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Abstract

Targeted high-resolution simulations driven by a general circulation model (GCM) can be used to calibrate GCM parameter-

izations of processes that are globally unresolvable but can be resolved in limited-area simulations. This raises the question

of where to place high-resolution simulations to be maximally informative about the uncertain parameterizations in the global

model. Here we construct an ensemble-based parallel algorithm to locate regions that maximize the uncertainty reduction,

or information gain, in the uncertainty quantification of GCM parameters with regional data. The algorithm is based on a

Bayesian framework that exploits a quantified posterior distribution on GCM parameters as a measure of uncertainty. The

algorithm is embedded in the recently developed calibrate-emulate-sample (CES) framework, which performs efficient model

calibration and uncertainty quantification with only O(10ˆ2) forward model evaluations, compared with O(10ˆ5) forward model

evaluations typically needed for traditional approaches to Bayesian calibration. We demonstrate the algorithm with an idealized

GCM, with which we generate surrogates of high-resolution data. In this setting, we calibrate parameters and quantify uncer-

tainties in a quasi-equilibrium convection scheme. We consider (i) localization in space for a statistically stationary problem,

and (ii) localization in space and time for a seasonally varying problem. In these proof-of-concept applications, the calculated

information gain reflects the reduction in parametric uncertainty obtained from Bayesian inference when harnessing a targeted

sample of data. The largest information gain results from regions near the intertropical convergence zone (ITCZ) and indeed

the algorithm automatically targets these regions for data collection.
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Abstract13

Targeted high-resolution simulations driven by a general circulation model (GCM) can14

be used to calibrate GCM parameterizations of processes that are globally unresolvable15

but can be resolved in limited-area simulations. This raises the question of where to place16

high-resolution simulations to be maximally informative about the uncertain parame-17

terizations in the global model. Here we construct an ensemble-based parallel algorithm18

to locate regions that maximize the uncertainty reduction, or information gain, in the19

uncertainty quantification of GCM parameters with regional data. The algorithm is based20

on a Bayesian framework that exploits a quantified posterior distribution on GCM pa-21

rameters as a measure of uncertainty. The algorithm is embedded in the recently devel-22

oped calibrate-emulate-sample (CES) framework, which performs efficient model cali-23

bration and uncertainty quantification with only O(102) forward model evaluations, com-24

pared with O(105) forward model evaluations typically needed for traditional approaches25

to Bayesian calibration. We demonstrate the algorithm with an idealized GCM, with which26

we generate surrogates of high-resolution data. In this setting, we calibrate parameters27

and quantify uncertainties in a quasi-equilibrium convection scheme. We consider (i) lo-28

calization in space for a statistically stationary problem, and (ii) localization in space29

and time for a seasonally varying problem. In these proof-of-concept applications, the30

calculated information gain reflects the reduction in parametric uncertainty obtained from31

Bayesian inference when harnessing a targeted sample of data. The largest information32

gain results from regions near the intertropical convergence zone (ITCZ) and indeed the33

algorithm automatically targets these regions for data collection.34

Plain Language Summary35

Climate models depend on dynamics across many spatial and temporal scales. It36

is infeasible to resolve all of these scales. Instead, the physics at the smallest scales is37

represented by parameterization schemes that link what is unresolvable to variables re-38

solved on the grid scale. A dominant source of uncertainty in climate predictions comes39

from uncertainty in calibrating empirical parameters in such parameterization schemes,40

and this uncertainty is generally not quantified. Targeted high-resolution simulations of41

small-scale processes in limited areas are one means by which uncertainties in param-42

eterizations can be reduced and quantified. Here we demonstrate an algorithm that op-43

timizes placement of high-resolution simulations to maximize the information they pro-44

vide about uncertain parameters in parameterization schemes. Because the sensitivity45

of simulated climate statistics, such as precipitation rates, to parameterizations varies46

in space and time, how informative high-resolution simulations are about the parame-47

terizations also varies in space and time. In proof-of-concept simulations with an ide-48

alized global atmosphere model, we show that our novel algorithm successfully identi-49

fies the informative regions and times.50

1 Introduction51

Parameterizations of subgrid-scale processes, such as the turbulence and convec-52

tion controlling clouds, are the principal cause of physical uncertainties in climate pre-53

dictions (Cess et al., 1989, 1990; Bony & Dufresne, 2005; Stephens, 2005; Bony et al.,54

2006; Vial et al., 2013; Webb et al., 2013; Brient & Schneider, 2016). While these pro-55

cesses are too small in scale to become globally resolvable in climate models for the fore-56

seeable future, many of them can be resolved in limited-area simulations (Schneider, Teix-57

eira, et al., 2017). For example, the turbulence and convection (though currently not the58

microphysics) controlling clouds can be resolved in large-eddy simulations (LES) over59

limited areas (Siebesma et al., 2003; Stevens et al., 2005; Khairoutdinov et al., 2009; Math-60

eou & Chung, 2014; Schalkwijk et al., 2015; Pressel et al., 2015, 2017). High-resolution61

simulations have been used to calibrate climate model parameterizations at selected sites,62
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primarily in low latitudes (Liu et al., 2001; Siebesma et al., 2003; Stevens et al., 2005;63

Siebesma et al., 2007; Hohenegger & Bretherton, 2011; M. Zhang et al., 2013; de Rooy64

et al., 2013; Romps, 2016; Tan et al., 2018; Smalley et al., 2019; Couvreux et al., 2021;65

Hourdin et al., 2021). Similarly, limited-area high-resolution simulations (e.g., Wang et66

al., 1996; Fox-Kemper & Menemenlis, 2013) have been used to calibrate subgrid-scale67

parameterizations of upper-ocean turbulence (Souza et al., 2020; Li & Fox-Kemper, 2017;68

Van Roekel et al., 2018; Reichl et al., 2016; Li et al., 2019; Campin et al., 2011; Reichl69

& Hallberg, 2018).70

However, high-resolution simulations can be used more systematically, by driving71

them with a large-scale GCM and using the mismatch between statistics of the high-resolution72

simulations and GCM output to calibrate parameterizations (Schneider, Lan, et al., 2017).73

For example, Shen et al. (2020, 2021) drive atmospheric LES in domains O(10 km) in74

the horizontal with output from climate models, to produce simulated local data with75

which climate model parameterizations can be calibrated. In principle, LES can be em-76

bedded into coarse-resolution GCMs to sample thousands of sites across the globe. Pa-77

rameterizations in the GCM can then learn automatically from the high-resolution sim-78

ulations, and the high-resolution simulations can even be spun off on-the-fly during the79

integration of a coarse-resolution model (Schneider, Lan, et al., 2017). This allows sys-80

tematic calibration and uncertainty quantification of parameterizations.81

Pursuing such automatic calibration and uncertainty quantification of parameter-82

izations raises the question of where to embed the high-resolution simulations so that83

they are maximally informative about the parameterizations. This is a question of ex-84

perimental design (Chaloner & Verdinelli, 1995), akin to the question of how to choose85

sites for supplementary weather observations to optimally improve weather forecasts (Lorenz86

& Emanuel, 1998; Bishop & Toth, 1999; Emanuel et al., 1995). When climate statistics87

are non-stationary, there is a related question of what time periods should the expen-88

sive high-resolution simulation be integrated over.89

Here we present a mathematical framework for addressing both the experimental90

design question of where, and when, to embed high-resolution simulations in a coarser91

model. We adopt a Bayesian inverse problem setting (see, e.g., Kaipio and Somersalo92

(2006), Tarantola (2005), Stuart (2010), and Dashti and Stuart (2013) for reviews). In93

this setting, parameters (or parametric or nonparametric functions) in parameterizations94

are treated as having probability distributions. Data (e.g., from high-resolution simu-95

lations) are used to reduce the uncertainty reflected by these distributions, balancing con-96

tributions of the data with that of prior knowledge about parameters (e.g., physical con-97

straints). This setting is well suited for our needs, as it provides the complete joint pos-98

terior distribution for parameters, including the correlation structure of uncertainties among99

parameters. Distribution information is beneficial, for example, because it enables model-100

based predictions of rare events with quantified uncertainties (Dunbar et al., 2021). Anal-101

ysis of the posterior distribution also may focus scientific development (e.g., improve-102

ment of parameterization schemes, Souza et al. (2020)) on areas where uncertainties can103

most effectively be minimized. In this paper, we use the posterior distribution to deter-104

mine regions and times where local data (e.g., from high-resolution simulations) are max-105

imally effective at reducing parameter uncertainties.106

Construction of the full posterior distribution of the parameters is well known to107

be a computationally intensive task, requiring O(105) evaluations of the model in which108

the parameters appear with commonly used Markov chain Monte Carlo (MCMC) meth-109

ods (see Geyer (2011) for an overview). The recent development of the calibrate-emulate-110

sample (CES) framework accelerates Bayesian learning by a factor of 103 (Cleary et al.,111

2021a; Dunbar et al., 2021). The calibration stage uses a variant of ensemble Kalman112

inversion (Iglesias et al., 2013) building on (Chen & Oliver, 2012; Emerick & Reynolds,113

2013; Reich, 2011) to obtain a collection of samples of the model about an optimal set114

of parameters. The emulation stage features the training of a Gaussian process (Williams115
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& Rasmussen, 2006; Kennedy & O’Hagan, 2000, 2001a) to emulate the model using the116

samples from the calibration stage. The sample stage then samples a posterior distri-117

bution with MCMC methods, replacing the computationally expensive model with the118

cheap emulator. We build on the CES framework and show how Bayesian experimen-119

tal design approaches can be incorporated within CES at negligible additional compu-120

tational expense. In particular, we do not require additional forward model evaluations121

over what is already required in CES to perform uncertainty quantification.122

To target high-resolution simulations, we use tools from experimental design, which123

provides methods for assessing the efficacy of learning about parameters from different124

designs (e.g., data from different locations or time periods) (Ryan et al., 2016). We de-125

termine the optimal designs where the model is most sensitive to the parameters by us-126

ing the posterior distribution for the parameters as a utility to be optimized. We choose127

a utility function that assigns a score of the information entropy loss between posterior128

and prior for each design (Chaloner & Verdinelli, 1995; Alexanderian et al., 2014; Alexan-129

derian & Saibaba, 2018); it is scale invariant and scalable to problems with high-dimensional130

input parameter spaces. The region with maximal utility determines where to acquire131

high-resolution data, and hence where to divert scarce computational resources for max-132

imal effect.133

We demonstrate the effectiveness of this targeted learning approach through sim-134

ulations with an idealized moist GCM, with which we generate surrogates for high-resolution135

data and in which we are calibrating parameters in a quasi-equilibrium convection scheme136

(D. M. Frierson, 2007; O’Gorman & Schneider, 2008). We showcase our algorithms by137

showing that the recovered posterior distributions are reflective of the utility of infor-138

mation at different points and different times along the annual cycle.139

In Section 2, we define the inverse problems for parameter calibration and the op-140

timal design algorithm; details of efficient uncertainty quantification (CES) are left to141

Appendix A. In Section 3, we briefly describe the GCM used for demonstrating the al-142

gorithm. Results of the optimal design algorithm are described in section 4, first in a set-143

ting in which the GCM statistics are statistically stationary, then with seasonally vary-144

ing GCM statistics. We end with discussion and future directions in Section 5.145

2 Methodology146

Our goal is to target data acquisition to regions and times at which uncertainty147

reduction (information gain) is maximized. We do so by first learning the temporally and148

spatially varying sensitivities of the model statistics with respect to model parameters.149

We then use this knowledge to target data acquisition to regions and times at which the150

model is maximally sensitive to new data. We work in a framework similar to Dunbar151

et al. (2021), which focuses on accelerated uncertainty quantification within a GCM.152

Our point of departure in Section 2.1 is to specify the inverse problem for uncer-153

tainty quantification of parameters from data at a specific design. Related to applica-154

tion, this can be seen as the stage of learning parameter uncertainties from high-resolution155

simulation data at a certain region or time. Treating such sdata as computationally ex-156

pensive to obtain, in Section 2.2 we investigate how to efficiently choose which region157

or time to learn from. To do this we formulate a set of related inverse problems, whose158

solutions allow us to assess the quality of different choices. In Section 2.3 we connect these159

two stages to form the targeted uncertainty quantification algorithm .160

2.1 Inverse problem161

We study calibration of parameters in a GCM by formulating parameter learning162

as a Bayesian inverse problem. Define GT (θ;v(0)) to be the forward map sending the pa-163
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rameters θ to time-aggregated simulated climate statistics (averaged over a window of164

length T > 0) from an initial state v(0). We assume that the aggregation GT (θ, ·) is sta-165

tistically stationary, and samples of such aggregated climate statistics are referred to as166

data throughout. We consider a situation in which data are only locally available, at a167

particular spatial or spatio-temporal location, indexed by k, which we refer to as the de-168

sign point. This is relevant to our application of targeted high-resolution simulations with169

limited spatial and temporal extent. We make use of a restriction operation Wk to a point170

k, and define the local forward map, ST (θ; k,v(0)) = WkGT (θ;v(0)).171

For any given k, assume we have local data zk available. In the application of in-
terest, zk is produced by a high-resolution simulation run. We can construct the forward
map ST (·; k, ·), to form an inverse problem for the GCM learning from the local data as

zk = ST (θ; k,v(0)) + δk, (1)

where δk is a stochastic term to capture discrepancies between model ST (·; k, ·) and data
zk, (e.g., Kennedy & O’Hagan, 2001a). The initial condition v(0) appears in this formu-
lation but is treated a nuisance variable. This view is justified in the context of learn-
ing about atmospheric parameterizations for climate models, where lower frequency in-
formation is informative (Schneider, Lan, et al., 2017). We use time-averaged data to
filter out the high frequency information, and take T is larger than the dynamical sys-
tem’s Lyapunov timescale (for the atmosphere, this equates to T & 15 days (F. Zhang
et al., 2019)). To deal with the initial condition, one can view finite-time averaging as
a perturbation of an infinite-time average by means of a central limit theorem. Follow-
ing (Dunbar et al., 2021), we write ST (θ; k,v(0)) ≈ S∞(θ; k)+σk, where σk ∼ N(0,Σ(θ))
is normal noise, independent from δk, with mean zero and with a covariance matrix Σ(θ)
reflecting chaotic internal variability. The inverse problem then becomes

zk = S∞(θ; k) + δk + σk, σ ∼ N(0,WkΣ(θ)WT
k ). (2)

This is now a desirable form of the inverse problem since the dependence on the initial172

condition has been removed.173

Solving (2) involves finding the posterior distribution of θ given the data zk, de-174

noted (θ | zk). Although we cannot evaluate S∞ directly, we use the emulate phase of175

the calibrate-emulate-sample (CES) algorithm (Cleary et al., 2021b) to construct a sur-176

rogate of S∞ from carefully chosen evaluations of ST . This has been shown to be effi-177

cient with respect to the required number of evaluations of ST (Cleary et al., 2021b; Dun-178

bar et al., 2021). Details of this algorithm are provided in Appendix A.179

2.2 Experimental design180

We imagine a situation where evaluating zk has a large computational cost. In the181

relevant application of targeted high-resolution simulations, zk is data obtained by run-182

ning a high-resolution simulation at design point k. Our starting point is to assume that183

a limited computational budget restricts us to evaluate zk at a single design point k at184

a time. We want to choose the k that leads to the most informative inverse problem (2).185

We take a Bayesian point of view, namely, the optimal k is the one for which the pos-186

terior distribution of (θ | zk) learned from the inverse problem (2) has the smallest un-187

certainty.188

To answer this conclusively, one would need to evaluate zk at all design points k,189

which here is too computationally expensive. Instead, we investigate only the sensitiv-190

ity of the forward model statistics GT to its parameters θ to assess the marginal infor-191

mation provided at each design point k. This marginal information at k is used as a proxy192

for the information content that would exist when learning from data zk. The benefits193

of this approach are that (i) we do not require any evaluations of zk to select the opti-194

mal location; (ii) the measure of information content is naturally constructed from the195
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uncertainty reflected by the Bayesian posterior distribution; and (iii) we can perform this196

efficiently, and in a embarrassingly parallel fashion, requiring only O(100) GCM runs,197

determined by the product of the ensemble size and the number of iterations typically198

needed in the calibration stage of the CES algorithm (see Appendix A). The approach199

necessarily will contain a bias from the prior distribution of the parameters, and it im-200

plicitly assumes unbiased model statistics GT . The latter in practice requires the inclu-201

sion of models for structural model error within GT , for example, learned error models202

that enforce conservation laws and sparsity (M. E. Levine & Stuart, 2021; Schneider et203

al., 2021).204

Each evaluation of the forward map involves a simulation with the GCM and thus
depends on an initial condition v(0) and parameters θ. Together this gives rise to the
definition of time-aggregated model statistics y,

y = GT (θ;v(0)). (3)

Using the central limit theorem as before, we may write this relationship as

y = G∞(θ) + σ, σ ∼ N (0,Σ(θ)) , (4)

where Σ(θ) is the internal variability covariance matrix for parameters θ. To proceed,
we choose a control value θ∗, for example we take the mean of the prior distribution, and,
fixing θ = θ∗, we generate a realization of y. Given this realization of y, we temporar-
ily forget θ∗, and for any design point k, we consider a restriction of an inverse problem
to k

Wky = WkG∞(θ) + σk, σk ∼ N(0,WkΣ(θ)WT
k ). (5)

The posterior distributions of θ |Wky for all k obtained by solving (5) informs us about205

the sensitivities of G∞ with respect to parameters, when only data at different k is avail-206

able. To simplify solution of the inverse problem, we approximate the internal variabil-207

ity covariance matrix Σ(θ) by a fixed covariance matrix Σ(θ∗). This covariance matrix208

can be obtained by running a collection of control simulations with parameters fixed to209

(the known) θ∗ but with different initial conditions.210

The utility U of a design Wk is a scalar function reflecting the quality of a given
design. The design that maximizes the utility function is known as the optimal design.
We choose a utility function by measuring information gain (or uncertainty reduction)
in (θ |Wky) relative to the prior, in a form of Bayesian optimal design. We use the util-
ity function arising from the linear Bayesian design (Chaloner & Verdinelli, 1995), which
is the determinant of the information matrix (inverse posterior covariance matrix),

U(Wk) =
(

det
(
Cov(θ |Wky)

))−1

. (6)

The posterior covariance matrix Cov(θ | Wky) can be estimated as the empirical co-211

variance matrix of samples drawn from the posterior distribution (θ | Wky) for a de-212

sign Wk. We refer to (6) as the D-utility because it fulfills the so-called D-optimality213

criterion. It is invariant under arbitrary linear transformations of the parameters, for ex-214

ample, when parameters are on different dimensional scales, unlike trace-based measures215

(e.g., A-optimal utility functions). For linear forward maps and Gaussian priors, max-216

imization of this D-utility is equivalent to maximization of the expected Kullback-Leibler217

divergence (KLD), a relative entropy measure (Ryan et al., 2014; Huan & Marzouk, 2013;218

Cook et al., 2008; Kim et al., 2014). While KLD has beneficial mathematical properties,219

especially for highly non-Gaussian posteriors (Paninski, 2005), in practice it is difficult220

to evaluate, especially in high-dimensional problems (e.g., Huan & Marzouk, 2013).221

2.3 Targeted uncertainty quantification algorithm222

The combined algorithm for targeted uncertainty quantification consists of two stages:223

first, finding an optimal design point k̃ in a design stage and, second, evaluating param-224

eter uncertainty with data from k̃ in an uncertainty quantification stage. Let D be the225
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finite index set for the set of design points, and define Wk to be the restriction map for226

any k ∈ D. The two stages then are as follows:227

1. The design stage consists of the following steps:228

(a) Generate a sample of GCM simulated data y = GT (θ∗;v(0)), and estimate the229

internal variability covariance matrix Σ(θ∗). We approximate Σ(θ) as Σ(θ∗).230

(b) For each k ∈ D, solve (5), in parallel, for the posterior of (θ | Wky), using231

the CES-type algorithm described in Appendix A.232

(c) For each k ∈ D, calculate the D-utility U(Wk) from (6) and choose

k̃ = arg maxk∈DU(Wk).

2. The uncertainty quantification stage consists of the following steps:233

(a) At the optimal design point k̃, obtain a sample zk̃.234

(b) Solve the inverse problem (2) for the posterior distribution of (θ | zk̃).235

The complexity of the first stage grows linearly with the candidate design points236

k because we only consider a point at a time. However, if one wishes to choose a design237

composed of K simultaneous points from a set D, a combinatorial problem arises, with238

complexity growing like |D|!/((|D| − |K|)!|K|!). This will become prohibitively costly239

to solve by brute force, even in parallel. We focus on the algorithm for single design points240

k for now, addressing scaling questions in the discussion section.241

3 Idealized GCM and Experimental Setup242

3.1 Idealized GCM, parameters, and priors243

To demonstrate the algorithm in a simplified setting, we use the idealized aqua-244

planet GCM described by D. M. W. Frierson et al. (2006) and O’Gorman and Schnei-245

der (2008b). The aquaplanet is a climate model with atmosphere and a simplified slab246

ocean covering the entire planet surface. Without topography, it exhibits symmetries in247

the longitudinal directions. The aquaplanet can produce statistically stationary climates248

by prescribing fixed insolation. It can also cyclostationary statistics over seasons through249

seasonally varying insolation (Bordoni & Schneider, 2008a; Howland et al., 2021). It has250

been shown in Dunbar et al. (2021); Howland et al. (2021) that the parameters of a sim-251

ple quasi-equilibrium moist convection parameterization can be calibrated within this252

GCM in the stationary and cyclostationary regimes. The quasi-equilibrium moist con-253

vection scheme relaxes temperature and specific humidity toward moist-adiabatic ref-254

erence profiles with a fixed relative humidity RH (D. M. W. Frierson, 2007). The timescale255

with which the temperature and specific humidity relax to their respective reference pro-256

files is given by the parameter τ . The two parameters RH and τ are the key parameters257

to be calibrated and whose uncertainties we want to determine and minimize.258

The priors for these parameters are taken to be logit-normal and lognormal dis-
tributions, RH ∼ Logitnormal(0, 1) and τ ∼ Lognormal(12 h, (12 h)2). That is, we
define the invertible transformation

T (RH, τ) =
(

logit(RH), ln
( τ

1 s

))
,

which transforms each parameter to values along the real axis. We label the transformed259

(or computational) parameters as θ = T (RH, τ), and the untransformed (or physical)260

parameters (relative humidity and timescale) are uniquely defined by T −1(θ). We ap-261

ply our calibration methods in the space of the transformed parameters θ, where pri-262

ors are unit-free, normally distributed, and unbounded; meanwhile, the climate model263

uses the physical parameters T −1(θ), with RH ∈ [0, 1] and τ ∈ [0,∞). In this way,264

the prior distributions enforce physical constraints on the parameters.265
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3.2 Objective function for parameter learning266

We learn from climate statistics that are known to be sensitive to the parameters.267

We have knowledge about these sensitivities from a body of previous studies of large-268

scale atmosphere dynamics and mechanisms of climate changes which used this ideal-269

ized GCM (e.g., O’Gorman & Schneider, 2008b, 2008a; Bordoni & Schneider, 2008b; O’Gorman270

& Schneider, 2009b; Schneider et al., 2010; Merlis & Schneider, 2011; O’Gorman, 2011;271

Kaspi & Schneider, 2011, 2013; X. Levine & Schneider, 2015; Bischoff & Schneider, 2014;272

Wills et al., 2017; Wei & Bordoni, 2018). We know, for example, that the convection scheme273

primarily affects the atmospheric thermal stratification in the tropics, with weaker ef-274

fects in the extratropics (Schneider & O’Gorman, 2008). We also know that the relative275

humidity parameter RH in the convection scheme controls the humidity of the tropical276

free troposphere but has a weaker effect on the humidity of the extratropical free tro-277

posphere (O’Gorman et al., 2011). Thus, we expect tropical circulation statistics to be278

especially informative about the parameters in the convection scheme. However, convec-279

tion plays a central role in intense precipitation events at all latitudes (O’Gorman & Schnei-280

der, 2009b, 2009a), so we expect statistics of precipitation intensity to be informative281

about convective parameters, and in particular to contain information about the relax-282

ation timescale τ .283

As statistics to learn from, we therefore choose averages of the free-tropospheric284

relative humidity, of the precipitation rate, and of a measure of the frequency of intense285

precipitation. We use averages over T = 30 days in statistically stationary simulations286

(Dunbar et al., 2021) and over T = 90 days in simulations of the seasonal cycle (Howland287

et al., 2021). We exploit the symmetry in the GCM by taking zonal averages in addi-288

tion to the time averages. The relative humidity data are evaluated at σ = 0.5 (where289

σ = p/ps is pressure p normalized by the local surface pressure ps), the precipitation290

rate is taken daily, and as a measure of the frequency of intense precipitation, we use the291

frequency with which daily precipitation exceeds the latitude-dependent 90th percentile292

of precipitation rates in a long (18000 days) control simulation. We run the GCM at the293

coarse horizontal spectral resolution of T21, implying 32 discrete latitudes on the spec-294

tral transform grid. Hence, we have 3 statistics, each a function of 32 latitude points,295

resulting in a 96-dimensional processed output, defined as HT . In the statistically sta-296

tionary case, we take the forward map GT = HT .297

For the simulations with a seasonal cycle, HT is not statistically stationary but is
cyclostationary over multiples of a year. The year length in the GCM is 360 days. We
stack four 90-day seasons of data together (Howland et al., 2021) and define the forward
map

GT (θ;v(0)) = [HT (θ;v(0)), . . . ,HT (θ;v(3))],

over a one year cycle (360 days), where v(i) is the model state at the beginning of each298

90-day long season labelled i = 0, 1, 2, 3. With this batching, we have now constructed299

stationary statistics for the stacked data. The theory of Section 2 applies, and our in-300

verse problems can be formulated in the seasonally varying case.301

3.3 Design choices302

In the stationary GCM setting, we aggregate statistics temporally and zonally. Thus,303

a local design implies a restriction to certain latitudes. Recall our discretization has 32304

discrete latitudes. We therefore choose a design space that contains sets of ` consecu-305

tive discrete latitudes, indexed from south to north poles with the design points k = 1, . . . , 32−306

(`−1). In the stationary experiments, we choose ` = 3, indexing designs k = 1, . . . , 30,307

unless otherwise specified. The choice of ` is discussed in Section 4.1.308

In the seasonal GCM setting, we still aggregate in time and longitudinal directions,309

but we also stack the seasons in a vector. We define a local design by indexing both a310
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restriction to a season and a restriction to certain latitudes. We choose a design space311

that contains sets of ` consecutive discrete latitudes, collected season by season, indexed312

from south to north poles as 1, . . . , 32− (`− 1), and from spring to winter as 0, . . . , 3,313

all collected as k = (season, latitude). In the seasonal experiments, we choose ` = 1,314

which indexes the designs k = (0, 1), . . . , (3, 32).315

3.4 Synthetic data and noise316

To generate surrogates of locally available data from high-resolution simulations,
we generate data with the idealized GCM itself at a fixed parameter vector θ†, adding
Gaussian noise δ with zero mean and covariance matrix ∆ as in (2). The implication is
that we generate zk with the restricted idealized GCM ST (θ†; k), corrupted by noise to
describe model error (Kennedy & O’Hagan, 2001b). In this way, the inverse problem (2)
can be written in the compact form

zk = S∞(θ; k) + γk, γk ∼ N(0,Wk(Σ(θ) + ∆)WT
k ). (7)

We construct the measurement error covariance matrix ∆ to be diagonal with entries
d2
i = ∆ii > 0, where i indexes over data type (three observed quantities) and over the

number of discrete latitudes,
Σ + diag(d2

i ) = Σ + ∆. (8)

We choose di so that it is proportional to the mean µi of the variable in question, with
a proportionality factor Cmax = 0.1. To prevent the noise from becoming so large that
the variables can cross a physical boundary ∂Ωi (e.g., relative humidity becoming neg-
ative), we limit the noise standard deviation to a factor C = 0.2 times the distance be-
tween the approximate 95% noise confidence interval and the physical boundary:

di = min
(
C min

(
dist(µi + 2

√
Σii, ∂Ωi),dist(µi − 2

√
Σii, ∂Ωi)

)
, Cmaxµi

)
.

We carry out a set of control simulations, with the parameters fixed to standard317

values θ†, where T −1(θ†) = (0.7, 2 h) are standard values used in previous studies (O’Gorman318

& Schneider, 2008b). We use this set of control simulations to estimate the restricted319

covariance matrix WkΣ(θ)WT
k ≈ WkΣ(θ†)WT

k for performing uncertainty quantifica-320

tion with local data zk (stage 2 in Section 2.3). In the statistically stationary case, we321

carry out control simulations for 650 windows of length T = 30 days, discarding the322

first 50 months for spin-up, and calculate the sample covariance matrix Σ(θ†) from the323

latter 600 samples. Here, WkΣ(θ†)WT
k is a symmetric matrix whose size depends on the324

design space; it represents noise from internal variability in 30-day time averages. In the325

seasonally varying case, we carry out a control simulation for 150 years, discarding the326

first 4 years for spin-up, and obtain the sample covariance matrix Σ(θ†) from the stacked327

seasonal (T = 90 days) averages. In the seasonal case, it is a symmetric matrix whose328

size depends on 4 times the design space and represents noise from internal variability329

in the 90-day time averages. In practical implementations of this methodology, good es-330

timates of the local variability that we represent with WkΣ(θ†)WT
k can be made from331

the observed climatology of the statistics of interest.332

For the design stage (stage 1 in Section 2.3) we estimate Σ(θ∗) from a second set333

of control simulations of the GCM in which we fix the parameters to the prior mean θ∗,334

equivalent to the physical values T −1(θ∗) = (0.5, 12 h). In the stationary case, the 3335

latitude-dependent fields evaluated at 32 latitude points produce a 96×96 symmetric336

matrix Σ(θ∗), representing noise from internal variability in 30-day averages; in the sea-337

sonal case, the stacked statistics produce a 384× 384 symmetric matrix Σ(θ∗), repre-338

senting noise from variability of 90-day averages. In either case, we take Σ(θ) = Σ(θ∗)339

in the optimal design stage of the algorithm.340

The mean and 95% confidence interval of the data at θ∗, with covariance constructed341

from Σ(θ∗), are shown in Figure 1 for the statistically stationary case and in Figure 2342
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Figure 1. Aggregated climate statistics in the statistically stationary control simulation, with

parameters set to the mean of the prior θ∗. The mean (grey lines) and 95% confidence intervals

(shading) of the data are plotted against latitude. One realization of the data is shown (black

line). No noise is added here.

Figure 2. Aggregated climate statistics in the seasonally varying control simulation, with

parameters set to the mean of the prior θ∗. The mean (solid lines) and 95% confidence intervals

(shading) of the data are plotted against latitude, with the colors indicating the seasons. No

noise is added here.

for the seasonally varying case. The black (stationary) and colored (seasonal) solid lines343

illustrate a realization of the data for one initial condition. Similarly, the mean and 95%344

confidence interval of the data at θ†, with noise added with covariance matrix ∆+Σ(θ†)345

(over all designs for illustration), are shown in Figure 3 for the stationary and in Fig-346

ure 4 for the seasonal case.347

4 Results348

4.1 Stationary statistics349

We first apply the optimal design algorithm to the statistically stationary GCM.350

The logarithm of the utility function is shown in Figure 5, with four representative sam-351

ples shown by the colored discs (specifically, these are the design points k = 15, 14, 20,352

and 3, in decreasing order of utility). The extent to which hemispheric symmetry of the353

statistics is broken in Figure 5 is an indication of sampling variability, as the infinite-time354

GCM statistics are hemispherically symmetric.355

The distribution of the inflated climate statistics produced at the true parameters356

θ† are represented by the mean and 95% confidence interval in grey in Figure 3, which357

also shows the data samples for each three-latitude design stencil as colored discs for four358

representative design locations. We apply the uncertainty quantification stage in Sec-359
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Figure 3. Aggregated climate statistics in the statistically stationary control simulation using

the ground truth parameters. Mean (grey lines) and 95% confidence intervals (shading) of the

data are plotted against latitude. Additional inflation noise is added. Each set of colored discs

represents a 30-day realization of inflated GCM data coming from a different 3-latitude design

used in the experiment.

Figure 4. Aggregated climate statistics produced from the seasonally varying control simu-

lation using the ground truth parameters, and with additional inflation. The mean (solid lines)

and 95% confidence intervals (shading) of the data are plotted against latitude, with the colors

indicating the seasons. The blue vertical line indicates the location and season (northern winter)

in which we observe the data for uncertainty quantification; the specific 90-day realization of

inflated GCM data for the 1-latitude design is given by the blue disc.

Figure 5. Logarithm of the data utility as a function of latitude, with designs represented

by a node at the center of each stencil (comprised of three neighboring latitudes). The colored

discs signify the four representative designs indicated in Fig. 3, which are used in the uncertainty

quantification experiment.
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Figure 6. Posterior distributions for convection parameters learned from data restricted to

different design points. The drawn contours bound 50%, 75% and 99% of the distribution. Panels

(a, b, c, d) correspond to designs k = (51, 14, 20, 3), ordered to express learning from data at de-

creasingly informative design points (i.e., points of decreasing utility). The true parameter values

in the control simulation are given by the blue circle. The parameters found to be optimal in the

calibration scheme (given a single random realization of data) are given by the red star in each

case (in panel (d) this is outside the plotting region).
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Figure 7. Performance for different optimal design selections at smaller stencil sizes. The

contours bound 50%, 75%, and 99% of the distribution. Panels (a,c) is a two-latitude stencil, and

panels (b,d) is a one-latitude stencil. The top row displays the logarithm of the utility plot, and

the bottom row the corresponding posterior from a sample at the optimal latitude, marked by a

disc at the top.

tion 2.3 to each location, resulting in the posterior distributions shown in Figure 6. Each360

panel shows the density contours bounding 50%, 75%, and 99% of the posterior distri-361

bution, shaded dark to light; the priors are largely uninformative and have been excluded362

from the plots. The panels are ordered (a – d) by decreasing D-utility, a predictor of in-363

formation content based on uncertainty at the prior mean parameter θ∗. We see this mono-364

tonicity is preserved when considering data produced from the true parameter θ† in this365

example. In particular, this implies that the design optimizing the chosen utility pro-366

duces minimal uncertainty in the uncertainty quantification stage. As observed in other367

investigations (Dunbar et al., 2021), the posterior distributions are subject to variabil-368

ity due to the finite-time sampling and the inflation. However, all distributions capture369

the true parameter values within 99% of the posterior mass.370

For the statistically stationary case, we investigate the choice of `, a measure of the371

design sparsity. To this end we repeat the experiment, choosing ` = 2 or 1 in Section 3.3).372

For each, Figure 7 shows the utility function against the latitude at the center of the sten-373

cil and the posterior distribution at the respective optimal designs. We see that in both374

cases, the optimal design remains robust, coinciding with the three-stencil case. Peak375

utility is consistently at a design near the equator. The posterior distributions are seen376

to be far broader than in the three-latitude case, offering only marginal improvement over377

the prior distribution in the one-latitude stencil case. They are non-Gaussian and mul-378

timodal but nevertheless capture the true parameters (blue disc) with high probability.379

They provide insight into the correlation structure between the parameters at the op-380

timal design location. We observe that for these sparser designs, non-identifiability (mul-381
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Figure 8. Logarithm of the data utility plotted against latitude (1 design per latitude and

season). The blue disc signifies that a latitude in northern winter maximizes the utility function.

timodality) appears only at data from θ†, but not at θ∗. As a result, the optimal un-382

certainty is not guaranteed to be found at the location of optimal utility. This is reme-383

died by having a better initial guess through the prior, or (as demonstrated in the three-384

latitude set) a less sparse data set from which the parameters are more identifiable.385

4.2 Seasonally varying statistics386

In the seasonally varying case, we choose the optimal design with the algorithm387

in Section 2.3 applied to the stacked data. Figure 8 shows the logarithm of the utility388

function. Hemispheric and seasonal asymmetries are evident here. In northern winter,389

latitudes just south of the the equator (k = (3, 16)) optimize the design, in the vicin-390

ity of the ITCZ. Conversely, in northern summer, latitudes just north of the equator (k =391

(1, 17)) optimize the design, again in the vicinity of the seasonally migrating ITCZ; ad-392

ditional peaks at around 30 degrees can be seen. The equinox seasons have less utility393

at the optimal designs (k = (0, 17) and k = (2, 16)). Because the equinoctial Hadley394

cells and ascent regions in the ITCZ are less pronounced than the solstitial Hadley cells395

(Schneider et al., 2010), utility is more spread out across the latitudes.396

We solve the analogue inverse problem (7) as in the nonseasonal case with a data397

sample at the optimal spatial design location for each season. The posterior distributions398

are collected in Figure 9, colored by season. In general, the true parameter values lie in399

regions of high posterior density in each case. We see qualitatively that the utility of the400

different designs predicts the the size of support of the corresponding posterior distri-401

bution, in particular the design with highest utility (northern winter) also has the small-402

est support. This indicates that the utility is still a good predictor of data quality for403

learning the convection parameters in the cyclo-stationary settings.404

5 Conclusions and Discussion405

We have presented a novel framework for automated optimal placement of high-406

resolution simulations embedded in lower-resolution models. The framework can be used407

with computationally expensive and chaotic (noisy) low-resolution models, whose deriva-408

tives may not be available. Given low-resolution simulations, we use parameter uncer-409

tainty information provided by the CES algorithm to guide our choice of design. We have410

demonstrated the efficacy of the algorithm for finding optimally informative locations411

in perfect-model settings in which we generated surrogates of embedded high-resolution412
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Figure 9. Posterior distribution obtained from using data at the optimal latitude from each

season. Contours bound 50%, 75% and 99% of the distribution (in decreasing color saturation).

Panels (a, b, c, d) correspond to designs k = ((0, 17), (1, 17), (2, 16), (3, 16)), ordered by season.

The true parameter values in the control simulation are given by the blue circle. The parameters

found to be optimal in the calibration scheme (given a single random realization of data) are

given by the red star in each case.
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simulations directly with an idealized GCM, with statistically stationary or seasonally413

varying statistics. In these settings, we have demonstrated learning about parameters414

in a convection parameterization, exploring both spatial and spatio-temporal designs.415

Our design framework can also be used more broadly, to automate selection of optimally416

informative climate statistics from libraries of high-resolution simulations (Shen et al.,417

2021).418

With the idealized GCM, we showed how to optimally target a location at which419

additional data will produce parameter estimates that minimize uncertainty. In our proof-420

of-concept in which we calibrated parameters in a simple convection scheme, the auto-421

matically targeted optimal location for new data was consistently near the equator, in422

the vicinity of the seasonally migrating ITCZ. This is consistent with the fact that the423

convection scheme in the idealized GCM is most important near the ITCZ (O’Gorman424

& Schneider, 2008). We showed that the optimal targeting is limited in its effectiveness425

in settings of very sparse data, where parameter posteriors can be multimodal. However,426

with access to the posterior distributions of the parameters, the behavior is both diag-427

nosable a posteriori, and actionable with successive iterations of the optimal design pro-428

cess (simply take the current posterior as the prior for a subsequent iteration with ad-429

ditional data).430

The design algorithm is very efficient with respect to evaluations of the GCM and431

the high-resolution model. Due to our integration of the design framework within the432

CES algorithm (detailed in Appendix A), only a relatively modest O(100) forward model433

evaluations of the GCM are required for the design selection process; no evaluations of434

the high-resolution model (or, in our proof-of-concept, of the surrogate for it) are required.435

The calculation of the utility function can be performed in an embarrassingly parallel436

fashion. Thus, for moderately sized design spaces, the computational cost is dominated437

by the cost of evaluation of the GCM.438

Despite being efficient, the current algorithm relies on evaluating utilities naively439

at all design points. In a practical climate model application, where we may have 102
440

LES that are computationally affordable to be placed optimally within 106 or more pos-441

sible locations, such naive approaches are infeasible. Instead, one can use more sophis-442

ticated optimization algorithms. For determinant based (i.e., D-optimal) utilities, this443

typically requires accelerating the determinant evaluation (and its gradients). Various444

methods have been developed to do so, e.g., using Laplace approximations (Long et al.,445

2013; Beck et al., 2018; Rue et al., 2009), polynomial chaos surrogates (Huan & Mar-446

zouk, 2014), optimization of criteria bounds (Tsilifis et al., 2017), fast random determi-447

nant approximation (Alexanderian et al., 2014; Alexanderian & Saibaba, 2018), and Gaus-448

sian process surrogates (Buathong et al., 2020; Paglia et al., 2020). The latter, kernel-449

based approaches are particularly amenable to our setting, as they give sparse represen-450

tations of the utility function that are independent of the underlying computational grid.451

They may offer a way forward in the climate modeling setting.452
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Appendix A Calibrate-Emulate-Sample with design772

One fundamental aspect of this work, is the ability to efficiently calculate the the773

posterior distribution (in particular the covariance), which is needed to calculate the util-774

ity function (6) at all designs. We present a methodology: calibrate-extract-emulate-sample,775

(CEES) which allows for the calculation of posterior covariance for all designs with just776

O(100) evaluations of our forward model.777

The methodology is based on the calibrate-emulate-sample (CES) algorithm, for778

full details of the individual stages see Cleary et al. (2021a); Dunbar et al. (2021), here779

we present an overview and motivation. The core purpose of CES is to form a compu-780

tationally cheap statistical emulator of G∞ from intelligently chosen samples of GT ; then781

one is able to solve the Bayesian inverse problem for the emulated G∞ with a sampling782

method. We achieve this by using Gaussian process emulators, trained on the samples783

of the (noisy and expensive) forward map. The Gaussian process mean function is nat-784

urally smoother than the data it is trained on (Kennedy & O’Hagan, 2001a; Notz et al.,785

2018), and is capable of representing the the noise of the forward model within the co-786

variance function, leading to a smooth likelihood function that is quick to evaluate. The787

training points for the Gaussian Process are given by applying an optimization scheme,788

EKI (Ensemble Kalman Inversion), (Iglesias et al., 2013; Schillings & Stuart, 2017) to789

the inverse problem in its finite-time averaged form (3). Theoretical work shows that noisy790

continuous-time versions of EKI exhibit an averaging effect that skips over fluctuations791

superimposed onto the ergodic averaged forward model (Duncan et al., 2021), and sim-792

ilar effects are observed in practice for EKI, thus it is highly suited to optimization of793

parameters coming from a noisy, expensive model without derivatives available. Ensem-794

ble Kalman methods are scalable to very high dimensional problems (Kalnay, 2003; Oliver795

et al., 2008) with use of localization and regularization.796

Let D index a finite space of designs. Given a time T > 0, and prior on θ with797

prior mean θ∗. Draw a sample y = GT (θ∗,v(0)), from any initial condition v(0):798

1. Calibrate: We solve (3) with y using evaluations of GT in an optimization sense,
where we minimize the functional.

ΦT (θ,y) = ‖y − GT (θ;v(0))‖22Σ. (A1)

The notation ‖ · ‖Σ = ‖Σ− 1
2 · ‖2 is the Mahalanobis distance. The weight 2Σ is799

the sum of internal variability of GT and of y. The optimization is performed us-800

ing several iterations the Ensemble Kalman Inversion algorithm. This leads to {θi,Gj(θj)}Jj=1801

of input-output pairs that are localized around the optimal parameter value.802

2. Extract: For each design k ∈ D, we apply the restriction mapping Wk to the803

forward map, {θj ,WkGT (θj)}Jj=1, and apply the following Emulate(k) and Sam-804

ple(k) stages.805

3. Emulate(k): We decorrelate the data space with an SVD on the internal vari-806

ability covariance Σ, yielding a change-of-basis matrix V . We train Gaussian pro-807

cess emulators, on the pairs {θj , V WkGT (θj)}Jj=1, yielding (GGP(θ),ΣGP(θ)), where808

GGP ≈ VWkG∞(θ) (crucially G∞ and not GT ) and ΣGP(θ) ≈ VWkΣWT
k V

T .809

4. Sample(k): We now solve the inverse problem (5), This is feasible as the emu-
lator provides us with an approximation of G∞ (not just GT ). The posterior dis-
tribution associated with (5) is proportional to a product of prior and likelihood
contribution from Bayes theorem. Explicitly, for a Gaussian prior N(m, C) on the
computational parameters, and the likelihood dependent on the emulator, we write
the MCMC objective function (also known as the log-posterior) as

ΦMCMC(θ, V Wky) =
1

2
‖VWky − GGP(θ)‖2ΣGP(θ) +

1

2
log det ΣGP(θ)

+
1

2
‖θ −m‖2C .
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The posterior is then given by

P(θ | VWky) ∝ exp(−ΦMCMC(θ, V Wky)).

This can be sampled with a standard random walk metropolis sampling algorithm.810

We then collect the posterior distributions {θ |Wky}k, ∀k ∈ D and calculate the util-811

ity function using (6). This CEES algorithm in Figure A1. In particular, note that the812

subsampling occurs after the J model evaluations, therefore all posterior distributions813

can be performed in an embarassingly parallel fashion, and all use the same forward model814

evaluations.815

The CEES algorithm is also used to solve (2) at a given design k̃, with this algo-816

rithm using the model ST (·; k̃, ·), and data sample zk = ST (θ; k̃,v(0))+δ, and weight-817

ing the data misfit norm with the additional contribution from δ. We then perform Emulate(k̃),818

and Sample(k̃) at the chosen design.819
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