading to the piControl experiment.

Furthermore, parameters are adapted within a reasonable range to drive the model closer550

to observations. The initial conditions for the biogeochemical tracer fields in the water551

column and sediment were interpolated from a previously well spun-up MPIOM piCon-552

trol setup which was run for several thousands of years. Ocean and atmosphere were ini-553

tialized from the end of the slo1325 run and ICON-ESM was run with the piControl cli-554

mate. The dust deposition climatology of Mahowald et al. (2005) and historical nitro-555

gen deposition fields from the CMIP6 input database (https://esgf-node.llnl.gov/projects/input4mips/)556

were used. The POM sinking speed was calculated based on the Martin curve.557

To account for the ocean circulation simulated by ICON-ESM, some of the HAMOCC558

tuning parameters were changed from their default values. For this, first several exper-559

iments with different tuning choices were conducted to obtain the approximate values560

for the tuning parameters. The parameters were then fine tuned on the fly during a sim-561

ulation length of 450 years. The appropriate weathering rates, which are used to com-562

pensate for the loss of carbon and nutrients from the water column to the sediment, were563

calculated and updated during the simulation. After that, the model was spun-up for564

250 years, during which the model was in a semi-steady state in the ocean global mon-565

itoring values such as the global surface alkalinity, export from euphotic zone and 1000m,566
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primary production and nutrients. The simulated annual global flux of CO2 into the ocean567

at this state was about 0.05 PgC/yr, representative for the assumption of the pre-industrial568

steady-state condition.569

Table 2. Overview on the ICON-ESM simulations.

Experiment Description Period Ens.size Initialization

piControl Preindustrial Control 500 years 1 spin-up run

1pctCO2 idealized CO2-increase 150 years 1 spin-up run

abrupt4xCO2 idealized CO2 increase 150 years 1 spin-up run

historical transient forcing 1850-2014 5 piControl (yrs 0, 100, 200, 300, 400)

AMIP atmosphere-only 1978-2014 1 n.a.

HAMOCC historical transient forcing 1850-2014 1 HAMOCC spin-up

4 Model evaluation570

The set of experiments described in this paper is listed in table 2. We start with571

a brief account of the piControl experiment. Since the evaluation in comparison with ob-572

servations is based on data from the recent decades, we perform the analyzes based on573

the historical ensemble. The idealized climate change experiments 1pctCO2 and abrupt4xCO2574

are used to estimate the climate sensitivity of ICON-ESM in section 4.4.575

4.1 The pre-industrial control simulation (piControl)576

In Figure 2 we have compiled the temporal evolution of key quantities reflecting577

the stability of the climate over centuries. The time series include the 500-yr long piCon-578

trol experiment (black). The GSAT is stable over the 500 year long piControl simula-579

tion with a small cooling of -0.01 K per century (Fig. 2 a). A pre-industrial GSAT of580

13.73oC is consistent with the present temperature level based on reanalyses and the ob-581

served estimate of global warming over the historical period (Hawkins & Sutton, 2016).582

The goal of a very stable TOA energy flux is achieved with a small imbalance of 0.016583

Wm−2 (Fig. 2 b). In contrast, the ocean is still cooling (Fig. 2 c) and the average ocean584

cooling over the piControl run translates to an energy loss of -0.047 Wm−2, leaving a585

mismatch of 0.063 Wm−2. This spurious energy loss reflects inconsistencies in the cou-586

pling procedure and/or the atmosphere that we are unable to identify at this stage. How-587

ever, the imbalance is sufficiently small compared to changes in, for example anthropogenic588

forcing and much smaller than the energy leakages identified in ECHAM6 by Mauritsen589

et al. (2012).590

Figure 3 includes additional integrated measures of the stability of the simulations.591

The overall sea-ice distributes is sensitive to long-term drift in radiation balance and/or592

ocean heat transports (Fig. 3 a, b). While Southern Hemisphere summer sea-ice extent593

is always too close to zero, the remaining time series show multi-decadal variability, but594

only small long-term drift.595

The AMOC (Fig. 3 c) is a key quantity for the meridional heat exchange in the596

Atlantic Ocean and its stability is important for maintaining a proper sea-ice distribu-597

tion and North Atlantic deep water formation (for more details see section 4.2.5). The598

control run has a time-mean AMOC strength at 26oN of slightly less than 16 Sv (1Sv =599

1Sverdrup = 106m3s−1). The AMOC is stable over the last 1000 years of the simula-600

tion, but exhibits relatively strong multi-decadal variations with an amplitude of up to601

3 Sv.602
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Figure 3. Evolution of key quantities during the last 500 years of the spin-up and the 500-

year piControl experiment: maximum and minimum sea-ice extent in million km2 for a) the

Northern Hemisphere and b) the Southern Hemisphere, and c) the strength of the Atlantic

Meridional Overturning streamfunction at 26oN and 956m depth in Sverdrup (1Sverdrup =

106m3s−1). Red lines indicate the time mean.

4.2 The historical simulation ensemble603

4.2.1 Temperature evolution during the historical period604

ICON-ESM reproduces the evolution of the global mean surface temperature (GMST)605

largely in good agreement with observational products (Fig. 4), where anomalies are shown606

relative to the average over the second half of the 19th century. Note that GMST is used607

here for comparison with observational products. GMST is a blend of surface air tem-608

perature over land and sea surface temperature over the oceans. The mid-20th century609

warming and the subsequent cooling towards the 1970s agree in magnitude and timing,610

and the effects of volcanic eruptions like Agung (1963) and Pinatubo (1991) are captured.611

The simulations slightly disagree with the observational records in the late 20th to early612

21st century because the model overestimates the warming trends from the 1970s on-613

ward. On the other hand, the warming trends are underestimated near the end of the614

simulation so that the simulated temperatures agree with the observations at the end615
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of the simulated period. A decomposition into northern (Fig. 4b) and southern (Fig. 4c)616

hemispheres reveals that the deviations stem mainly from the northern hemisphere. As-617

sessing the reason for this discrepancy requires further investigations but the more pro-618

nounced biases in the northern hemisphere point to an underestimation of the cooling619

effect of anthropogenic aerosols (Mauritsen et al., 2019) rather than too high climate sen-620

sitivity in ICON-ESM (see section 4.4).621

4.2.2 Atmosphere622

Table 3. Data used for evaluation of atmospheric quantities. Further data used for the compu-

tation of skill scores are specified by Crueger et al. (2018).

Quantity Name Period Reference

sea level pressure ERA-Interim 1979 - 2014 Dee et al. (2011)

zonal mean temperature ERA-Interim 1979 - 2014 Dee et al. (2011)

zonal mean zonal wind ERA-Interim 1979 - 2014 Dee et al. (2011)

cloud fraction CALIPSO-GOCCP (v3.1.2) 2007-2019 Chepfer et al. (2010)

precipitation GPCP (v2.2) 1979-2013 Adler et al. (2003)

cloud radiative effect CERES EBAF Ed4.1 2001-2020 Kato et al. (2018)

For the evaluation of atmospheric quantities we follow as closely as possible plot-623

ting styles and use of data sets as in Crueger et al. (2018) to enable a comparison of the624

performance of the coupled ICON-ESM with AMIP-style (i.e. atmosphere-only) simu-625

lations by ICON-A and predecessors. Data sets used in the comparison are listed in Ta-626

ble 3. We only use observations and reanalysis data from after the beginning of the satel-627

lite era and averages of the 5 members of the historical ensemble for the comparisons.628

To allow a quantitative comparison of global model performance with predecessors629

and uncoupled simulations of this and earlier model versions, we present skill scores for630

simulated annual mean quantities as proposed by Reichler and Kim (2008) in Fig. 5. Val-631

ues larger than unity represent larger departures from the observations and are indica-632

tive of worse performance relative to the predecessors, and smaller values imply smaller633

departures from the observations, hence better performance. We calculate these scores634

in the same way and with respect to the same observational data as described by Crueger635

et al. (2018). Skill scores for model biases are calculated with respect to model biases636

in a reference simulation for which we use the historical CMIP6 simulation with the MPI-637

ESM-LR-1.2 (Mauritsen et al., 2019). It is obvious that the ICON-ESM performs worse638

than the reference model for many quantities both globally and in the three geographic639

regions: tropics, northern and southern extratropics. It performs also worse than the pre-640

decessor MPI-ESM-LR (Stevens et al., 2013). The performance has clearly improved only641

for some quantities in the southern extratropics.642

In general, a better agreement of uncoupled simulations with observations is ex-643

pected as they are driven by observed sea surface temperatures and sea ice. This bet-644

ter agreement is clearly visible in Fig. 5, where uncoupled scores for many quantities are645

below one in most regions, i.e. the agreement with observations is better than in the cou-646

pled reference simulation. Differences between our simulation and the uncoupled AMIP647

experiment of Crueger et al. (2018) are expected due to the coupling, but also due to648

parameter changes related to the tuning of the coupled model as described in Sections 3.2649

and small code modifications as described in Section 2.1. The latter two effects can be650

estimated from comparing the skill scores of the ICON-ESM AMIP simulation with the651
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a)

b)

c)

Figure 4. Time series of surface temperature relative to the respective 1850-1899 averages

over a) the globe, b) the northern hemisphere, and c) the southern hemisphere for (red-orange)

the ICON-ESM historical ensemble, and observational compilations by (blue) the Goddard Insti-

tute for Space Studies Surface Temperature product (Lenssen et al., 2019), (black) the blended

Hadley Center/Climate Research Unit global temperature data set (Morice et al., 2012), and

(light blue) the NOAA NCDC historical merged land–ocean surface temperature data set (Smith

et al., 2008; Zhang et al., 2019). The simulated surface temperature is constructed using SSTs

over the ocean and surface air temperatures over land.
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predecessor ICON-A-1.3.00 used by Crueger et al. (2018). Although some quantities im-652

prove, the overall quality in our uncoupled experiment is lower than in the earlier AMIP653

simulation. A somewhat degraded skill can be expected because our tuning aimed at the654

performance in the coupled simulation. In the following we evaluate the spatial patterns655

of some atmospheric quantities.656

Figure 6 shows annual mean sea level pressure from the European Center Reanal-657

ysis ERA-Interim and the difference of the ICON-ESM to this dataset. Maximum anoma-658

lies of up to about 10 hPa are of the same order as anomalies simulated in the uncou-659

pled model (Crueger et al., 2018). However, the spatial structure is very different. While660

in the uncoupled model there was an underestimation in most parts of the tropics and661

sub-tropics and a strong positive bias in particular over the Arctic, here we simulate strong662

positive biases centred near about 45◦ in both hemispheres. Extratropical biases showed663

some sensitivity to the SSO parameters (see Table 1) in the tuning process. The pos-664

itive bias of mean sea-level pressure over the Arctic found in Crueger et al. (2018) could665

be reduced by activating SSO mountain lift forces of using the parameter gklift. The trop-666

ical low bias was a feature in all our tuning attempts.667

According to the skill scores presented in Fig. 5, the ICON-ESM simulates precip-668

itation over land and ocean in the extratropics similar or even better than predecessors669

or uncoupled model versions while it still, on average, slightly underestimates precipi-670

tation in both southern and northern hemispheric extratropics in comparison to data from671

the Global Precipitation Climatology Project (GPCP). It performs worse, however, in672

the tropics. Fig. 7 shows annual mean precipitation patterns in the ICON-ESM in com-673

parison to GPCP data. The model simulates the typical distribution of tropical and ex-674

tratropical rainfall patterns. In the Pacific, rainfall maxima are too high and a double675

Intertropical Convergence Zone (ITCZ) bias, typical for many climate models (Tian &676

Dong, 2020), can be identified. North of the equator the Pacific ITCZ is located too far677

north, and south of the equator the area of high precipitation extends to far east. These678

features were also reported for the uncoupled ICON AMIP simulation from Crueger et679

al. (2018). Improvements with respect to this uncoupled simulation can be identified in680

the tropical Atlantic and Indian oceans. Concerning the seasonal cycle, a major bias is681

a shift of maximum precipitation from summer to winter in the boreal forest zone (50N-682

65N) over the continental interior of Eurasia (not shown), which leads to a large regional683

deficit in simulated vegetation productivity. In the global mean, the ICON-ESM over-684

estimates precipitation as given by GPCP only by about 3%. With respect to tropical685

precipitation there is the hope that storm-resolving simulations, i.e. simulations with a686

horizontal resolution of few kilometers that avoid parameterizing convection, may over-687

come some of the deficiencies presented here (Fiedler et al., 2020). However, an early in-688

tercomparison of such models, including an ICON-A configuration, for a one-month pe-689

riod only, indicated precipitation biases in the Pacific south of the equator that may be690

reminiscent of the double-ITCZ issue (Stevens et al., 2019).691

Figs. 8 and 9 show global annual mean total cloud fraction and zonal mean ver-692

tically distributed cloud fraction, respectively, in comparison to the GCM Oriented Cloud693

Calipso Product (CALIPSO-GOCCP) data. Total cloud fraction is clearly too low in sub-694

tropical regions in both hemispheres, a feature which was visible but less strong in the695

AMIP simulations of Crueger et al. (2018). The vertical distribution of cloud fraction696

indicates that this is in particular related to an underestimation of low clouds in the sub-697

tropics and tropics. High clouds are, by contrast, overestimated in the tropics and mid-698

dle to high latitudes. Different tuning choices would be able to alleviate these deficien-699

cies, but we did not reach a global energy balance for a realistic global mean tempera-700

ture and better cloud distributions at the same time.701

The global low bias in cloudiness and in particular low level clouds does not nec-702

essarily translate directly into a consistent bias of the cloud radiative effect (CRE) as703

it has been mentioned earlier for other atmospheric models (Nam et al., 2012) and ICON704
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Figure 5. Standardized annual mean climatological errors of selected variables in several

simulations with reference to the CMIP6 historical simulation with MPI-ESM-LR-1.2. A value

smaller/larger than 1 indicates a smaller/larger bias compared to this reference for the evaluation

period 1979 – 2008. Scores are averaged over (from top to bottom) the full globe, the northern

extratropics, the tropics (30◦S - 30◦N), and the southern extratropics. Colored dots indicate

scores for the coupled simulations with (red) the ICON-ESM and (orange) the MPI-ESM-LR

(Stevens et al., 2013), as well as for the AMIP simulations with (dark blue to light blue) the

ICON-ESM, ICON-A-1.3.00 (Crueger et al., 2018), and ECHAM6.3 (Mauritsen et al., 2019). See

Section 4.2.2 for further details on the skill scores.
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Figure 6. Sea level pressure (hPa) averaged over the period 1979-2014 a) from the ERA-

Interim reanalysis and b) difference between ICON-ESM historical simulation and ERA-Interim.

Numbers below the panels indicate global means and root mean square difference between simu-

lation and reanalysis.

Figure 7. Precipitation (mm/day) a) from the GPCP observations averaged over 1979-2013

and b) from the ICON-ESM historical simulation averaged over 1979-2014 and GPCP. Numbers

below the panels indicate global means and root mean square difference between simulation and

observation.

Figure 8. Total cloud fraction (%) a) from the CALIPSO-GOCCP observations averaged over

2007-2019 and b) from the ICON-ESM historical simulation averaged over 1979-2014. Numbers

below the panels indicate global means and root mean square difference between simulation and

observation.
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Figure 9. Zonal mean vertical distribution of cloud fraction (%) a) from the CALIPSO-

GOCCP observations averaged over 2007-2019 and b) from the ICON-ESM historical simulation

averaged over 1979-2014.

predecessors (Crueger et al., 2018). Fig. 10 indicates that the global mean simulated short705

wave CRE at the TOA is almost equal to the value from the Clouds and Earth’s Radi-706

ant Energy Systems (CERES) Energy Balanced and Filled (EBAF; we use Edition 4.1)707

data. The agreement is even better than in the ICON-A AMIP simulations discussed708

by Crueger et al. (2018) which however had a better net TOA CRE due to almost com-709

pensating short and long wave biases. Here, the long wave TOA CRE (not shown) of about710

23.5 Wm−2 is underestimating the CERES value of about 28 Wm−2. Patterns of both711

TOA CREs are reproduced fairly realistically as shown for the short wave CRE in Fig. 10.712

Slight underestimations in the mid-latitudes are compensated by slight overestimations713

at lower latitudes.714

The skill scores indicate that the performance of the ICON-ESM for annual zonal715

means of both temperature and zonal wind is in general worse than that of its prede-716

cessors. In particular, the score for zonal wind is above one, hence indicating stronger717

departure from the observations, in all geographical regions, but it should be noted, that718

zonal wind biases were very low for the reference simulation (Fig. B3, Mauritsen et al.,719

2019). The positive temperature bias in the high latitude middle atmosphere and the720

cold bias near the high-latitude tropopause (Fig. 11) are recurrent features of our mod-721

els (Crueger et al., 2018). Their study also discusses that the latter can be reduced by722

an increase of the vertical model resolution in this region. In the troposphere, the model723

shows, in general, a warm bias at low and a cold bias at high latitudes. The large zonal724

wind bias (Fig. 12) is dominated by too strong westerlies in the mid-latitude troposphere725

and stratosphere, a feature which is strongest in both hemispheres during boreal win-726

ter. The position of subtropical jets is biased poleward in both hemispheres. The skill727

scores of Fig 5 show clearly for both temperature and zonal wind that the ICON-ESM728

performs worse compared to its atmosphere model in an AMIP simulation. The large729

increase in biases is, hence, the result of changed atmospheric circulation due to the cou-730

pling. Additionally, the current AMIP simulation is performing somewhat worse than731
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Figure 10. Short wave cloud radiative effect (Wm−2) from a) CERES observations averaged

over 2001-2020 and b) from the ICON-ESM historical simulation averaged over 1979-2014. Num-

bers below the panels indicate global means and root mean square difference between simulation

and observation.

the ICON-A configuration (version 1.3.00) from Crueger et al. (2018) which we attribute732

to the tuning focusing on the coupled model performance. A reduction of the zonal wind733

biases, and subsequent effects on temperature, would be possible through different tun-734

ing choices in the parameterization of SSO effects, but in our tuning experiments this735

came in general at the expense of larger biases in sea ice and the AMOC.736

4.2.3 Land737

We compare our model ensemble results for the surface albedo with the Moderate738

Resolution Imaging Spectroradiometer (MODIS) MCD43C3 CMG Albedo Product (C. Schaaf739

& Wang, 2015). Cescatti et al. (2012) and C. B. Schaaf et al. (2002) show that the prod-740

uct is suitable for climate model comparisons. It comes with quality information for each741

data point (quality flags). These flags condense uncertainties in the elicitation of the data,742

such as atmospheric scattering and absorption, anisotropy, inadequate temporal, spa-743

tial and spectral sampling, and narrow-band to broadband conversions. For our com-744

parison we first exclude MODIS data with a low quality of the inversion (quality flags745

4 and 5). Then we interpolate the data from the original MODIS grid of 0.05ox 0.05o746

(about 5.6 km at the equator) and from our model grid to a Gaussian lon-lat grid of 96747

x 192 (about 1.88o or 210 km at the equator). As the albedo varies strongly through-748

out the year due to variations in the angle of the incoming radiation, in leaf area index749

(LAI), and in snow cover, we take January and July data to represent the boreal win-750

ter and summer extremes, for which we average our model results and the MODIS data751

over the years 2001 till 2014. The differences are shown in Figure 13.752

All albedo differences are in the range +/- 0.1. In general the biases are weak as753

compared to the absolute MODIS albedos. E.g. in January the global near-infrared (NIR)754

albedo is 0.31 for the absolute values of MODIS, while the corresponding bias is only 0.003.755

Over glaciers we find a common pattern, where the NIR albedo is too high and the vis-756

ible (VIS) albedo is too low (see in January over Antarctica and in July over Greenland),757

which is a direct result of the prescribed minimum and maximum albedo values for glaciers758

in JSBACH 4. In January, NIR and VIS albedo are too low in the northern mid latitudes,759

especially in eastern Europe and central Asia. Further analysis reveals that these biases760

are largely caused by a too small snow cover in JSBACH 4 (not shown). In July, the NIR761

albedo in eastern North America and large parts of Asia is too low. These low albedos762

are caused solely by the prescribed soil albedo of the model. Except for the mentioned763

areas, the albedos tend to be higher in JSBACH 4, e.g. in most of Africa, Australia and764
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Figure 11. Zonal mean temperature (K) averaged over the period 1979-2014 (top row) from

the ERA-Interim reanalysis and (bottom row) difference between ICON-ESM historical simula-

tion and ERA-Interim. From left to right are shown the annual, boreal winter (DJF), and austral

winter (JJA) averages.

Figure 12. Zonal mean zonal (westerly) wind (ms−1) averaged over the period 1979-2014 (top

row) from the ERA-Interim reanalysis and (bottom row) difference between ICON-ESM histor-

ical simulation and ERA-Interim. From left to right are shown the annual, boreal winter (DJF),

and austral winter (JJA) averages.
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Figure 13. White Sky Albedo (WSA) ICON-ESM historical ensemble minus MODIS data.

Shown are the NIR and VIS bands for January and July averaged from 2001 till 2014.

India. However, the causes for this overestimation are rather complex and their inves-765

tigation is beyond the scope of this paper; a deeper analysis of this issue will be published766

in a forthcoming paper.767

For the evaluation of land surface temperature (LST) of our model ensemble, we768

use the MOD11C1 MODIS Terra Land Surface Temperature/Emissivity V006 data set769

(Z. Wan et al., 2015). For our analysis we excluded the data points where the quality770

flags indicate no retrieval because of clouds. The spatial resolution of the data set is 0.05o771

x 0.05o (about 5.6 km at the equator). Furthermore, we compare our results with the772

first five ensemble members of the MPI-ESM CMIP6 historical simulations (Wieners et773

al., 2019).774

The global ICON-ESM LST time series (Figure 14, green lines) is highly correlated775

with the MPI-ESM 1.2 time series (blue lines, correlation coefficient of Spearman 0.93776

and of Pearson 0.96) but shows a higher variability in the course of the year (Figure 15).777

Over the historical period until about 1990, the annual averages of ICON-ESM are slightly778

colder than those of MPI-ESM 1.2 but are about the same from then on. ICON-ESM779

is about 0.6oC warmer than observed by MODIS (red lines) and its variability in the course780

of the year is nearly the same. Even when on short time scales both models annual means781

are not in good agreement with the historical Climate Research Unit Temperature (CRUTEM4)782

reconstruction (Figure 14, black lines), they agree with long term trend (e.g. the tem-783

perature rise after 1980).784

The geographical LST comparison between ICON-ESM and MODIS averaged be-785

tween 2001 and 2014 (Figure 16) reveals strong regional differences. The zonal means786

show a warm bias in the inner tropics and the extratropics. In principle, this can also787

be seen in the January and July averages. Regionally, the warm bias is throughout the788

year mostly pronounced in Europe, central Asia, central to north-eastern N-America, the789

Amazon region, and western Antarctica. The warm bias over Eurasia in January is at790

least partly caused by the too low snow cover and the associated snow-albedo feedback.791
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Figure 14. Global Land Surface Temperatures yearly means averaged over historical times.

Red: MODIS data. Green: ICON-ESM historical ensemble. Blue: MPI-ESM CMIP6 ensemble

mean of the first five ensemble members. Black: CRUTEM4 historical reconstruction. Note, as

CRUTEM4 includes only temperature changes without a determined absolute temperature the

absolute offset is chosen to fit the curve with the satellite data.
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Figure 15. Global Land Surface Temperatures monthly means. Vertical dashed lines indicate

the 15th of the respective month. The monthly means are averaged over the available time period

of the data plotted in Figure 14.
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The comparison with MPI-ESM (Figure 17) shows that the warm bias in Europe, cen-792

tral Asia and Amazonia, which is most pronounced in July, was much weaker or not ex-793

istent in MPI-ESM. ICON-ESM is colder than the MODIS data in the outer tropics (see794

zonal means). Regionally, the locations of the cold biases vary with the seasons but Aus-795

tralia, India and central eastern Antarctica (except for the coastal areas) are colder through-796

out the year. In Australia and central eastern Antarctica the cold bias was much weaker797

or not existent in MPI-ESM.798

Overall, the annual zonal mean bias pattern of ICON-ESM as compared to MODIS799

is quite symmetric with cool biased subtropics and warm biased extratropics. Due to the800

complex continental distribution a land origin is implausible. It seems more likely that801

this pattern is caused by the modeled global atmospheric circulation, i.e. the subtrop-802

ical cold bias corresponds to the descending air of the Hadley cell. Nevertheless, the albedo803

biases surely contribute to the LST biases of ICON-ESM, especially in central Asia and804

over glaciers.805

4.2.4 Ocean806

The simulated sea surface temperature (SST) obtained from the ensemble mean807

of the historical simulations and averaged over the period 1980 – 2014 is compared to808

the PHC 3.0 data set in Figure 18 a, c. Deviations from the observation-based data set809

are largely smaller than 1oC over the open oceans, but we diagnose prominent regions810

with large errors. The most pronounced cold anomalies are found in the subpolar North811

Atlantic. As in many other coarse-resolution and even eddy-permitting models (e.g., Kee-812

ley et al., 2012) this feature is related to an overly zonal North Atlantic Current (Drews813

et al., 2015) and likely also related to too weak meridional heat transport. For MPI-ESM,814

Gutjahr et al. (2019) have shown that moving to eddy-resolving resolution in the ocean815

improves the sub-polar cold bias in the North Atlantic. Corresponding errors in atmo-816

spheric sea-level pressure (Fig. 6) indicate that wind-driven circulation biases also con-817

tribute to the error. Large atmospheric SLP and circulation biases in the North Pacific818

are likely responsible for strong warm biases over the Kuroshio region.819

The cold-tongue bias in the equatorial Pacific is also a well known model feature,820

but the ICON-ESM performs less well than the MPI-ESM (Müller et al., 2018), even though821

MPI-ESM-LR features much lower resolution in the ocean compared to the ICON ocean822

used here. The bias is a surface expression of the generally too cold sub-surface waters823

in the tropical oceans (Fig. 19) so that the outcropping isotherms in the central and east-824

ern Pacific are too cold. In the coupled system, the equatorial cold bias is important for825

the variability characteristics of ENSO and the associated precipitation distribution (sec-826

tion 4.2.7). Warm biases are diagnosed in the upwelling regions at the western coasts827

of the continents. They are most pronounced at the African coast south of the Equa-828

tor. These features are common in coupled models and, in particular in the case of Africa,829

are related to insufficient resolution in the atmosphere where coastal orography and along-830

shore winds cannot be properly simulated (Milinski et al., 2016).831

The sea surface salinity (SSS) biases (Fig. 18b, d) in ICON-ESM are relatively small832

over most of the oceans, except the high northern latitudes and around the Antarctic833

continent. The Arctic fresh bias extends also into the sub-polar North Atlantic, where834

overly fresh water is transported with the gyre circulation into the interior ocean mak-835

ing the cold bias in Fig. 18c a fresh bias as well.836

The time-mean biases in zonal averages over the global ocean reflect misrepresen-837

tations of water mass pathways and processes like vertical and along-isopycnal mixing.838

The most prominent error feature in the ICON-ESM ocean is a generally too cold in-839

terior ocean with strong cold biases in the sub-tropical and tropical oceans (Fig. 19a)840

that are accompanied by overly fresh conditions (Fig. 19b). The reasons for the overly841

strong cooling are not fully understood, but comparison with an earlier version using the842
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Figure 16. Land surface temperatures in the ICON-ESM historical ensemble minus MODIS

data averaged from 2001 to 2014 for all months (top), all January months (middle) and all July

months (bottom). The curves on the right side show zonal means.
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Figure 17. Land surface temperatures in the ICON-ESM historical ensemble minus MPI-ESM

ensemble mean averaged from 2001 to 2014 for all months (top), all January months (middle)

and all July months (bottom). The curves on the right side show zonal means.
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Figure 18. Climatology (1980 -2014) of a) sea surface temperature (SST, in oC) and b) sea

surface salinity (SSS, in PSU) simulated in the ICON-ESM historical simulations together with

the model biases for c) SST and d) SSS with respect to the observation-based Polar Science

Center Hydrographic Climatology PHC (Steele et al., 2001). The global-mean biases and the

root-mean-square (rms) errors are also provided.

Pacanowski-Philander mixing scheme (PP, Pacanowski and Philander (1981)) showed843

that the PP scheme in combination with the wind-mixing parameterization used in MPIOM844

(Marsland et al., 2003) showed a better performance than the TKE scheme used here.845

Regarding the upper ocean, this is consistent with the findings of Gutjahr et al. (2019)846

for the MPI-ESM. Since the TKE scheme is more advanced and shall be further improved847

by including an energy-consistent scheme for the background mixing in the interior (see848

Gutjahr et al., 2021), we decided to keep the TKE scheme and attend to an improved849

tuning in forthcoming versions of ICON-ESM.850

The overly cold sub-thermocline waters lead to a too strong stratification near the851

thermocline in particular in the tropical oceans and are likely responsible for too strong852

ENSO variability (see section 4.2.7). The salinity biases resemble those in temperature853

in the tropical and southern sub-tropical region, but higher northern latitudes feature854

pronounced positive salinity in the sub-surface ocean. These underlay a too fresh sur-855

face layer and lead to a too strong halocline in the Arctic Ocean. The too fresh surface856

salinities could also be related to an underestimation of Fram Strait fresh water export.857

While a complete fresh water budget is beyond the scope of this paper, we diagnose a858

fresh water export through Fram Strait roughly 40% lower than the classical estimate859

by Aagaard and Carmack (1989).860

4.2.5 Large-scale ocean circulation861

The AMOC is an important part of the global overturning circulation and it is an862

important carrier of heat and fresh water in the Atlantic. The AMOC stream function863

(Fig. 20a) represents the zonally integrated view. Facing west, the North Atlantic Deep864

Water cell is oriented clockwise and includes the downward motion associated with deep865

water formation in the Labrador Sea and Nordic Seas, as well as the overflows across the866

Greenland-Scotland Ridge. The maximum strength of the AMOC exceeds 16 Sv at ap-867

proximately 40oN and we diagnose an export of about 14 Sv at 30oS. The lower, counter-868

clockwise oriented cell is associated with Antarctic Bottom Water (AABW) entering the869
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Figure 19. Zonal mean global ocean a) temperature (oC), and b) salinity (PSU) bias relative

to the PHC climatology.

Atlantic and upwelling in the basin. The strength of the AABW cell in the North At-870

lantic is roughly consistent with the observations from the RAPID project, but for the871

South Atlantic the simulations likely underestimate the AABW inflow. While the sim-872

ulated AABW maximum is slightly above 2 Sv, observation-based estimates point to val-873

ues of 6 Sv (Ganachaud & Wunsch, 2003) or 8 Sv (Talley et al., 2003). Although the over-874

turning stream function cannot be compared directly with observation, the RAPID project875

has provided measurements of the respective flow components at 26.5oN. The profile ob-876

tained over more than a decade of observations (Smeed et al., 2018) is shown together877

with the profiles from the piControl run and the historical simulation (Fig. 20b) and with878

their variability range estimated from the standard deviation of monthly fields. In the879

upper ocean, the model reproduces well the shape of the profile, the maximum near 1000 m880

depth and also the range of variability. The zero crossing is located above 4000 m in the881

model, but resides roughly 700 meters deeper in the RAPID data. Compared to vari-882

ous versions of MPI-ESM1.2 (Gutjahr et al., 2019) and other CMIP6 models (e.g. Held883

et al. (2019); Danabasoglu et al. (2020)), which show even shallower NADW cells, the884

ICON-ESM results are, however, closer to the observations.885

Table 4. Simulated and observed net volume transports (Sverdrups) across sections (positive

means northward).

Section ICON-ESM Obs. Reference

Bering Strait 0.7-0.8 0.7-1.1 Woodgate et al. (2006, 2012)

Fram Strait - (2.6-2.8) -1.75 ± 5.01 Fieg et al. (2010)

Denmark Strait - (4.7-4.9) -4.8 Hansen et al. (2008)

-3.4± 1.4 Jochumsen et al. (2012)

Iceland-Scotland 4.7-4.9 4.8 Hansen et al. (2008)

4.6± 0.25 Rossby and Flagg (2012)

Indonesian Throughflow 9.9-10.1 11.6 - 15.7 Gordon et al. (2010)

Drake Passage 108-112 134.0± 14.0 Nowlin Jr. and Klinck (1986)

173.3± 10.7 Donohue et al. (2016)
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Figure 20. AMOC in ICON-ESM: a) ensemble mean overturning stream function (in Sver-

drup, 1 Sv = 106m3s−1) in the Atlantic from the five historical simulations averaged over the

period 1980-2014; b) AMOC profile at 26.5N for the historical ensemble (blue) and the piControl

simulation (red) together with the observational estimate from RAPID (grey); shown are the

mean profiles (thick lines) and the range of variability derived from monthly standard deviations.

The transport through selected passages reflects the representation of the large-886

scale ocean circulation and can be evaluated in comparison with observational estimates.887

The total depth-integrated transports through the passages given in Table 4 are mostly888

simulated within the observational uncertainty found in the literature. The transport889

through Bering Strait is a key element of the Arctic fresh water budget and the histor-890

ical simulations are close to the estimates by Woodgate et al. (2006, 2012). The exchange891

of water masses between the Atlantic Ocean and the Nordic Seas is important for the892

overturning circulation. The simulated transports are consistent with the circulation scheme893

by Hansen et al. (2008). The Indonesian Throughflow is another important contributor894

to the warm-water route of the global conveyor. The simulated transports are slightly895

underestimated in comparison with the estimate by Gordon et al. (2010). The Drake Pas-896

sage transport is clearly underestimated in ICON-ESM, both in comparison with the tra-897

ditional estimate around 135 Sv (Cunningham et al., 2003; Nowlin Jr. & Klinck, 1986)898

and with the more recent compilation by Donohue et al. (2016). At this stage it is not899

clear if the mismatch between observed and simulated Drake Passage (and likely Antarc-900

tic Circumpolar Current) is related to biases in the wind stresses or the settings of the901

eddy and background diffusivity in the ocean circulation (P. R. Gent et al., 2001).902

The equatorial hydrography and the representation of the zonally-oriented current903

systems is important for variability features such as Tropical Instability Waves and for904

coupled ocean-atmosphere phenomena like the El-Nino Southern Oscillation (ENSO).905

Johnson et al. (2002) provided a compilation of temperature and salinity data and cur-906

rent measurements from the 1990s, which we compare with ICON-ESM results in Fig-907

ure 21. At 110oW, the placement of the eastward equatorial undercurrent (EUC) and908

the westward flows on its northern and southern flanks are reproduced well in the model909

and the depth of the core of the undercurrent lies roughly at the correct depth of 75m910

(Figure 21a, b). The model underestimates, however, the speeds of the eastward under-911

current and the westward currents flanking the undercurrent. The observed maximum912

speed of the EUC reads 0.9 ms−1 whereas the simulation produces a core speed of about913

0.6 ms−1. While the 26oC isotherm outcrops roughly at the correct position, the near914

surface waters are up to 4oC too cold. This results in much stronger stratification and915

a tighter thermocline. The strong subsurface cold bias is reflected in the pronounced cold916

bias in the Pacific and the thermocline properties might influence the El Nino South-917

ern Oscillation variability (section 4.2.7). The section along the Equator confirms that918

–31–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the position of the EUC’s core depth is well captured in the model, as are the amplitudes919

of the EUC and the westward flow near the surface. The weaker EUC seen in Fig. 21920

b is therefore more related to a biased longitudinal positioning of the maximum strength921

of the EUC.922

c)

b)
a)

d)

b)

Figure 21. Tropical Pacific zonal velocities (in ms−1, color shading) and temperatures (in oC,

contour lines) in the ICON-ESM simulation (left) compared to the observation-based estimate by

Johnson et al. (2002) (right) at 110o W (upper row) and along the Equator (lower row).

4.2.6 Sea ice923

Sea-ice thickness distributions and extents for late boreal winter and late boreal924

summer are presented in Figures 22 and 23 for both hemispheres. Arctic and Antarc-925

tic sea-ice edges are reproduced in good agreement with the European Organisation for926

the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facil-927

ities on Ocean and Sea Ice (OSI SAF) data set (EUMETSAT, 2015) for the respective928

winter seasons but summer ice cover is clearly underestimated. Observations indicate929

that large parts of the Arctic are ice-covered in summer, or at least show sea-ice concen-930

trations above 15%. In contrast the simulated concentrations exceed the 15% threshold931

only in a relatively small region between Fram Strait and the North Pole. Summer sea932

ice is also very thin, rarely reaching 1 m thickness. The winter sea-ice thickness distri-933

bution is too homogeneous and lacks the typical shape seen in observations (Schweiger934

et al., 2011) with maximum thicknesses of up to 5m at the northern coast of Greenland935

and north of the Canadian Archipelago. Deficiencies in the sea-ice thickness distribu-936

tions are likely related to biases in the atmospheric circulation as indicated by the sea-937

level pressure errors in Figure 6. Mismatches in the seasonal amplitude and the too thin938

summer ice need further attention. During the tuning process we tried different options939

for albedo parameters or the lead-closing scheme. These were either unsuccessful in im-940

proving summer sea ice or led to overly large sea-ice extent in winter (in particular in941

the Labrador Sea) with negative consequences for deep water formation and the strength942

of the AMOC. Comparing the coupled simulation with a stand-alone ocean run (albeit943

at somewhat higher horizontal resolution in the Arctic) reveals that the more realistic944

forcing derived from atmospheric reanalysis leads to a better representation of the sea-945
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ice distribution, while the forced ocean/sea-ice model also features too thin summer sea946

ice (c.f., Korn22)947
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Figure 22. Ensemble mean sea-ice thickness (shading) for a) March and b) September in the

northern hemisphere. Thick colored lines depict the 15% sea-ice extent boundary in the simula-

tions (orange) and from the OSI SAF (EUMETSAT, 2015) observational data set (red) averaged

over the period 1979 to 2005.

4.2.7 Variability simulated by ICON-ESM948

Of the many aspects of climate variability, we have chosen here the El-Nino-Southern949

Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the North Atlantic Os-950

cillation (NAO).951

ENSO is one of the most important modes of tropical variability with global tele-952

connections. To analyse characteristic features of ENSO and related quantities we ap-953

ply the Climate Variability Diagnostics Package (CVDP; Phillips et al., 2014). CVDP954

allows assessment of simulations in comparison with observation to be carried out in a955

consistent way. CVDP results presented here can easily be compared with collections956

of CMIP5 and CMIP6 model evaluations carried out by NCAR (www.cesm.ucar.edu/957

workinggroups/CVC/cvdp/data-repository.html). CVDP provides also links to ob-958

servational data sets for comparison (the Extended Reconstructed Sea Surface Temper-959

ature ERSST (Smith et al., 2008; Huang et al., 2017) and the Hadley Center Sea Sur-960

face Temperature HADSST (Rayner et al., 2003) for sea surface temperature and GPCP961

(Adler et al., 2018) for precipitation). We show here a subset of ENSO features that are962

based on SST time series from the Nino3.4 region. First, we present spectra (Fig. 24)963

obtained for boreal winter (DJF) conditions from the five-member historical ensemble964

(red lines) and from the piControl simulation (blue lines). The latter was split into three965

sections of 160 years. All time series show a peak near three years and similar variabil-966

ity in the control and historical runs. The spectral peaks are more pronounced than those967

from the CMIP6 version of the MPI-ESM-LR and the level of variability is considerably968

higher than the observed spectra. ERSST data as well for the entire period (ERSST5,969

1920-2014) as well as those from the last 35 years (ERSST5 1) show a much broader spec-970

trum and indicate less variability on the three-year scale. Regarding the level of spec-971

tral power, ICON-ESM is not an exception compared to other CMIP5 and CMIP6 mod-972

els according to the NCAR repository, but it belongs certainly not to the better perform-973

ing models. We hypothesize that the sharp spectral peak at three years may be related974

to the overly strong stratification in the thermocline, which tends to enhance the ther-975
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Figure 23. Ensemble mean sea ice thickness (shading) for a) March and b) September in the

southern hemisphere. Thick colored lines depict the 15% ice extent boundary in the simulations

(orange) and from the OSI SAF (EUMETSAT, 2015) observational data set (red) averaged over

the period 1979 to 2005.

mocline feedback (Dewitte et al., 2013). Spatial composites of boreal winter ENSO-related976

anomalies of temperature and precipitation are shown in Figures 25a and 25b, respec-977

tively. While the general patterns are reproduced well, there are deficiencies in repro-978

ducing the amplitude of the SST response at the Equator, likely caused by the overly979

strong thermocline. In particular, positive anomalies reach too far into the warm pool980

region, where they also shift the positive precipitation anomaly too far to the west (Fig.981

25b).982

In the tropical atmosphere, convectively coupled equatorial waves show some de-983

pendency on the coupling with the SSTs. Therefore, we expect changes with respect to984

the results of the atmosphere-only version ICON-A (Crueger et al., 2018). Actually, we985

find an improved signature of the MJO in ICON-ESM, while other waves show weaker986

power than in ICON-A. This can be assessed by the wave number-frequency spectra of987

daily precipitation (Kiladis et al., 2009). The GPCP precipitation spectra reveal the strongest988

power for the waves of the theoretical solutions of the shallow water theory indicated by989

the solid lines (Wheeler & Kiladis, 1999). In the symmetric spectra, the eastward prop-990

agating Kelvin waves for ICON-ESM show less power than the observations and also ICON-991

A (Fig. 16b, Crueger et al., 2018). On the other hand, the westward propagating Equa-992

torial Rossby waves (ER), often associated with tropical easterly wave disturbances and993

hurricanes, show a nearly realistic power. A strong improvement is found for the MJO,994

whose signature is found for wave numbers between 1 to 3 and periods between 30 and995

90 days. GPCP and ICON-ESM show a similar power for the MJO. This improvement996

for ICON-ESM compared to ICON-A confirms that the processes involved in the MJO997

are actually coupled to the ocean. The antisymmetric ICON-ESM spectrum only shows998

weak power in the coupled simulation. The eastward propagating inertio-gravity (EIG)999

or mixed Rossby gravity (MRG) waves are clearly underrepresented compared to GPCP.1000

These results however, are similar to the ICON-A results, indicating that a coupling be-1001

tween atmosphere and ocean does not play a considerable role for these waves.1002

Another frequently discussed variability pattern is associated with the NAO. Its1003

variations influence the North Atlantic region, water mass conversion in the Labrador1004

Sea, and the European climate. We’ve calculated the NAO as the leading Empirical Or-1005

thogonal Function of sea-level pressure over the area 20oN to 80oN and 90oW to 40oW1006
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following Hurrell (1995) (not shown). The NAO signature is less pronounced compared1007

to ICON-A (Crueger et al., 2018) and its dipole amplitude clearly underestimated com-1008

pared to observations. Its positive centre reveals a smaller extent and is displaced north-1009

eastward relative to what is observed. In addition, there is no pronounced negative cen-1010

tre. The variance explained by the NAO is smaller in ICON-ESM (43.5%) than in the1011

observations (49.5%). This too weak NAO in ICON-ESM may be related to the too weak1012

extratropical stationary wave pattern (see Fig. 6) in sea level pressure.1013
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Figure 24. El Nino - Southern Oscillation (ENSO) variability derived from Nino3.4 time

series from (red) the historical ensemble, (blue) the piControl simulation, and (orange) a MPI-

ESM-LR historical simulation (Mauritsen et al., 2019). The piControl experiment was subdivided

into three 160-year long sections. Estimates from the observational ERSST5 data set (Huang et

al., 2017) are included, where ERSST5 1 denotes a subset from the last 35 years).

4.3 Ocean biogeochemistry simulated by HAMOCC1014

The performance of ICON-ESM in simulating the ocean carbon cycle is evaluated1015

in the historical simulation. Only one ensemble member was available including HAMOCC.1016

We compare the climatological mean states of ocean pCO2, surface phosphate and to-1017

tal alkalinity to observations (Fig. 27). The observational data include pCO2 compiled1018

by Landschützer et al. (2015) for the time period of 1982-2015 and surface phosphate1019

and total alkalinity from the Global Ocean Data Analysis Project version 2 database (Olsen1020

et al., 2016) for 1972-2014. The modeled data are averaged over the time periods cor-1021

responding to their respective observations.1022

ICON-ESM captures the observed spatial pattern of phosphate concentration. Low1023

concentrations are detected in the subtropical Atlantic and Pacific and Indian Ocean,1024

while the highest concentrations are detected in the North Pacific and Southern Ocean.1025

The surface phosphate is underestimated in the Southern Ocean and eastern equatorial1026

Pacific and overestimated along the southern Chilean coast and in most low-concentration1027

regions such as the subtropical North Atlantic and western Pacific. This pattern of phos-1028

phate bias is similar to the simulations of MPI-ESM1.2-HR (Müller et al., 2018).1029
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Figure 25. Spatial composites of ENSO (Nino3.4) events for a), c) SST (in oC), and b), d)

precipitation (in mm day−1) from a), b) the historical ensemble mean, c) the HadSST, and d) the

GPCP precipitation data sets.

The spatial pattern of the surface total alkalinity also matches the observations,1030

with the highest values in the subtropical Atlantic and Pacific. The bias in surface al-1031

kalinity is relatively small in most regions and highly correlated with the SSS bias. A1032

high negative bias in the Arctic extending into the sub-polar North Atlantic is appar-1033

ent, attributed to the fresh SSS bias.1034

Regarding the ocean pCO2, the overall regional pattern is well reproduced, with1035

maximum values detected in the tropical Pacific and minimum values in the extra-tropical1036

regions; but differences are also detected. In the equatorial Pacific, high pCO2 biases are1037

detected, with negative biases in the eastern equatorial Pacific and positive bias in the1038

western equatorial Pacific. In general, ICON-ESM simulates higher pCO2 over most of1039

the oceans compared to observations. This is mainly attributed to positive SST biases1040

in most regions or negative alkalinity biases in the areas with fresh SSS bias. In addi-1041

tion, ICON-ESM simulates a lower net global ocean carbon sink compared to observa-1042

tions (not shown). ICON-ESM simulates a decadal mean net ocean carbon sink of 1.611043

GtC/yr for 2000-2009, which is on the lowest range of 2.1±0.5 GtC/yr reported by the1044

Global Carbon Budget (Friedlingstein et al., 2020).1045

4.4 Idealized CO2 increase simulations and climate sensitivity1046

Two measures of the model’s response to changes in radiative forcing are computed1047

using the idealized CO2-increase experiments in CMIP6 DECK: Transient Climate Re-1048

sponse (TCR) and Equilibrium Climate Sensitivity (ECS). TCR is computed from the1049

experiment where CO2 increases by 1 percent per year (1pctCO2). The TCR is estimated1050

as the GSAT increase around the time of CO2-doubling, which happens after 70 years1051

of simulation. To minimize effects of internal variability we take a 20-year average be-1052

tween years 60 and 79 as suggested by Meehl et al. (2020) and we arrive at a TCR of1053

2.1K. This value is slightly higher than the 1.8 K derived for the CMIP6 version of MPI-1054

ESM-LR and in the middle of the range found in the CMIP6 multi-model assessment1055

by Meehl et al. (2020). Differences in TCR are often related to variations in the ocean1056

heat content changes under global warming, which could be different in MPIOM and ICON-1057

O due to different formulations of vertical mixing and the GM parameters (Semmler et1058

al., 2021). ECS is estimated using the DECK “abrupt4xCO2” experiment applying the1059
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    a)   GPCP                                                                                                 b)  ICON-ESM

c) GPCP                                                                                                d) ICON-ESM
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Figure 26. Wave number-frequency power spectra of the symmetric (upper) and antisymmet-

ric (lower) component of precipitation, summed from 13oN to 13oS, plotted as ratios between raw

power and the power of smoothed red noise background spectra from GPCP (a, c) and ICON-

ESM V1.0 (b, d) and Positive/negative wave numbers represent eastward/westward propagating

waves. Horizontal dashed lines represent periods of 3, 6, and 30 days. Solid lines represent the

solutions of the shallow-water equations: for the symmetric components Kelvin and equatorial

Rossby (ER) waves and for the anti-symmetric components inertio gravity waves (EIG) and

mixed Rossby gravity (MRG) waves. In (a) and (b) the Madden-Julian Oscillation (MJO) signal

appears with strong power on the eastward propagating part with wave numbers 1–3 and peri-

ods longer than 30 days (Kiladis et al., 2009). Analysis period is 1997–2014, as in Crueger et al.

(2018).

method of Gregory et al. (2004), which has also been used by Meehl et al. (2020). We1060

perform a linear regression between the GSAT and the net downward radiative flux at1061

the top-of-atmosphere over 150 years of simulation. ECS is then estimated from an ex-1062

trapolation of the regression line to zero net heat imbalance (Fig. 28b). This procedure1063

results in an ECS of 3.7 K, which can be compared with the value of 2.9 in MPI-ESM-1064

LR. MPI-ESM and ICON-ESM are quite similar in their estimate of the effective forc-1065

ing (estimated as the crossing of the regression lines with the y-axis in Fig. 28b), but1066

the slopes of the regression lines are considerably different. We note that the change of1067

temperature over time differs for the later part of the experiments. Redoing the ECS es-1068

timation excluding the first 20 years in the regression, we find a much higher value of1069

4.3 K in ICON, whereas there is only a relatively small change to 3.1 K in MPI-ESM.1070

This difference is likely related to different evolution of local or regional feedbacks (Armour1071

et al., 2013). However, for the ICON-ESM no effort was made to tune the climate sen-1072

sitivity in order to better match the historical record as it was done for MPI-ESM1.2 (Mauritsen1073

& Roeckner, 2020). ICON-ESM’s ECS values are higher than those of its predecessors,1074
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Figure 27. Climatological mean state of ocean biogeochemical variables from ICON-ESM

(left column) and ICON-ESM minus observation (right column). The shown variables are ocean

surface pCO2 (top row), surface phosphate concentration (middle row), and total alkalinity (bot-

tom row). The observed pCO2 data are from Landschützer et al. (2015) and phosphate and total

alkalinity data are from the Global Ocean Data Analysis Project version 2 database

but are considerably lower than the estimates from several new CMIP6 models (Meehl1075

et al., 2020) (often exceeding 5 K). ICON-ESM’s ECS lies well in the 5-95% range of 2.31076

to 4.7 K estimated from ”multiple lines of evidence” by Sherwood et al. (2020).1077

5 Discussion1078

During the tuning phase we have explored different parameter settings and, in the1079

case of ocean vertical mixing, the choice between two different parameterization schemes1080

(TKE, PP, see section 2.2). We started the coupled experiments using parameter set-1081

tings inherited from the stand-alone ocean and atmosphere simulations. While these gave1082

good or at least acceptable results in ICON-A (Crueger et al., 2018) and ICON-O (Korn22),1083

solutions meeting our tuning goals (see Section 3) were much harder to obtain.1084

Problematic biases increased or became more apparent as feedbacks between the1085

coupled components evolved. For example, the ICON-A AMIP simulation described in1086

Crueger et al. (2018) exhibits relatively good skill scores, but features strong positive sea-1087

level pressure biases in high northern latitudes (their Figure 3). In the coupled simula-1088

tion, this error is accompanied by too weak winds over the subpolar North Atlantic that1089

could lead to biases in ocean circulation, water mass transformation and, eventually, to1090

a strong reduction or collapse of the AMOC. Changing parameter settings in the SSO1091
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a) b)
Figure 28. Estimating the Transient Climate Response (TCR) and Equilibrium Climate Sen-

sitivity (ECS) from idealized DECK experiments. a) Evolution of global surface air temperature

in the 1pctCO2 (blue) and abrupt4XCO2 (red) together with the piControl experiment (black).

Vertical lines indicate the period for the TCR calculation, b) regression analyses to estimate ECS

in ICON-ESM (dark red) and in MPI-ESM1.2. The small dots on the horizontal axis indicate

twice the ECS based on a regression using the first 150 years following Gregory et al. (2004). The

bigger dots show the respective intersection of the regression based on years 20 to 200.

parameterization (see Table 1) turned out to be an effective way to reduce the SLP bias.1092

However, for instance, small values of gkdrag reducing SLP biases also led to stronger1093

errors in upper tropospheric and stratospheric zonal wind strength and distribution. There-1094

fore, the results presented here are the results of compromises. Avoiding detrimental ef-1095

fects in some key quantities, such as the collapse of the AMOC or a freeze-over of the1096

Labrador Sea in the ocean, required sometimes parameter settings in the atmosphere that1097

turned out to be sub-optimal in terms of atmospheric performance skill scores (Figure1098

5).1099

In general, we found that tuning choices had often complex and unexpected effects1100

in the coupled system. Partly, these were hard to grasp as they require relatively long1101

adjustment times. Experience gained in uncoupled simulations can often not be trans-1102

ferred to the coupled system, and feedbacks working in the coupled system may mod-1103

ify or overrule the effects. Moreover, obtaining a tuning target is often dependent on sev-1104

eral parameter settings and these may influence each other. We demonstrate this with1105

the example of the AMOC strength taken from several ICON-ESM experiments (at least1106

100-year long) with different parameter settings. ICON-O stand-alone experiments, where1107

only the coefficients for isoneutral diffusion K and the thickness diffusion according to1108

the GM parameterization κ have been changed, indicated that larger K and κ lead to1109

weaker overall AMOC strength, likely due to a stronger flattening of isopycnals. This1110

behavior has been analyzed by Marshall et al. (2017) in stand-alone ocean model con-1111

figurations. However, an inspection of the multitude of coupled experiments leads us to1112

conclude that it is possible to arrive at any AMOC state even for K and κ set to zero.1113

We found fewer solutions with weak overturning at high K and κ, but this may be due1114

to the smaller number of experiments. It is also difficult to relate the AMOC strength1115

uniquely to other parameters. For example, the experiments run with K/κ equal 400 ms−2
1116

in Figure 29 come with various settings of the wave drag parameter gkdrag and an in-1117

spection of this column in isolation would lead us to conclude that lower wave drag pa-1118

rameters produce higher ocean overturning, possibly due to the effects on wind stress,1119
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and subsequently ocean and sea-ice circulation. As has been demonstrated by Putrasahan1120

et al. (2019) and K. Lohmann et al. (2021) for MPI-ESM, wind stress changes influence1121

sea-ice exports from the Arctic and cross-basin exchanges of salinity in the sub-polar North1122

Atlantic resulting in modifications of deep-water formation and AMOC strength. But1123

again, looking at all experiments using a moderately low gkdrag of 0.02 we find an AMOC1124

range between 7.6 and almost 25 Sv. We conclude that a more thorough multi-cause/multi-1125

parameter investigation on the sensitivity of the AMOC is required for the coupled ICON-1126

ESM.1127
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Figure 29. Scatterplot relating the thickness diffusion parameter according to the GM param-

eterization κ with the strength of the AMOC at 26oN. The black circle indicates the standard

experiment (piControl) and colors refer to different choices of the gravity wave drag parameter

gkdrag. Shown are experiments with a runtime of at least 100 years.

It is obvious that another round of tuning and an even more extensive set of sen-1128

sitivity experiments could have improved some of the shortcomings mentioned above.1129

We decided, however, to finalize “version 1” at this stage to set a milestone in the model1130

development. Moreover, model development activities in the component models have con-1131

tinued in parallel and we prefer to postpone a second round of major tuning efforts un-1132

til some innovations can be included in the standard model configurations. We mention1133

here two developments in ICON-O: the z* vertical coordinate and a newly developed dy-1134

namical sea-ice model. z* is designated to replace “z-level” as standard coordinate and1135

comes together with an improved representation of the bottom topography in the form1136

of “partial cells”, which was already implemented in MPIOM and its predecessors. The1137

implementation process includes a slight reorganization of level distribution in the up-1138

per ocean and we plan to achieve a better representation of the mixed layer processes1139

and mixing by re-assessing the TKE parameterization. Mehlmann and Korn (2021) have1140

developed a novel sea-ice dynamics formulation, which is based on an analogue of the1141

Arakawa-CD grid. The CD-grid placement has appealing resolving properties at high1142

spatial resolution compared to traditionally used discretizations (Mehlmann et al., 2021).1143

Furthermore, the development allows a straightforward coupling to the Arakawa C-grid-1144

like discretization used in ICON-O. As the new sea ice dynamics are realized on the same1145

grid as ICON-O the coupling does not require rotations (c.f. section 2.3) and promises1146

a better representation of the bathymetry. While the deficits in the simulated sea-ice cli-1147
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matology documented here may be related to problems in sea-ice thermodynamics, we1148

expect improvement from the new dynamics, e.g., for the representation of narrow pas-1149

sages and the related ice transports. By affecting fresh-water exchanges, the latter could1150

lead to improvements in water mass properties and air-sea exchanges for example in the1151

Labrador Sea.1152

Ongoing development work will further explore ICON-specific opportunities like1153

grid refinement in ICON-O (Logemann et al., 2021) and nesting in the atmosphere (Jungandreas1154

et al., 2021). The excellent scaling capabilities of ICON have been documented in the1155

DYAMOND project with ICON-A setups between 80 and 2.5 km (Stevens et al., 2019;1156

Hohenegger et al., 2020) and are further explored in very high resolution coupled set-1157

ups with grid spacing of a few kilometers in the DYAMOND-WINTER project (https://1158

www.esiwace.eu/services/dyamond/winter).1159

While the ICON-A version described herein uses the physical parameterization pack-1160

age inherited from ECHAM6 (Stevens et al., 2013; Giorgetta et al., 2018), which was de-1161

signed for “climate” applications at grid sizes from 50 to 350 km, higher-resolution ICON1162

application will require other choices. At km-scale, some parameterizations may become1163

obsolete or will be better represented by schemes from the numerical weather-prediction1164

version of ICON (Zängl et al., 2015). Therefore, a longer-term goal of the ICON com-1165

munity is the development of a system for “seamless” predictions from weather to cli-1166

mate scales.1167

6 Summary and conclusions1168

In this paper, we have documented ICON-ESM (V1.0), the first coupled model that1169

is based on the ICON framework (Zängl et al., 2015) with its icosahedral grid concept.1170

We have presented the first simulations with the coupled ICON-ESM confronting it with1171

the task to deliver reasonable results in a well-defined experimental framework, the CMIP61172

DECK simulations, and we have published the results on the Earth System Grid Fed-1173

eration (ESGF) repository (Lorenz et al., 2021). Coupling of the newly developed com-1174

ponent models and the tuning of the coupled model turned out to be more challenging1175

than expected. Tuning choices that revealed robust results in stand-alone simulations1176

needed adjustment or reconfiguration in the presence of coupled feedbacks. The perfor-1177

mance of the ICON-ESM reported in this paper can be summarized as follows:1178

1. We were able to fulfil the primary tuning goals: The 500-year long piControl sim-1179

ulation exhibits little drift in key quantities like GSAT, radiation, sea-ice cover, and the1180

AMOC. TOA radiation is well balanced with little remaining drift. GSAT and other global1181

quantities are close to observational estimates for the pre-industrial climate.1182

2. A set of five historical simulations reproduces the observed global surface tem-1183

perature evolution largely in agreement with observational data sets, albeit with some-1184

what too strong warming in the second half of the 20th century.1185

3. ICON-ESM’s climate sensitivities (TCR, ECS) are slightly higher than the cor-1186

responding values from MPI-ESM, but well in the range of the CMIP6 multi-model en-1187

semble (Meehl et al., 2020), and the recent estimate based on multiple lines of evidence1188

by Sherwood et al. (2020).1189

4. The present-day climate simulated for the last decades reproduces largely the1190

climatology from observations and reanalyses, but biases are often larger than in ICON-1191

ESM’s predecessor model MPI-ESM1.2 and other CMIP6 models.1192

5. The tuning of the ocean carbon cycle component represented by the model HAMOCC1193

has been performed resulting in a stable piControl state with adequately represented dis-1194
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tributions of the key ocean biogeochemical variables, like phosphate, total alkalinity and1195

pCO2.1196

6. Ocean carbon cycle in the historical simulation is overall in good agreement with1197

observations regarding regional patterns and absolute values. Mismatches between mod-1198

eled and observed patterns are to a first order attributable to the biases in SST and SSS.1199

Overall, this shows a high sensitivity of ocean biogeochemical parameters to the under-1200

lying physical state of the ocean.1201

Problematic issues identified in the analyses are: In the atmosphere, the represen-1202

tation of both low-level and high-level clouds showed considerable deficiencies. Bias pat-1203

terns, which were already identified in stand-alone atmosphere simulations became more1204

pronounced in the coupled system. Counter-tuning that could have improved cloud dis-1205

tributions had negative side effects on other parts of the climate system. Skill scores based1206

on wind and temperature data are worse than in MPI-ESM. In particular zonal wind bi-1207

ases remain and there is some indication that the parameterization of sub-grid scale oro-1208

graphic effects requires further attention.1209

Overall, the rather zonal pattern of the land surface temperature biases hints to1210

the global atmospheric circulation as their major cause. Nevertheless, the winter land1211

surface temperatures show regional biases that may be traced to a misrepresentation of1212

surface albedo values. The biases over Antarctica and Greenland partly reflect albedo1213

deviations over glaciers. Errors in land temperatures over Eurasia are substantially caused1214

by a too low snow cover and the associated snow-albedo feedback. The biases could be1215

partly improved by changes in the near-infrared and visible albedo settings in JSBACH1216

4, but others are complex and related to deficits in snow cover or soil and canopy albedo1217

biases.1218

In the ocean, SST and SSS climatologies show bias patterns and magnitudes com-1219

parable to other coarse-resolution CMIP5 or CMIP6 models, whereas the relatively large1220

sub-surface biases are of concern in particular in the tropical oceans. Here, a re-tuning1221

of the vertical mixing scheme might alleviate misrepresentation of wind-induced mixing.1222

From improvements in the upper-ocean stratification we expect also positive effects on1223

ENSO variability and processes in the tropical oceans. Northern hemisphere sea ice con-1224

centrations is somewhat too high in winter with too much ice cover, for example in the1225

Labrador Sea. On the other hand, the seasonal cycle is too strong leading to too thin1226

sea-ice in summer with only half of the Arctic basis being ice-covered in summer. The1227

seasonal cycle is also too strong in the southern hemisphere.1228

ENSO variability in ICON-ESM is less close to observations than MPI-ESM’s, but1229

similar to many other CMIP5 and CMIP6 models. The spectra derived from Nino3.4 time-1230

series of the historical simulations show a too narrow peak at about three years and an1231

overly high level of variance. The spatial patterns associated to ENSO variability agree1232

with the observed ones, but there are too strong signals in the warm pool and in the In-1233

dian Ocean.1234

We emphasize that the present configuration is the first milestone in establishing1235

ICON-ESM as a highly flexible modelling system. ICON-ESM V1 serves as a basis for1236

further developments that will take advantage of ICON-specific properties such as spa-1237

tially varying resolution, and coupled configurations at resolutions of a few kilometers1238

in atmosphere, land, and ocean.1239

7 Data Availability Statement1240

The data from the ICON-ESM V1.0 DECK simulations are available at the CMIP61241

repository of the Earth System Grid Federation (Lorenz et al., 2021) and can be accessed1242

at http://esgf-data.dkrz.de/search/cmip6-dkrz/. The model code of ICON is avail-1243
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able to individuals under licenses (https://mpimet.mpg.de/en/science/modeling-with1244

-icon/code-availability). By downloading the ICON source code, the user accepts1245

the licence agreement. The source code of the ICON-ESM-V1.0 used in this study, pri-1246

mary data, and scripts used in the analyses and for producing the figures can be obtained1247

from the WDCC Long Term Archive (http://cera-www.dkrz.de/WDCC/ui/Compact.jsp1248

?acronym=RUBY-0 ICON- ESM V1.0 Model).1249
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