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Abstract

Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to ambient seismic

vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the earthquake signals pollute the

ambient noise’s statistical properties necessary for ambient-noise seismology analysis. Separating ambient noise from earthquake

signals would thus benefit multiple seismological analyses. This work develops a multi-task encoder-decoder network to separate

transient signals from ambient signals directly in the time domain for 3-component seismograms. We choose the active-volcanic

Big Island in Hawai’i as a natural laboratory given its richness in transients (tectonic and volcanic earthquakes) and diffuse

ambient noise (strong microseism). The approach takes a noisy seismogram as input and independently predicts the earthquake

and noise waveforms. The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset

(STEAD) and on the local noise of a seismic station. We estimate the network’s performance using the Explained Variance

(EV) metric on both earthquake and noise waveforms. We explore different network architectures and find that the long-short-

term-memory bottleneck performs best over other structures, which we refer to as the WaveDecompNet. Overall we find that

WaveDecompNet provides satisfactory performance down to signal-to noise-ratio (SNR) of 0.1. The potential of the method

is 1) to improve broadband SNR of transient (earthquake) waveforms and 2) to improve local ambient noise to monitor the

Earth structure using ambient noise signals. To test this, we apply a short-time-average to a long-time-average (STA/LTA)

filter and improve the detection 27 times. We also measure single-station cross-correlation and autocorrelations of the recovered

ambient noise and establish their improved coherence through time and over different frequency bands. We conclude that

WaveDecompNet is a promising tool for a range of seismological research.

1



A multi-task encoder-decoder to separating earthquake and ambient1

noise signal in seismograms2

Jiuxun Yin1, Marine A. Denolle2, Bing He33

1Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA4

2Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA5

3Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA6

∗Corresponding author: Jiuxun Yin (jiuxun yin@g.harvard.edu)7

1



Abstract8

Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to9

ambient seismic vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the10

earthquake signals pollute the ambient noise’s statistical properties necessary for ambient-noise seismology analysis.11

Separating ambient noise from earthquake signals would thus benefit multiple seismological analyses. This work12

develops a multi-task encoder-decoder network to separate transient signals from ambient signals directly in the time13

domain for 3-component seismograms. We choose the active-volcanic Big Island in Hawai’i as a natural laboratory14

given its richness in transients (tectonic and volcanic earthquakes) and diffuse ambient noise (strong microseism).15

The approach takes a noisy seismogram as input and independently predicts the earthquake and noise waveforms.16

The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset (STEAD)17

and on the local noise of a seismic station. We estimate the network’s performance using the Explained Variance18

(EV) metric on both earthquake and noise waveforms. We explore different network architectures and find that the19

long-short-term-memory bottleneck performs best over other structures, which we refer to as the WaveDecompNet.20

Overall we find that WaveDecompNet provides satisfactory performance down to signal-to noise-ratio (SNR) of 0.1.21

The potential of the method is 1) to improve broadband SNR of transient (earthquake) waveforms and 2) to22

improve local ambient noise to monitor the Earth structure using ambient noise signals. To test this, we apply a23

short-time-average to a long-time-average (STA/LTA) filter and improve the detection 27 times. We also measure24

single-station cross-correlation and autocorrelations of the recovered ambient noise and establish their improved25

coherence through time and over different frequency bands. We conclude that WaveDecompNet is a promising tool26

for a range of seismological research.27
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1 Introduction28

A seismogram is a record of how the ground moves and usually contains a rich mix of different seismic signals.29

They may be transient such as the ground motions caused by earthquakes, surface processes (glacier sliding (Weaver30

and Malone, 1979; Lipovsky et al., 2019), landslides (Keefer, 1984; Weichert et al., 1994)), human activities (cars,31

trains, ships, machinery from factories, (Schippkus et al., 2020)). They may be more diffuse such as the microseism32

(Cessaro, 1994), the seismic hum (Rhie and Romanowicz, 2004), river noise (Burtin et al., 2008), urban life (Lecocq33

et al., 2020). The transient motions capture the seismic signature of their source (earthquakes, landslides, glacial34

sliding) and thus are essential information to understand these processes (event detection, location, discrimination,35

source properties). The diffuse ambient seismic field, on the other hand, found its use in correlation seismology to36

extract spatial and temporal variations in the Earth structure (Aki, 1957; Claerbout, 1968; Shapiro et al., 2005; Sens-37

Schönfelder and Wegler, 2006). Therefore, separating the earthquake and ambient noise signals can significantly38

improve seismological studies from different perspectives: robust event source characterization and robust imaging39

and monitoring of the Earth’s interior.40

Many studies across the sciences have focused on removing the diffuse ambient data from the transient signals. In41

seismology, the diffuse field is often considered as “noise”. The task of denoising earthquake signals aims to improve42

the signal quality, and the most commonly used method is Fourier-based spectral filtering. This approach assumes43

that the earthquake and ambient noise signals are well separated in the frequency domain. Although this technique44

has been proven to be effective in numerous cases, it can distort the signals and/or cause artifacts around the impulsive45

signals (Douglas, 1997; Mousavi and Langston, 2017).46

Earthquake and ambient noise signals often overlap in the frequency domain, and direct filtering may be challenging to47

separate them (Peterson et al., 1993; McNamara et al., 2019). Denoising using time-frequency representations of the48

signal is another widely applied and effective technique to separate the earthquake and ambient noise signals when they49

overlap. Many innovative algorithms and methods have been developed, for example, using time-frequency transforms50

such as the Stockwell S-transform (Stockwell et al., 1996), the Radon transform, the wave-packet transform, the51

continuous wavelet transform, or others using f-x or f-k filtering, singular spectrum analysis, sparse transform-based52

denoising, which are extensively reviewed and discussed in Mousavi and Langston (2017). Most of these transform-53

based denoising methods achieve noise suppression through thresholding methods, that is, determining some hard-54

(Donoho and Johnstone, 1994) or soft- (Chang et al., 2000) thresholds to separate seismic and noise signals. Although55

those transform-based methods are shown to be very practical and possible to be automated (Mousavi et al., 2016;56
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Mousavi and Langston, 2017); they still require manual intervention, and the parameter tuning is often performed57

using trial-and-error approaches.58

With the recent leap of computational power, memory and data storage, machine learning (ML) has provided a diverse59

set of powerful tools in the geosciences (Bergen et al., 2019). Many ML algorithms are built to (1) automatically60

perform complex prediction task; (2) create a representation that approximates numerical simulations or captures61

relationships; (3) reveal new patterns, structures, or relationships from data (Bergen et al., 2019). ML algorithms are62

powerful in many different seismological tasks, including but not limited to waveform classification and earthquake63

detection (Li et al., 2018; Perol et al., 2018; Kong et al., 2019; Mousavi et al., 2019b, 2020; Beroza et al., 2021;64

Johnson et al., 2021), phase picking and association (Li et al., 2018; Meier et al., 2019; Zhu et al., 2019a; Liu et al.,65

2020; Mousavi et al., 2020; Walter et al., 2021), source location and characterization (Perol et al., 2018; Mousavi and66

Beroza, 2019; Ren et al., 2020; van den Ende and Ampuero, 2020; Kuang et al., 2021; Münchmeyer et al., 2021a;67

Zhou et al., 2021), earthquake early warning (Li et al., 2018; Münchmeyer et al., 2021b), and many others.68

Machine-learning methods have also been developed to denoise and decompose the seismic data (Chen et al., 2016;69

Siahsar et al., 2017; Saad et al., 2018; Zhu et al., 2019b; Tibi et al., 2021). Saad et al. (2018) develop a stacked70

denoising auto-encoder to smooth the ambient noise and output a time series for better arrival time detection, in71

a similar fashion to an impulsive filter (Allen, 1978). Zhu et al. (2019b) develop a DeepDenoiser network, which72

applies deep learning to the short-time Fourier transform and focuses on classification on pixels of the spectrogram of73

seismograms (Zhu et al., 2019b; Tibi et al., 2021).74

This study aims to separate the waveforms of both earthquake and ambient noise signals through the ML network,75

thereby benefiting both earthquake and ambient-noise seismology. We develop a new multi-task encoder-decoder ML76

network, which we name WaveDecompNet, to separate both types of signal simultaneously. We treat the problem as77

a time series extrinsic regression (Tan et al., 2021) and directly work on the seismic data in the time domain. This78

setting can save human intervention by not tuning parameters for the time-frequency representation and provides the79

excellent potential to be applied in a near real-time framework given its lower computation cost. The performance of80

the WaveDecompNet is noticeable even at a low signal-to-noise ratio.81

We take the Big Island of Hawai’i as a natural laboratory of the seismically complex environment. Oceanic islands82

record strong microseismic signals, which are the basis for ambient noise seismology (Longuet-Higgins, 1950). The83

volcanic region also exhibits dynamic tectonics and volcanic activities. We choose the broadband seismic station84

IU.POHA at Pohakuloa, Hawai’i. The richness of this dynamical system presents particular challenges in monitoring85

the volcano-tectonic activities and the temporal evolution of structural changes from ambient-noise seismology.86
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We further test the applicability of our technique by performing two standard single-station measurements. We first87

test the improvements on detecting transients by applying the standard short-time-average through long-time-average88

(STA/LTA) method (Allen, 1978) and find increased trigger rates and potentially improved picking accuracy. We also89

measure the coherence of single-station ambient-noise cross-correlation functions and find increased stability in the90

coda of these functions. Our results highlight the potential for WaveDecompNet to improve seismograms used in both91

event-based seismology and noise-based seismology.92

2 Network design of WaveDecompNet93

The multi-task encoder-decoder network handles the time series seismic data directly. The input to the network is 1-94

minute long, 3-component (East-West, North-South, and up-down) raw seismograms. The output of the network is two95

1-minute long, 3-component seismograms (earthquake and noise, Fig.1). In order to seek computational efficiency, no96

pre-processing of the data is applied except the amplitude normalization of the waveforms.97

2.1 Network architecture98

The encoder-decoder network is a popular network design in ML problems, such as generating dialogues (Serban99

et al., 2017), semantic image labelling (Badrinarayanan et al., 2015, 2017), detection of image forgeries (Bappy et al.,100

2019), and prediction of vehicle trajectory (Park et al., 2018). In this study, our encoder-decoder network consists of101

3 major parts: the encoder branch, the two decoder branches, and two bottleneck blocks in between:102

1. The role of the encoder is to extract useful, high-level features from the seismic time series. Through training103

with sufficient data and updating its parameters, the encoder aims to learn features of the input data that can help104

characterize the earthquake and ambient noise signals. We use one-dimensional (1D) convolutional layers with105

an increasing number of kernels to extract high-level features with a minimal number of parameters (Fig.1).106

The stride of the convolution is adjusted to down-sample the time series along the time axis. We have tested107

the use of MaxPooling instead of convolutional strides but found poorer network performance. After each 1D108

convolutional layer, batch normalization is applied to normalize the output to zero-mean and unit variance.109

Finally, a rectified linear unit function (ReLU) is used as the activation function to add non-linearity to the110

network for better regression from time series to time series.111

2. The role of the decoder is to translate the learned features from the encoder branch and reconstruct the separated112
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Figure 1: The multi-task encoder-decoder separates earthquake and ambient noise signals. The network consists of 5 main blocks: the encoder
branch, two bottlenecks, and two decoder branches. The encoder and decoder branches contain 7 one-dimensional convolutional and transpose
convolutional layers. The layer parameters “x kr y, stride=z” refer to x kernels with y features and stride of z. Each convolutional or transpose
convolutional layer is followed by a batch normalization (BN) layer and a ReLU activation layer. The structure of the bottleneck block is tested and
discussed in the main text for details. 6 residual connections (skip-connection layer by summation) directly connect the encoder to the decoder to
improve the convergence of training and prediction performance (He et al., 2016; Ronneberger et al., 2015; Zhu et al., 2019a).
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earthquake and noise time series. A two-branch decoder block handles both the separated earthquake and noise113

waveforms individually and performs better than a single branch network that only outputs the earthquake114

signal. The branches are composed of 1D transpose convolutional layers. In symmetry with the encoder block,115

the number of kernels gradually decreases, and we manually select the stride to incorporate the high-level116

features back into the time domain. Like the encoder block, we also apply batch-normalization and ReLU117

activation following each 1D transpose convolutional layer. The parameters of the two branches are learned118

independently.119

3. The bottleneck blocks link the encoder and decoder blocks. Their purpose is to learn the mapping relation120

between the encoder-extracted features of the composite waveform (earthquakes and noise) and the features of121

the separated earthquake and noise time series, respectively. The design of the bottleneck block greatly impacts122

the performance of the algorithm and is subject to investigation in this study.123

2.2 Data124

We use the earthquake waveform data from the STEAD (Mousavi et al., 2019a) (STandford EArthquake Dataset,125

available at https://github.com/smousavi05/STEAD) because of its broad coverage of global earthquakes.126

This data set is curated to provide many high signal-to-noise ratio waveforms of local (source-receiver distance less127

than 350 km) earthquakes and a set of “noise” (non-earthquake) signals recorded globally. There are 234,526 samples128

of 3-component seismograms of ambient noise and 1,030,231 samples of 1-minute 3-component seismograms associ-129

ated with 450,000 earthquakes located at various regions globally (Mousavi et al., 2019a). We randomly pick 144,000130

STEAD earthquake waveforms based on their SNRs, which is defined as:131

SNR =
||S||2

||N ||2
, (1)

where ||S||2 and ||N ||2 are the power of signal and noise, respectively. We only keep the highest quality earthquake132

waveforms with SNR > 104 in the STEAD dataset to approximate a noise-free signal, then lowpass-filter the waveform133

below 5 Hz and down-sample them from 100 Hz to 10 Hz.134

The data set for ambient noise windows combines a “global noise” from STEAD noise waveforms with a “local noise”135

from IU.POHA station. We randomly pick 100,000 3-component STEAD samples, low-pass filtering first and then136

down-sample them to 10 Hz. For the “local noise”, we select noise waveforms from 1-month-long continuous seismic137
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data recorded by IU.POHA (from July 31, 2021, to September 1, 2021), and down-sample the data to 10 Hz. The138

continuous data may contain known and unknown earthquakes. To keep the spectral features of the noise and reduce139

the effects from these transient signals, we shuffle the phases as follows. First, we transform the seismic data into the140

Fourier domain, which gives the amplitude and phase spectra. We keep the amplitude spectrum but assign a random141

phase using a uniform distribution −π to π to each frequency value, then we apply the inverse Fourier transform. We142

obtain 44,000 samples of 1-minute ambient noise time series.143

To represent more time series for better generalization, we apply two strategies of data augmentation (Zhu et al., 2020).144

First, we shift the arrival time of earthquake signals randomly in a uniform distribution of -30 to 60 s to handle the145

uncertain arrival time of earthquake signals in the real application, and allow for a redistribution of the weights in the146

encoder 1D convolutional layers. Second, we randomly scale the amplitude of earthquake waveforms related to the147

noise signals to increase the range of SNR from 10−2 to 104. We linearly stack the shifted and scaled earthquake and148

ambient noise waveforms to generate the composite waveforms. We report that the resulting SNR of our training data149

is uniformly distributed in the logspace.150

Normalization of the input data is necessary to stabilize the optimization. We use a standard scaler to normalize the151

time series to zero-mean and unit-variance. We rescale the earthquake and noise signals using that factor after the two152

decoder branches of WaveDecompNet. The loss error is the mean square error (MSE) function, and the training is153

performed using the Adam optimizer (Kingma and Ba, 2014).154

The training, validation, and testing data sets are split using 60%-20%-20%. Only the training data are used to train the155

network, update the model parameters and minimize the loss function. We use a batch size of 128 during training. The156

validation data is used to track over-fitting during the training. Over-fitting is also mitigated with an early stopping157

strategy (https://github.com/Bjarten/early-stopping-pytorch) with the patience of 10; that is,158

the training automatically terminates if the value of validation loss remains unimproved for 10 epochs.159

After training, we use the test data set to evaluate the model performance, especially for choosing the best one from160

models using different bottlenecks (more details follow in the next section).161

After training, we evaluate the model performance on the test data set. Figures 2 - 3 show two examples with different162

types of noise signals: Figure 2 contains the regional noise from the IU.POHA station, which is energetic mostly163

low-frequency below 1 Hz and characteristic of microseism at a dominant period of 7 s, Fig.3 contain the STEAD164

noise signal, which is broadband and rich in high frequencies in a band that overlaps with the earthquake signal.165

Visually, the earthquake waveforms are relatively well recovered over a broad range of frequencies. In particular, it is166
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(a)

(b)

Figure 2: Example 1 of waveform separation using one of the bottleneck architecture (LSTM, see section 2.3). (a) 3-component (E-East, N-North,
Z-vertical from top to bottom) velocity seismograms normalized with the same scaling factor of maximum amplitude in each component. (left
panels) One STEAD earthquake waveform (in red) and IU.POHA local noise is stacked to get the noise input waveform (in black). (Middle panels)
Comparison between the separated earthquake waveforms (blue) with the ground truth earthquake waveform (red). (right panels) Comparison of
the separated noise waveform (blue) and ground truth noise waveform (red). (b) 3-component waveform Fourier amplitude spectra. (Top panels)
The spectrum of the input waveform is shown in black, with the ground truth earthquake spectrum (in red), the separated earthquake spectrum (in
blue). (Bottom panels) The ground truth noise spectrum is shown in red, and the separated noise spectrum is shown in blue.
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(a)

(b)

Figure 3: Example 2 of waveform separation. Same as in Figure 2 except that the noise waveform is from the STEAD dataset.

10



able to decompose the signals with overlapping frequency content (Figures 2 - 3 (b)), which is often a challenge for167

filtering-based denoising methods (Douglas, 1997; Mousavi and Langston, 2017).168

2.3 Choice of the network bottleneck169

The bottleneck block aims at learning the mapping relation between features in the encoder and decoder, and those170

features are necessary to reconstruct the separated signals in the decoder blocks. There are multiple choices for the171

bottleneck structure in time series analysis. We explore five of them and evaluate their impacts on model performance:172

1. None: no specified bottleneck. The encoder and decoder are directly connected. The total number of trainable173

parameters in the network is 78,090.174

2. Linear: a linear regression layer between the encoder and the decoder. The total number of trainable parameters175

in the network is 86,410.176

3. LSTM: a bidirectional long-short-term-memory (LSTM) layer between the encoder and the decoder (Hochreiter177

and Schmidhuber, 1997). The total number of trainable parameters in the network is 178,442.178

4. Attention mechanism: a multi-head attention layer between the encoder and the decoder (Vaswani et al., 2017).179

We use a 4-head dot-product self-attention layer with a dropout probability of 0.2. Other numbers of heads were180

tested but did not significantly affect the results. The total number of trainable parameters in the network is181

110,858.182

5. Transformer: the standard transformer encoder layer made up of self-attention and feed-forward network (Vaswani183

et al., 2017). The transformer model has been shown to be a powerful tool in different seismological applica-184

tions such as earthquake detection and phase picking (Mousavi et al., 2020), earthquake source characterization185

(Münchmeyer et al., 2021a) and early warning (Münchmeyer et al., 2021b). We only use one layer but find186

adding more layers can greatly downgrade the model performance, which we attribute to insufficient training.187

The total number of trainable parameters in the network is 640,394.188

2.4 Model Training189

We use the identical training and validation data set to train all these networks. We train and validate over the batch190

size of 128. We require each network to be trained for at least 30 epochs. After 30 epochs, we apply the same early191
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stopping patience of 10 epochs. These steps can help guarantee the convergence of each model’s optimization while192

avoiding over-fitting (Fig.4).193

The overall training behaves properly for all models. During model training, the training loss curve keeps decreasing.194

The validation loss curve decreases and approaches the training loss curve as the training goes, and finally stays almost195

constant at some epoch, which indicates the convergence of optimization and the model is no longer improved. LSTM196

and attention models achieve the minimum final loss value for both training and validation data sets (Figs. 4 (c)-(d)).197

The transformer model, although with more model parameters than any other models, shows a higher validation loss198

value than that of the LSTM and attention bottlenecks (Fig.4 (e)). The minimal None and Linear bottlenecks exhibit199

the highest final loss values for both training and validation loss (Figs. 4 (a)-(b)). We also show the partial loss200

curves from individual branches of the earthquake and the noise waveforms, approximately half of the total loss. The201

validation loss for the earthquake waveforms is slightly higher than that of the earthquake loss probably due to the202

complexity of transient earthquake signals.203

Next, we test the trained models with the 28,800 samples of the test data set. The test data set is not included during204

the training process, so it can be used to evaluate the model performance. The LSTM and Attention models have205

achieved the minimum mean test loss value of 0.0503 and 0.0557, respectively. The transformer model has a mean206

test loss value of 0.0836. The None and Linear models have mean test loss values of 0.0831 and 0.0893, respectively.207

The distribution of test loss values are also shown in Figure A.1.208

Furthermore, we inspect the waveform fitting for different models. For the same input X (composite waveform), we209

obtain the predicted output/waveform ỹ and compare it with the ground truth waveform y. Other seismic denoising210

studies have reported improved SNR values as performance metrics (Zhu et al., 2019a; Tibi et al., 2021). Tibi et al.211

(2021) also use the signal-to-distortion ratio (SDR) metric (Nakajima et al., 2018), but the SDR metric is unbounded.212

Here, we calculate the EV score for both separated earthquake waveforms and ambient noise waveforms: EV =213

1 − V ar(y−ỹ)
V ar(y) , Var means variance of the time series. The best possible EV score is 1.0, corresponding to perfect214

waveform reconstruction. An EV score of 0.0 means that no waveform has been reconstructed (ỹ = 0). A negative215

EV score means a false waveform reconstruction, for example, in the time window where there is no earthquake216

waveform (y ≈ 0) but the network reconstructs a spurious waveform (ỹ ̸= 0).217

The comparative results are shown in Fig.5. All models can reconstruct both earthquake and noise waveforms with218

over half of the tested samples that achieve a high EV score around 1 (Fig.5). The network with the LSTM bottleneck219

recovers most test samples with a high EV score of around 1 for the earthquake waveforms (Fig.5 (a)). There is a220

bimodal distribution in the EV scores for earthquake waveforms. All models show two peaks around EV scores of 1221
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Figure 4: Training curves of networks with different bottlenecks: (a) None, (b) Linear; (c) LSTM; (d) Attention; (e) Transformer. Dots and solid
lines indicate the loss from training data set and validation data set, respectively. Colors indicate different part of loss: total loss in black, earthquake
waveform (decoder 1) in blue and noise waveform (decoder 2) in green. The red star indicates the loss from test data set.
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and 0, especially when the earthquake-to-noise ratio is less than 1. The bimodal pattern is suggestive of the behaviors222

of this encoder-decoder network. In cases that the network can recognize, the network can reconstruct the waveforms223

accurately. In cases that the network can hardly recognize, the network tends to output a time series of zeroes, which224

leads to almost 0 EV score. All networks show similar performance in EV score for the noise waveforms (Fig.5225

(b)). We find no obvious bimodal pattern in the ambient noise reconstruction, which indicates a lower likelihood of226

outputting strictly zero noise. There are, however, spurious reconstructions of the noise waveforms for lower noise-to-227

earthquake amplitude ratios, or when transient signals dominate the time series (Fig.5 (b)).228

Moreover, we explore how the EV score varies with SNR for both earthquake (Fig.5 (c)) and ambient noise wave-229

forms (Fig.5 (d)). First, all models present the same pattern that the EV score monotonically increases with the230

corresponding amplitude of signals, quantified by SNR for earthquake waveforms or 1/SNR for ambient noise wave-231

forms, respectively. This is well expected because it is easier for the ML network to learn the intrinsic features of the232

signal waveforms and reconstruct the earthquake and ambient noise signals for higher amplitude. All models perform233

similarly. Take the case of earthquake waveform as an example (Fig.5 (a)). For SNR > 101, all models can correctly234

separate the earthquake waveform almost perfectly (EV score ∼ 1). The performance of any model drops as the SNR235

decreases. For example, at SNR = 1, the median EV score of models is about 0.8 to 0.9, and LSTM has the best236

performance. The discrepancy between model performance is exacerbated at low SNR. For instance, when the SNR237

is small, = 10−1 = 0.1, it is visually difficult to extract the earthquake signal. However, the LSTM model can still238

achieve a median EV score of about 0.6, the Attention model has a median EV score of 0.5, the None model has a me-239

dian EV score of 0.48, the Linear model has a median EV score of about 0.4, and the Transformer model has a median240

EV score of 0.3. For even smaller SNR values, = 10−1.8 = 0.02, all models tend to fail with most EV score being241

0. The variance of the EV scores also increases with decreasing SNRs, indicating that there are more uncertainties in242

the reconstructed waveforms. Similar behaviors can be observed for the EV score of ambient noise part, with larger243

amplitudes of noise yields to better model performance (Fig.5 (b)).244

One possible explanation for the different performances between bottlenecks architectures is the difference in model245

complexity. None and Linear models have fewer parameters than other models, so they may not be enough to un-246

derstand the internal features of the seismograms properly. The None and Linear models have higher training loss247

(about 0.08) than other models,suggesting a not good model. The Linear model presents a larger loss value (Fig.4 (b))248

and poorer waveform fitting (Fig.5) than the None model, implying the inability of linear regression as the bottleneck249

layer for this waveform decomposition problem. On the other hand, the Transformer model is more complex than the250

other models. Its mean test loss (0.0836) is slightly lower than that of the Linear model (0.0893), and the earthquake251
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waveform fitting is almost the same as the Linear model (Fig.5 (a)) but the noise waveform fitting is similar to that of252

the None model (Fig.5 (b)). The LSTM and attention models share a similar overall complexity and achieve the lowest253

test loss and the most stable training. The similarity and systematically low values of the training and validation losses254

for the LSTM and the attention bottleneck may also indicate that those two models have already well “learned” the255

features in the training data sets (Fig.4 (c) and (d)).256

To summarize, we evaluate the performance of models with different types of bottleneck models by testing the same257

test data set. We find that the model performance can differ due to model complexity. In general, the order of258

performance of our model is LSTM > attention > None > Linear ≈ Transformer based on the variation of EV259

score with SNR. The LSTM bottleneck outperforms other bottlenecks in reconstructing both earthquake and noise260

waveform, especially for a situation with low SNR (Fig.5 (c)). It is interesting to note that LSTM performs better than261

the attention and Transformer models, which implies that the sequential information is essential for reconstructing262

the waveforms. We speculate that the feature extraction of the encoder branch suffices at representing the temporal263

sequencing in the bottleneck layer. The conventional limitations of LSTM that long memory is not long enough are264

no longer important.265

3 Application to continuous seismic data266

We now apply WaveDecompNet to continuous time series. It is straightforward to apply the model to any continuous267

data, provided that it has the same sampling rate. We select continuous recordings at IU.POHA from July 31, 2021,268

to September 1, 2021. We first down-sample the three-component 1-month-long waveforms to 10 Hz. Next, the269

typical pre-processing steps to apply machine-learning models is a) windowing to 1-minute long time series (600270

samples) without overlap and b) applying the data normalization using the standard scaler. The most intuitive order271

to apply these processing steps are a), then b). We found that ordering a) then b) leads to spurious effects when272

concatenating back the 1-minute waveforms into a 1-month long waveform due to offset (means) and trends that273

rendered the application to continuous time series unpractical. Instead, we experimented with the order of b) then a)274

and found much better performance without artifacts when stitching back the waveforms.275

We normalize the entire month-long time series by removing its mean and scaling with its standard deviation (STD) to276

have the zero-mean, unit-variance time series. We slide through the data with 1-minute long windows (600 samples)277

without overlap. We apply the WaveDecompNet to all 1-minute long windows, concatenate all ML-filtered windows,278

and scale back the 1-month long time series with the standard deviation and mean for both the earthquake/transient279
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time series and the noise time series.280

We show the results of separating transients and noise waveforms in Figure 6. Most of the transient signals have been281

well separated, with a significantly suppressed noise level (Fig.6 (b)). The residuals between the original waveform282

and the reconstructed waveforms are obtained from subtracting the earthquake and noise recovered waveform from283

the input waveform (Fig.6 (d)). Overall, the residuals are low. However, they are large between August 10, 2021,284

and August 20, 2021, and these are due to the teleseismic (30◦ to 100◦ angular distance) earthquakes. We mark the P285

arrival, calculated from TauP with IASP91 Earth model, of these large M5.5+ teleseismic earthquakes to illustrate that286

in Figure 6. No teleseismic waveform was used during the training, in part because the input data length is restricted to287

one minute. Therefore, our model does not handle longer seismic periods at this stage, and the coda reconstruction of288

these long waveforms is imperfect. Nevertheless, the general envelop pattern of those earthquake waveforms can still289

be recovered. In the following section, we test the validity and usefulness of these transient waveforms by applying a290

standard impulsivity filter most commonly used detection method in seismology.291

The separated noise waveforms exhibit more leveled, constant amplitudes throughout the month (Fig.6 (c)). Some292

transient signals remain, especially in the coda of teleseismic earthquakes. For additional evaluation of the usefulness293

of this network, we apply the single-station correlation functions used in ambient-seismic noise monitoring in a later294

section.295

Most of the previous denoising networks, such as the DeepDenoiser (Zhu et al., 2019b), construct the noise time series296

from direct subtraction of the “denoised” earthquake waveforms from the raw data. Unlike the DeepDenoiser, the297

WaveDecompNet has two branches that learn features of the earthquake and noise waveforms, somewhat indepen-298

dently since their only connection is through a residual connection to the encoder branch. Because the noise window299

is not the linear difference between the original and the transient/earthquake signal, we also investigate the waveform300

residuals and show them in Figure 6 (d). In general, the amplitudes of the residual waveforms are small (about 10301

times lower than the ambient noise in the standard deviation of waveform amplitude, Fig.6 (c)) except for some large302

residuals during large teleseismic events. Including more teleseismic earthquake waveforms in the model training can303

potentially help to mitigate those large residuals, and we leave as a future direction to explore.304

3.1 Application to detecting earthquakes using STA/LTA trigger305

We apply a recursive short-term-average (STA) to long-term-average (LTA) trigger method (STA/LTA) to the contin-306

uous data (Vanderkulk et al., 1965; Allen, 1978; Withers et al., 1998). This particular STA/LTA algorithm produces307
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Figure 6: Application to continuous seismic data from an island station IU.POHA. (a) One-month raw waveform from IU.POHA; (b) Separated
earthquake waveform; (c) Separated noise waveform; (d) Waveform residuals from subtracting the separated earthquake and noise waveforms from
the raw waveform. The yellow stars label the P wave arrivals, TauP calculates with IASP91 velocity model(Kennett and Engdahl, 1991), of large
earthquakes (M5.5+) between August 10, 2021, to August 20, 2021, from the International Seismological Centre catalog provided by default by
Obspy and IRIS FDSN event server.
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Figure 7: Example of STA/LTA detection algorithm: (a) original waveform, (b) separated earthquake waveform. (Top panels) Recursive STA/LTA
ratio from the waveform in the chosen window. Black solid and dashed lines indicate the trigger thresholds on and off, respectively. (bottom panels)
Red, blue and green lines indicate E, N, Z components. Black crosses show the picks from STA/LTA. Gray vertical bars indicate the edges of the
1-minute time windows when applying WaveDecompNet. The inset figures show the zoom-in waveforms within the boxes.

a decaying exponential impulse response, and that is sharper impulse than the original STA/LTA algorithm (Withers308

et al., 1998). The settings of the STA/LTA parameters are chosen from Trnkoczy (2009) and also from trial-and-error309

tests. The short time window length is set at 2.0 s, the long time window length is set to 60.0 s, the on-threshold is310

6.0, and the off-threshold is 2.0. Because we simultaneously run STA/LTA detection on 3-component waveforms, we311

perform a coincidence trigger with a threshold of 2, which means that a detection trigger occurs when the STA/LTA312

ratios of any of the two components exceed the on-threshold.313

The STA/LTA time series are a lot cleaner in the separated earthquake waveforms than in the original seismograms314

(Fig.7), which is manifested in two aspects. First, the increased signal-to-noise ratio of the separated earthquake315

waveforms improves the accuracy of the detection time automated by STA/LTA triggers. For the example shown in316
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Fig.7, the arrival time cannot be correctly picked in the raw data using automated STA/LTA thresholding detector317

(Fig.7 (a)). Nevertheless, with the noise separated by WaveDecompNet, the event arrival can be easily detected, and318

the accuracy of picking the first arrivals can be improved by about 15 seconds (Fig.7 (b)). Second, we can detect319

many smaller signals (either smaller magnitude or more distant events) buried in the noise, which is suggested by the320

increased number of coincidence triggers in the separated waveform, from 38 in the original time series to 1031 in321

the separated waveforms. The wavefield separation increases the detection by a factor of 68 in the current STA/LTA322

settings. This ratio varies with the choice of threshold, from 4 (1899 events vs. 478 events) for a coincidence threshold323

of 1 and 7 (147 events vs. 19 events) for a coincidence threshold of 3. Tuning the parameters of this detector is not the324

scope of this study but would be necessary in the deployment of this algorithm in specific cases.325

3.2 Application to ambient noise monitoring using single-station cross-correlations326

Single-station correlations are related to the zero-offset Green’s function (Claerbout, 1968; Draganov et al., 2009;327

Saygin et al., 2017; Clayton, 2020). Monitoring phase changes in the single-station measurements have enabled the328

monitoring of changes in the near-surface environment that occur during earthquakes (Wegler and Sens-Schönfelder,329

2007; Viens et al., 2018), volcanic unrest (De Plaen et al., 2016), and to monitor shallow hydrology (Illien et al., 2021).330

Here, we do not attempt to verify that the single-station correlation is proportional to the Green’s function. Instead,331

we evaluate the temporal stability of the single-station cross-correlations.332

We calculate all 9 components of the correlation tensor. We select 1-minute long windows, pad them with zeroes from333

600 samples to 2048 samples (204.8 s). We then follow the spectral method from Viens et al. (2020) to calculate the334

ambient noise single-station correlation function (ACF):335

ACFij(t) = F−1(
âiâ

∗
j

|âi||âj |
), (2)

where i, j corresponds to components (E, N, and Z), âi is the Fourier transform of the i-component waveform, ∗
336

represents the complex conjugate, F−1(·) is the inverse Fourier transform. We whiten the amplitude spectrum using a337

running mean as in conventional processing (Bensen et al., 2007) | · | of 32 samples in the frequency domain.338

We sub-stack the correlations functions every 6 hours to evaluate their stability through time. We show the causal part339

(positive lag) of correlation functions in different frequency bands: Low Frequency (LF) 0.1 - 1.0 Hz (Fig.8); Medium340

Frequency (MF) 1.0 - 2.0 Hz (Fig.9); High Frequency (HF) 2.0 - 4.0 Hz (Fig.10). Each figure shows the single-station341
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correlations from the original raw waveforms and ones obtained from the separated waveform.342

We also stack all of the correlations to form a reference stack, from July 31, 2021, to September 1, 2021. We calculate343

the correlation coefficient between each 6-hour stack and the month-stack reference waveform and show them in344

Figure 11. We use the stability of cross-correlation as a success metric of ambient seismic noise recovery.345

Because of transient earthquake signals in the raw waveforms, we can see large fluctuations (mostly reduced ampli-346

tudes) in the correlation functions at all frequency bands, especially for the E-Z, N-Z, Z-E, Z-N functions (Figs.8 - 10).347

These fluctuations in the correlation functions and drops in their coherence arise from transient signals in the original348

time series. However, many of these fluctuations disappear when using the separated noise signals to calculate the349

correlation functions. Furthermore, some of the coda phases that are weak in the original correlation functions appear350

clearly in the correlation functions built from the separated noise. These coda phases potentially correspond to seismic351

wavespeed interfaces or discontinuity beneath the seismic station. With the transient earthquake signals removed,352

WaveDecompNet can help constrain the velocity structure underneath the seismic station. Additional work remains to353

be done to verify the nature of these coda phases and whether they can be related to Earth structure.354

As expected, the improvement on the correlation functions coherence is substantial (Fig.11). As shown in Figures 8 -355

10, the transient earthquake signals can break the coherence among correlation functions, and lead to low correlation356

coefficients between each function and the reference (see Fig.11). On the other hand, the correlation coefficients from357

separated noise mostly have stable values closer to 1, confirming the enhanced coherence of the cross-correlation358

functions from continuous ambient noise data. We find that the coherence from separated noise drops in some time359

windows (for example, day 1 - day 7 in Fig.11 (a) and day 24 - day 30 in Fig.11 (b)). This can be possibly attributed360

to the poor reconstruction of the ambient noise signals. We also notice that for some components, the separated noise361

does not improve the coherence at all, for example, the N-Z component in MF (Fig.11 (b)) and Z-E component in HF362

(Fig.11 (c)). Further study is needed to understand these less-dominant issues in ambient noise applications.363

4 Conclusion and Discussion364

We develop a machine-learning-based model, WaveDecompNet, to separate earthquake and ambient noise signals365

from raw seismic data. We combine the STEAD and local ambient noise to form a sufficient overall data set to train366

and test WaveDecompNet. Our network consists of three parts: one encoder branch, two decoder branches, and two367

bottlenecks. We systematically explore the performance of models using different types of bottlenecks, and we find368
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Figure 8: Single-station cross-correlation and auto-correlation functions filtered in the LF low frequency band (0.1 - 1.0 Hz) for the original raw
waveforms (a) and the separated noise waveforms (b). Green dots show the P wave arrivals of M5.5+ teleseismic earthquakes.
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Figure 9: Same as Figure 8 for the MF medium frequency band 1.0-2.0 Hz.
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Figure 10: Same as Figure 8 for the HF high frequency band 2.0-4.0 Hz.
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the network using LSTM bottleneck has the best performance. Next, we test how well our network can be applied to369

observed continuous data. We apply the trained model directly to a 1-month continuous seismic data at IU.POHA and370

successfully separate the corresponding earthquake and noise signals, except for the long-duration teleseismic signals.371

Next, we apply an automated transient detector (STA/LTA) and an established ambient-noise seismology monitoring372

method to the separated earthquake and noise signals, respectively. Our results show that the quality of both separated373

earthquake and noise signals has been improved significantly. With the same ML filter, we can obtain more STA/LTA374

triggers and a highly coherent ambient-noise correlation function.375

However, there are some limitations to our current method. First, it only includes waveforms from local earthquakes (376

< 350 km). The lack of teleseismic waveforms, especially those from large earthquakes, leads to the poor performance377

of WaveDecompNet when handling the time windows with teleseismic earthquake waveforms. While we extract378

the general patterns of the teleseismic earthquake waveforms correctly, there remain large residuals in the ambient379

noise waveforms and residual waveforms. Second, we only include the local noise from a single island station,380

IU.POHA. We also test with other stations from the Hawaiian Volcano Observatory and find the network trained from381

IU.POHA can still successfully separate the earthquake, but the coherence of ambient noise worsens, and there are382

more waveform residuals. Therefore, a good direction to improve the network performance is to include additional and383

different types of data. For example, we can include teleseismic data for better separation of earthquake waveforms,384

and we should also include the ambient noise waveforms from other stations and regions for a specific regional or385

global ambient noise study.386

Future developments may involve the integration of multiple stations. The combination of multiple stations to combine387

the automated triggered events help reduce the false (non-tectonic) detections. It also helps locate the event and build a388

more complete earthquake catalog. Furthermore, a modification of the network to add more stations may help improve389

the stability of the inter-station cross-correlations, which in turn can be used for better Earth imaging.390

5 Data and resources391

The continuous seismic data from IU.POHA (IU: doi:10.7914/SN/IU) are downloaded using Obspy (available at392

https://github.com/obspy/obspy/wiki). PyTorch machine learning framework (https://pytorch.393

org) is to build and train the network. The module of self-attention bottleneck is based on Chapter 10.5 of the on-394

line book “Dive into Deep Learning” (available at https://d2l.ai/index.html). All the codes to reproduce395

this work are hosted on Github at https://github.com/yinjiuxun/WaveDecompNet-paper, WaveDe-396
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Appendix A540

In this appendix, we show the distribution of the test loss values from all 28,800 test samples for models with different541

bottlenecks.542
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Figure A.1: Distribution of test loss values of the test data set (with 28,800 samples) from different models.

Appendix B543

Because of the internal random steps in the training algorithm, the searching path for optimal model parameters may544

be slightly different, even for the same model initialization (Fig.B.1). Considering that, we fix the model initialization545

and train each model independently for 11 times, and keep the model with longest epoch as the final model.546
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Figure B.1: Each model has been trained for 11 times with the same random seeds for model initialization and data split. The model with longest
epoch has been chosen as the final model.
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