
P
os

te
d

on
1

D
ec

20
22

|C
C

-B
Y

-N
C

4
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
10

02
/e

ss
oa

r.
10

51
01

14
/v

2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Hourly temperature data do not support the views of the Climate
Deniers: Evidence from Barrow Alaska

Kevin F. Forbes1,1

1Energy and Environmental Data Science

December 1, 2022

Abstract

Survey evidence has indicated that a significant percentage of the population does not fully embrace the scientific consensus
regarding climate change. This paper assesses whether the hourly temperature data support this denial. The analysis examines
the relationship between hourly CO2 concentration levels and temperature using hourly data from the NOAA-operated Barrow
observatory in Alaska. At this observatory, the average annual temperature over the 2015-2020 period was about 3.37 oC
higher than in 1985–1990. A time-series model to explain hourly temperature is formulated using the following explanatory
variables: the hourly level of total downward solar irradiance, the CO2 value lagged by one hour, proxies for the diurnal
variation in temperature, proxies for the seasonal temperature variation, and proxies for possible non-anthropomorphic drivers
of temperature. The purpose of the time-series approach is to capture the data’s heteroskedastic and autoregressive nature,
which would otherwise “mask” CO2’s “signal” in the data. The model is estimated using hourly data from 1985 through 2015.
The results are consistent with the hypothesis that increases in CO2 concentration levels have nontrivial consequences for
hourly temperature. The estimated annual contributions of factors exclusive of CO2 and downward total solar irradiance are
very small. The model was evaluated using out-of-sample hourly data from 1 Jan 2016 through 31 Aug 2017. The model’s
out-of-sample hourly temperature predictions are highly accurate, but this accuracy is significantly degraded if the estimated
CO2 effects are ignored. In short, the results are consistent with the scientific consensus on climate change.
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Key Points:

1) At NOAA’s Barrow Observatory in Alaska, the annual temperature during 2015-2020 was about 3.37 oC
higher than in 1985-1990. 2) Virtually all the upward trend in annual temperature through 2015 can be
attributed to higher CO2 concentrations. 3) The model’s out-of-sample predictions are more accurate if the
estimated associations between CO2 and temperature are not ignored.

Abstract

Survey evidence has indicated that a significant percentage of the population does not fully embrace the
scientific consensus regarding climate change. This paper assesses whether the hourly temperature data
support this denial. The analysis examines the relationship between hourly CO2 concentration levels and
temperature using hourly data from the NOAA-operated Barrow observatory in Alaska. At this observatory,
the average annual temperature over the 2015-2020 period was about 3.37 oC higher than in 1985–1990.
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A time-series model to explain hourly temperature is formulated using the following explanatory variables:
the hourly level of total downward solar irradiance, the CO2 value lagged by one hour, proxies for the
diurnal variation in temperature, proxies for the seasonal temperature variation, and proxies for possible
non-anthropomorphic drivers of temperature. The purpose of the time-series approach is to capture the
data’s heteroskedastic and autoregressive nature, which would otherwise “mask” CO2’s “signal” in the data.
The model is estimated using hourly data from 1985 through 2015. The results are consistent with the
hypothesis that increases in CO2 concentration levels have nontrivial consequences for hourly temperature.
The estimated annual contributions of factors exclusive of CO2 and downward total solar irradiance are very
small. The model was evaluated using out-of-sample hourly data from 1 Jan 2016 through 31 Aug 2017. The
model’s out-of-sample hourly temperature predictions are highly accurate, but this accuracy is significantly
degraded if the estimated CO2 effects are ignored. In short, the results are consistent with the scientific
consensus on climate change.

Plain Language Summary

According to the IPCC and other scientific organizations, “it is extremely likely that human influence has been
the dominant cause of the observed increase in global temperatures since the mid-20th century.” However, a
significant percentage of the population does not fully embrace this consensus. Using data from the Barrow
Atmospheric Observatory, this paper assesses whether the hourly temperature data support this apparent
denial. It is first noted that the average annual temperature at Barrow over the 2015-2020 period was about
3.37oC higher than in the 1985-1990 period. The formal analysis employs hourly solar irradiance, CO2, and
temperature data. The model controls for possible non-anthropomorphic drivers of annual temperature and
other factors. The model was estimated using hourly data over the time interval 1 Jan 1985 through 31 Dec
2015. The estimated annual effects of CO2 are significant in magnitude, while the non-anthropomorphic
drivers exclusive of solar irradiance are quantitively unimportant. The model is evaluated over the 1 Jan
2016 through 31 Aug 2017 time interval. The model’s out-of-sample hourly temperature predictions are
highly accurate, but this accuracy is degraded if the estimated CO2 effects are ignored. In short, the results
are consistent with the scientific consensus on climate change.

Index Terms

6620 Science Policy

1630 Impacts of Global Change

1616 Climate Variability

9315 Arctic Region

3270 Time series analysis

1986 Statistical methods: Inferential

Key Words:

CO2 Concentrations, Hourly Temperature, Downward total solar irradiance, Climate Change, Arctic Region,
Alaska

Acronyms: AMAP, Arctic Monitoring and Assessment Program, ARCH, Autoregressive conditional het-
eroskedasticity; ARMA, autoregressive–moving-average; ARMAX, autoregressive–moving-average with ex-
ogenous inputs; ECMWF, European Centre for Medium-Range Weather Forecasts. MFP, multivariable
fractional polynomial; RMSE, root-mean-squared-error.

1. Introduction
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According to the IPCC, “It is extremely likely that human influence has been the dominant cause of the
observed increase in global temperatures since the mid-20th century “(IPCC, 2013, p. 17 ). As early as 2001,
the science academies of Australia, Belgium, Brazil, Canada, the Caribbean, China, France, Germany, India,
Indonesia, Ireland, Italy, Malaysia, New Zealand, Sweden, Turkey, and the United Kingdom all endorsed
the IPCC’s Third Assessment ( Australian Academy of Sciences et al., 2001).A more recent list of scientific
academies that have accepted this view includes the science academies in Japan, Russia, and the USA. (
National Academies of Science, 2005). These institutes are not indicating that human activity is only partly
responsible for climate change. Instead, they have indicated that human activity is the dominant driver.

In the United States, a country in which a nontrivial number of climate deniers hold powerful elected
positions, a group of 18 highly respected scientific organizations explicitly endorsed the scientific consensus
on climate change in a 2009 letter to U.S. policymakers (American Association for the Advancement of
Science, 2009). This Letter was released again in 2016 by a larger group of 31 scientific organizations
(American Association for the Advancement of Science, 2016). The updated Letter makes the following
point:

“Observations throughout the world make it clear that climate change is occurring, and rigorous scientific
research concludes that the greenhouse gases emitted by human activities are the primary driver. This
conclusion is based on multiple independent lines of evidence and the vast body of peer-reviewed science.”
AAAS, 2016

This paper’s starting point is the observation that the survey data does not fully reflect the scientific con-
sensus. This paper applies methods developed to address issues in economics and finance to assess whether
the temperature data at the Barrow Atmospheric Observatory in northern Alaska supports this view. While
some might sharply question the approach employed in this paper because the methodology is “unorthodox”
relative to the conventional meteorological framework, it may be worth noting that the methodology applied
in this paper has revolutionized the analysis in other sectors when the data are found to be autoregressive
and heteroskedastic in nature. One modest example of this is Forbes and Zampelli (2019), who analyzed
CO2emissions from the Irish power grid using the methods presented in this paper after observing that
the emission levels had autoregressive and heteroskedastic properties. These properties will be shown to
be highly relevant when modeling hourly temperature. Ignoring these properties makes extracting CO2’s
“signal” from the “noisy” data almost impossible.

In terms of organization, section 2 of the paper discusses the survey data. Section 3 summarizes the views of
individuals identified as being climate deniers within the scientific community. Section 4 discusses the data
used in the analysis. To provide context, the trends in hourly temperature, downward total solar irradiance,
and CO2concentrations at the Barrow Atmospheric Observatory are reported. In response to an assertion
about a lack of recent warming relative to the pre-1940 period by Lindzen ( 2020, pp. 12-13), the annual
temperature at the nearby Barrow Airport from 1921 through 2020 is reported. The time-series nature of
hourly temperature at Barrow is also discussed to facilitate the modeling discussion in the remaining sections
of the paper. Section 5 introduces a modeling framework to examine the possible association between CO2
concentrations and hourly temperature. Section 6 discusses the estimation process and also presents the
results. Section 7 evaluates the model. The paper’s findings are discussed in section 8.

2. The Survey Evidence

A 2019 YouGov survey of 30,000 individuals that are believed to be representative of the online population
in 28 countries indicated that there were only 14 countries in which 50 % or more of the respondents would
agree with the statement that “The climate is changing and human activity is mainly responsible” (Figure
1). A significant number of the respondents indicated that human activity is only partly responsible for
climate change. For example, while 40% of the respondents in Denmark agreed with the scientific consensus,
48% agreed with the view that “. . . human activity is partly responsible, together with other factors
(emphasis added). In the United Kingdom, 51% endorsed the scientific consensus, while 37% believe
that human activity is only partly responsible. In China, 45% endorsed the scientific consensus, while 48%
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believe human activity is only partly responsible. In the USA, 38% endorsed the scientific consensus, 37%
reported that they believe that human activity is only partly responsible for climate change, 9% believe that
human activity is not a driver of climate change, and 6% reported that they do not believe that the climate
is changing.

Source: Source:10.5281/zenodo.5833580

Figure 1. Responses to a 2019 YouGov survey question posed to 30,000 people in 28 countries.
Thinking about the global environment. . . In general, which of the following statements, if any,
best describes your view?”

While it is tempting to attribute the findings for China in Figure 1 as evidence of a form of climate denial by
a large proportion of its population, the recent findings by Yang et al. (2021) would seem to suggest that a
sincere misunderstanding of the nature of climate change might be a more important consideration. In other
countries, other survey data are largely consistent with the data presented in Figure 1. For example, in a 2019
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Irish Times/Iposos MRBI poll (Leahy, P., 2019), respondents were asked if they agreed with the following
statement: “I don’t think climate change will be as bad as some say so I’m not that worried about it.” While
57% of the respondents implicitly endorsed the scientific consensus by disagreeing with the statement, 33%
agreed. In this same poll, only 44% of the respondents agreed with the statement, “I am okay with the price
of oil, gas, petrol and diesel increasing to help tackle climate change.” This is obviously not a majority and
thus represents a challenge to implementing policies to reduce emissions.

A November 2018 survey of 1,202 adults by the Energy Policy Institute at the University of Chicago and
the AP-NORC Center yields useful insights (EPIC, 2018). According to this survey, 57% of the respondents
were willing to pay a $1 monthly fee to combat climate change. About 23% were willing to pay 40 USD per
month. However, 43 percent were unwilling to pay anything, highlighting the challenge of doing anything
significant to reduce emissions. Acceptance of the view that human activity contributes to climate change
was a useful indicator of whether respondents were willing to pay to reduce emissions.

Suggestive of the possible political implications of the polling data, the UNFCCC secretariat (United Nations
Framework Convention on Climate Change) issued a report in September 2021 that indicated that the
combined updated Paris Accord pledges fall short of what it will take to meet the goals of the Paris Accords.
Specifically, even with the updated pledges, projected GHG emissions in 2030 are only about 0.5% lower
than in 2010, which is far lower than what it would take to limit global warming to below two °C (UNFCCC
Secretariat, 2021a). The COP26 meetings that were held in November of 2021 have done little to improve
the prospects that the goals of the 2015 Paris Accords will be met. The United States did announce its good
intentions, but climate deniers will most likely make those goals very difficult to achieve. The conference
faced other challenges including objections to phasing out coal. While the conference made progress in the
areas of carbon markets and finance, the fact remains that there is a significant emissions gap (UNFCCC
Secretariat, 2021b).

3 The Views of the Climate Deniers from within the Scientific Community

Somewhat surprisingly, some prominent individuals from within the scientific community who have been
labeled as climate deniers have actually conceded that increases in CO2 concentrations have consequences
for surface warming. For example, the CO2 Coalition (2015), a sharp critic of the scientific consensus,
whose members include the well-known influencers Richard Lindzen, Patrick Michaels, Roy Spence, and
William Happer, has explicitly acknowledged the greenhouse effect. It notes that predicting greenhouse-
induced warming is difficult because atmospheric processes are very complicated. It then pivots back and
reports that it believes that the data suggests that the warming associated with a doubling of CO2 levels
will be very modest. In its words,

“Basic physics implies that more atmospheric CO2 will increase greenhouse warming. However, atmospheric
processes are so complicated that the amount of warming cannot be reliably predicted from first principles.
Recent observations of the atmosphere and oceans, together with geological history, point to very modest
warming, about 1 C (1.8 F) if atmospheric CO2 levels are doubled.” CO2 Coalition, 2015

The CO2 Coalition’s assertion that the warming associated with a doubling of CO2 will be modest appears
to be largely premised on a belief that the recent warming is about the same as before the 1940s (Lindzen,
2020, pp. 12-13). As will be seen, this belief is not supported by the data in northern Alaska.

4 An Overview of the Changing Climate in Northern Alaska

The study employs temperature, solar radiation, and CO2data reported by the Barrow (BRW) Atmospheric
Observatory. This is one of the baseline observatories of the Earth System Research Laboratory (ESRL),
Global Monitoring Division (GMD), of the National Oceanic and Atmospheric Administration (NOAA). It
is located near sea level about 8 km east of Utqiaġvik (formerly Barrow), Alaska at 71.3230 degrees north
and 256.6114 degrees West (Vasel et al., 2020). Continuous atmospheric measurements of CO2 have been
recorded at this observatory since July 1973 (Thoning et al., 2021). Herbert et al. (1986) discuss how the
data are processed. Peterson et al. (1986) discuss the first ten years (1973-1982) of operations and report
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consistency of the Barrow results with the reported data from four neighboring locations. Tans and Thoning
(2020) provide a general overview of the methods used to collect and process the CO2 data at Mauna Loa,
one of NOAA’s other baseline observatories. Along with the hourly temperature data corresponding to BRW,
the CO2 data for BRW were downloaded using the following link: (http://www.esrl.noaa.gov/gmd/dv/data/
).

Measurements of downward total solar irradiance have been reported at the BRW observatory since January
1976. Before 1998, the data were reported at three minutes intervals. The data were subsequently reported
at one-minute intervals. For this study, the reported values were rolled up to hourly averages. Data were
dropped from the analysis if the number of valid minutes of data for an hour was less than 15.

Consideration was given to the inclusion of CH4 data in the analysis. This action would have resulted in
the loss of 26,381 hourly observations due to unavailable or invalid CH4measurements. (the collection of
the CH4 data commenced in 1986 but was subsequently suspended for about nine months in 2012/2013).
The probable effect of this data loss on model convergence was an important consideration in excluding
this variable from the analysis, model convergence being one of the major challenges of the methodology
employed in this paper (STATA, 2021, p. 33). The omission of CH4 and other variables reflecting greenhouse
gas concentrations represents a shortcoming in the analysis.

The sample for this study spans from 1 Jan 1985 through 31 Dec 2015. Data before 1 Jan 1985 were not
employed in this study because the reported downward total solar irradiance data largely did not meet
ESRL’s standards before that date. For example, only about 31% of the downward total solar irradiance
values in 1984 were deemed by ESRL to be valid. The 1 Jan 2016 - 31 Aug 2017 time interval is reserved
for out-of-sample analysis. The evaluation period terminates on 31 Aug 2017 because of a significant data
availability issue.

In thinking about meteorological issues at BRW, it is useful to begin by first noting the extremes and high
level of variability in the level of downward total solar irradiance at this location. In terms of variability, the
data from 2014 is instructive (Figure 2). Concerning the extremes, there are about 67 days of virtually total
darkness each year ( about 18 Nov to 22 Jan), while the sun does not completely set from 11 May to 31 Jul.

Figure 2. The level of hourly downward total solar irradiance at BRW, 1 Jan 2014 – 31 Dec 2014

6
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The average annual temperature at BRW has increased significantly since 1985 (Figure 3). Specifically, the
average annual temperature over the 2015-2020 time period was about 3.37 oC higher than in 1985-1990.
The temperature data reported by the PABR weather station at the nearby Barrow Airport from 1985
through 2020 are consistent with the trend at BRW (Figure 4). The PABR data also indicates that the four
warmest years since 1921 occurred in 2016, 2017, 2018, and 2019. In these four years, the average annual
temperature was about 5.03o C higher than the average annual temperature from 1921 through 1939. These
findings do not support the assertion by Lindzen that the recent warming is about the same as before the
1940s (2020, pp. 12-13). In terms of the magnitudes of the recent warming, the increases are consistent with
Arctic amplification, as explained by Pithan & Mauritsen (2014) and Winton (2006).

The upward trend in temperature at both BRW and PABR is consistent with the temperature trend for
the Arctic noted by Post et al. (2019), Markon et al. (2018, p 1190-1192), and Thoman et al. (2020, p.
4). Box et al. (2019) have reported significant changes in nine key measures of the Arctic climate system
over 1971 through 2017. The qualitative story is clear: “the transformation of the Arctic to a warmer, less
frozen, and biologically changed region is well underway.” (Thoman et al., 2020, p. 1). Consistent with
these changes, the annual mean permafrost temperatures have increased at many locations throughout the
Arctic (Romanovsky et al., 2017, p. 69). For example, based on data reported by EPA, the average annual
permafrost temperature at the Deadhorse Permafrost Observatory ( https://permafrost.gi.alaska.edu) over
the years 2015 through 2020 was about 2.81 oC higher than during the years 1985 through 1990 (EPA, 2021).
In four of the 11 permafrost observatories whose 2020 annual temperatures are reported by EPA, the 2020
average temperatures were between -1 and 0oC. There is evidence that thawing has adverse implications for
carbon emissions because of stimulated microbial decomposition (Schuur et al., 2021).

According to AMAP, “Arctic warming can also have effects far beyond the region: for example, the recent
rapid warming of the Arctic appears to have created conditions favoring a persistent pattern in the jet
stream that provokes unusual extreme temperature events in the Northern Hemisphere.” (AMAP, 2019,
p. 4). Taylor et al. (2017, p. 303) have indicated it is very likely that human activities have contributed
to these trends. While the literature supports this finding, it has also been suggested that the significant
natural weather and climate variability in the Arctic poses an attribution challenge (Taylor et al., 2017, p.
319). Consistent with this reported variability, both downward total solar irradiance and temperature at the
hourly level are highly variable (Figures 5 and 6). Concerning the hourly CO2 concentration levels, there is
a significant upward trend in the hourly CO2 concentration levels over the sample (Figure 7). Despite the
upward trend in both CO2concentrations and temperature, there is no visually obvious relationship between
the two variables (Figure 8). While some climate deniers may be tempted to claim that the data in this
figure vindicates their position, the view here is that a lack of correlation between two variables only rules
out causality when the hypothesized relationship is quite simple.
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Figure 3. The average hourly temperature at the Barrow Observatory, 1985 -2020

Figure 4. The average annual temperature at the PABR/Barrow Airport weather station, 1921 -2020

8
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Figure 5. The hourly temperature at the Barrow Observatory, 1 Jan 1985 – 31 Dec 2016

Figure 6. Hourly downward total solar irradiance levels at the Barrow Observatory, 1 Jan 1985 – 31 Dec
2016

9
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Figure 8. A scatter diagram of hourly temperature and CO2 concentration levels at BRW, 1 Jan 1985 – 31
Dec 2015

The autocorrelative nature of hourly temperature is an important characteristic of the data (Figure 9). As
the figure indicates, the magnitude and the duration of the autocorrelative process are significant. In terms
of magnitude, the estimated one-hour autocorrelation in temperature equals 0.9970, a value that is so large

10
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that it is reasonable to wonder if there is a unit root issue. If this is indeed the case, the results of this study
could be spurious for the reasons explained by Kennedy ( 2008, p. 301).

Fortunately, an Augmented Dickey-Fuller test yields a P -value that is less than 0.0001 both with and without
a possible trend, and thus the null hypothesis of a unit root is rejected. Consistent with this finding, the
Phillips-Perron test for a unit root also yields aP -value less than 0.0001 both with and without a possible
trend. Consideration was given to further unit root testing using the DF-GLS test developed by Elliot et
al. (1996). This test is regarded as a leading “second-generation” unit root test that avoids some of the
shortcomings of the Augmented Dickey-Fuller and Phillips-Perron tests (Baum and Hurn, 2021, pp. 117-120
). The application of this methodology requires a data series without any gaps. The Barrow data set has
325 gaps in terms of temperature, and thus, the DF-GLS test cannot be applied.

Fortunately, hourly temperature data analysis at another observatory in the polar region may be instructive.
One of the few stations in the polar region that substantially meets the zero data gap requirements of the
DF-GLS test is the Syowa station on East Ongle Island, located about 4km from the Antarctic continent
with a latitude 69.0125° South and a longitude of 39.5900° East. This station is supported by the National
Institute of Polar Research in Japan. The data from this station was obtained from NASA’s CERES/ARM
Validation Experiment (https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp).

From 14 Apr 2002 through 31 Jan 2016, a period with 120,982 hours and no data gaps, the mean temperature
at the Syowa Observatory was about -10.7 °C, with the hourly values ranging from 41.25 °C to 7.65 °C. At
one hour lagged, the autocorrelation in temperature equals 0.9959, a value seemingly suggestive of a unit
root issue. This possible suspicion is not supported by the Augmented Dickey-Fuller, Phillips–Perron, or the
DF-GLS tests.

While the available tests do not support the null hypothesis of a unit root in the hourly temperature data,
a quantitative analysis of hourly time-series temperature data needs to control its time-series nature to
effectively extract the signal from the noise in the data. The method of ordinary least squares is woefully
deficient in this regard. This point is consistent with a warning by Granger and Newbold (1974, p. 117),
who note the following: “In our opinion the econometrician can no longer ignore the time series properties of
the variables with which he is concerned - except at his [ or her ] peril.” The consequences of ignoring their
warning include inefficient estimates of the regression coefficients, suboptimal forecasts, and invalid tests of
statistical significance. Unfortunately, an inspection of “Statistical Methods in the Atmospheric Sciences,”
authored by Wilks (2019), suggests that this warning has not been fully heeded in the atmospheric sciences.
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5 An ARCH/ARMAX Model of Hourly Temperature

The model employed in this paper is an Autoregressive Conditional Heteroskedasticity/ Autoregressive–
Moving-Average with Exogenous Inputs model of temperature (henceforth, an ARCH/ARMAX model of
temperature). The ARCH terms are employed to model the conditional heteroskedasticity, an important
consideration in the convergence process. The Autoregressive–Moving-Average (ARMA) component models
the autocorrelations in temperature depicted in Figure 9. In this section, the role of the exogenous inputs is
discussed.

Following from Forbes and St. Cyr ( 2017, 2019) and Forbes and Zampelli (2019, 2020), the modeling
approach employed in this paper accepts the proposition that “All models are wrong; some models are useful”
(Box et al., 2005, p. 440). They are all “wrong” because they represent a simplification of reality; they can be
useful if important features of that reality are captured. A possibly related proposition that may be relevant
during these times of sharp differences in opinions is “that all modeling results can easily be dismissed out
of hand as being wrong, even if they are useful.” In the case of this research, it may be asserted that
the results are “wrong” because the model is adversely affected by “specification errors,” “multicollinearity,”
“autocorrelation,” “heteroskedasticity,” “overfitting,” and “unit-root issues.” Other readers may conclude that
the model is “wrong” because it somehow “forces” the estimated relationship between CO2 concentrations
and temperature to be positive because both are rising over time ( note: the correlation between temperature
and CO2 equals -0.1495). Still, others will argue that the results are “biased” because the model’s dependent
variable is the natural logarithm of temperature.

Following from Forbes and Zampelli (2020, p. 13), this paper accepts the proposition that the
“. . . vulnerability of a model to be deemed as wrong even though all models are “wrong” represents a chal-
lenge to the recognition of insights provided by models that are useful.” Fortunately, this challenge can be
addressed by assessing a model’s predictive accuracy. Common sense informs us that a model that yields
accurate predictions is useful if the evaluation interval is sufficiently long. Based on this perspective, the
approach in this paper proceeds by estimating the model using 228,085 observations and performing an
out-of-sample analysis with 13,175 observations.

12
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In the model, the association between CO2 concentrations and temperature is presumed to be conditional on
the level of downward total solar irradiance measured at the Earth’s surface, downward total solar irradiance
being the primary driver of the weather and climate system. The other drivers of the surface energy balance,
such as upward and downward longwave irradiance, are not included as explanatory variables in the model
because they are hypothesized to be affected by CO2concentrations. Upward short-wave irradiance is not
hypothesized to be directly affected by CO2 concentrations. Its inclusion as an explanatory variable is open
to question, given that it is largely driven by downward solar irradiance and temperature. The inclusion
of this variable would significantly reduce the sample size, given that ESRL only commenced reporting this
variable in 1993.

In the model, CO2 concentrations are lagged one hour to avoid the issue of possible two-way causality
between temperature and CO2 concentrations. The model also includes binary variables representing the
solar zenith angle, the hour-of-the-day, day-of-the-year, and year. These variables are included as proxies for
the drivers of the diurnal variation in temperature, the seasonal variation in temperature, and the possible
non-anthropomorphic drivers of temperature unrelated to total downward solar irradiance. In terms of
functional form, linearity is not presumed. Instead, the data are permitted to speak for themselves on this
important issue.

The initial version of the model is given by:

lnTempt = α0 + α1ZeroSolart + α2 Solart + α3 (CO2t-1*ZeroSolart)

+ α4 (CO2t-1*Solart) + α5Solart * CO2t-1 +
∑9

h=1 βhAngleh

+
∑24

i=2 φiHourofDayi +
∑365

j=2 γjDOYj +
∑2014

k=1985 δkYeark (1)

Where

lnTempt is the natural logarithm of temperature measured in Kelvin in hour t.

ZeroSolart is a binary variable. The variable is assigned a value of one if the downward total solar irradiance
level at Barrow in period t equals zero. Its value equals zero otherwise.

Solart equals the downward total solar irradiance level at Barrow in period t.

CO2t-1 is the atmospheric level of CO2concentrations at Barrow in hour t-1.

PosSolart is a binary variable that equals one if the level of downward total solar irradiance at Barrow in
period t is positive. Its value equals zero otherwise.

Angleh is a vector of nine variables representing the solar zenith angle.

HourofDayi is a series of 23 variables representing the hour of the day.

DOYj is a series of 364 binary variables representing the day of the year.

Yeark is a series of 30 binary variables representing the year.

Please note that α1, α2, and α3, etc. are the coefficients corresponding to this linear version of the model.
From (1), the total number of coefficients to be estimated equals 432. Some may strongly suspect that this
number of explanatory variables indicates that the model is ”overfitted.” If this claim is true, the model
would be unlikely to yield accurate out-of-sample predictions even if the within-sample explanatory power is
very high (Brooks, 2019, p. 271). The “rule of thumb” by Trout (2006) that overfitting is avoided when there
are at least ten observations per estimated coefficient does not support this possible suspicion given that
the structural model present in this paper entails over 500 observations per estimated coefficient. Moreover,
as will be seen, the model does not suffer from the consequences of overfitting in terms of out-of-sample
predictive accuracy.

6 Estimation and Results

13
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The model was estimated using hourly data over the 1 Jan 1985 - 31 Dec 2015 time interval. The analysis
was conducted in two distinct stages. In the first stage, the functional form given by Eq. (1) was evaluated.
A nonlinear functional form was subsequentially identified.

The analysis also recognizes that the disturbance term’s variance in a regression equation is heteroskedastic
instead of homoscedastic, i.e., variable instead of constant over time. As suggested in the previous section,
the accepted approach involves estimating an ARCH model. This approach was proposed by Engle (1982)
to improve the analysis of financial data. It has since proven itself invaluable in modeling any time-series
variable in which there are periods of turbulence followed by relative calm at some point. Hourly temperature
is one of those variables. Those tempted to claim otherwise are cheerfully invited to consult the book entitled
“Environmental Econometrics Using Stata,” authored by Baum and Hurn (2021).

The second estimation stage also recognizes that the temperature in hour t is not statistically independent
from the temperature outcomes in previous hours, as seen in Figure 9. As suggested in the previous section,
this is done using an ARMAX specification. In this case, the transformed explanatory variables from the
first stage (e.g., Solart

1/4) are the exogenous inputs. Given this specification, the disturbance terms are
presumed to follow an ARMA specification that models the autocorrelations reported in Figure 9. The
ARMA specification applied in this paper is not parsimonious because the autocorrelative process in Figure
9 is not short in duration. It is recognized that this approach runs counter to the traditional time-series
philosophy (Box and Jenkins, 1976, p. 17), which suspected that there was more room for prediction errors
when more time-series parameters were estimated (Hamilton, 1994, p. 106). The view here is that the goal
of predictive accuracy can sometimes be enhanced by including more ARMA terms. This approach makes
sense given the long memory property of the autocorrelations evidenced in Figure 9 and the high level of
variability in temperature, as evidenced by Figure 5. The heteroskedasticity is modeled as a function of the
solar zenith angle, the hour of the day, the day of the year, the year of the sample, and the following variables:√
CO2t−1,

√
Solart . Instead of assuming that hourly temperature is independent of the conditional variance,

the model permits the data to speak for itself on this issue. This linkage is relevant if the level of a variable
depends on the variance in the disturbance term. The ARCH-in-mean model introduced by Engel et al.
(1987) offers an approach to estimate this linkage.

The possible merits of representing the explanatory variables using a nonlinear specification are addressed
using the multivariable fractional polynomial (MFP) methodology (Royston and Sauerbrei, 2008). Its ap-
plication includes Forbes and St Cyr (2017, 2019) and Forbes and Zampelli(2019, 2020). The methodology
considers the effects of nonlinear transformations of the explanatory variables. In the present case, the MFP
results suggest the following specification:

lnTempt = α
′

0+ α
′

1 ZeroSolart +α
′

2Solart
1/4 +α

′

3(CO2t-1*ZeroSolart)
3

+ α
′

4(CO2t-1*PosSolart)
1/4+ α

′

5 (Solart * CO2t-1)1/4 +
∑9

h=1 β
′

hAngleh

+
∑24

i=2 φ
′

i HourofDayi +
∑365

j=2 γ
′

i DOYj +
∑2014

k=1985 δ
′

k Yeark(2)

Please note thatα
′

1, α
′

2, and α
′

3 etc. are the estimated coefficients in this specification. Least squares
estimation of (2) produces a seemingly respectable level of explanatory power, the R2 being about 0.831.
However, a Portmanteau test for autocorrelation (Box and Pierce, 1970; Ljung and Box, 1978) reveals that
the residuals are highly autocorrelated. Consistent with Forbes and St. Cyr (2019, p.17), for lags one
through 100, the P values are less than 0.0001. The null hypothesis of no ARCH effects is rejected with a
P- value less than 0.0001. Consistent with these issues, the least-squares model is not useful. This finding
is supported by out-of-sample predictions over the period 1 Jan 2016 - 31 Aug 2017 time interval that have
a root-mean-squared-error (RMSE) of about 5.67 o C, a value that is clearly indicative of a suboptimal
prediction process.

ARCH/ARMAX methods can generate predictions that are much more accurate than the predictions from
a least-squares model when the dependent variable is autoregressive and heteroskedastic in nature. In this
case, the ARCH process’s modeled lag lengths are lags 1 and 2. Consideration was given to including
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additional ARCH terms to model the apparent diurnal pattern of the ARCH process (e.g., 24, 48, 72, 96
etc.). Consideration was also given to employing alternative ARCH and GARCH specifications. These
approaches were abandoned due to model convergence issues. The modeled lag lengths for the AR process
are 1 through 12, 23, 24, 25, 26, 47, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145 167, 168,169, 192, 193, 216,
240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 480, 600, 671, 672, 673, 840, and 960. The MA
modeled lag lengths are 1 through 25, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145, 167, 168, 169, 192, 193,
216, 240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 480, 600, 671, 672, 673, 840, and 960.

Equation (2) was estimated assuming that the residual error terms correspond to the Student t distribution
instead of the more typical Gaussian distribution. This approach is believed to be justified by the highly
volatile nature of the weather system in the vicinity of Barrow. One shortcoming in its application here
is that the “degrees of freedom” parameter is less than the minimum indicated by Harvey (2013, p. 20).
Consideration was given to modeling the residual error terms using the generalized error distribution, but
this approach was abandoned due to model convergence issues.

Selected estimates are reported in Table 1. It is revealed thatα
′

2 , the coefficient corresponding to Solart
1/4

is positive and highly statistically significant. The CO2 coefficientsα
′

3 and α
′

4 are also positive and highly
statistically significant while α

′

5 is negative and highly statistically significant. These findings are consistent
with the view that CO2 concentrations have implications for hourly temperature but do not address the
magnitude. Concerning the possible non-anthropomorphic drivers of temperature, it is interesting to note
that 16 of the 30 variables in question are statistically significant. With 2015 being represented in the
constant term, negative values for a year are consistent with higher predicted temperatures in 2015 than in
the year in question. There are 13 such cases. For these cases, the coefficients’ median value is -0.00543, a
value that hardly seems important.

The model’s explanatory power based on the estimated structural parameters ( all the parameter estimates )
is 0.8105 ( 0.9968. ) Those who believe that the latter level of explanatory power is somehow “too outstanding
to be true,” are cheerfully invited to reinspect Figure 9 and contemplate the concept of autocorrelation and
how modeling this autocorrelation can affect a model’s level of explanatory power. In any event, the view
here follows Hyndman and Athanasopoulos (2018, 3.4), who note that true adequacy. . . “ can only be
determined by considering how well a model performs on new data that were not used when fitting the
model.” It is also noted that even though a model’s R2 equivalence is a well-recognized measure of model
adequacy, a good case can be made that achieving white noise in the residuals is also important ( Becketti,
2013, p. 256; Kennedy, 2008, p. 315; and Granger and Newbold, 1974, p. 119). To assess whether this
measure of adequacy is achieved, Portmanteau tests for autocorrelation were conducted for the hourly lags
1 through 100, 192, 284, and 672. At lag 1, the P- value is 0.1958. For the remaining 111 lags that were
assessed, the P -values are less than .05, thereby rejecting the null hypothesis of a white noise error structure.

Table 1. Estimation Results

Variable Estimated Coefficient Absolute Value of the t-Statistic P -Value

Constant term -84.5387 3.41 < 0.001
ZeroSolart 0.053421 9.25 < 0.001
Solart

1/4 0.01102 11.23 < 0.001
(CO2t-1*ZeroSolart)

3 7.70E-11 7.57 < 0.001
(CO2t-1*PosSolart)

1/4 0.01296 9.04 < 0.001
(Solart * CO2t-1 )1/4 -0.00232 10.42 < 0.001
Year1985 -0.01111 9.96 < 0.001
Year1986 -0.00371 2.36 0.018
Year1987 -0.00983 6.91 < 0.001
Year1988 -0.00808 6.87 < 0.001
Year1989 -0.00498 1.76 0.079
Year1990 -0.0033 1.47 0.141
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Variable Estimated Coefficient Absolute Value of the t-Statistic P -Value

Year1991 -0.00285 1.82 0.068
Year1992 -0.00664 2.21 0.027
Year1993 -0.00265 2.52 0.012
Year1994 -0.00339 2.47 0.014
Year1995 -0.00384 4.43 < 0.001
Year1996 -0.00305 1.73 0.083
Year1997 0.001996 1.06 0.288
Year1998 0.005733 3.48 0.001
Year1999 -0.00766 4.34 < 0.001
Year2000 -0.00543 4.26 < 0.001
Year2001 -0.00359 2.97 0.003
Year2002 0.002124 0.61 0.541
Year2003 -0.00658 3.21 0.001
Year2004 -0.00449 4.07 < 0.001
Year2005 -0.00211 1.11 0.265
Year2006 0.000883 0.33 0.743
Year2007 0.005622 4.31 < 0.001
Year2008 1.92E-06 0 0.999
Year2009 0.002597 1.98 0.048
Year2010 0.000847 0.38 0.707
Year2011 0.001634 0.23 0.817
Year2012 -0.00044 0.22 0.829
Year2013 0.001147 0.46 0.643
Year2014 0.002601 1.40 0.162
Number of Observations 228,085
R-Square equivalence based on the full model 0.9968
R-Square equivalence based on the model’s structural component. 0.8105

Regarding the binary variables not reported above, 336 of the 364 day-of-the-year coefficients are statistically significant, while 22 of the 23 hour-of-the-day variables are statistically significant. Only three of the nine solar angle coefficients are statistically significant. Concerning the AR and MA terms, 44 of the 53 AR terms and 31 of the 61 MA terms are statistically different from zero. Both of the ARCH terms are statistically significant. Only one of the three ARCH-in-Mean terms is statistically significant. Regarding the variables that model the heteroskedasticity in the conditional variance, 298 of the 429 variables are statistically different from zero.

7 The Model’s Out-of-Sample Performance

The out-of-sample evaluation period consists of 13,175 hours over the 1 Jan 2016 to 31 Aug 2017 time interval.
Recalling that the dependent variable in the model is the natural logarithm of temperature measured in
Kelvin, it might seem that a simple retransformation would yield the optimal predicted value. Unfortunately,
merely taking the antilogarithm of the predicted natural logarithm of temperature measured in Kelvin may
result in a biased temperature prediction (Granger and Newbold, 1976, pp. 196-197). This bias is easily
resolved when the error distribution is Gaussian using a method presented by Guerrero (1993). Given the non-
Gaussian nature of the error distribution in this case, the matter was resolved by estimating a post-processing
regression without a constant term using all of the observations in the sample. The explanatory variable
in this post-processing regression is the hourly temperature measured in Kelvin, while the explanatory
variable in this regression is the antilog of the transformed predicted values. The estimated coefficient
corresponding to the explanatory variable equals 0.9999895. The associated R-Square equals 1.0000. The
estimated parameter from this regression was used to detransform the out-of-sample transformed predicted
temperature values.

The out-of-sample predictions were compared with the ERA5 predictions for the same general loca-
tion. For those unfamiliar with the ERA5 modeling results, it was produced by the Copernicus Cli-
mate Change Service at ECMWF. In a significant advance from its earlier databases, it reports hourly
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values across the globe. The ERA5 hourly temperature values for the Barrow location were ob-
tained from Meteoblue ( https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-
data/reanalysis-datasets ).

The out-of-sample temperature predictions from the ARCH/ARMAX model presented in this paper have a
predictive R-square of 0.9962. The predictions are visually more accurate than the ERA5 values for the same
general location (Figure 10), although it should be noted that the ERA5 values correspond to a grid that
includes land and ocean while Barrow represents a land location within that grid. Nevertheless, the ERA5
values may serve as a useful benchmark for the ARCH/ARMAX out-of-sample predictions. Regarding the
RMSEs, the predictions associated with the ARCH/ARMAX model have an RMSE equal to about 0.682
oC, while the ERA5 outcomes have an RMSE of about 3.117oC. Interestingly, an ordinary least-squares
estimation of the ERA5 predictions indicates that the prediction errors are not purely random. Specifically,
the prediction error is conditional on the magnitude of the predicted temperature and lagged value of the CO2

concentration. The latter finding is consistent with the central thesis of this paper. Following Granger’s
discussion of prediction errors (1986, p. 91), both of these findings suggest a pathway to improving the
accuracy of the ERA5 predictions.

The out-of-sample temperature predictions from the ARCH/ARMAX model are significantly degraded when
the estimated effects of CO2are ignored (Figure 11). The differential in predictive accuracy is visually
apparent if one inspects the vertical distance between the scatter points and the 45o line representing the
relationship between predicted and actual temperature when the predictions are perfect. As reported above,
the full model presented in this paper has an RMSE equal to 0.682 oC over the evaluation period, constraining
the CO2 estimated effects to be equal to zero results in predictions with an RMSE equal to 3.379 oC.

The out-of-sample analysis is supportive of the earlier discussion indicating the unimportance of factors other
than CO2and the total downward solar irradiance being drivers of the increase in annual temperature over
the sample period. Specifically, using the full model, the mean predicted temperature over the evaluation
period equals - 8.725218 oC. The mean predicted temperature over the evaluation period is -8.725221 oC if
the estimated effects of the binary variables for 1986 through 2014 are constrained to equal zero. In short, the
binary variables that control for the possibility of annual temperature being affected by factors other than
CO2 or total downward solar irradiance have virtually no effect on the out-of-sample predicted temperature.
Interestingly, the mean actual temperature over the evaluation period equals -8.712713oC, a very close value
to the mean of the predicted values.
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Figure 10. The ERA5 and the ARCH/ARMAX prediction errors, 1 Jan 2016 – 31 Aug 2017.

Figure 11. The ARCH/ARMAX model predictions with and without the CO2 estimated effects and the
actual temperature outcomes, 1 Jan 2016 – 31 Aug 2017.

The structural predictions are less accurate than the predictions from the full model but may yield useful
insights. The predictions from the structural model have an RMSE equal to 5.21 oC while constraining
the CO2 estimated effects to be equal to zero results in predictions with an RMSE equal to 8.29oC (Figure

18



P
os

te
d

on
1

D
ec

20
22

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

01
14

/v
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

12). In short, constraining the estimated effects of CO2 to be equal to zero reduces the structural model’s
predictive accuracy. In terms of temperature, the predicted level is significantly lower when the estimated
structural effects of CO2 are ignored (Figure 13). Observe that the difference in the mean levels of predicted
temperature is nontrivial.

Figure 12. The RMSEs in the out-of-sample structural predictions

Figure 13 . The out-of-sample structural predictions of temperature (oC)
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8 Summary and Conclusion

This paper employed an ARCH/ARMAX model with statistical controls for total downward solar irradiance
and 426 binary variables to examine the relationship between CO2 concentrations and hourly temperature
at the Barrow Atmospheric Observatory in Alaska. The model was estimated using hourly data over the
time interval of 1 Jan 1985 - 31 Dec 2015. The model was evaluated using hourly data from 1 Jan 2016
through 31 Aug 2017. The predictive R-square equivalence of 0.9962 over the evaluation period suggests
that the model has reduced the attribution challenge associated with the significant natural meteorological
variability in the Arctic. Consistent with this view, the predictions over the evaluation period are more
accurate than the highly regarded ERA5 values for the same general vicinity. Thus, though the model fails
to achieve the metric of “white noise” in the standardized residuals, the accuracy of its predictions over the
evaluation period indicates that the model is “useful.” These results are consistent with the physics that
indicates that rising CO2concentrations have consequences for temperature, a point that even climate deniers
such as Richard Lindzen, William Happer, Roy Spencer, Patrick Michaels, and the other members of the
CO2Coalition have conceded. What is different is that the model also offers useful insights into the magnitude
of the relationship between CO2 concentrations and hourly temperature. Specifically, the predictions over the
evaluation period are significantly more accurate when they reflect the estimated and statistically significant
CO2 coefficients compared to when those coefficients are ignored. The out-of-sample results indicate that
CO2concentrations have nontrivial implications for hourly temperature. The modeling results also addressed
the possible contribution of factors other than CO2 being drivers of increased temperature over the sample.
The mean of the out-of-sample predicted temperature over the evaluation period is not materially affected
by these variables, even though some of those variables are statistically significant.

Given that all models are “wrong,” it is a picayune task to dismiss the estimation results reported in Table
1. It is much more challenging to rationally dismiss the implications of the large decline in the out-of-sample
predictive accuracy when the estimated CO2effects are ignored. One possibility is that some unknown
natural factor at work is the true culprit of the decline in predictive accuracy. While climate deniers may
find this an attractive explanation for the results presented in this paper, the model’s high level of predictive
out-of-sample accuracy suggests that unknown factors are not an important driver of temperature. There is
also the point that attributing the large decline in the out-of-sample predictive accuracy when the estimated
CO2 effects are ignored to an “unknown variable” is highly likely to represent obscurantism as opposed to a
conclusion that represents the best of all competing explanations as explained by Lipton (2004, p. 56). In
short, the beliefs of the climate change deniers are not supported by the hourly temperature data at NOAA’s
Barrow Observatory in Alaska. Considering the inadequate results of COP26, this suggests that the current
outlook for the Earth’s future is quite grim. Research that further illuminates the shortcomings of the views
by climate deniers might help matters. One approach being considered is an analysis of the drivers of the
hourly surface energy imbalance, a metric that is easily understood as being important but that climate
deniers almost never mention. This research path appears feasible using the methods presented here in light
of a preliminary analysis indicating that the hourly surface energy imbalance at Barrow and other locations
is autoregressive and heteroskedastic. It is not overly optimistic to believe that modeling these properties
will facilitate the recognition of CO2’s “signal” in the data.
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Abstract 21 

 22 

Survey evidence has indicated that a significant percentage of the population does not fully 23 

embrace the scientific consensus regarding climate change.  This paper assesses whether the 24 

hourly temperature data support this denial.  The analysis examines the relationship between 25 

hourly CO2 concentration levels and temperature using hourly data from the NOAA-operated 26 

Barrow observatory in Alaska.  At this observatory, the average annual temperature over the 27 

2015-2020 period was about 3.37 oC higher than in 1985–1990.  A time-series model to explain 28 

hourly temperature is formulated using the following explanatory variables: the hourly level of 29 

total downward solar irradiance, the  CO2 value lagged by one hour, proxies for the diurnal 30 

variation in temperature, proxies for the seasonal temperature variation, and proxies for possible 31 

non-anthropomorphic drivers of temperature.  The purpose of the time-series approach is to 32 

capture the data’s heteroskedastic and autoregressive nature, which would otherwise “mask” 33 

CO2’s  “signal”  in the data.  The model is estimated using hourly data from 1985 through 2015.  34 

The results are consistent with the hypothesis that increases in CO2 concentration levels have 35 

nontrivial consequences for hourly temperature.  The estimated annual contributions of factors 36 

exclusive of CO2 and downward total solar irradiance are very small.  The model was evaluated 37 

using out-of-sample hourly data from 1 Jan 2016 through 31 Aug 2017.  The model’s out-of-38 

sample hourly temperature predictions are highly accurate, but this accuracy is significantly 39 

degraded if the estimated CO2 effects are ignored.  In short, the results are consistent with the 40 

scientific consensus on climate change. 41 

 42 

 43 

 44 

 45 

Plain Language Summary 46 

According to the IPCC and other scientific organizations, “it is extremely likely that human 47 

influence has been the dominant cause of the observed increase in global temperatures since the 48 

mid-20th century.” However, a significant percentage of the population does not fully embrace 49 

this consensus.  Using data from the Barrow Atmospheric Observatory, this paper assesses 50 

whether the hourly temperature data support this apparent denial.  It is first noted that the 51 

average annual temperature at Barrow over the 2015-2020 period was about 3.37 oC higher than 52 

in the 1985-1990 period.  The formal analysis employs hourly solar irradiance, CO2, and 53 

temperature data.  The model controls for possible non-anthropomorphic drivers of annual 54 

temperature and other factors.  The model was estimated using hourly data over the time interval 55 

1 Jan 1985 through 31 Dec 2015.  The estimated annual effects of CO2 are significant in 56 

magnitude, while the non-anthropomorphic drivers exclusive of solar irradiance are quantitively 57 

unimportant.  The model is evaluated over the 1 Jan 2016 through 31 Aug 2017 time interval.  58 

The model’s out-of-sample hourly temperature predictions are highly accurate, but this accuracy 59 

is degraded if the estimated CO2 effects are ignored.  In short, the results are consistent with the 60 

scientific consensus on climate change. 61 

 62 
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 71 

 72 

Key Words: 73 

CO2 Concentrations, Hourly Temperature, Downward total solar irradiance, Climate Change, 74 

Arctic Region, Alaska   75 

 76 

Acronyms: AMAP, Arctic Monitoring and Assessment Program, ARCH, Autoregressive 77 

conditional heteroskedasticity; ARMA, autoregressive–moving-average; ARMAX, 78 

autoregressive–moving-average with exogenous inputs; ECMWF, European Centre for Medium-79 

Range Weather Forecasts.  MFP, multivariable fractional polynomial; RMSE, root-mean-80 

squared-error.  81 

 82 

1.  Introduction  83 

 84 

According to the IPCC, “It is extremely likely that human influence has been the dominant cause 85 

of the observed increase in global temperatures since the mid-20th century “(IPCC, 2013, p.  17 ).  86 

As early as 2001, the science academies of Australia, Belgium, Brazil, Canada, the Caribbean, 87 

China, France, Germany, India, Indonesia, Ireland, Italy, Malaysia, New Zealand, Sweden, 88 

Turkey, and the United Kingdom all endorsed the IPCC’s Third Assessment ( Australian Academy 89 

of Sciences et al., 2001).  A more recent list of scientific academies that have accepted this view 90 

includes the science academies in  Japan,  Russia, and the USA.  ( National Academies of Science, 91 

2005).  These institutes are not indicating that human activity is only partly responsible for climate 92 

change.  Instead, they have indicated that human activity is the dominant driver.   93 
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 94 

In the United States, a country in which a nontrivial number of climate deniers hold powerful 95 

elected positions,  a group of 18 highly respected scientific organizations explicitly endorsed the 96 

scientific consensus on climate change in a 2009 letter to U.S. policymakers (American 97 

Association for the Advancement of Science,  2009).  This Letter was released again in 2016 by a 98 

larger group of 31 scientific organizations (American Association for the Advancement of Science,  99 

2016).  The updated Letter makes the following point: 100 

“Observations throughout the world make it clear that climate change is 101 

occurring, and rigorous scientific research concludes that the greenhouse gases 102 

emitted by human activities are the primary driver.  This conclusion is based on 103 

multiple independent lines of evidence and the vast body of peer-reviewed 104 

science.” 105 

 106 

        AAAS,  2016   107 

 108 

This paper’s starting point is the observation that the survey data does not fully reflect the scientific 109 

consensus.  This paper applies methods developed to address issues in economics and finance to 110 

assess whether the temperature data at the Barrow Atmospheric Observatory in northern Alaska 111 

supports this view.  While some might sharply question the approach employed in this paper 112 

because the methodology is “unorthodox” relative to the conventional meteorological framework, 113 

it may be worth noting that the methodology applied in this paper has revolutionized the analysis 114 

in other sectors when the data are found to be autoregressive and heteroskedastic in nature.  One 115 

modest example of this is Forbes and Zampelli (2019), who analyzed CO2 emissions from the Irish 116 

power grid using the methods presented in this paper after observing that the emission levels had 117 

autoregressive and heteroskedastic properties.  These properties will be shown to be highly 118 

relevant when modeling hourly temperature.  Ignoring these properties makes extracting CO2’s  119 

“signal”  from the “noisy” data almost impossible.  120 
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In terms of organization, section 2 of the paper discusses the survey data.  Section 3 121 

summarizes the views of individuals identified as being climate deniers within the scientific 122 

community.  Section 4 discusses the data used in the analysis.  To provide context, the trends in 123 

hourly temperature, downward total solar irradiance, and CO2 concentrations at the Barrow 124 

Atmospheric Observatory are reported.  In response to an assertion about a lack of recent warming 125 

relative to the pre-1940 period by Lindzen ( 2020, pp. 12-13), the annual temperature at the nearby 126 

Barrow Airport from 1921 through 2020 is reported.  The time-series nature of hourly temperature 127 

at Barrow is also discussed to facilitate the modeling discussion in the remaining sections of the 128 

paper.  Section 5 introduces a modeling framework to examine the possible association between 129 

CO2 concentrations and hourly temperature.  Section 6 discusses the estimation process and also 130 

presents the results.  Section 7 evaluates the model.  The paper’s findings are discussed in section 131 

8. 132 

 133 

2.  The Survey Evidence 134 

 135 

A 2019 YouGov survey of 30,000 individuals that are believed to be representative of the online 136 

population in 28 countries indicated that there were only 14 countries in which 50 % or more of 137 

the respondents would agree with the statement that “The climate is changing and human activity 138 

is mainly responsible” (Figure 1).  A significant number of the respondents indicated that human 139 

activity is only partly responsible for climate change.  For example, while 40% of the respondents 140 

in Denmark agreed with the scientific consensus, 48% agreed with the view that “…human activity 141 

is partly responsible, together with other factors (emphasis added).  In the United Kingdom, 142 

51% endorsed the scientific consensus, while 37% believe that human activity is only partly 143 

responsible.  In China,  45% endorsed the scientific consensus, while 48% believe human activity 144 

is only partly responsible.  In the USA, 38% endorsed the scientific consensus, 37% reported that 145 
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they believe that human activity is only partly responsible for climate change, 9% believe that 146 

human activity is not a driver of climate change, and 6% reported that they do not believe that the 147 

climate is changing.  148 

 149 

 150 

Source: Source: 10.5281/zenodo.5833580 151 

 152 

Figure 1.  Responses to a 2019 YouGov survey question posed to 30,000 people 153 

in 28  countries.  Thinking about the global environment…In general, which of 154 

the following statements, if any, best describes your view?” 155 

 156 

 157 

 158 

https://doi.org/10.5281/zenodo.5833580
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While it is tempting to attribute the findings for China in Figure 1 as evidence of a form of climate 159 

denial by a large proportion of its population, the recent findings by Yang et al. (2021) would seem 160 

to suggest that a sincere misunderstanding of the nature of climate change might be a more 161 

important consideration.  In other countries, other survey data are largely consistent with the data 162 

presented in Figure 1.  For example, in a 2019  Irish Times/Iposos MRBI poll  (Leahy, P., 2019), 163 

respondents were asked if they agreed with the following statement: “I don’t think climate change 164 

will be as bad as some say so I’m not that worried about it.” While 57% of the respondents 165 

implicitly endorsed the scientific consensus by disagreeing with the statement, 33% agreed.  In 166 

this same poll, only 44% of the respondents agreed with the statement, “I am okay with the price 167 

of oil, gas, petrol and diesel increasing to help tackle climate change.” This is obviously not a 168 

majority and thus represents a challenge to implementing policies to reduce emissions. 169 

 170 

A November 2018 survey of 1,202 adults by the Energy Policy Institute at the University of 171 

Chicago and the AP-NORC Center yields useful insights (EPIC, 2018).     According to this 172 

survey, 57% of the respondents were willing to pay a $1 monthly fee to combat climate change.  173 

About 23% were willing to pay 40 USD per month.  However, 43 percent were unwilling to pay 174 

anything, highlighting the challenge of doing anything significant to reduce emissions.  175 

Acceptance of the view that human activity contributes to climate change was a useful indicator 176 

of whether respondents were willing to pay to reduce emissions.  177 

 178 

Suggestive of the possible political implications of the polling data, the UNFCCC secretariat 179 

(United Nations Framework Convention on Climate Change) issued a report in September 2021 180 

that indicated that the combined updated Paris Accord pledges fall short of what it will take to 181 

meet the goals of the Paris Accords.  Specifically, even with the updated pledges, projected GHG 182 
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emissions in 2030 are only about 0.5% lower than in 2010, which is far lower than what it would 183 

take to limit global warming to below two °C (UNFCCC Secretariat, 2021a).  The COP26 184 

meetings that were held in November of 2021 have done little to improve the prospects that the 185 

goals of the 2015 Paris Accords will be met.  The United States did announce its good intentions, 186 

but climate deniers will most likely make those goals very difficult to achieve.  The conference 187 

faced other challenges including objections to phasing out coal.  While the conference made 188 

progress in the areas of carbon markets and finance, the fact remains that there is a significant 189 

emissions gap (UNFCCC Secretariat, 2021b).  190 

3 The Views of the Climate Deniers from within the Scientific Community 191 

Somewhat surprisingly, some prominent individuals from within the scientific community who 192 

have been labeled as climate deniers have actually conceded that increases in CO2 concentrations 193 

have consequences for surface warming.  For example,  the CO2 Coalition (2015), a sharp critic of 194 

the scientific consensus, whose members include the well-known influencers  Richard  Lindzen, 195 

Patrick Michaels, Roy Spence, and William Happer,  has explicitly acknowledged the greenhouse 196 

effect.  It notes that predicting greenhouse-induced warming is difficult because atmospheric 197 

processes are very complicated.  It then pivots back and reports that it believes that the data 198 

suggests that the warming associated with a doubling of CO2 levels will be very modest.  In its 199 

words,  200 

“Basic physics implies that more atmospheric CO2 will increase greenhouse 201 

warming.  However, atmospheric processes are so complicated that the amount of 202 

warming cannot be reliably predicted from first principles.  Recent observations of 203 

the atmosphere and oceans, together with geological history, point to very modest 204 

warming, about 1 C (1.8 F) if atmospheric CO2 levels are doubled.” 205 

 206 

       CO2 Coalition, 2015 207 

 208 
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The CO2 Coalition’s assertion that the warming associated with a doubling of CO2 will be modest 209 

appears to be largely premised on a belief that the recent warming is about the same as before the 210 

1940s (Lindzen,  2020,  pp. 12-13).  As will be seen, this belief is not supported by the data in 211 

northern Alaska.  212 

 213 

4 An Overview of the Changing Climate in Northern Alaska 214 

 215 

The study employs temperature, solar radiation, and CO2 data reported by the Barrow (BRW) 216 

Atmospheric Observatory.  This is one of the baseline observatories of the Earth System Research 217 

Laboratory (ESRL), Global Monitoring Division (GMD), of the National Oceanic and 218 

Atmospheric Administration (NOAA).  It is located near sea level about 8 km east of Utqiaġvik 219 

(formerly Barrow), Alaska at 71.3230 degrees north and 256.6114 degrees West (Vasel et al., 220 

2020).  Continuous atmospheric measurements of CO2 have been recorded at this observatory since 221 

July 1973 (Thoning et al., 2021).  Herbert et al. (1986) discuss how the data are processed.  222 

Peterson et al. (1986) discuss the first ten years (1973-1982) of operations and report consistency 223 

of the  Barrow results with the reported data from four neighboring locations.  Tans and Thoning 224 

(2020) provide a general overview of the methods used to collect and process the CO2 data at 225 

Mauna Loa, one of NOAA’s other baseline observatories.  Along with the hourly temperature data 226 

corresponding to BRW, the CO2 data for BRW were downloaded using the following link: 227 

(http://www.esrl.noaa.gov/gmd/dv/data/  ). 228 

 229 

 230 

Measurements of downward total solar irradiance have been reported at the BRW observatory 231 

since January 1976.  Before 1998, the data were reported at three minutes intervals.  The data were 232 

subsequently reported at one-minute intervals.  For this study, the reported values were rolled up 233 

http://www.esrl.noaa.gov/gmd/dv/data/
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to hourly averages.  Data were dropped from the analysis if the number of valid minutes of data 234 

for an hour was less than 15.  235 

 236 

Consideration was given to the inclusion of CH4 data in the analysis.  This action would have 237 

resulted in the loss of 26,381 hourly observations due to unavailable or invalid CH4 measurements.  238 

(the collection of the CH4 data commenced in 1986 but was subsequently suspended for about nine 239 

months in 2012/2013).  The probable effect of this data loss on model convergence was an 240 

important consideration in excluding this variable from the analysis, model convergence being one 241 

of the major challenges of the methodology employed in this paper (STATA, 2021, p. 33).  The 242 

omission of  CH4  and other variables reflecting greenhouse gas concentrations represents a 243 

shortcoming in the analysis.  244 

 245 

The sample for this study spans from 1 Jan 1985 through 31 Dec 2015.  Data before 1 Jan 1985 246 

were not employed in this study because the reported downward total solar irradiance data largely 247 

did not meet ESRL’s standards before that date.  For example, only about 31% of the downward 248 

total solar irradiance values in 1984 were deemed by ESRL to be valid.  The 1 Jan 2016 - 31 Aug 249 

2017 time interval is reserved for out-of-sample analysis.  The evaluation period terminates on 31 250 

Aug 2017 because of a significant data availability issue.  251 

 252 

In thinking about meteorological issues at BRW, it is useful to begin by first noting the 253 

extremes and high level of variability in the level of downward total solar irradiance at this 254 

location.  In terms of variability, the data from 2014 is instructive (Figure 2).  Concerning the 255 
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extremes, there are about 67 days of virtually total darkness each year ( about 18 Nov to 22 Jan), 256 

while the sun does not completely set from 11 May to 31 Jul.  257 

 258 

Figure 2.  The level of hourly downward total solar irradiance at BRW, 1 Jan 2014 – 31 Dec 259 

2014 260 

 261 

The average annual temperature at BRW  has increased significantly since 1985 (Figure 3).  262 

Specifically, the average annual temperature over the 2015-2020 time period was about 3.37 oC 263 

higher than in 1985-1990.  The temperature data reported by the  PABR weather station at the 264 

nearby Barrow Airport from 1985 through 2020 are consistent with the trend at BRW (Figure 4).  265 

The PABR data also indicates that the four warmest years since 1921 occurred in 2016, 2017, 266 

2018, and 2019.  In these four years, the average annual temperature was about 5.03 o C higher 267 

than the average annual temperature from 1921 through 1939.  These findings do not support the 268 

assertion by Lindzen that the recent warming is about the same as before the 1940s (2020, pp. 12-269 
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13).  In terms of the magnitudes of the recent warming, the increases are consistent with  Arctic 270 

amplification, as explained by Pithan & Mauritsen (2014) and Winton (2006). 271 

The upward trend in temperature at both BRW and PABR  is consistent with the temperature trend 272 

for the Arctic noted by Post et al. (2019), Markon et al. (2018, p 1190-1192), and Thoman et al. 273 

(2020, p. 4).  Box et al. (2019) have reported significant changes in nine key measures of the Arctic 274 

climate system over 1971 through 2017.  The qualitative story is clear: “the transformation of the 275 

Arctic to a warmer, less frozen, and biologically changed region is well underway.” (Thoman et 276 

al., 2020, p. 1).  Consistent with these changes, the annual mean permafrost temperatures have 277 

increased at many locations throughout the Arctic (Romanovsky et al., 2017,   p. 69).  For example, 278 

based on data reported by EPA, the average annual permafrost temperature at the Deadhorse 279 

Permafrost Observatory       ( https://permafrost.gi.alaska.edu) over the years 2015 through 2020 280 

was about 2.81 oC higher than during the years 1985 through 1990 (EPA, 2021).  In four of the 11 281 

permafrost observatories whose 2020 annual temperatures are reported by EPA, the 2020 average 282 

temperatures were between -1 and 0 oC.  There is evidence that thawing has adverse implications 283 

for carbon emissions because of stimulated microbial decomposition (Schuur et al., 2021). 284 

 285 

According to AMAP, “Arctic warming can also have effects far beyond the region: for example, 286 

the recent rapid warming of the Arctic appears to have created conditions favoring a persistent 287 

pattern in the jet stream that provokes unusual extreme temperature events in the Northern 288 

Hemisphere.” (AMAP, 2019, p. 4).  Taylor et al. (2017, p. 303) have indicated it is very likely that 289 

human activities have contributed to these trends.  While the literature supports this finding, it has 290 

also been suggested that the significant natural weather and climate variability in the Arctic poses 291 

an attribution challenge (Taylor et al., 2017, p. 319).  Consistent with this reported variability, both 292 

https://permafrost.gi.alaska.edu/
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downward total solar irradiance and temperature at the hourly level are highly variable (Figures 5 293 

and 6).  Concerning the hourly CO2 concentration levels, there is a significant upward trend in the 294 

hourly CO2 concentration levels over the sample (Figure 7).  Despite the upward trend in both CO2 295 

concentrations and temperature, there is no visually obvious relationship between the two variables 296 

(Figure 8).  While some climate deniers may be tempted to claim that the data in this figure 297 

vindicates their position, the view here is that a lack of correlation between two variables only 298 

rules out causality when the hypothesized relationship is quite simple. 299 

 300 

 301 

 302 

 303 

Figure 3.  The average hourly temperature at the Barrow Observatory, 1985 -2020 304 

 305 

 306 

 307 

 308 

 309 
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 310 

 311 

Figure 4.  The average annual temperature at the PABR/Barrow Airport  weather station, 1921 -312 

2020 313 

 314 
Figure 5.  The hourly temperature at the Barrow Observatory, 1 Jan 1985 – 31 Dec 2016 315 
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 316 
Figure 6.  Hourly downward total solar irradiance levels at the Barrow Observatory, 1 Jan 1985 317 

– 31 Dec 2016 318 

 319 

 320 

Figure 7.  Hourly CO2 concentration levels at the Barrow Observatory, 1985 -2019 321 

 322 



manuscript submitted to AGU Advances 

14 

 

 323 
 324 

Figure 8.  A scatter diagram of hourly temperature and CO2 concentration levels at BRW, 1 Jan 325 

1985 – 31 Dec 2015 326 

 327 

 328 

The autocorrelative nature of hourly temperature is an important characteristic of the data (Figure 329 

9).  As the figure indicates, the magnitude and the duration of the autocorrelative process are 330 

significant.  In terms of magnitude, the estimated one-hour autocorrelation in temperature equals 331 

0.9970, a value that is so large that it is reasonable to wonder if there is a unit root issue.  If this is 332 

indeed the case, the results of this study could be spurious for the reasons explained by Kennedy ( 333 

2008,  p. 301). 334 

Fortunately, an Augmented Dickey-Fuller test yields a P-value that is less than 0.0001 both with 335 

and without a possible trend, and thus the null hypothesis of a unit root is rejected.  Consistent 336 

with this finding, the Phillips-Perron test for a unit root also yields a P-value less than 0.0001 both 337 

with and without a possible trend.  Consideration was given to further unit root testing using the  338 

DF-GLS test developed by Elliot et al. (1996).  This test is regarded as a leading “second-339 

generation” unit root test that avoids some of the shortcomings of the Augmented Dickey-Fuller 340 
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and Phillips-Perron tests (Baum and Hurn, 2021,   pp. 117-120 ).  The application of this 341 

methodology requires a data series without any gaps.  The Barrow data set has 325 gaps in terms 342 

of temperature, and thus, the DF-GLS test cannot be applied.  343 

 Fortunately, hourly temperature data analysis at another observatory in the polar region 344 

may be instructive.  One of the few stations in the polar region that substantially meets the zero 345 

data gap requirements of the DF-GLS test is the Syowa station on  East Ongle Island, located about 346 

4km from the  Antarctic continent with a latitude 69.0125° South and a longitude of    39.5900° 347 

East.   This station is supported by the National Institute of Polar Research in Japan.  The data 348 

from this station was obtained from NASA’s CERES/ARM Validation Experiment ( https://ceres-349 

tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp ). 350 

 From 14 Apr  2002 through 31 Jan  2016, a period with 120,982 hours and no data gaps, the mean 351 

temperature at the Syowa Observatory was about -10.7 °C, with the hourly values ranging from 352 

41.25 °C to 7.65  °C.  At one hour lagged, the autocorrelation in temperature equals 0.9959, a 353 

value seemingly suggestive of a unit root issue.  This possible suspicion is not supported by the 354 

Augmented Dickey-Fuller, Phillips–Perron, or the DF-GLS tests.   355 

While the available tests do not support the null hypothesis of a unit root in the hourly 356 

temperature data, a quantitative analysis of hourly time-series temperature data needs to control 357 

its time-series nature to effectively extract the signal from the noise in the data.  The method of 358 

ordinary least squares is woefully deficient in this regard.  This point is consistent with a warning 359 

by Granger and Newbold (1974, p. 117), who note the following: “In our opinion the 360 

econometrician can no longer ignore the time series properties of the variables with which he is 361 

concerned ‐ except at his [ or her ] peril.” The consequences of ignoring their warning include 362 

inefficient estimates of the regression coefficients, suboptimal forecasts, and invalid tests of 363 

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
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statistical significance.  Unfortunately, an inspection of “Statistical Methods in the Atmospheric 364 

Sciences,” authored by Wilks (2019), suggests that this warning has not been fully heeded in the 365 

atmospheric sciences. 366 

 367 

 368 
Figure 9.  The autocorrelations in hourly temperature at Barrow, 1 Jan 1985 – 31 Dec 2015 369 

 370 

 371 

5 An ARCH/ARMAX Model of Hourly Temperature 372 

 373 

The model employed in this paper is an Autoregressive Conditional Heteroskedasticity/ 374 

Autoregressive–Moving-Average with Exogenous Inputs model of temperature (henceforth, an 375 

ARCH/ARMAX model of temperature).  The ARCH  terms are employed to model the 376 

conditional heteroskedasticity, an important consideration in the convergence process.  The 377 

Autoregressive–Moving-Average (ARMA) component models the autocorrelations in 378 

temperature depicted in Figure 9.  In this section, the role of the exogenous inputs is discussed.  379 

 380 
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Following from  Forbes and St. Cyr ( 2017, 2019) and Forbes and Zampelli (2019, 2020), the 381 

modeling approach employed in this paper accepts the proposition that “All models are wrong; 382 

some models are useful” (Box et al., 2005, p. 440).  They are all “wrong” because they represent 383 

a simplification of reality; they can be useful if important features of that reality are captured.  A 384 

possibly related  proposition that may be relevant during these  times of sharp differences in 385 

opinions is “that all modeling results can easily be dismissed out of hand  as being  wrong, even if 386 

they are useful.”  In the case of this research, it may be asserted that the results are “wrong” because 387 

the model is adversely affected by “specification errors,” “multicollinearity,” “autocorrelation,” 388 

“heteroskedasticity,” “overfitting,” and “unit-root issues.” Other readers may conclude that the 389 

model is “wrong” because it somehow “forces” the estimated relationship between CO2 390 

concentrations and temperature to be positive because both are rising over time ( note: the 391 

correlation between temperature and CO2 equals -0.1495).  Still, others will argue that the results 392 

are “biased” because the model’s dependent variable is the natural logarithm of temperature.  393 

 394 

Following from Forbes and Zampelli (2020, p. 13), this paper accepts the proposition that the 395 

“…vulnerability of a model to be deemed as wrong even though all models are “wrong” represents 396 

a challenge to the recognition of insights provided by models that are useful.” Fortunately, this 397 

challenge can be addressed by assessing a model’s predictive accuracy.  Common sense informs 398 

us that a model that yields accurate predictions is useful if the evaluation interval is sufficiently 399 

long.  Based on this perspective, the approach in this paper proceeds by estimating the model using 400 

228,085 observations and performing an out-of-sample analysis with 13,175 observations.  401 

 402 
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In the model, the association between CO2 concentrations and temperature is presumed to be 403 

conditional on the level of downward total solar irradiance measured at the Earth’s surface, 404 

downward total solar irradiance being the primary driver of the weather and climate system.  The 405 

other drivers of the surface energy balance, such as upward and downward longwave irradiance, 406 

are not included as explanatory variables in the model because they are hypothesized to be affected 407 

by CO2 concentrations.  Upward short-wave irradiance is not hypothesized to be directly affected 408 

by CO2 concentrations.  Its inclusion as an explanatory variable is open to question, given that it 409 

is largely driven by downward solar irradiance and temperature.  The inclusion of this variable 410 

would significantly reduce the sample size, given that ESRL only commenced reporting this 411 

variable in 1993.  412 

In the model, CO2 concentrations are lagged one hour to avoid the issue of possible two-413 

way causality between temperature and CO2 concentrations.  The model also includes binary 414 

variables representing the solar zenith angle, the hour-of-the-day, day-of-the-year, and year.  These 415 

variables are included as proxies for the drivers of the diurnal variation in temperature, the seasonal 416 

variation in temperature, and the possible non-anthropomorphic drivers of temperature unrelated 417 

to total downward solar irradiance.  In terms of functional form, linearity is not presumed.   Instead, 418 

the data are permitted to speak for themselves on this important issue.  419 

 420 

The initial version of the model is given by: 421 

lnTempt  = α0  + α1 ZeroSolart   + α2 Solart +  α3 (CO2t-1*ZeroSolart)  422 

 423 

+  α4 (CO2t-1*Solart)  +  α5 Solart * CO2t-1  +         ∑ βhAngleh 
9
h=1      424 

 425 

+   ∑ ϕiHourofDayi 
24
i=2  +  ∑ γjDOYj 

365
j=2  +     ∑ δkYeark

2014
k=1985        (1) 426 

 427 

 428 

Where 429 
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lnTempt is the natural logarithm of temperature measured in Kelvin in hour t. 430 

 431 

ZeroSolart  is a binary variable.  The variable is assigned a value of one if the downward total 432 

solar irradiance level at Barrow in period t equals zero.  Its value equals zero otherwise. 433 

 434 

Solart equals the downward total solar irradiance level at Barrow in period t. 435 

 436 

CO2t-1 is the atmospheric level of CO2 concentrations at Barrow in hour t-1.  437 

 438 

PosSolart is a binary variable that equals one if the level of downward total solar irradiance at 439 

Barrow in period t is positive.  Its value equals zero otherwise. 440 

 441 

Angleh  is a vector of nine variables representing the solar zenith angle. 442 

 443 

HourofDayi  is a series of 23 variables representing the hour of the day. 444 

 445 

DOYj  is a series of 364 binary variables representing the day of the year. 446 

 447 

Yeark is a series of  30  binary variables representing the year.  448 

 449 

Please note that α1, α2, and α3, etc. are the coefficients corresponding to this linear version of the 450 

model.   From (1), the total number of coefficients to be estimated equals 432.  Some may strongly 451 

suspect that this number of explanatory variables indicates that the model is ”overfitted.”   If this 452 

claim is true, the model would be unlikely to yield accurate out-of-sample predictions even if the 453 

within-sample explanatory power is very high (Brooks, 2019, p. 271).  The “rule of thumb” by 454 

Trout (2006)  that overfitting is avoided when there are at least ten observations per estimated 455 

coefficient does not support this possible suspicion given that the structural model present in this 456 

paper entails over 500 observations per estimated coefficient.  Moreover, as will be seen, the model 457 

does not suffer from the consequences of overfitting in terms of out-of-sample predictive accuracy.  458 

 459 

 460 

 461 

 462 

 463 

6 Estimation and Results 464 

 465 
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The model was estimated using hourly data over the 1 Jan 1985 - 31 Dec 2015 time interval.  The 466 

analysis was conducted in two distinct stages.  In the first stage,  the functional form given by Eq. 467 

(1) was evaluated.  A nonlinear functional form was subsequentially identified.   468 

The analysis also recognizes that the disturbance term’s variance in a regression equation is 469 

heteroskedastic instead of homoscedastic, i.e., variable instead of constant over time.  As 470 

suggested in the previous section, the accepted approach involves estimating an ARCH model.  471 

This approach was proposed by Engle (1982) to improve the analysis of financial data.  It has 472 

since proven itself invaluable in modeling any time-series variable in which there are periods of 473 

turbulence followed by relative calm at some point.  Hourly temperature is one of those 474 

variables.  Those tempted to claim otherwise are cheerfully invited to consult the book entitled 475 

“Environmental Econometrics Using Stata,” authored by Baum and Hurn (2021).  476 

 477 

The second estimation stage also recognizes that the temperature in hour t is not statistically 478 

independent from the temperature outcomes in previous hours, as seen in Figure 9.  As suggested 479 

in the previous section, this is done using an ARMAX   specification.  In this case, the 480 

transformed explanatory variables from the first stage  (e.g., Solart
1/4) are the exogenous inputs.  481 

Given this specification,  the disturbance terms are presumed to follow an ARMA specification 482 

that models the autocorrelations reported in Figure 9.  The ARMA specification applied in this 483 

paper is not parsimonious because the autocorrelative process in Figure 9 is not short in duration.  484 

It is recognized that this approach runs counter to the traditional time-series philosophy (Box and 485 

Jenkins, 1976, p. 17), which suspected that there was more room for prediction errors when more 486 

time-series parameters were estimated (Hamilton, 1994, p. 106).  The view here is that the goal 487 

of predictive accuracy can sometimes be enhanced by including more ARMA terms.  This 488 
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approach makes sense given the long memory property of the autocorrelations evidenced in 489 

Figure 9 and the high level of variability in temperature, as evidenced by Figure 5.  The 490 

heteroskedasticity is modeled as a function of the solar zenith angle, the hour of the day, the day 491 

of the year, the year of the sample, and the following variables: √𝐶𝑂2𝑡−1, √𝑆𝑜𝑙𝑎𝑟𝑡 .  Instead of 492 

assuming that hourly temperature is independent of the conditional variance, the model permits 493 

the data to speak for itself on this issue.  This linkage is relevant if the level of a variable depends 494 

on the variance in the disturbance term.  The ARCH-in-mean model introduced by Engel et al. 495 

(1987) offers an approach to estimate this linkage. 496 

 497 

The possible merits of representing the explanatory variables using a nonlinear specification are 498 

addressed using the multivariable fractional polynomial (MFP) methodology (Royston and 499 

Sauerbrei, 2008).  Its application includes Forbes and St Cyr (2017, 2019) and Forbes and 500 

Zampelli(2019, 2020).  The methodology considers the effects of nonlinear transformations of the 501 

explanatory variables.  In the present case, the MFP results suggest the following specification:  502 

 503 

lnTempt  = 𝛼0
′

   +  𝛼1
′  ZeroSolart  +  𝛼2

′ Solart
1/4

 +   𝛼3
′  (CO2t-1*ZeroSolart)

3  504 

 505 

+   𝛼4
′  (CO2t-1*PosSolart)

1/4   +  𝛼5
′

 (Solart * CO2t-1 )
1/4  + ∑ 𝛽ℎ

′ Angleh 
9
h=1    506 

 507 

 +   ∑    ϕ𝑖
′  HourofDayi 

24
i=2  +  ∑   γ𝑖

′ DOYj 
365
j=2  +     ∑   δ𝑘

′  Yeark
2014
k=1985                              (2) 508 

                 509 

 510 

 511 

Please note that 𝛼1
′ ,   𝛼2

′ ,  and 𝛼3
′    etc. are the estimated coefficients in this specification.  Least 512 

squares estimation of (2) produces a seemingly respectable level of explanatory power, the  R2 513 

being about 0.831.  However, a Portmanteau test for autocorrelation (Box and Pierce, 1970; Ljung 514 

and Box, 1978) reveals that the residuals are highly autocorrelated.  Consistent with Forbes and 515 

St. Cyr (2019, p.17), for lags one through 100, the P values are less than 0.0001.  The null 516 
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hypothesis of no ARCH effects is rejected with a P-value less than 0.0001.  Consistent with these 517 

issues, the least-squares model is not useful.  This finding is supported by out-of-sample 518 

predictions over the period 1 Jan 2016 - 31 Aug 2017 time interval that have a root-mean-squared-519 

error (RMSE) of about 5.67 o C,  a value that is clearly indicative of a suboptimal prediction 520 

process.  521 

 522 

ARCH/ARMAX methods can generate predictions that are much more accurate than the 523 

predictions from a least-squares model when the dependent variable is autoregressive and 524 

heteroskedastic in nature.  In this case, the ARCH process’s modeled lag lengths are lags 1 and 2.  525 

Consideration was given to including additional ARCH terms to model the apparent diurnal 526 

pattern of the ARCH process (e.g., 24, 48, 72, 96 etc.). Consideration was also given to 527 

employing  alternative ARCH  and GARCH specifications. These approaches were abandoned 528 

due to model convergence issues. The modeled lag lengths for the AR process are 1 through 12, 529 

23, 24, 25, 26, 47, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145 167, 168,169, 192, 193, 216, 530 

240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 480, 600, 671, 672, 673, 840, and 531 

960.  The MA modeled lag lengths are 1 through 25, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 532 

145, 167, 168, 169, 192, 193, 216, 240, 264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 533 

480, 600, 671, 672, 673, 840, and 960.   534 

Equation (2) was estimated assuming that the residual error terms correspond to the Student t 535 

distribution instead of the more typical Gaussian distribution.  This approach is believed to be 536 

justified by the highly volatile nature of the weather system in the vicinity of Barrow.  One 537 

shortcoming in its application here is that the “degrees of freedom” parameter is less than the 538 

minimum indicated by Harvey (2013, p. 20).    Consideration was  given to modeling the residual 539 
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error terms using the generalized error distribution, but this approach was abandoned due to model 540 

convergence issues.  541 

 542 

Selected estimates are reported in Table 1.  It is revealed that  𝛼2  
′ , the coefficient corresponding 543 

to Solart
1/4 is positive and highly statistically significant.   The CO2 coefficients 𝛼3     

′ and 𝛼4 
′  are 544 

also positive and highly statistically significant while 𝛼5
′   is negative and highly statistically 545 

significant.  These findings are consistent with the view that CO2 concentrations have implications 546 

for hourly temperature but do not address the magnitude.  Concerning the possible non-547 

anthropomorphic drivers of temperature, it is interesting to note that  16 of the 30 variables in 548 

question are statistically significant.  With 2015 being represented in the constant term, negative 549 

values for a year are consistent with higher predicted temperatures in 2015 than in the year in 550 

question.  There are 13 such cases.  For these cases, the coefficients’ median value is -0.00543, a 551 

value that hardly seems important.  552 

 553 

The model’s explanatory power based on the estimated structural parameters (  all the parameter 554 

estimates ) is  0.8105  (  0.9968.  ) Those who believe that the latter level of explanatory power is 555 

somehow “too outstanding to be true,” are cheerfully invited to reinspect Figure 9 and contemplate 556 

the concept of autocorrelation and how modeling this autocorrelation can affect a model’s level of 557 

explanatory power.  In any event, the view here follows Hyndman and  Athanasopoulos (2018, 558 

3.4), who note that true adequacy… “ can only be determined by considering how well a model 559 

performs on new data that were not used when fitting the model.” It is also noted that even though 560 

a model’s R2  equivalence is a well-recognized measure of model adequacy, a good case can be 561 

made that achieving white noise in the residuals is also important ( Becketti, 2013, p. 256;  562 
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Kennedy, 2008, p. 315; and Granger and Newbold, 1974, p. 119).  To assess whether this measure 563 

of adequacy is achieved, Portmanteau tests for autocorrelation were conducted for the hourly lags 564 

1 through 100, 192, 284, and 672.  At lag 1, the P-value is 0.1958.  For the remaining 111 lags that 565 

were assessed, the P-values are less than .05, thereby rejecting the null hypothesis of a white noise 566 

error structure.  567 

 568 

 569 

Table 1.  Estimation Results 570 

 571 

Variable Estimated 

Coefficient  

Absolute 

Value of the t-

Statistic 

P-Value 

Constant term -84.5387 3.41 < 0.001 

ZeroSolart   0.053421 9.25 < 0.001 

Solart
1/4 0.01102 11.23 < 0.001 

(CO2t-1*ZeroSolart)
3 7.70E-11 7.57 < 0.001 

(CO2t-1*PosSolart)
1/4    0.01296 9.04 < 0.001 

(Solart * CO2t-1 )
1/4 -0.00232 10.42 < 0.001 

Year1985 -0.01111 9.96 < 0.001 

Year1986 -0.00371 2.36 0.018 

Year1987 -0.00983 6.91 < 0.001 

Year1988 -0.00808 6.87 < 0.001 

Year1989 -0.00498 1.76 0.079 

Year1990 -0.0033 1.47 0.141 

Year1991 -0.00285 1.82 0.068 

Year1992 -0.00664 2.21 0.027 

Year1993 -0.00265 2.52 0.012 

Year1994 -0.00339 2.47 0.014 

Year1995 -0.00384 4.43 < 0.001 

Year1996 -0.00305 1.73 0.083 

Year1997 0.001996 1.06 0.288 

Year1998 0.005733 3.48 0.001 

Year1999 -0.00766 4.34 < 0.001 
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 572 

 573 

 574 

 575 

 576 

Regarding the binary variables not reported above, 336 of the 364 day-of-the-

year coefficients are statistically significant, while  22 of the 23 hour-of-the-

day variables are statistically significant.  Only three of the nine solar angle 

coefficients are statistically significant.  

Concerning the AR and MA terms, 44 of the 53 AR terms and 31 of the 61 

MA terms are statistically different from zero.  Both of the ARCH terms are 

statistically significant.  Only one of the three ARCH-in-Mean terms is 

statistically significant.  Regarding the variables that model the 

heteroskedasticity in the conditional variance, 298 of the 429 variables are 

statistically different from zero. 

 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

Year2000 -0.00543 4.26 < 0.001 

Year2001 -0.00359 2.97 0.003 

Year2002 0.002124 0.61 0.541 

Year2003 -0.00658 3.21 0.001 

Year2004 -0.00449 4.07 < 0.001 

Year2005 -0.00211 1.11 0.265 

Year2006 0.000883 0.33 0.743 

Year2007 0.005622 4.31 < 0.001 

Year2008 1.92E-06 0 0.999 

Year2009 0.002597 1.98 0.048 

Year2010 0.000847 0.38 0.707 

Year2011 0.001634 0.23 0.817 

Year2012 -0.00044 0.22 0.829 

Year2013 0.001147 0.46 0.643 

Year2014 0.002601                                      

1.40 

0.162 

Number of Observations 228,085   

R-Square equivalence 

based on the full model 
0.9968 

  

R-Square equivalence 

based on the model’s 

structural component. 

0.8105 
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7 The Model’s  Out-of-Sample Performance 586 

 587 

The out-of-sample evaluation period consists of  13,175 hours over the 1 Jan 2016 to 31 Aug 2017 588 

time interval.  Recalling that the dependent variable in the model is the natural logarithm of 589 

temperature measured in Kelvin, it might seem that a simple retransformation would yield the 590 

optimal predicted value.  Unfortunately, merely taking the antilogarithm of the predicted natural 591 

logarithm of temperature measured in Kelvin may result in a biased temperature prediction 592 

(Granger and Newbold, 1976, pp. 196-197).  This bias is easily resolved when the error distribution 593 

is Gaussian using a method presented by Guerrero (1993).  Given the non-Gaussian nature of the 594 

error distribution in this case, the matter was resolved by estimating a post-processing regression 595 

without a constant term using all of the observations in the sample.  The explanatory variable in 596 

this post-processing regression is the hourly temperature measured in Kelvin, while the 597 

explanatory variable in this regression is the antilog of the transformed predicted values.  The 598 

estimated coefficient corresponding to the explanatory variable equals 0.9999895.  The associated 599 

R-Square equals 1.0000.  The estimated parameter from this regression was used to detransform 600 

the out-of-sample transformed predicted temperature values.  601 

The out-of-sample predictions were compared with the ERA5 predictions for the same general 602 

location.  For those unfamiliar with the ERA5 modeling results, it was produced by the Copernicus 603 

Climate Change Service at ECMWF.  In a significant advance from its earlier databases, it reports 604 

hourly values across the globe.  The ERA5 hourly temperature values for the Barrow location were 605 

obtained from Meteoblue (   https://content.meteoblue.com/en/specifications/data-606 

sources/weather-simulation-data/reanalysis-datasets ). 607 

 608 

https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/reanalysis-datasets
https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/reanalysis-datasets
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The out-of-sample temperature predictions from the ARCH/ARMAX model presented in this 609 

paper have a predictive R-square of 0.9962.  The predictions are visually more accurate than the 610 

ERA5 values for the same general location (Figure 10), although it should be noted that the ERA5 611 

values correspond to a grid that includes land and ocean while Barrow represents a land location 612 

within that grid.  Nevertheless,  the ERA5 values may serve as a useful benchmark for the 613 

ARCH/ARMAX out-of-sample predictions.  Regarding the RMSEs, the predictions associated 614 

with the ARCH/ARMAX model have an RMSE equal to about  0.682 oC, while the ERA5 615 

outcomes have an RMSE of about  3.117 oC.  Interestingly, an ordinary least-squares estimation 616 

of the ERA5 predictions indicates that the prediction errors are not purely random.  Specifically, 617 

the prediction error is conditional on the magnitude of the predicted temperature and lagged value 618 

of the CO2 concentration.  The latter finding is consistent with the central thesis of this paper.  619 

Following Granger’s discussion of prediction errors (1986, p. 91),  both of these findings suggest 620 

a pathway to improving the accuracy of the ERA5 predictions.  621 

 622 

The out-of-sample temperature predictions from the ARCH/ARMAX model are significantly 623 

degraded when the estimated effects of CO2 are ignored (Figure 11).  The differential in 624 

predictive accuracy is visually apparent if one inspects the vertical distance between the scatter 625 

points and the 45o line representing the relationship between predicted and actual temperature 626 

when the predictions are perfect.  As reported above, the full model presented in this paper has 627 

an RMSE equal to 0.682 oC over the evaluation period, constraining the CO2 estimated effects to 628 

be equal to zero results in predictions with an RMSE equal to 3.379 oC.  629 

 630 
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The out-of-sample analysis is supportive of the earlier discussion indicating the unimportance of 631 

factors other than CO2 and the total downward solar irradiance being drivers of the increase in 632 

annual temperature over the sample period.  Specifically, using the full model, the mean 633 

predicted temperature over the evaluation period equals - 8.725218   oC.  The mean predicted 634 

temperature over the evaluation period is -8.725221 oC if the estimated effects of the binary 635 

variables for 1986 through 2014 are constrained to equal zero.  In short,  the binary variables that 636 

control for the possibility of annual temperature being affected by factors other than CO2 or total 637 

downward solar irradiance have virtually no effect on the out-of-sample predicted temperature.  638 

Interestingly, the mean actual temperature over the evaluation period equals -8.712713  oC, a 639 

very close value to the mean of the predicted values. 640 

 641 

 642 
Figure 10.  The  ERA5 and the ARCH/ARMAX prediction errors, 1 Jan 2016 – 31 Aug 2017. 643 
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 644 

Figure 11.  The ARCH/ARMAX model predictions with and without the CO2 estimated effects 645 

and the actual temperature outcomes, 1 Jan 2016 – 31 Aug 2017. 646 

 647 

The structural predictions are less accurate than the predictions from the full model but may 648 

yield useful insights.  The predictions from the structural model have an RMSE equal to 5.21 oC 649 

while constraining the CO2 estimated effects to be equal to zero results in predictions with an 650 

RMSE equal to 8.29 oC (Figure 12).  In short, constraining the estimated effects of CO2 to be 651 

equal to zero reduces the structural model’s predictive accuracy.  In terms of temperature, the 652 

predicted level is significantly lower when the estimated structural effects of CO2    are ignored 653 

(Figure 13).  Observe that the difference in the mean levels of predicted temperature is 654 

nontrivial.  655 

 656 
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 657 

 658 

Figure 12.  The RMSEs in the out-of-sample structural predictions 659 

 660 

 661 

 662 

 663 

 664 

Figure 13.  The out-of-sample structural predictions of temperature (oC) 665 

 666 

 667 

 668 
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8 Summary and Conclusion 669 

 670 

This paper employed an ARCH/ARMAX model with statistical controls for total downward 671 

solar irradiance and 426 binary variables to examine the relationship between CO2 672 

concentrations and hourly temperature at the Barrow Atmospheric Observatory in Alaska.  The 673 

model was estimated using hourly data over the time interval of 1 Jan 1985 - 31 Dec 2015.  The 674 

model was evaluated using hourly data from 1 Jan 2016 through 31 Aug 2017.  The predictive R-675 

square equivalence of 0.9962 over the evaluation period suggests that the model has reduced the 676 

attribution challenge associated with the significant natural meteorological variability in the 677 

Arctic.  Consistent with this view,  the predictions over the evaluation period are more accurate 678 

than the highly regarded ERA5 values for the same general vicinity.  Thus, though the model 679 

fails to achieve the metric  of “white noise” in the standardized residuals, the accuracy of its  680 

predictions over the evaluation period indicates  that the model is “useful.” These results are 681 

consistent with the physics that indicates that rising CO2 concentrations have consequences for 682 

temperature, a point that even climate deniers such as Richard Lindzen, William Happer, Roy 683 

Spencer, Patrick Michaels, and the other members of the CO2 Coalition have conceded.  What is 684 

different is that the model also offers useful insights into the magnitude of the relationship 685 

between CO2 concentrations and hourly temperature.  Specifically, the predictions over the 686 

evaluation period are significantly more accurate when they reflect the estimated and statistically 687 

significant CO2 coefficients compared to when those coefficients are ignored.  The out-of-sample 688 

results indicate that CO2 concentrations have nontrivial implications for hourly temperature.  The 689 

modeling results also addressed the possible contribution of factors other than CO2 being drivers 690 

of increased temperature over the sample.  The mean of the out-of-sample predicted temperature 691 
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over the evaluation period is not materially affected by these variables, even though some of 692 

those variables are statistically significant.  693 

 694 

Given that all models are “wrong,” it is a picayune task to dismiss the estimation results reported 695 

in Table 1.  It is much more challenging to rationally dismiss the implications of the large decline 696 

in the out-of-sample predictive accuracy when the estimated CO2 effects are ignored.  One 697 

possibility is that some unknown natural factor at work is the true culprit of the decline in 698 

predictive accuracy.  While climate deniers may find this an attractive explanation for the results 699 

presented in this paper, the model’s high level of predictive out-of-sample accuracy suggests that 700 

unknown factors are not an important driver of temperature.     There is also the point that 701 

attributing the large decline in the out-of-sample predictive accuracy when the estimated CO2 702 

effects are ignored to an “unknown variable” is highly likely to represent obscurantism as opposed 703 

to a conclusion that represents the best of all competing explanations as explained by Lipton (2004, 704 

p. 56).  In short, the beliefs of the climate change deniers are not supported by the hourly 705 

temperature data at NOAA’s Barrow Observatory in Alaska.  Considering the inadequate results 706 

of COP26, this suggests that the current outlook for the Earth’s future is quite grim.  Research that 707 

further illuminates the shortcomings of the views by climate deniers might help matters.  One 708 

approach being considered is an analysis of the drivers of the hourly surface energy imbalance, a 709 

metric that is easily understood as being important but that climate deniers almost never mention.  710 

This research path appears feasible using the methods presented here in light of a preliminary 711 

analysis indicating that the hourly surface energy imbalance at Barrow and other locations is 712 

autoregressive and heteroskedastic.  It is not overly optimistic to believe that modeling these 713 

properties will facilitate the recognition of  CO2’s  “signal”  in the data.  714 
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