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Abstract

We present a first application of a fast super resolution convolutional neural network (FSRCNN) approach for downscaling

climate simulations. Unlike other SR approaches, FSRCNN uses the same input feature dimensions as the low resolution

input. This allows it to have smaller convolution layers, avoiding over-smoothing, and reduced computational costs. We further

adapt FSRCNN to feature additional convolution layers after the deconvolution layer, we term FSRCNN-ESM. We use high-

resolution (0.25°) monthly averaged model output of five surface variables over a part of North America from the US Department

of Energy’s Energy Exascale Earth System Model’s control simulation. These high-resolution and corresponding coarsened low-

resolution (1°) pairs of images are used to train the FSRCNN-ESM and evaluate its use as a downscaling approach. We find

that FSRCNN-ESM outperforms FSRCNN and other methods in reconstructing high resolution images producing finer spatial

scale features with better accuracy for surface temperature, surface radiative fluxes and precipitation.
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Key Points:14

• We present a fast super resolution convolutional neural network (FSRCNN) based15

approach for downscaling gridded earth system model data.16

• FSRCNN-ESM’s reconstruction of high resolution spatial patterns improves upon17

both traditional and machine learning downscaling methods.18

• FSRCNN-ESM is computationally less expensive to train over other machine learn-19

ing downscaling methods.20
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Abstract21

We present a first application of a fast super resolution convolutional neural network (FS-22

RCNN) based approach for downscaling earth system model (ESM) simulations. Unlike23

other SR approaches, FSRCNN uses the same input feature dimensions as the low res-24

olution input. This allows it to have smaller convolution layers, avoiding over-smoothing,25

and reduced computational costs. We further adapt FSRCNN to feature additional con-26

volution layers after the deconvolution layer, we term FSRCNN-ESM. We use high-resolution27

(∼0.25◦) monthly averaged model output of five surface variables over a part of North28

America from the US Department of Energy’s Energy Exascale Earth System Model’s29

control simulation. These high-resolution and corresponding coarsened low-resolution30

(∼1◦) pairs of images are used to train the FSRCNN-ESM and evaluate its use as a down-31

scaling approach. We find that FSRCNN-ESM outperforms FSRCNN and other super-32

resolution methods in reconstructing high resolution images producing finer spatial scale33

features with better accuracy for surface temperature, surface radiative fluxes and pre-34

cipitation.35

Plain Language Summary36

High resolution global climate data is computationally expensive to run but cru-37

cial for assessing climate change effects at local and regional scales. Here, we adapt a new38

deep learning technique, called fast super-resolution convolutional neural network, to remap39

climate data from low resolution to high resolution grids. This approach is faster and40

more accurate for statistical downscaling climate data compared to other prevalent meth-41

ods.42

1 Introduction43

Accurate and reliable climate data is critical for assessing the risk of climate change44

to our society’s well-being. Increases in temperature, sea-level, and extreme weather events45

can render many aspects of our society vulnerable including our health, natural resources46

and energy-systems (Nicholls & Cazenave, 2010; Trenberth, 2012). Local and regional47

climate future projection data is the most crucial for planning and mitigating these risks,48

but is often the least reliable (Schmidt, 2010). Current Earth System Models (ESMs)49

used for simulating Earth’s past climate and future projections are often computation-50
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ally limited to coarse horizontal resolutions, generally between 1◦ to 3◦ (Vandal et al.,51

2017). These low resolution models fail to accurately simulate important physical pro-52

cesses such as precipitation extremes (Kharin et al., 2007). Recent advances in comput-53

ing resources have allowed for global ESMs to be run at higher resolutions (∼0.25◦) for54

longer time periods and have shown to improve the simulations of regional mean climate55

as well as extremes (Wehner et al., 2010a; Mahajan et al., 2015). However, these high56

resolution models remain prohibitively expensive.57

A computationally less expensive approach to derive high resolution climate data58

over a region of interest is to map data from low resolution global model simulations to59

high resolution grids using dynamical or statistical downscaling techniques. Dynamical60

downscaling involves running high resolution regional dynamical models to extrapolate61

large scale boundary conditions obtained from a coarser global ESM to finer resolutions62

on regional scales. Statistical downscaling (SD) aims to map coarse resolution data to63

high resolution projections using statistical methods like linear regression. Recent stud-64

ies have shown that machine learning techniques, like neural networks (Vu et al., 2016;65

Fistikoglu & Okkan, 2011) and support vector machines (Ghosh, 2010), for SD signif-66

icantly outperform other traditional SD methods. In this study, we use one such com-67

puter vision approach called super-resolution (SR), which generates a high resolution im-68

age from its low resolution equivalent. SR techniques attempt to generalize across im-69

ages and have been shown to learn local scale patterns more efficiently than other down-70

scaling methods (Vandal et al., 2017).71

One pioneering work in SR deep learning is a SR convolutional neural network (SR-72

CNN). A convolutional neural network is a type of artificial neural network that con-73

volves a kernel with the data to extract features for further use in the overall neural net-74

work architecture (LeCun et al., 1989, 2015; Goodfellow et al., 2016). The SRCNN was75

originally proposed by Dong, Loy, He, and Tang (2014) and was shown to achieve sig-76

nificantly better performance over other traditional and state of the art SR methods. Vandal77

et al. (2018) demonstrated the usefulness of using a stacked SRCNN, called DeepSD, to78

downscale ensemble ESMs and showed that it outperforms other methods including bias79

correction spatial disaggregation (BCSD), artificial neural networks (ANN), Lasso and80

support vector machines (SVM). Several recent studies have used similar super resolu-81

tion approaches to downscale ESMs to higher resolutions and demonstrated significant82

skill. These include a super resolution general adversarial network (SRGAN) (Stengel83
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et al., 2020) to downscale wind and solar radiation fields to 50x resolutions and a Lapla-84

cian pyramid super-resolution network, termed, ResLap, that uses a residual dense block85

to allow hierarchical feature extraction from the convolutional layers (Cheng et al., 2020).86

One common feature of these SR approaches is a pre-processing step where the low87

resolution images are pre-interpolated to the desired high-resolution output image size88

(say, using bilinear interpolation) before running the network. Dong, Loy, and Tang (2016)89

developed a method, termed as fast SRCNN (FSRCNN), that alleviates this pre-processing90

and replaces it with a deconvolution layer at the end, facilitating mapping directly at91

the resolution of the low resolution image. Since the computational complexity of a CNN92

is proportional to the input image size, this lowers the computational cost of the net-93

work significantly - almost by a factor of n2 compared to a SRCNN, where n is the down-94

scaling factor. Further, the smaller input image size in FSRCNN implies that narrower95

filters can capture the same information, thus allowing for more filters for greater fea-96

ture extractions while also lowering computational cost. This use of smaller kernel sizes97

to improve CNN models was proved in Simonyan and Zisserman (2014). The FSRCNN98

has been shown to improve image reconstruction skill significantly compared to a gen-99

eral SRCNN for high downscaling factors, with the convolution-deconvolution structure100

reducing edge smoothing and loss of detail and improving feature reconstruction. Fur-101

ther, the same FSRCNN network can be used for different upscaling factors with only102

the deconvolution layer needing further tuning.103

Here, we present a first attempt to apply FSRCNN for ESM downscaling and find104

that it is generally more skillful than DeepSD. Further, we improve upon the FSRCNN105

by adapting it to use additional SRCNN-like convolutional layers after the deconvolu-106

tion step. By adding these additional convolutional layers, we are able to extract more107

information and finer spatial details in the high resolution images. We refer to this new108

adapted FSRCNN architecture as FSRCNN-ESM. Following previous validation stud-109

ies (Stengel et al., 2020) of the application of super resolution approaches to climate data,110

we also reconstruct high resolution data from a coarsened version of the same data. We111

evaluate the reconstruction results using an objective evaluation metrics like the mean112

bias error, and find FSRCNN-ESM to be a promising downscaling method with supe-113

rior skills as compared to both DeepSD and FSRCNN. Section 2 describes the ESM data114

used as well as the improved FSRCNN network architecture in more detail. We present115
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the results of our objective and subjective evaluations in Section 3 and summarize our116

work in Section 4.117

2 Methods118

2.1 Data Collection119

For this study we use monthly output of a 30-year segment of the 1950-control sim-120

ulation with the global high resolution (0.25◦) configuration of the Energy Exascale Earth121

Systems Model (E3SM) (E3SM Project, 2018). Model data was obtained from the Earth122

System Grid Federation (ESGF) (Cinquini et al., 2014). It should be noted that E3SM123

data is bilinearly interpolated from its native non-orthogonal cubed-sphere grid to an124

equivalent regular 0.25◦x0.25◦ longitude-latitude grid. We call this model data, E3SM-125

HR. This high resolution data is interpolated to a 1◦x1◦ grid using a bicubic method to126

obtain the corresponding low resolution input images, which lose the fine scale features127

present in the high resolution data. Our goal is to reconstruct the high resolution im-128

ages back from these coarsened data using FSRCNN. When using a computer vision ap-129

proach to gridded E3SM data, we can think of each grid point as a pixel in an image.130

For this study, we look at a subset of E3SM data corresponding to North America. The131

low-resolution images as a result are 60×60 pixels, while high-resolution images are four132

times larger across both dimensions and have a size of 240× 240 pixels each.133

We chose five variables to test the FSRCNN - surface temperature (TS), shortwave134

heat flux (FSNS), longwave heat flux (FLNS), precipitation convective rate (PRECC)135

and the large scale precipitation rate (PRECL). This results in 360 images for one vari-136

able, or 1,800 images in total. We use all the variables together, each normalized using137

the min-max scaler, in a single one-channel network when training so our algorithm can138

learn how to extract multiple spatial features. The addition of multiple variables in one139

network enhanced our reconstruction. For example, when training just PRECC on a sin-140

gle network, the average mean square error (MSE) for testing was 7.58e−7. When us-141

ing all variables together, the MSE on the testing dataset for PRECC is 2.79e−11 (see142

table 1). It is common in computer vision to learn many different classifications of im-143

ages in a single algorithm to improve feature reconstruction. Before training the model,144

we split the last 3 years of data into a testing set, corresponding to 180 images or 36 im-145

ages for a single variable.146
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We also explore the use of elevation as a second input channel to our methods. Sev-147

eral studies have shown the addition of elevation as an input is important for enhanc-148

ing the reconstruction quality of precipitation data (Vandal et al., 2017; Liu et al., 2020).149

2.2 Deep Learning150

2.2.1 SRCNN and DeepSD151

The SRCNN is trained to directly learn practical mappings between low resolution152

and high resolution images with little pre- and post-processing (Dong et al., 2014). The153

low resolution image must be interpolated to the desired output size before training us-154

ing a bicubic method. The SRCNN consists of three operations: patch extraction and155

representation, non-linear mapping and reconstruction (Dong et al., 2014). The goal of156

an SRCNN is to take the low resolution image Y and generate a high resolution image157

G that is close to the ground truth image I.158

Layer 1 of the SRCNN consists of 64 filters of 9x9 kernels, layer 2 has 32 filters of159

1x1 kernels and the output layer has a single filter with a 5x5 kernel, the same as described160

in Dong et al. (2014). We trained this SRCNN on 100 epochs with an adam loss opti-161

mizer, sigmoid activation function and an initial learning rate of 0.001 using tensorflow.162

The choice of a sigmoid activation function allows for back propagation to return an out-163

put value between 0 and 1 which is useful in this context, since we normalize the images164

before training with a min-max scaler.165

Vandal et al. (2017) uses a stacked SRCNN apporach called DeepSD and here we166

test that method against the FSRCNN-ESM. DeepSD uses elevation as a second input167

channel for the SRCNNs to train on. The first SRCNN is used to interpolate the images168

from a 1◦ resolution to 0.5◦. The estimated 0.5◦ resolution images are then passed to169

the next SRCNN and interpolated to the final 0.25◦ images. Here, we only use 2 stacked170

SRCNN, as opposed to 3 in the original paper, since we are only downscaling by a fac-171

tor of 4. It is important to note that Vandal et al. (2017) used the DeepSD method to172

downscale one variable, precipitation, and here we are using it to downscale five.173

2.2.2 General FSRCNN174

The basic FSRCNN method was created to accelerate the SRCNN process and the175

redesign involved three features: (1) smaller convolutional kernels but more feature maps,176
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(2) an added deconvolutional layer, and (3) the input feature dimension is the same as177

the original low resolution image (Luo et al., 2019). Because the FSRCNN takes the orig-178

inal 60× 60 image as the input and does not have to interpolate it to a 240× 240 im-179

age, it learns 16 times fewer weights than the SRCNN and as a result is much faster when180

training. The final reconstruction to the HR image then requires a deconvolutional layer181

at the end to remap the data from the low resolution reconstruction steps to a higher182

resolution grid. We note that the deconvolutional layer is not the same as an unpool-183

ing plus convolutional layer, sometimes known as convolutional interpolation, which in184

its purest form resizes an image by copying pixels as many times as needed to achieve185

the desired image size before passing through a convolutional layer. A deconvolutional186

layer, also known as a transpose convolutional layer, instead pads the image with zeros187

to desired size before upsampling the image using learned kernels. Dong et al. (2016) found188

that replacing the deconvolutional layer with an unpooling layer resulted in a significant189

drop in reconstruction quality.190

The FSRCNN can be broken down into five parts: feature extraction, shrinking,191

nonlinear mapping, extension, and deconvolution (Dong et al., 2016). The feature ex-192

traction step in Dong et al. (2016) consists of a 5 by 5 filter size with d number of fil-193

ters. The number of filters can be thought of as the number of desired learned features194

in the low resolution image. The shrinking step is a 1 by 1 filter with s number of fil-195

ters, here s < d, that acts as a way to condense the number of features found in step196

1. The nonlinear mapping step maps the features in step 2 nonlinearly to a new set of197

features. It uses multiple layers of nonlinear mapping with a filter size of 3 by 3. By se-198

lecting smaller convolutional kernels but more feature maps (large d), the FSRCNN learns199

more non-linear features in the data and creates better SR reconstruction results com-200

pared to the SRCNN. The FSRCNN then moves on to the expansion layer, which acts201

like an inverse of the shrinking layer, to generate a larger number of feature maps to im-202

prove high resolution reconstruction. Finally, the FSRCNN uses the deconvolution step203

to achieve the final high resolution image.204

2.2.3 FSRCNN-ESM Architecture205

Here, we expand upon the basic FSRCNN method to maximize accuracy for im-206

age reconstruction for E3SM data. We include additional convolutional layers after the207

deconvolution step in the FSRCNN - an added patch extraction step consisting of 64 ker-208
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nels, and a nonlinear mapping step with 32 kernals, similar to those in the SRCNN - both209

of which are applied to the high resolution data generated after the deconvolution step210

as shown in Fig. 1. Fig. 1 shows the SRCNN, original FSRCNN and the new configu-211

ration. We refer to this new network as FSRCNN-ESM. We found that these additions212

to the network further improve image reconstruction in our data, as determined by a loss213

function. The loss is calculated by using a pixel-wise MSE using the following equation:214

MSE(I,G) =
1

N

∑
i,j

(Ii,j −Gi,j)
2(1)

where I is the original high resolution image and G is the generated high resolu-215

tion image and i and j denote the location of the pixel. The training loss decreased by216

50% with the added feature extraction step after the deconvolutional layer in the FSRCNN-217

ESM compared to the original FSRCNN architecture. Similarly, the average reconstruc-218

tion loss in MSE for the FSRCNN was 0.000568 compared to the average MSE for the219

FSRCNN-ESM at 0.000261.220

We also evaluate the impact of the addition of elevation as a second input on re-221

construction quality. Table 1 shows the MSE for variables in the test set for the FSR-222

CNN, FSRCNN plus elevation, FSRCNN-E3SM and FSRCNN-E3SM plus elevation. El-223

evation improved the simple FSRCNN method, but we did not see the same improve-224

ment for the FSRCNN-ESM. Therefore, we add elevation as an input channel to the FS-225

RCNN but not our FSRCNN-ESM in our further evaluations with the testing data.226

2.3 Evaluation Metrics227

We evaluate the mean absolute error (MAE) for each reconstruction method on each228

variable the testing dataset. Before computing the MAE, we scale the variables back to229

their original values using min-max scaler. We define the MBE as follows:230

MAE =
1

N

N∑
1

|Pi −Ai| (2)

where Pi is the predicted image i and Ai is the actual truth image. The MAE for231

each variable is expressed in the variable’s units. Here N is 36, or the number of images232

per variable in the testing dataset.233
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We also evaluate the skill of each method’s ability to reconstruct high resolution234

images by computing the L1 and L2 error for each sample as follows:235

L1 =

∑
i,j |Gi,j − I1,j |∑

i,j |I1,j |
, L2 =

∑
i,j(Gi,j − I1,j)

2∑
i,j(I1,j)

2
(3)

We compute both the L1 and L2 errors and the MBE across each variable on the236

held out testing dataset.237

3 Results238

We compare the FSRCNN-ESM method as applied to E3SM data with the DeepSD239

method (Dong et al., 2014) and with a basic bicubic interpolation using the above stated240

metrics for determining image reconstruction quality: MSE, MAE, L1- and L2-error. We241

also compare the computational training time of the FSRCNN and FSRCNN-E3SM against242

DeepSD.243

3.1 Reconstruction Evaluation244

Figure 2 show samples of reconstruction of high resolution images over a part of245

Northern America from low-resolution images using bicubic interpolation, DeepSD, FS-246

RCNN and FSRCNN-ESM approaches. We randomly pick one sample of a summer (June)247

month from 3 years of reconstruction test data for each of the five variables to visually248

illustrate the reconstruction quality. The inset plot shows a zoomed in portion to bet-249

ter visualize some of the finer spatial details of some region, generally over the Rocky250

Mountains and over Northern Andes - regions that show strong gradients in the high res-251

olution images owing to the topography there. The plots (first column) show the loss of252

fine-scale features as the high resolution images (last column) are interpolated to low-253

resolution images. To restate, the goal is then to reconstruct the high resolution image254

from these low resolution images. It is clear that a bicubic interpolation to downscale255

performs poorly. The DeepSD generally improves over the bicubic interpolation, but still256

lacks the finer-scale details noted in the high resolution images - this is apparent in most257

of the images for all variables. For example, the DeepSD is not able to discern the strong258

gradients over the Northern Andes clearly for convective precipitation (PRECC) (Fig-259

ure 2, second and fourth rows). Similarly, it is not able to capture the fine scale features260

of surface temperature (TS), net surface shortwave radiation (FSNS), net surface long-261
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wave radiation flux (FLNS) and large-scale precipitation (PRECL) over North Amer-262

ica in the summer (Figure 2, first, third and fifth rows). It is clear visually that FSRCNN-263

ESM better generates finer details in high resolution data when compared to the DeepSD264

and bicubic interpolation, which both tend to over-smooth the images. For the above265

stated examples, the FSRCNN-ESM is able to isolate the strong gradients in PRECC266

over the Northern Andes and in TS, FSNS, FLNS and PRECL over North America in267

the summer.268

To quantify the reconstruction skill of these methods, we use the MBE metric over269

the testing dataset. Table 2 summarizes the results of our analysis for the three meth-270

ods. We calculate the MBE for each variable image over each month in the testing dataset.271

Consistent with the visual illustrations (Figure 2), the FSRCNN-ESM generally outper-272

forms the other methods in terms of this metric across most variables and months, with273

the exception of FSNS in which the FSRCNN had a higher reconsturction skill on av-274

erage. Dong et al. (2016) noted that a large fraction of the increase in reconstruction re-275

sults came from replacing the bicubic interpolation step in the SRCNN with the decon-276

volution layer in FSRCNN when they partitioned their error metric into different steps.277

We see this here with the increase in skill from DeepSD to both the FSRCNN and FSRCNN-278

ESM. It is interesting to note that the bicubic interpolation skill is comparable to DeepSD279

for our data, and exceeds it for most variables. Most methods tend to underestimate pre-280

cipitation variables. Precipitation occurs intermittently and is a highly non-linear pro-281

cess and results from multi-scale, multi-phase physical processes creating large spatial282

heterogeneity. The above suggest that image reconstruction becomes more difficult as283

spatial heterogeneity increases.284

We also use the L1 and L2 error metrics to quantify reconstruction skill of the var-285

ious methods on our held out testing dataset. Figure 4 shows the histogram of the L1286

and L2 errors for FSRCNN-ESM (a,e), the original FSRCNN (b,f), DeepSD (c,g) and287

bicubic (d,h) respectively.The majority of our FSRCNN-ESM predicted samples (Fig-288

ure 4a) have a L1 error less than 10% and an L2 error less than 1% suggesting the ef-289

fectiveness of our FSRCNN-ESM for interpolating E3SM data to high resolution grids.290

Our FSRCNN-ESM also generally achieves better reconstruction skill compared to the291

other two methods based on both the metrics, consistent with the findings using the MBE292

metric.293
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3.2 Computational Performance294

Figure 4j shows the cumulative CPU computational time required to train FSRCNN-295

ESM (blue), DeepSD (red) and FSRCNN (green) on 100 epochs. FSRCNN-ESM com-296

pleted training 600% faster than the DeepSD, comparable to the decrease in training time297

with the FSRCNN, while still maintaining similar loss values (Figure 3i). This is largely298

due to the fact that the DeepSD has a pre-processing step of interpolating low resolu-299

tion images to the desired output size before training, while the FSRCNN-ESM uses the300

low resolution image size. As stated earlier this allows using narrower filters on the smaller301

images, reducing the total number of parameters and computations. Once trained, how-302

ever, the DeepSD and FSRCNN-ESM take roughly the same amount of time, about 25303

seconds, to downscale all 1,800 images.304

Dong et al. (2016) showed that an FSRCNN with similar number of steps as a SR-305

CNN produced a speed-up of about 40x when upscaling by a factor of three. This was306

largely (about 30x) due to the narrower filters in the FSRCNN that led to the large dif-307

ference between the number of trainable parameters in the nonlinear mapping step of308

SRCNN and that in the corresponding three steps (combination of shrinking, non-linear309

mapping and expanding steps) in FSRCNN. The use of the low-res image as input in the310

FSRCNN contributed to the remaining reduction in computational cost of network train-311

ing. The computation of FSRCNN-ESM only provides a speed up of 6x over the DeepSD312

for a upscaling factor of four. The increase in cost of FSRCNN-ESM as compared to the313

base FSRCNN is due to the addition of new patch extraction, nonlinear mapping and314

reconstruction steps after the deconvolution step in FSRCNN-ESM. The combination315

of these new steps is equivalent to a full SRCNN in itself that uses the full HR image316

size as an input, but with narrower filters. The use of narrower filters in these steps then317

still allows for a faster training of the overall FSRCNN-ESM network as compared to the318

DeepSD.319

4 Summary and Discussion320

We apply a novel super-resolution based approach for downscaling ESM data that321

uses a modified version of the FSRCNN method. We find that this FSRCNN-ESM is able322

to map low resolution climate images to a four times higher resolution with a better skill323

than DeepSD, FSRCNN and bicubic interpolation; for surface radiative fluxes and large324
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scale and convective precipitation; while remaining computationally inexpensive to train.325

Our FSRCNN-ESM is also able to downscale images in a single-step process and with-326

out need for access to GPUs for training. The FSRCNN-ESM as a result is a more ap-327

prochable method of downscaling using machine learning.328

This study focused on reconstructing monthly averaged images. In the future, we329

will explore the application of FSRCNN-ESM for downscaling higher temporal resolu-330

tion data like daily and sub-daily data, and target extreme events. Also, FSRCNN-ESM331

does not consider the concurrency of images of the different variables - the network is332

agnostic of the presence of data for other variables. In the future, we plan to use multi-333

channel approaches (Vandal et al., 2018; Stengel et al., 2020; Cheng et al., 2020) using334

all the concurrent variables simultaneously in the network for reconstruction allowing335

the network access to more correlated data, which may improve reconstruction skill. We336

also plan to evaluate the FSRCNN-ESM against other recent machine learning approaches337

that have been used for downscaling, for example, SRGAN (Stengel et al., 2020), and338

ResLap (Cheng et al., 2020), all of which have been shown to perform better than the339

SRCNN or other approaches for different variables, regions and scaling factors.This study340

is the first to use FSRCNN for ESM data and we applied the original version of FSR-341

CNN here, and with some improvements (FSRCNN-ESM), to demonstrate its utility.342

We plan to explore the applicability of the latest advances in FSRCNN and SRCNN to343

ESM downscaling in the future. Some advanced applications include using GANs as a344

latent blank to improve image reconstruction on an SRCNN (Chan et al., 2021), using345

a student-teacher supervised learning approach to training (L. Wang & Yoon, 2022), ap-346

plying skip connections to alleviate the vanishing gradient problem (Zou et al., 2021),347

and the use of a multi-path residual to improve efficiency in the SRCNN (Q. Wang et348

al., 2021).349

The resolution of finer scales in the high resolution model and scale-agnostic na-350

ture of current sub-grid scale physical parameterizations used in climate models imply351

that a low-resolution model simulation is not statistically equivalent to coarsened data352

from a high-resolution model. For example, the simulation of precipitation extremes is353

found to be stronger in high resolution simulations than the low resolution simulations,354

even after conservative mapping of high-resolution simulation data to the low-resolution355

grid (Wehner et al., 2010b, 2014; Mahajan et al., 2015). In order to apply FSRCNN-ESM356

directly to low-resolution model output to generate high resolution images at the skill357
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of a high resolution simulation, we would thus require a bias-correction step. We plan358

to explore traditional bias-correcting methods as well as utilize machine learning approaches359

for it. We would also explore the use of nudged simulations or regionally refined mod-360

els to generate equivalent pairs of low-resolution and high-resolution model simulations361

that could be used for training a FSRCNN-ESM network.362
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Figure 2. Super resolution reconstruction results for a sample in January.463
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Figure 3. L1 and L2 error computed for all reconstruction methods on the held out testing

dataset (a-h) and the cumulative training time in minutes (i) and the training loss (j) for the

DeepSD, FSRCNN and FSRCNN-ESM over 100 epochs.
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