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Abstract

Simulation models of multi-sector systems are increasingly used to understand societal resilience to climate and economic shocks

and change. However, multi-sector systems are also subject to numerous uncertainties that prevent the direct application of

simulation models for prediction and planning, particularly when extrapolating past behavior to a nonstationary future. Recent

studies have developed a combination of methods to characterize, attribute, and quantify these uncertainties for both single-

and multi-sector systems. Here we review challenges and complications to the idealized goal of fully quantifying all uncertainties

in a multi-sector model and their interactions with policy design as they emerge at different stages of analysis: (1) inference and

model calibration; (2) projecting future outcomes; and (3) scenario discovery and identification of risk regimes. We also identify

potential methods and research opportunities to help navigate the tradeoffs inherent in uncertainty analyses for complex

systems. During this discussion, we provide a classification of uncertainty types and discuss model coupling frameworks to

support interdisciplinary collaboration on multi-sector dynamics (MSD) research. Finally, we conclude with recommendations

for best practices to ensure that MSD research can be properly contextualized with respect to the underlying uncertainties.
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Abstract21

Simulation models of multi-sector systems are increasingly used to understand societal22

resilience to climate and economic shocks and change. However, multi-sector systems are23

also subject to numerous uncertainties that prevent the direct application of simulation24

models for prediction and planning, particularly when extrapolating past behavior to a25

nonstationary future. Recent studies have developed a combination of methods to char-26

acterize, attribute, and quantify these uncertainties for both single- and multi-sector sys-27

tems. Here we review challenges and complications to the idealized goal of fully quan-28

tifying all uncertainties in a multi-sector model and their interactions with policy design29

as they emerge at different stages of analysis: (1) inference and model calibration; (2)30

projecting future outcomes; and (3) scenario discovery and identification of risk regimes.31

We also identify potential methods and research opportunities to help navigate the trade-32

offs inherent in uncertainty analyses for complex systems. During this discussion, we pro-33

vide a classification of uncertainty types and discuss model coupling frameworks to sup-34

port interdisciplinary collaboration on multi-sector dynamics (MSD) research. Finally,35

we conclude with recommendations for best practices to ensure that MSD research can36

be properly contextualized with respect to the underlying uncertainties.37

1 Introduction38

Simulation models of multi-sector systems are increasingly used to understand so-39

cietal resilience to climate and economic shocks and long-term change. To faithfully rep-40

resent societal systems across spatiotemporal scales, such multi-sector system represen-41

tations need to account for dynamic and endogenous interactions between sectors, rather42

than treating other sectors as exogenous boundary conditions and forcings. This approach43

is at the heart of the emerging field of MultiSector Dynamics (MSD). However, this grow-44

ing complexity increases the number and types of uncertainties that affect both the in-45

verse problem (calibration and inference) as well as the forward projection of system dy-46

namics and resilience into the future, which is critical for decision support. This paper47

identifies and reviews the key challenges involved in uncertainty analysis for MSD. We48

discuss why they arise (or are made more acute) in the multi-sectoral modeling context,49

the current state of the art, and what research opportunities may help address them go-50

ing forward.51

Our focus is on quantitative aspects of multi-sectoral modeling. However it is im-52

portant to note that there are also many semi- and non-quantitative aspects of multi-53

sector modeling and risk analysis. These considerations, which are critical in the devel-54

opment of the conceptual model of the system (S. Robinson et al., 2015) and the use of55

uncertainty analysis to inform policy and governance of complex, multi-sector systems56

in the face of systemic risk (Renn et al., 2020; Hochrainer-Stigler et al., 2020).57

We begin with definitions of several key terms:58

• Sector : a complex system-of-systems that delivers services, amenities, and prod-59

ucts critical to a subdivision of society. Components of sectors may include infras-60

tructure, environmental systems, governing institutions (public and private), la-61

bor force capacity, finance, and a range of actors (e.g., firms, regulatory agencies,62

investors, consumers) involved in producing and consuming services and products63

(Reed et al., 2022);64

• Multi-sector system: a set of interacting sectors that yield emergent dynamics be-65

yond that which could be predicted from each sector alone (Reed et al., 2022);66

• Uncertainty : “a departure from the (unachievable) ideal of complete determin-67

ism” (Walker et al., 2003) in any aspect of the system.68
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Food

Water Energy

Food
Control Volume

Control Volume

Policy Forcing

Outcomes

a) b)

Moving a sector outside of the 
system control volume results 
in its state being considered as
another exogenous forcing.

Exogenous forcings (such as climate and socioeconomics)
and control policies are additional sources of uncertainty.

OutcomesWater Energy

Food

Policy Forcing

Information flows between sectors include 
up/downscaling uncertainties, among others.

Figure 1. Schematic of a multi-sector system model. Two conceptual examples of how a

food-energy-water system can be represented by coupled models of each sector. In panel a), the

control volume includes all three sectors, allowing feedbacks between the food system and the

water and energy system(s) that are not possible when the food system is outside of the control

volume (panel b)) and is therefore treated as exogenous. The endogenous dynamics within the

control volume can be further influenced by exogenous forcings, such as socioeconomic and cli-

mate inputs, and policies, which determine how sectors respond to changes in the internal system

state and external forcings.

These definitions highlight the fact that each sector alone is a complex system of69

agents, institutions, and infrastructure interacting with the natural environment, and70

each other. A useful notion is the idea of the control volume of an analysis, which is a71

concept borrowed from thermodynamics. We use “control volume” to refer to the por-72

tion of the analyzed system(s) whose dynamics are modeled endogenously, as contrasted73

with any exogenous inputs and the model outputs. The shift to studying a multi-sector74

system-of-systems adds complexity by expanding the control volume under analysis to75

encompass feedbacks between systems, potentially across different characteristic spatial76

and temporal scales, and across different resolutions of the system (e.g., individual agents77

vs. aggregations). These dynamics are represented in Figure 1, which is a schematic of78

a coupled multi-sector system-of-systems. Many of the challenges that we review in this79

paper are present in the single-sector case, but are amplified in the multi-sector setting.80

One of the main strategic goals of MSD research is the identification and analy-81

sis of key uncertainties influencing the evolution of a particular system-of-systems. These82

analyses are often conducted using simulation models, which are a set of coupled numer-83

ical equations and/or agent-based rules describing the time evolution of the system state(s),84

given inputs of forcing variables that are external to the system. In general, multi-sector85

system models are subject to several sources of uncertainty, as illustrated in Figure 1.86

–3–
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Exogenous

Endogenous

Choice of Data 
Products

Spatiotemporal 
Up/Downscaling

Parameter Values
(including correlations)

Model Structural Forms
(including stationarity)

Coupling Between Sectoral
Models

Stochastic Process
Samples

MSD Model 
Component
(Relative To
Control Volume)

Example Source
of Uncertainty

Type of Uncertainty

Sampling

Parametric

Structural

Figure 2. Example sources of uncertainty that are relevant to model components that are

exogenous and/or endogenous to the control volume under analysis. Sampling, parametric, and

structural uncertainties can enter the system through both exogenous and endogenous compo-

nents of the system. This demonstrates some of the many ways in which MSD researchers can

make choices which affect how uncertainty influences their analyses. Many of these specific exam-

ples are further discussed in the subsequent sections of this paper. The colored circles relate the

uncertainty sources to the uncertainty classification in Table 1.

These can stem from exogenous or endogenous model components, as shown in Figure87

2.88

Exogenous model components can be classified as either forcings or policy inputs.89

By forcings, we refer to inputs which serve as boundary conditions, representing char-90

acteristics of the external environment that are relevant to one sector and/or the cou-91

pled system within the control volume. Many variables could either be an exogenous forc-92

ing or an endogenous component of the modeled system, depending on the boundaries93

of the control volume. For example, global temperature would be considered a forcing94

if it is input into the modeled system as an exogenous factor. However, if instead tem-95

perature is generated within the control volume, it would be considered an endogenous96

component of the multi-sector coupling.97

By policies, we mean rules which dictate actions taken by humans or institutions.98

Such policies influence how the sector or coupled system responds to changes in the in-99

ternal state or external environment. Analogously to forcings, while policy rules can change100

endogenously in response to system dynamics, we focus here on policies (or meta-policies)101

which are supplied exogenously. Figure 2 illustrates some of the uncertainties which can102

influence these exogenous components.103
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Uncertainties related to endogenous system dynamics include model structure and104

parameters describing each sector as well as those describing interactions between sec-105

tors. In combination. All of these uncertainties interact and propagate to influence the106

modeled outcomes of interest, which could include error metrics (if observations are avail-107

able for calibration) and/or performance metrics in the case of planning for future sce-108

narios.109

Accurate representation of state changes and variability within multi-sector sys-110

tems requires careful consideration of interactions and feedbacks within the coupled sys-111

tems. Coupling multiple sectors in a unified modeling framework creates two broad chal-112

lenges that will be recurring themes throughout this paper: 1) scaling, and 2) the complexity-113

uncertainty tradeoff. First, the relevant scales at which each sector is modeled may not114

align with each other, or with influential climate and weather conditions. This creates115

a need for upscaling or downscaling to adequately model responses and the feedbacks116

between sectors, which introduces additional uncertainty beyond the dynamics alone.117

As shown in Figure 1, the choice of control volume for an analysis is critical for es-118

tablishing what sectors will be treated endogenously, and therefore what feedbacks, in-119

fluences, and interactions are possible. We note that a broader control volume (with more120

endogenous sectors) is not necessarily “better”, as the introduction of additional link-121

ages and dynamics may make it correspondingly more difficult to analyze and trace the122

uncertainties which are most relevant to the research question.123

Second, with a fixed computational budget, there is a tradeoff between the com-124

putational complexity of a model and the number of feasible model evaluations (Helgeson125

et al., 2021). Accounting for endogenous interactions within and between multiple sec-126

tors adds computational and parametric complexity. This can result in a more accurate127

representation of observed dynamics when appropriately calibrated, but can also result128

in unrealistic behavior when extrapolating beyond the data used for calibration due to129

overfitting. Added complexity only improves the representation of uncertainties if the130

primary contributors to those uncertainties were missing mechanisms in the original model131

(Figure 3).132

When newly added model mechanisms include missing components which help ex-133

plain variability in outcomes, added model complexity can decrease uncertainty despite134

the addition of new parameters and equations (the blue scenario in Figure 3). For ex-135

ample, the addition of equations allowing the Antarctic Ice Sheet to rapidly disintegrate136

in response to increased warming reduces uncertainty in ice sheet volume hindcasts (Wong137

et al., 2017). This effect is the result of other unrelated parameters no longer compen-138

sating for the missing structural dynamics. However, the inclusion of additional model139

complexity can increase uncertainty if additional parameters which were not related to140

the underlying sources of variability need to be calibrated (the green scenario in Figure141

3). If these two outcomes are mixed, so that some missing mechanisms are included, but142

the net effect on uncertainty is dampened by additional calibration needs, the result will143

be a more moderate reduction or increase in total uncertainty (the orange scenario in144

Figure 3).145

If this is not the case — for example, if future forcing scenarios dominate the to-146

tal uncertainty in the outcomes — increased complexity in model representation may147

be a detriment to understanding the range of potential system dynamics, as the com-148

putational cost will limit the ability to evaluate an ensemble of scenarios. In other words,149

finer scales and/or increased complexity do not improve model performance if there are150

key processes missing that control variability within the coupled system. Increasing model151

complexity may also result in negative learning or poor inferences if inadequacies in model152

structure persist or are poorly constrained by observations (Draper, 1995; Oppenheimer153

et al., 2008; Small & Fischbeck, 1999). Therefore, it is critical to analyze the sources of154
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Model

Additional complexity does 
not address key missing mechanisms

Reduced need for compensation 
by unrelated parameters is offset by 
uncertainties in the added mechanisms

Newly-included mechanisms 
reduce need for compensation by
unrelated parameters 

Figure 3. How adding model complexity can change model uncertainty. If the additional

complexity causes key missing mechanisms to be included (blue), overall uncertainty can be re-

duced, as parameter distributions have less need to compensate for the missing components. If

the additional complexity does not include representations of the missing mechanisms which were

related to system uncertainties, overall uncertainty can increase due to the inclusion of parame-

ters and interactions which need to be calibrated (green). In some cases, these two effects may

partially cancel each other out (orange), leading to more moderate or no net changes to the total

uncertainty.

uncertainty in multi-sector models to ensure that any additional complexity is appro-155

priately targeted.156

As a consequence of these challenges, studies of single- and multi-sector systems157

have developed several approaches to analyzing and representing uncertainty:158

• Uncertainty Characterization (UC): Mapping how alternative representations of159

the stressors and form and function of modeled systems influence outcomes of in-160

terest (Moallemi, Kwakkel, de Haan, & Bryan, 2020; Walker et al., 2003);161

• Uncertainty Quantification (UQ): “the full specification of likelihoods as well as162

distributional forms necessary to infer the joint probabilistic response across all163

modeled factors of interest” (Cooke, 1991);164

• Sensitivity Analysis (SA): The study of how uncertainty in the output of a model165

(numerical or otherwise) is influenced by different sources of uncertainty in the166

model input (adapted from Saltelli et al. (2004)).167

The goals of these methods are multifaceted: (a) to improve the accuracy of the168

models by identifying missing components; (b) to improve understanding of system dy-169

namics, risks, and vulnerabilities; and (c) to design policies or infrastructure. These ap-170

proaches to uncertainty analyses are not mutually exclusive, and are often combined. For171

example, initial studies of uncertainty characterization and system sensitivity may con-172

clude with a formal quantification of uncertainties related to a specific decision problem173

(e.g. Shortridge & Zaitchik, 2018; Taner et al., 2019). In general, sensitivity analysis may174

be employed for either UC or UQ, depending on the mathematical description of the in-175

puts and outputs. Uncertainty characterization approaches such as exploratory model-176

ing may be more appropriate than UQ in situations where well-defined probability dis-177

tributions over the sets of possible outcomes do not exist or cannot be agreed upon, a178

situation known as deep or Knightian uncertainty (Knight, 1921; Langlois & Cosgel, 1993;179

–6–
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Lempert, 2002). These steps may also be iterative and not always sequential. Specific180

methods for SA and UC are reviewed in detail by Pianosi et al. (2016) and Moallemi,181

Kwakkel, de Haan, and Bryan (2020), respectively.182

Given the breadth of applications of uncertainty analysis in multi-sector systems183

modeling, we focus this review on key challenges related to the chain of uncertainty prop-184

agation throughout a multi-sector system. In Section 2, we discuss how choices made in185

the MSD modeling process exchange model and computational complexity for the abil-186

ity to capture feedbacks and other dynamics, with implications for uncertainty repre-187

sentations. In Section 3, we discuss uncertainties in inference and calibration of multi-188

sector models, which can be both structural and parametric in nature. In Section 4, we189

discuss uncertainty in forward projections of multi-sector dynamics. In Section 5, we dis-190

cuss how the increase in parametric and structural complexity associated with multi-sector191

analyses can result in high-dimensional outcomes that are difficult to attribute to par-192

ticular sources of uncertainty, complicating the identification of scenarios of interest for193

further analysis or communication. Finally, we conclude by identifying some recommended194

best practices and cross-cutting research targets of opportunity which can help navigate195

some of these analytic trade-offs and complexities.196

2 Types of Uncertainty and Model Coupling Regimes197

In discussing the three key challenges we review in this paper, it is important to198

define the lexicon we will be using. MSD research is inherently interdisciplinary, and dif-199

ferent communities of researchers focusing on different sectors often have different vo-200

cabularies, which is a fundamental challenge for interdisciplinary research teams (Bracken201

& Oughton, 2006; Henson et al., 2020; J. J. Cohen et al., 2021). MSD research, however,202

necessarily involves coupling and integration of simulation models and research outputs203

that may reflect differing disciplinary norms about the treatment of uncertainties. In this204

section, we classify key types of uncertainty and model coupling structures to help in-205

terdisciplinary teams communicate their research plans and outcomes.206

2.1 Overview of MSD-Relevant Uncertainties207

Simulation models are subject to several different types of uncertainty. From the208

perspective of multi-sector system analyses, we classify these uncertainties into three cat-209

egories:210

• Structural uncertainty : uncertainty in the mathematical and/or rule-based rep-211

resentation of processes within a simulation model;212

• Parametric uncertainty : uncertainty in the numerical values of internal param-213

eters representing endogenous model processes, given a fixed model structure; and214

• Sampling uncertainty : uncertainty arising from the finite sampling of a stochas-215

tic process (including coverage of an output space).216

Table 1 provides a brief overview of these types of uncertainty, along with exam-217

ples. Parametric and structural uncertainties can be aleatory (stemming from irreducible218

randomness) or epistemic (stemming from a lack of knowledge about the “truth”), while219

sampling uncertainty typically reflects aleatory uncertainty (O’Hagan, 2004). One way220

to distinguish sampling uncertainty from parametric and structural uncertainty is that221

while sampling uncertainty relates to sampling from a stochastic process (represented222

exogenously or endogenously), parametric and structural uncertainties refer to uncer-223

tainty in how a simulation model responds to changes in external inputs, policies, and224

boundary conditions. For example, one might consider uncertainties related to model-225

data residuals (Brynjarsdóttir & O’Hagan, 2014) to be structural when those discrep-226

ancies are the result of choices or ignorance related to the representation of system com-227

–7–
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Uncertainty
Type

Associated Un-
certainties

Examples Sample Method
of Exploration

Structural Model inadequacy,
(epistemic) residual
uncertainty

Choices of which
physical processes
to include and the
equations used to
represent them

Multi-model ensem-
bles, multi-physics
ensembles

Parametric Parameter uncer-
tainty

Choice of parame-
ter vector between
alternatives produc-
ing similar results,
strength of coupling
between models

Perturbed-physics
ensembles, posterior
predictive samples

Sampling Natural variability,
(aleatory) resid-
ual uncertainty,
observation error

Sample realiza-
tions from a fixed
stochastic process,
internal variability,
uncertain bound-
ary conditions or
forcings

Initial conditions
ensembles, forcing
scenarios

Table 1. Categories of uncertainty relevant for multi-sector models, including associated uncer-

tainties from the taxonomy in Kennedy and O’Hagan (2001) and examples.

ponents (in this case, they would represent epistemic uncertainties). Alternatively, these228

model-data residual uncertainties could be considered sampling uncertainty when they229

represent particular realizations of “true” underlying stochastic processes (hence they230

would represent aleatory uncertainties).231

Structural uncertainty can be defined as the consideration or inclusion/exclusion232

of one or more relevant structural variants. This could include different sectoral model233

representations, different policy or decision rules, or different choices of data products234

and statistical representations for exogenous forcings or model calibration (Bojke et al.,235

2006). Another consideration is the alignment (or lack thereof) of modeling paradigms,236

or formalisms, across sub-components of the system (Davis & Tolk, 2007). Decisions about237

how to couple models with different formalisms (e.g., co-simulation, translation into a238

common formalism, or construction of a super-formalism) adds another level of struc-239

tural uncertainty (Vangheluwe et al., 2002).240

The line between structural and parametric uncertainties can be blurry. For ex-241

ample, a parametrized regression model with at least one zero coefficient is the same as242

a simpler regression model with the relevant variable omitted. Whether this should be243

classified as a case of structural or parametric uncertainty is highly contextual, and de-244

pendent on the broader analysis, i.e. is there a more formal variable selection procedure,245

or is zero included as one element of the possible coefficient values?246

In many cases, the same conceptual uncertainties can be classified differently ac-247

cording to this taxonomy depending on the control volume of a particular analysis. Fig-248

ure 2 shows example uncertainties which are relevant for exogenous and/or endogenous249

system components and how they might be classified. While there is a large amount of250

overlap, the nature of how uncertainties are represented can differ. For example, the Rep-251

resentative Concentration Pathways-Shared Socioeconomic Pathways (RCP-SSP) sce-252
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narios of future global change (O’Neill et al., 2016; Gidden et al., 2019) can be treated253

as a representation of sampling uncertainty when used as exogenous inputs or bound-254

ary conditions for a model of future climate or socioeconomic change. However, these255

same scenarios also reflect parametric and structural differences that may be relevant256

for a model or model component with feedbacks to global emissions or economic growth.257

Thus, it is important for MSD analyses to be transparent about not only which uncer-258

tainties they are treating, but how those uncertainties are represented in the context of259

the analytic control volume.260

2.2 Coupling Frameworks and Control Volumes261

Structural uncertainty is an essential feature of any modeling exercise, as all mod-262

elers necessarily make choices about what system dynamics will be modeled endogenously263

and at what resolution(s). Multi-sector modeling activities also necessarily involve cou-264

pling representations of multiple systems together, as in Figure 1. Model coupling can265

take a number of forms, even for a fixed system-of-systems, as illustrated in Figure 4.266

These choices have impacts on uncertainty propagation and analysis. We provide a brief267

overview of the types of coupling regimes and their implications for the resulting anal-268

yses.269

An essential modeling decision is the selection of the control volume through the270

choice of endogenously- and exogenously-represented system components. Model struc-271

tures with a greater share of exogenous components are typically less computationally272

expensive than those that feature more endogenous dynamics (assuming similar spatiotem-273

poral resolutions). However, this comes at the expense of being able to analyze the feed-274

backs and interdependencies between subsystems, such as uncertainties and hypotheses275

related to the strength and patterns of influence of one sector on another. Whether this276

is acceptable depends on the research question and control volume. For example, many277

climate impact studies consist of one or more sectoral models forced by a climate model278

ensemble to produce a set of outcomes of interest (Grogan et al., 2020; Piontek et al.,279

2014; van Vliet et al., 2016). This choice might be reasonable if there is no clear path-280

way for the system contained within the control volume to dynamically influence green-281

house gas emissions trajectories.282

Another critical structural distinction involving coupled models is whether a given283

coupling is unidirectional or multidirectional. Unidirectional coupling involves chaining284

models together in series, with no feedbacks between the modeled subsystems. The re-285

sulting wiring diagram (the directed model graph) is acyclic. Conversely, multidirectional286

coupling allows two model components to interact with each other, creating the possi-287

bility for feedbacks. Models involving multidirectionally-coupled components can have288

richer dynamics, but have an increased number of uncertain parameters due to the ad-289

ditional couplings. The potentially nonlinear dynamics introduced by the multidirectional290

couplings can also complicate analyses of uncertainty propagation. To date, most exam-291

ples of coupled multidirectional frameworks come from the multi-sector Integrated As-292

sessment Models (IAMs), rather than from the coupling of independently-developed sec-293

toral models. Examples of coupled multidirectional modeling frameworks include Yoon294

et al. (2021), Mosnier et al. (2014), and Walsh et al. (2019).295

For a concrete example of the implications of the choice of model coupling regime296

and control volume design, consider the coupled agricultural-hydrological system depicted297

in Figure 4. In the unidirectional example (Figure 4a), local hydrology, crop production,298

and crop prices are modeled endogenously, allowing farmer income to reflect the coupled299

hydro-agricultural-economic dynamics (some analyses that use similar modeling frame-300

works include Davies et al. (2013), Ma et al. (2016), and Stevanović et al. (2016)). There301

are already large uncertainties in this unidirectional case: for example, how to construct302

the impact of production shocks on prices (Nelson et al., 2014). However, additional in-303
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a) Unidirectional b) Multidirectional

Temperature Precipitation

Irrigation,
Drainage

Crop 
Production Crop Prices

Hydrology

Farm Income

Water 
SustainabilityHydrology

Control Volume

Control Volume

Sector

Climate Hydrology Agriculture

Model Representation

Exogenous
Forcing 
or Policy

Endogenous
Component

Outcome of
Interest

Temperature Precipitation

Irrigation,
Drainage

Crop 
Production Crop Prices

Hydrology

Farm Income

Water 
Sustainability

Figure 4. Simplified examples of possible model coupling configurations for a linked

agriculture-water system. Panel a) represents a unidirectional coupling scheme between local

hydrology, crop production, and crop prices, prohibiting the presence of feedback loops. Decisions

about irrigation are supplied exogenously, either as forcings or policy rules (and may or may not

be correlated or influenced by the climate forcings; those optional connections are shown with

gray arrows). In panel b), the control volume has been expanded to include irrigation decisions,

which allows for a multi-directional coupling scheme and feedbacks between the hydrological

and economic systems and irrigation choices. Additional model couplings and dependencies in

the multi-directional case represented in panel b) are represented by blue arrows. While the

switch from unidirectional to multi-directional coupling makes it possible to represent richer and

more realistic dynamics, the additional complexity may create computational and/or conceptual

challenges for uncertainty analysis.
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come from the joint agricultural-economic system is not allowed to directly feed back and304

induce changes in irrigation and drainage infrastructure. As a result, these influences on305

the local hydrology must be treated exogenously. In Figure 4b, which features multidi-306

rectional feedbacks through the introduction of a cycle, farm income is allowed to be in-307

vested into expanded irrigation and drainage, allowing farmers to alter the local hydrol-308

ogy to their benefit (with potential consequences for the broader hydrological system).309

This allows the analysis to more accurately capture the influence of agricultural decision-310

making and economic dynamics on the hydrological system and future production, but311

at the expense of additional data requirements and model complexity, since the relation-312

ships between farm incomes, investment decisions, irrigation operations, and local hy-313

drology needs to be parameterized and (ideally) calibrated (Holtz & Pahl-Wostl, 2012).314

Although Figure 4 portrays only a simple and stylized example, it nonetheless il-315

lustrates many of the important implications of the (linked) choices regarding control316

volume design and coupling regime for model complexity, the associated data and com-317

putational requirements, and how the results of the analysis can be interpreted with re-318

spect to relevant uncertainties. MSD investigators should hence make these choices as319

transparent as possible when reporting results, including by presenting a wiring diagram320

illustrating the coupled model structure.321

One further consideration when coupling models of different sectors is that their322

characteristic scales may differ with respect to space and/or time. This can require up-323

and/or downscaling model structures and forcings to adequately model the dynamics within324

and across sectors. Coupling models with different spatiotemporal scales introduces new325

uncertainties in how the output of one model is translated to another, which should be326

accounted for in model calibration. We discuss implications of scales as they relate to327

forcings in Section 4.2, as this is a key issue when making forward projections, though328

some of these considerations may also be relevant for calibration.329

3 Uncertainty in Model Calibration and Inference330

The first step in uncertainty analysis is to determine the space over which the anal-331

ysis will be conducted (including input and subsystem model structures and/or param-332

eter values), as well as ranges or distributions for the parameters which are treated as333

uncertain. We refer to the selection of model parameters and structures to maximize the334

fidelity of the system model to observational data given model and computational con-335

straints as calibration (Oreskes et al., 1994). Model calibration methods can span a range336

of techniques from hand-tuning model parameters until the output looks “right” to fully337

probabilistic approaches (Helgeson et al., 2021). With sufficient data, the uncertainty338

in these inputs can be estimated through statistical calibration. When calibration is con-339

ducted using statistical methods, it can be considered a backward estimation of uncer-340

tainty (Kennedy & O’Hagan, 2001). While calibration aims to approximate observations341

of the modeled system with model output, statistical inference focuses on obtaining es-342

timates, probabilistic or summary, of the system parameters to learn about their values.343

Statistical calibration and inference are closely related, but have different (if complemen-344

tary) goals.345

Not all MSD analyses will require model calibration. For example, certain UC and346

SA studies may focus on understanding how a particular model structure responds to347

varying inputs over ranges or samples, rather than trying to select among model struc-348

tures or infer probabilities. However, whether we are engaged in UC, UQ, or SA, we nec-349

essarily make some assumptions about parameter ranges and distributional forms (par-350

ticularly in the case of UQ). These assumptions have implications for which variables351

we find to be most influential on the outputs and which decision alternatives we find to352

be most robust to that uncertainty (Quinn et al., 2020; McPhail et al., 2020; Reis & Short-353

ridge, 2022). Moreover, a model calibrated to match observations with respect to one354
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output may not sufficiently capture the dynamics of another (Efstratiadis & Koutsoyian-355

nis, 2010). This is unsurprising given the choices made in the modeling process, but high-356

lights the fact that “model calibration” is not a single method: different calibrations and357

calibration approaches are needed for different research questions.358

As such, many questions surround how to best infer uncertainties through calibra-359

tion, even in single-sector systems. These choices, whether they involve the selection of360

input data, the choice of model structures, or whether to calibrate system components361

independently or jointly, must be made with the goals of the research in mind, as they362

involve tradeoffs from the perspective of uncertainty analysis. We briefly discuss these363

challenges to uncertainty analysis here, consider how they are magnified in multi-sector364

systems, and discuss open research questions for how they should best be addressed. An-365

swering these questions will be a critical first step before estimating how these uncer-366

tainties propagate forward to influence outcomes in multi-sector systems.367

3.1 Exogenous Uncertainties368

Model-based projections of outcomes in multi-sector systems require forcing multi-369

sector models with exogenous variables. These are often climate variables, such as pre-370

cipitation and temperature, but may represent the output of other linked processes and371

systems, depending on the specified control volume of the analysis. How these inputs are372

modeled has implications for the resulting projections and output analysis. Ignoring un-373

certainty in the marginal and joint distributions of these forcing variables can bias pro-374

jected system outcomes. This raises questions about 1) how to identify the structure and375

parameters defining the joint distribution of system inputs given limited data and 2) whether376

data from the past that must be used for this estimation will be representative of the377

future. In this section, we discuss how backwards uncertainty analyses can help address378

these questions and how choices in data sets and modeling can influence subsequent re-379

sults.380

3.1.1 Observational Data381

Observational climate data plays an important role in model calibration. Several382

model parameters typically need to be calibrated by relying on historical data of clima-383

tological variables, which may take the form of (interpolated) station data or reanaly-384

sis products (Auffhammer et al., 2020), or streamflow observations (Kiang et al., 2018).385

There are observational uncertainties associated with the measurements underlying each386

of these, as well as parametric and structural uncertainties in any data assimilation pro-387

cedure that might be used (Zumwald et al., 2020). In some cases, different choices of ob-388

servational datasets can lead to significantly different estimates of endogenous model pa-389

rameters (Parkes et al., 2019), although such uncertainties are typically neglected dur-390

ing model construction and parameter calibration. It may be difficult to know a priori391

whether observational uncertainties are important relative to endogenous and/or forc-392

ing uncertainties, and solutions such as explicitly modeling measurement errors (Schennach,393

2016) or using a “dataset ensemble” (Zumwald et al., 2020)] may be computationally ex-394

pensive.395

Observations of socioeconomic data are subject to uncertainties which are unique396

to the specific product, and these observational uncertainties could be accounted for in397

the calibration process via the probability model (see the discussion of likelihood func-398

tion specification in Section 3.2.1).399

3.1.2 Statistical Modeling of Correlated Events400

Within the risk analysis literature for individual sectors, challenges in answering401

these questions have been acknowledged and researched (Stedinger et al., 1993). How-402
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Figure 5. Example of parametric and structural uncertainty in estimating the joint distribu-

tion of exogenous variables. (a) Uncertainty in estimating the marginal distribution of variable

v1. (b) Uncertainty in estimating the copula describing the joint distribution of variables v1 and

v2. (c) Uncertainty in estimating the marginal distribution of variable v2.

ever, explicitly modeling the linked dynamics of multi-scale, multi-sector systems may403

reveal additional vulnerabilities due to the interactions between sectors and correlations404

across spatiotemporal domains (Su et al., 2020; Dolan et al., 2021). This emphasizes the405

importance of accounting for joint extremes and compound events in multi-sector risk406

analyses.407

Figure 5 shows a stylized example of this challenge: estimating the structure and408

parameters defining the joint distribution of two exogenous variables. In this example,409

synthetic observations of these two variables were generated from the joint (Figure 5b)410

and marginal (Figure 5a,c) distributions shown by solid blue lines in the figure. In the411

real world, we do not know these underlying distributions but have to estimate them from412

observed or modeled data. If we correctly assume the structure of these distributions and413

simply estimate their parameters through statistical approaches such as maximum like-414

lihood estimation, we might estimate that the data came from the dashed pink distri-415

butions. If we incorrectly assume the structure, we might estimate they were generated416

from the dotted green distributions.417

All of these fits rely on point estimates of the parameters of each distribution. The418

implications of errors in these point estimates are most prominent in the tails of the dis-419

tribution, where impacts are generally greatest, and data is most limited, resulting in420

the greatest uncertainty in estimation. In the example in Figure 5, both fitted distribu-421

tions have fatter upper tails than the true distribution, which could lead to overestima-422

tion of the frequency of extreme events, and hence alter the resulting risk analysis. For423

example, if these variables represented rainfall volumes and peak storm surge or drought424

–13–



manuscript submitted to Earth’s Future

intensity and duration, we might overestimate the impacts of floods on coastal infras-425

tructure or droughts on agricultural production. These errors could influence decision-426

making processes, resulting in overinvestment in stormwater infrastructure or irrigation427

reservoirs. Underinvestment is similarly likely if we underestimate the occurrence of these428

joint extremes. Alternative parameter estimators may result in a higher, equal, or lower429

probability of underdesign than overdesign. If one is more risk averse, a Bayesian prior430

can initiate the parameter estimates such that the probability of underdesign is less likely431

(Stedinger, 1983).432

Risks of under-design can be compounded when considering joint drivers. The most433

common approach to fitting joint distributions of stochastic variables is through copu-434

las (Nelsen, 2007), which model the dependence between variables in quantile-space. First,435

marginal distributions are fit to the individual variables and then the observations are436

transformed into quantiles of these distributions through inversion, where their depen-437

dency is modeled. There are many families of copulas that can capture this dependency,438

some of which exhibit tail dependency, meaning the variables are more highly correlated439

in the tails (upper, lower or both) than in the middle of the distribution (Schmidt, 2005).440

Fitting a copula that does not exhibit tail dependency when the observations do can lead441

to underestimation of the probability of joint extremes (Poulin et al., 2007). This occurs442

in Figure 5 when assuming the two variables come from a normal copula, which does not443

exhibit tail dependence, as opposed to the true Joe copula (Joe, 1993), which exhibits444

upper tail dependence, meaning high values of v1 are more highly correlated with high445

values of v2 than in the middle of the distribution.446

The consequences of errors in marginal distribution estimation have been well-documented447

in the literature on single-sector systems, most predominantly with respect to floods (Wong448

et al., 2018). The negative consequences of incorrectly estimating the joint distribution449

of exogenous variables, particularly in the tails, or worse, assuming independence, have450

recently been raised in the literature with respect to coastal flooding (Moftakhari et al.,451

2017), agricultural production (Haqiqi et al., 2021), and wildfires (Brown et al., 2021),452

among others.453

These consequences can be mitigated by not only only using point estimates of the454

most likely distribution parameters, but accounting for parametric uncertainty, such as455

through sampling from frequentist confidence intervals or Bayesian credible intervals (Sadegh456

et al., 2017, 2018). Bayesian approaches have the advantage of explicitly encoding prior457

knowledge about parameter values as prior distributions, which can be updated using458

Bayes’ Theorem with information from data to obtain posterior distributions (P. M. Lee,459

1989). This allows researchers to be transparent about these assumptions, which facil-460

itates exploration of alternative hypotheses and sensitivities. Generating realizations from461

the distributions parameterized by multiple posterior samples results in draws from the462

posterior predictive distribution, which combines parametric and sampling uncertainty.463

Bayesian estimation approaches can be applied to capture structural uncertainty464

as well through Bayesian model averaging (Madigan et al., 1996; Hoeting et al., 1999).465

However, depending on the complexity of the statistical and process models, propagat-466

ing samples of exogenous variables through a multi-sector model to quantify output un-467

certainty can become computationally challenging or intractable if those samples are gen-468

erated from the posterior distributions of multiple model structures. Another option is469

the use of principled model selection techniques, which we discuss further in Section 3.2470

— the key point is that each approach to model selection reflects different modeling and471

epistemic goals, and care should be taken to align the selection criteria with the goals472

of the analysis.473
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3.1.3 Nonstationarity in Exogenous Processes474

The example illustrated in Figure 5 assumes the stochastic process being estimated475

is stationary, meaning its distribution does not change over time (Koutsoyiannis & Mon-476

tanari, 2015). For many exogenous variables, this may not be true, particularly in the477

context of climate change. For example, we are confident that increasing global carbon478

emissions have resulted in nonstationary temperature time series, but are more uncer-479

tain on how this has impacted precipitation and other climate variables (Arias et al., 2021).480

Assuming these other climate variables are stationary when they are not could exacer-481

bate over or under-estimation errors, particularly in the tails (Milly et al., 2008; Wong482

et al., 2018). However, modeling them as nonstationary introduces greater uncertainty483

in the structure of that nonstationarity, as well as uncertainty in the parameters of that484

structure. For example, a modeler must determine which variables are non-stationary,485

what covariates influence those non-stationary variables, and the form of that dependency,486

e.g., linear, log-linear, quadratic, or some other functional form (Grinsted et al., 2013;487

Wong et al., 2018; Wong, 2018). Time is a common choice of covariate, but loses ties to488

physical processes (Koutsoyiannis & Montanari, 2015), however conditioning on other489

covariates requires projecting how that variable will change in the future as well. With490

limited data to constrain the additional parameter estimates required to model these de-491

pendencies, particularly in the tails of concern, uncertainty can balloon to levels unin-492

formative for decision-making (Serinaldi & Kilsby, 2015). Thus, modeling these processes493

as stationary vs. nonstationary is often a tradeoff between bias and variance (Ceres et494

al., 2017), and the decision about which to favor should depend on the consequences of495

each type of error (Rosner et al., 2014), which may differ across sectors.496

Another issue is that the models used for projections may operate on scales that497

are misaligned with decision processes. Returning to the temperature and precipitation498

example, flood managers and urban planners are often concerned with daily, local-scale499

projections which climate models are not designed to generate. Statistical bias correct-500

ing and downscaling based on historical observations generally ignores the physical pro-501

cess reasons why projections misrepresent history, and so may propagate unjustifiable502

physical distortion into the future (Steinschneider et al., 2015). An alternative is stochas-503

tic weather generation (Steinschneider et al., 2019), wherein small scale weather realiza-504

tions are simulated through a stochastic model that ties weather conditions to observ-505

able weather regimes (Robertson et al., 2015) that are better represented by climate mod-506

els (Johnson & Sharma, 2009; Farnham et al., 2018). Thus temperature and precipita-507

tion realizations can be obtained at decision-relevant scales, leveraging climate models’508

strengths, conditional on deeply uncertain emissions trajectories. The advantage of such509

an approach is the ability to produce large samples of future climate or weather condi-510

tions. Indeed, such exploratory methods can be useful for multi-sector planning stud-511

ies in order to identify critical uncertainties and design adaptive monitoring systems (Quinn512

et al., 2020). In the broader MSD context, analogous approaches hold promise where model513

and decision scales are misaligned.514

3.2 Endogenous Uncertainties515

In addition to quantifying uncertainty in the exogenous forcing to our models, it516

is crucial to consider uncertainty in the relationships between model components them-517

selves, both within sectors and between sectors. While individual systems, considered518

in isolation, may primarily face risk from extreme, tail-area events, the nonlinear dynam-519

ics associated with coupled systems-of-systems could result in more moderate stressors520

simultaneously affecting multiple parts of the system. An illustrative example is the im-521

pact of Winter Storm Uri on the Texas infrastructure system in February 2021. While522

the severity of the triggering cold snap had precedent (Doss-Gollin et al., 2021), its im-523

pact on the natural gas and electric power systems was disproportionate due to the tight524
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coupling between these systems and socioeconomic stresses such as increased heating de-525

mand (Busby et al., 2021).526

3.2.1 Addressing Uncertainty in Model Parameters and Structures527

Uncertainty in endogenous model components can be both parametric and struc-528

tural. Conceptually, it is not always easy to untangle these two different types of uncer-529

tainties. Within single-sector models, it is well-known that multiple combinations of pa-530

rameters and structures can produce dynamics similar to observations. From a Bayesian531

perspective, this reflects a posterior distribution over the space of joint structural and532

parametric combinations which does not have a unique maximum. In the hydrological533

literature, this non-uniqueness is typically referred to as equifinality (Beven, 2006). In534

such cases, Bayesian methods that explicitly estimate the posterior probability of dif-535

ferent parameter combinations are recommended over single-objective calibration approaches536

that provide parameter point estimates that minimize an objective function, such as the537

sum of squared errors between observed and modeled output variables (Vrugt et al., 2008).538

Uncertainty estimates from bootstrap replications (Efron & Tibshirani, 1986; Efron, 2014)539

are a reasonable alternative to Bayesian methods, though care should be taken to ac-540

count for dependence and potential non-stationarities.541

Additional uncertainties come from the choice of model structures under consid-542

eration, as all models are necessarily just approximations to the “truth” (Oreskes et al.,543

1994) (or, in the common phrasing, “all models are wrong” (Box, 1979)). In general, a544

preferred structure is as parsimonious as possible while accurately reproducing held-out545

observations. There are a number of important considerations when deciding on a model546

selection or averaging approach, with different choices being more or less appropriate for547

different modeling goals (Höge et al., 2019; Bojke et al., 2006). Computational constraints548

may also play a role in whether a single model is selected (as opposed to averaging an549

ensemble of model structures), but care should be taken to acknowledge the ambient struc-550

tural uncertainty in the interpretation of results.551

Potential nonstationarity in endogenous dynamics further complicates model se-552

lection. Model selection and averaging techniques based on optimizing out-of-sample pre-553

dictive performance (Gelman et al., 2014; Vehtari et al., 2017; Yao et al., 2018) may help,554

but still require the model structures under consideration to be capable of capturing ap-555

propriate changes to dynamics. Bottom-up modeling methods, such as those from the556

generative social sciences, can be used to explore the impacts of structural and paramet-557

ric uncertainties related to alternative theories of human and institutional behavior, in-558

cluding potential nonstationarity (Epstein, 1999). For example, several different agent-559

based models of flood risk have explored different theories of human behavior within a560

consistent modeling framework (Haer et al., 2017; de Koning et al., 2017; Magliocca &561

Walls, 2018). These bottom-up methods can also be used to identify the emergence of562

new regimes of behavior (see Section 5.2.3 for discussion of these methods). Addition-563

ally, The critical transitions literature provides tools for modeling and empirically de-564

tecting shifts in endogenous dynamics (Lade et al., 2013; Scheffer et al., 2009). Models565

incorporating human and institutional decisions may also be able to incorporate data-566

driven generation of model structure (Ekblad & Herman, 2021) coupled with dimension567

reduction to support feature engineering for dynamic multisector datasets (Cominola et568

al., 2019; Giuliani & Herman, 2018) to generate structural and parametric variants which569

are consistent with past observations.570

It is unclear whether multi-sector models mitigate or exacerbate this challenge. On571

one hand, the models become more complex: the more complex the model, the greater572

the number of parameters that need to be calibrated and the more challenging this es-573

timation problem becomes, as more data is needed to constrain the likely parameter space574

(Srikrishnan & Keller, 2021). On the other hand, data from another sector might help575
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constrain the likely parameter set. For example, a set of soil parameters that perform576

well in simulating hydrologic behavior, may not simulate crop yields well, and that might577

only be discovered through a coupled agro-hydrological model. This is an example of how578

adding model complexity could result in less uncertainty, as depicted in Figure 3.579

Another challenge is the specification of a likelihood function. Calibration that does580

not properly account for the statistical structure of model-data discrepancies can result581

in biased inferences and hence projections (Brynjarsdóttir & O’Hagan, 2014). This like-582

lihood function should ideally include different sources of uncertainties, such as both model-583

data discrepancy and observational errors. When these can both be modeled as inde-584

pendent errors with no correlation, they can be combined into a single error term. Srikrishnan585

et al. (2022) and Ruckert et al. (2017) provide examples of likelihood specifications which586

mix autocorrelated model-data discrepancies and independent observation errors.587

For particularly complex models, the likelihood function may be mathematically588

or computationally intractable. Likelihood-free methods, such as precalibration (Edwards589

et al., 2011), Generalized Likelihood Uncertainty Estimation (GLUE) (Beven & Binley,590

1992), and approximate Bayesian computation (ABC) (Sisson et al., 2018) can be used591

in these settings to obtain a representation of “behavioral” parameter sets. However, care592

should be taken when interpreting these results: Stedinger et al. (2008) notes that pre-593

calibration and GLUE parameterizations should not be treated probabilistically, and ABC594

results can show strong sensitivity to the choice of summary statistics and distance thresh-595

olds.596

3.2.2 Addressing Computational Expense597

Even if multi-sector models can constrain the domain of likely parameter sets and598

structures, calibration problems could still be more challenging computationally, both599

because the greater number of parameters increases the dimension of the search, requir-600

ing more model simulations to fully characterize the posterior distribution, and because601

the multi-sector model itself takes longer to run. Additionally, some model components602

may be more trusted than others, either in terms of model fidelity or quality of calibra-603

tion data, and there might be concerns about “contaminating” the calibration of one mod-604

ule through these interactions. One approach to this problem is to calibrate the single605

sector models separately. However, combining the parameter sets from separate calibra-606

tions could yield unrealistic multi-sector dynamics by neglecting correlations. Alterna-607

tively, one could calibrate the multi-sector model for performance in a single sector first608

and then fix those parameters for a second calibration of parameters controlling another609

sector. This approach is common in the hydrological literature, e.g., calibrating for stream-610

flow and then nutrients (Arnold et al., 2012), but it is still likely to neglect correlations611

and may underestimate multi-modality. Jacob et al. (2017) provides some guidance on612

navigating this problem, but the implications of these choices for MSD calibration are613

not well understood in general.614

Bayesian (or approximately Bayesian) calibration methods such as Markov chain615

Monte Carlo can require many thousands to millions of model evaluations, potentially616

making them computationally prohibitive for models that are too expensive for a suf-617

ficient number of runs on a given computational budget. There exist a suite of methods618

for speeding up Bayesian inference (Robert et al., 2018), but these may not be gener-619

ally applicable to MSD calibration exercises. For example, Hamiltonian Monte Carlo meth-620

ods (Betancourt, 2018), which are implemented in the Stan probabilistic programming621

language (Stan Development Team, 2019) and language-specific packages such as Julia’s622

Turing.jl (Ge et al., 2018) and Python’s pyMC3 (Salvatier et al., 2016), are extremely623

efficient, but require information about the gradient of the posterior, which can be dif-624

ficult to obtain from simulation models that are not written to be parsed by an auto-625

matic differentiation package. Another approach can be to exploit parallelization in a626
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high-performance computing environment, which is taken by sequential Monte Carlo-627

like algorithms like FAMOUS (B. S. Lee et al., 2020).628

One approach to managing computational expense is reducing the number of pa-629

rameters which need to be calibrated through factor fixing. In factor fixing, sensitivity630

analysis is used to identify groups of parameters or model components which are not in-631

fluential and might be fixed without substantially impacting the analysis (Saltelli et al.,632

2008). This allows the analyst to focus their computational resources on simulating from633

the distributions of influential factors by justifying the deterministic treatment of non-634

influential factors. Different sensitivity analyses can be used for factor fixing. An impor-635

tant consideration is that a factor may not be influential when varied individually, but636

may exhibit significant influence through interactions (e.g., the sensitivity analysis in Srikrishnan637

et al. (2022)). Consequently, the Method of Morris is commonly used for factor fixing638

(Cariboni et al., 2007) because it efficiently provides estimates of total order sensitiv-639

ities that include individual and interactive effects (M. D. Morris, 1991). Other meth-640

ods can be used for factor fixing (for instance elementary effects), but the key feature641

of any approach is that it should approximate total sensitivity (i.e. individual and in-642

teractive effects (Campolongo et al., 2007)), and be computationally efficient.643

When the original model does not need to be used directly, surrogate models (or644

emulators) can be employed to reduce computational and parametric complexity. A num-645

ber of different surrogate model structures can be used, including Gaussian processes (Kennedy646

et al., 2006), support vector machines (Bouboulis et al., 2015), and artificial neural net-647

works (Eason & Cremaschi, 2014). These methods have different pros and cons; for ex-648

ample, Gaussian processes can only handle a limited parameter space, which can have649

implications for resulting risk analyses (B. S. Lee et al., 2020), while the machine-learning650

methods may be easy to overfit to data if not tuned carefully and may limit learning about651

system dynamics due to their black-box nature if not accompanied by careful diagnos-652

tics and sensitivity analyses. In many cases, a primary limitation in training good sur-653

rogate models is the number of available model evaluations (due to computational con-654

straints), particularly as MSD outcomes of interest are likely to emerge from the inter-655

actions of a relatively large number of parameters and exogenous forcings. More sophis-656

ticated sampling strategies, such as adaptive designs of experiment (Burnaev & Panov,657

2015; Gramacy & Lee, 2009; Chang et al., 2016) may be useful to maximize computing658

budgets, allowing surrogates to be trained on a larger subset of the parameter space. Evo-659

lutionary approaches to co-tune and select surrogate models have been proposed (Gorissen660

et al., 2009), which may be useful if building the surrogate model itself requires a large661

number of model runs to capture the dynamics of the model response surface, so sur-662

rogate modeling alone does not fully solve the problem of computational expense.663

Another approach is the use of simple models to act as emulators of more complex664

models. This results in emulators which are mechanistically-motivated and can provide665

more direct insight into system dynamics and parameter values, but which may be less666

flexible in fitting the original model’s response surface. For example, reduced-complexity667

climate models have been calibrated and used instead of more computationally-expensive668

models (Dorheim et al., 2020; Nicholls et al., 2020). While these simple models may lack669

the full richness and mechanistic detail of the complex models they’re emulating, their670

increased ability to capture uncertainties may make their use more appropriate for cer-671

tain research questions than the original models would have been (Helgeson et al., 2021).672

However, there may be cases when emulation is insufficient due to the large num-673

ber of parameters which need to be considered or the complexity of the system response674

surface, and full model evaluations are required for projections and scenario discovery.675

In this case, advances in efficient model calibration are necessary to facilitate uncertainty676

quantification and propagation. For example, B. S. Lee et al. (2020) demonstrate how677

a parallelized sequential Monte Carlo algorithm can treat a relatively large number of678

–18–



manuscript submitted to Earth’s Future

parameters of a complex Antarctic ice sheet model as uncertain, resulting in higher po-679

tential contributions to future sea levels.680

An interesting approach is the application of machine learning methods for uncer-681

tainty quantification. Klotz et al. (2021) demonstrate how deep neural networks, typ-682

ically thought of as black-box models, can be used to estimate uncertainties for a hydro-683

logical system, while also showing an example of how to obtain some measure of inter-684

pretability with a post hoc interrogation of fitted machine learning models. The power685

of careful implementations of machine learning methods, which embed mechanistic in-686

sights into the model structure, as an alternative for learning and uncertainty quantifi-687

cation for complex systems, rather than explicitly process-based modeling, is starting688

to be explored in the hydrological literature (Kratzert, Klotz, Herrnegger, et al., 2019;689

Kratzert, Klotz, Shalev, et al., 2019). These approaches may be a promising alternative690

to the use of computationally-expensive, mechanistic models for broader multi-sector anal-691

yses when large training data sets are available.692

4 Uncertainty in Forward Projections693

After calibrating a multi-sector model, we can use that model to project future out-694

comes. Analyses projecting outcomes for MSD systems involve uncertainty in two sep-695

arate but overlapping ways: a) accounting for uncertainty in exogenous forcings and b)696

understanding the relative influence of various sampling, parametric, and structural un-697

certainties on model projections. Due to the number of relevant uncertainties, several698

of them deep, forward projection exercises in MSD are typically exploratory in nature699

(Bankes, 1993; Moallemi, Kwakkel, de Haan, & Bryan, 2020), which is why we use the700

term projection rather than prediction (MacCracken, 2001; Bray & von Storch, 2009).701

In this section, we focus primarily on the influence of the treatment of exogenous702

forcings and up- and downscaling on uncertainties in projections. This focus is informed703

by the existence of several comprehensive reviews on techniques for SA (see e.g Pianosi704

et al. (2016)). However, the role of computational expense, as discussed in Section 3.2.2,705

is a major consideration for developing projection ensembles and SA with MSD mod-706

els, as it is for calibration. One additional challenge here for emulation is the presence707

of spatiotemporal teleconnections due to the complex dynamics of cross-sectoral and re-708

gional connections (Helbing, 2013; Dolan et al., 2021). Mismatches between the “true”709

and emulated response surfaces could result in very different dynamical patterns and bias710

estimates of sensitivity, risk, and policy effectiveness. A related challenge is the use of711

a resulting ensemble to understand how uncertainties propagate through and interact712

within the system; we discuss these issues in the context of scenario discovery in Sections 5.2.1713

and 5.2.3.714

4.1 Exogenous Forcings and Joint Extremes715

As we discuss in Section 2.2, control volume design, including the decision of which716

components to treat endogenously, is centrally important to uncertainty analysis. Increas-717

ing the number of components that are treated endogenously can facilitate a more com-718

plete uncertainty analysis, since model structures, parameters, and dynamic interactions719

can be more systematically varied and tested. However, it is important to recognize that720

in practice, computational constraints and/or issues of scale and scope lead modelers to721

externalize much of the system dynamics into fixed, exogenous boundary conditions. For722

example, it may be computationally intractable to include the impact of MSD system723

evolution on emissions to endogenously represent changes to the climate system. These724

external forcings are often outputs from a separate set of models, for example one or more725

climatological variables simulated by an ensemble of climate models or a set of socioe-726

conomic projections produced by an IAM. Uncertainties surrounding exogenous forcings727

can often exceed the uncertainty associated with endogenous dynamics. Several stud-728
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ies across hydrology (J. Chen et al., 2011; Chegwidden et al., 2019; Vetter et al., 2017),729

agriculture (Asseng et al., 2013; Rosenzweig et al., 2014), health (Sanderson et al., 2017),730

and energy (van Ruijven et al., 2019; Bloomfield et al., 2021; Deroubaix et al., 2021) find731

that uncertainty arising from climate models can represent a substantial fraction of the732

total. Similarly, many studies find large uncertainties surrounding socioeconomic inputs,733

including emissions scenarios (Paltsev et al., 2015), population growth (Veldkamp et al.,734

2016), energy costs and demand (Lamontagne et al., 2018; Su et al., 2020), economic growth735

(Gillingham et al., 2018), and parameterization of damages (Errickson et al., 2021).736

Biased or low-coverage realizations of these uncertainties could interact with er-737

rors in the emulated response surface to compound failures to identify potential telecon-738

nections. This section hence discusses uncertainties associated with exogenous forcing.739

We distinguish between climate forcing (Section 4.1.1) and socioeconomic forcing (Sec-740

tion 4.1.2) with further breakdowns given in each section. We provide a brief overview741

of how each type of forcing is typically employed in single sector models and discuss the742

challenges and opportunities of moving to the multi-sector case.743

4.1.1 Climate Forcing744

Perhaps the most common type of climate forcing data takes the form of gridded745

simulation outputs of meteorological variables from global climate models (GCMs). GCMs746

are subject to the same types of uncertainties outlined previously (structural, paramet-747

ric, and sampling) and the climate modeling community typically probes each of these748

through ensemble frameworks. As different ensemble outputs address uncertainty dif-749

ferently, the choice of climate product influences how climate uncertainty is treated in750

the resulting MSD analysis.751

Multi-Model Ensembles (MMEs), such as the Coupled Model Intercomparison Project752

(CMIP) (Eyring et al., 2016; Taylor et al., 2012), are the most commonly used frame-753

work. MMEs do not represent a systematic sampling of any one type of uncertainty but754

instead represent an “ensemble of opportunity” (Tebaldi & Knutti, 2007). That is, they755

are collections of models from various institutions that often share code and expertise756

(Abramowitz et al., 2019), with parameters tuned in complex ways (Mauritsen et al., 2012)757

and simulations reported without an estimate of internal variability (Maher, Power, &758

Marotzke, 2021). MMEs thus combine all three sources of uncertainty into one ensem-759

ble (which may or may not be desirable depending on the specific research question), but760

are typically framed as focusing on structural uncertainty.761

In contrast to MMEs, Single Model Initial condition Large Ensembles (SMILEs)762

are designed specifically to estimate the effects of internal variability, which here we clas-763

sify under sampling uncertainty. SMILEs are constructed by perturbing the initial con-764

ditions of a single GCM to produce varying climate and weather trajectories (Hawkins765

et al., 2016). The number of publicly available SMILEs (Deser et al., 2020) and the num-766

ber of studies employing SMILEs (Maher, Milinski, & Ludwig, 2021) have increased con-767

siderably in recent years. One advantage of SMILEs is an improved sampling of extreme768

events (Wiel et al., 2019; Haugen et al., 2018) relative to MMEs.769

Finally, single-model Perturbed Physics Ensembles (PPEs) are designed to sam-770

ple parametric uncertainty (Murphy et al., 2004). In PPEs, the parameters or config-771

urations of each ensemble member are systematically varied while keeping other factors772

fixed (Sexton et al., 2019). This framework isolates the impact of parametric uncertain-773

ties, which are typically neglected in the other frameworks, on model projections (L. A. Lee774

et al., 2011). PPEs may also be used to produce probabilistic projections (conditioned775

on model structure) if employed in a Bayesian framework (Sexton et al., 2012).776

Each of the above ensemble frameworks exhibits distinct advantages and disadvan-777

tages for sectoral modeling. The different representations of uncertainty in each frame-778
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work may render some ensembles particularly useful for a given research question. For779

example, the interpretation of ensemble spread in SMILEs as arising from irreducible or780

aleatory uncertainty (and therefore as a representation of sampling uncertainty) makes781

them uniquely well-suited as decision-making tools; each ensemble member represents782

a plausible real-world outcome that could be included in a robust risk management strat-783

egy (Mankin et al., 2020). However, any single GCM used to produce a SMILE is still784

subject to structural and parametric uncertainties which may bias its representation of785

internal variability. Multi-model large ensembles have been proposed as one method to786

address this limitation (Deser et al., 2020). Utilizing both SMILEs and MMEs concur-787

rently can help quantify what fraction of uncertainty is irreducible (Lehner et al., 2020),788

a metric with important policy implications (Palutikof et al., 2019). Additional consid-789

erations include ensemble configuration and data access. Given the large number of sim-790

ulation members in a typical SMILE (on the order of 20 to 100), their use may exacer-791

bate challenges related to computational tractability of MSD uncertainty analysis.792

The main disadvantage of global, gridded, process-based Earth system models is793

their high computational cost. In contrast, simple climate models (SCMs) are generally794

much faster to run and thus might be preferable in a variety of modeling setups, par-795

ticularly for uncertainty analyses. SCMs, which for our purposes include all climate mod-796

els other than full-scale Earth system models, span a large range of structures and com-797

plexities, from one- or few-line models that aim to emulate global responses of selected798

outcomes (for example, global mean surface temperature or sea-level rise), to interme-799

diate complexity Earth system models that might be spatially resolved but with very800

coarse resolutions and highly parameterized representations of physical dynamics (Weber,801

2010). Examples of prominent SCMs include MAGICC (Meinshausen et al., 2011), FAIR802

(Leach et al., 2021), and Hector (Hartin et al., 2015).803

The reduced computational burden of SCMs allows a better sampling of uncertainty,804

including the ability to produce probabilistic simulations. SCMs can also be tailored to805

specific, possibly novel research questions more easily than gridded climate products from806

GCMs (Forster et al., 2020). As noted, these advantages typically come at the expense807

of spatial resolution and the variety of available output variables. Given their increased808

reliance on parameterized processes, care must also be taken to avoid overfitting the model809

to calibration data; the main value of SCMs is their ability to give reliable out-of-sample810

estimates.811

4.1.2 Socioeconomic Forcing812

Sectoral and multi-sectoral analyses typically require exogenous assumptions about813

broader socioeconomic dynamics. Key socioeconomic variables generally revolve around814

demographics, economics, land-use, and emissions, but certain sectoral modeling efforts815

also require relatively more obscure quantities such as price trajectories of specific tech-816

nologies (Auping et al., 2016), or local government structures (Andrijevic et al., 2020).817

Projections of the future of the global economy and its associated socio-political818

dynamics are characterized by deep and dynamic uncertainties. As such, the global change819

research community typically relies on carefully crafted sets of plausible alternative fu-820

tures known as scenarios, the canonical example being the Shared Socioeconomic Path-821

ways (SSPs) (Riahi et al., 2017). Here, we briefly discuss the design and usage of the SSPs822

as well as their characterization of associated uncertainties. Our discussion can be gen-823

eralized to other unrelated but similarly constructed scenario-based approaches (for ex-824

ample, as in Gurgel et al. (2021) and citeAwildImplicationsGlobalChange2021).825

SSPs provide global trajectories of socioeconomic factors such as demographics, health,826

education, urbanization, economic growth and inequality, governance, technology, and827

policy. There are five SSPs, each reflecting qualitative global narratives that represent828

equally plausible future socioeconomic and geopolitical trends along axes of high or low829
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challenges to climate change mitigation and adaptation (O’Neill et al., 2017). These tra-830

jectories are passed to IAMs that generate quantitative projections of energy use (Bauer831

et al., 2017), land use (Popp et al., 2017), and associated emissions, among other out-832

comes (Riahi et al., 2017). These projections may represent a “baseline” scenario with-833

out climate policy or under various Shared climate Policy Assumptions (SPAs) that rep-834

resent different sets of climate policy attributes (Kriegler et al., 2014). By design, the835

SSPs are parsimonious representations of future socioeconomic conditions at the global836

scale (Kriegler et al., 2012). As such, they often need to be supplemented with sector-837

specific (e.g., Rao et al. (2017); Graham et al. (2018)) and/or localized scenarios (e.g.,838

Kok et al. (2019)).839

There are large uncertainties both within and among the SSPs, many of which ap-840

ply to scenario-based approaches more broadly. First, the key socioeconomic drivers of841

a given outcome often do not obey consistent narratives, but instead arise from a mix-842

ture of components from the narrative-driven scenarios (Lamontagne et al., 2018; Dolan843

et al., 2021). This highlights the difficult but important task of designing suitably en-844

compassing scenarios from which such hybrids can be drawn. Multi-model comparisons845

often find large structural (Duan et al., 2019) and parametric (Krey et al., 2019) differ-846

ences across IAMs that propagate into simulated outcomes (von Lampe et al., 2014; Harm-847

sen et al., 2021). Behind any given quantitative projection in the SSP framework is an848

assumption that the underlying IAM has produced a plausible real-world trajectory, but849

this has been increasingly challenged, particularly with respect to energy mixes (Ritchie850

& Dowlatabadi, 2017a, 2017b; Burgess et al., 2021; Hausfather & Peters, 2020). It re-851

mains challenging, in general, to evaluate the efficacy of IAMs across the wide range of852

research objectives for which they are employed (Wilson et al., 2021; Schwanitz, 2013).853

Some authors advocate for a more holistic approach with a diminished role for IAMs (Morgan854

& Keith, 2008). Some technical details of SSP design may also limit their utility for de-855

cision making. As the baseline SSPs do not include climate policy or climate impacts,856

there is no single scenario that incorporates the best estimates of impacts or the latest857

governmental mitigation targets (Grant et al., 2020). A related concern is that scenar-858

ios can become out of date, particularly for near-term projections, either as more recent859

data is made available or through improvements in scientific understanding and mod-860

eling capabilities (Hausfather & Peters, 2020; Burgess et al., 2021).861

Scenarios such as the SSPs are also typically not accompanied by probabilistic in-862

formation, which can make them difficult to integrate into risk assessments and may make863

their interpretation more susceptible to typical cognitive biases (Tversky & Kahneman,864

1974; Morgan et al., 1992; Webster et al., 2001). Alternatively, probabilistic approaches865

can be used to systematically explore the uncertainty space and provide insight into the866

likelihoods of both inputs and outcomes. While uncertainty quantification and the use867

of probabilities is not always appropriate, there are cases in which it is defensible and868

can provide useful information for risk-based decision-making, particularly when rele-869

vant assumptions about likelihoods, data sources, and distributional forms are made trans-870

parent (Morgan & Keith, 2008). Such an approach has particularly been used for key871

socioeconomic drivers such as population, GDP, and emissions (e.g., Gillingham et al.872

(2018)). IAMs may also be employed in a probabilistic setting, sampling from distribu-873

tions of key inputs to explore the uncertainty space (Webster et al., 2012; J. Morris et874

al., 2022), although this remains a rare approach. Methods employed to develop prob-875

ability distributions for model inputs vary on a case-by-case basis and can involve time876

series forecasting (Keilman, 2020; Vollset et al., 2020), broader statistical approaches (Raftery877

et al., 2017; Liu & Raftery, 2021), and expert elicitation (Christensen et al., 2018), pos-878

sibly used alongside process-based models (Güneralp & Seto, 2013; Seto et al., 2012; Srikr-879

ishnan et al., 2022). Employing a statistical model for exogenous forcings may offer some880

advantages, including the ability to validate out of sample and to more completely probe881

structural and parametric uncertainty owing to the reduced computational expense. How-882

ever, the core difficulties lie in carefully quantifying “standard” uncertainties, including883
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specifying the relevant, possibly multivariate, probability distributions, as well as prop-884

erly characterizing deep uncertainties. It is also important to include the correlation struc-885

ture of uncertainty across outputs, even for univariate distributions. For example, many886

probabilistic population forecasts include 95% confidence intervals for each country, with-887

out explicitly specifying the correlation among countries: is the 90th percentile for US888

population in 2070 coincident with the 90th percentile for Canada in 2070? Such cor-889

relational effects have important implications for sectoral dynamics across space and time.890

In addition to socioeconomic forcings, another important sources of uncertainty in891

human system modeling are socioeconomic policies, or the rules by which the model re-892

flects human responses to changes in the internal state or external environment. There893

are many theories from political science, sociology, psychology and other social science894

fields that are relevant to the modeling of human, firm, and government behavior and895

shifts. A growing and diverse literature draws on these theories to model dynamics such896

as the evolution or breakdown of cooperation (Stewart & Plotkin, 2014; Auer et al., 2015),897

the diffusion of opinions or innovation (Janssen & Jager, 2001), and the behavior of in-898

vestors or consumers in markets (Bonabeau, 2002). Multi-formalism modeling or multi-899

paradigm modeling presents the potential for integrating such dynamics into multi-sectoral900

models (Vangheluwe et al., 2002).901

4.2 Changing Scales902

Mismatches between the characteristic scales of forcing inputs and system mod-903

els creates challenges and uncertainties that are somewhat distinct from those discussed904

thus far. In this section, we discuss the impacts of downscaling climate and socioeconomic905

data to match the spatiotemporal scales relevant for models.906

4.2.1 Downscaling Climate Data907

Downscaling, and the oftentimes related process of bias-correction, has received con-908

siderable attention in the hydrology and climate impacts communities. There are two909

broad categories: dynamical, which involves running a high-resolution regional climate910

model forced with boundary conditions provided by a GCM (Giorgi & Gutowski, 2015),911

and statistical, which involves modeling a statistical relationship between large-scale at-912

mospheric predictors and local predictands (Hewitson et al., 2014). Both methods can913

involve some form of bias-correction, although typically more so for statistical approaches914

(Maraun, 2016). Known uncertainties, which apply equally to dynamic and statistical915

downscaling, include the validity of any stationarity assumptions, the physical plausi-916

bility of results across space and time (Maraun, 2016), and the resulting representation917

of (multivariate) extremes (Werner & Cannon, 2016; Zscheischler et al., 2019). An ad-918

ditional uncertainty that is relevant for bias-correction and statistical downscaling, and919

can be difficult to account for, is the choice of observational product (Lopez-Cantu et920

al., 2020).921

When possible, careful consideration should be given to what information is most922

important for the relevant sectoral dynamics and/or decision problems — for example,923

methods that jointly process temperature and precipitation (e.g., Abatzoglou and Brown924

(2012)) may be better suited for analyses where risks are driven by multivariate hazards,925

whereas methods that place a higher emphasis on capturing spatial structure (e.g., Pierce926

et al. (2014)) might be preferred for sectors in which spatial heterogeneity is important.927

In any case, performing a hindcast test, where sectoral outcomes simulated by the orig-928

inal GCMs are compared to those simulated by downscaled outputs, can be useful to un-929

cover biases directly relevant to sectoral dynamics that might otherwise go unnoticed (Lafferty930

et al., 2021). Practical considerations such as the spatiotemporal domain and resolution,931

as well as the number of variables included, are also likely to be important factors in de-932

termining which datasets are widely used. Ease of access is also crucial: products that933
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abide by community standards and strive towards the FAIR principles (Wilkinson et al.,934

2016) will better facilitate inter-comparisons and research extensions.935

4.2.2 Downscaling Socioeconomic Forcings936

Downscaling is also increasingly relevant for socioeconomic projections, with im-937

portant differences in understanding and application relative to climate simulations. So-938

cioeconomic dynamics are inherently multi-scale in that different national or regional poli-939

cies can interact with the same global drivers to produce a broad and possibly diverg-940

ing set of outcomes. Downscaling in the socioeconomic context can mean the generation941

of additional regional/local scenarios that fit into a broader global context, or the more942

traditional exercise of interpolating gridded data to a higher resolution.943

For the former case, there are a number of possible approaches to multi-scale sce-944

nario generation, each differing in the level of interconnectedness across scales (Biggs et945

al., 2007). Downscaling, in the sense of generating regional scenarios from a set of global946

or otherwise larger-scale contexts, should hence be understood as only one possible “top-947

down” option. Other participatory “bottom-up” (Kok et al., 2006) or hybrid (Nilsson948

et al., 2017) approaches may be more suitable in some situations. However, even within949

the downscaling paradigm there is a considerable degree of heterogeneity regarding, for950

example, the strictness of quantitative boundary conditions and the consistency of qual-951

itative storylines (Zurek & Henrichs, 2007). Additionally, downscaling can follow a “one-952

to-one” approach where regional storylines follow as closely as possible the global nar-953

ratives, or a “many-to-one” approach where regional storylines are perturbed around a954

broadly consistent larger context (Absar & Preston, 2015). The many-to-one method bet-955

ter represents the increasing uncertainty at local scales but may quickly become chal-956

lenging to manage (Kriegler et al., 2014). It may also be necessary to generate quanti-957

tative trajectories of important quantities, either to reflect the results of the regional sce-958

nario generation process or to include new factors that were previously unavailable. To959

this end, many IAMs can be employed at regional or national scales (e.g., Palazzo et al.960

(2017)).961

In many cases, modelers require spatially-resolved information beyond the highly962

aggregated outputs of most IAMs. For example, the SSPs provide projections of key drivers963

such as population structure only at the national scale and land-use at the regional/continental964

scale. As such, a number of methods are used to downscale these scenarios into gridded965

products. Most follow a similar framework, where statistical or process-based models are966

calibrated on historical data and then applied to aggregated IAM outputs in the future967

period.968

Statistical methods are typically employed to downscale population and other de-969

mographic factors. One rudimentary approach is to fix the spatial pattern at the cur-970

rent distribution and scale each grid point with national factors (Caminade et al., 2014).971

More sophisticated approaches include gravity models that assume areas with certain972

characteristics, such as higher populations, attract more people (Jones & O’Neill, 2016)973

and regression methods that make use of auxiliary variables likely to be important in de-974

termining future growth (Murakami & Yamagata, 2019). Several studies jointly down-975

scale population and GDP (e.g., Wear and Prestemon (2019)). Across all methods, para-976

metric and structural uncertainties are rarely explicitly included or examined.977

Land-use downscaling is typically more involved than population or GDP down-978

scaling, reflecting large uncertainties in socioeconomic and biophysical conditions. Many979

models allocate land via profit maximization, which can be employed within a statisti-980

cal framework (Meiyappan et al., 2014) or within IAMs reconfigured to produce grid-981

ded outputs (Fujimori et al., 2018). As with population and GDP downscaling, para-982

metric and structural uncertainties are typically neglected. One notable exception is M. Chen983

et al. (2019), which examined parametric uncertainty in Demeter, a downscaling algo-984
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Figure 6. Exogenous uncertainty in compound extremes across scales. In each subplot, the

boxplots show the distribution (relative to the median projection) of population (left), the num-

ber of annual gridcell-days above 35°C (center), and the number of annual people-days above

35°C (right), at different spatial scales (global, national, regional, and local). Boxplot whiskers

extend over the full range of data and a sampling of individual points are shown by the markers,

where different colors represent difference population downscaling methods and different sym-

bols represent different SSP scenarios. Gridcell-days are calculated from the 21 models in the

NEX-GDDP ensemble (Thrasher et al., 2012) as 2040-2060 averages and people-days are cal-

culated by multiplying by the projected (2050) number of people in each gridcell; both metrics

are then summed over the appropriate spatial region. Population distributions are taken from

publicly available products that downscale the SSP population scenarios (Jones & O’Neill, 2016;

Murakami & Yamagata, 2019; Zoraghein & O’Neill, 2020).
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rithm that uses a rules-based approach to describe land conversion (M. Chen et al., 2020).985

M. Chen et al. (2019) finds a considerable propagation of uncertainty into future pro-986

jections, with large effects on grasslands and cropland, but little influence on urban ar-987

eas. Demeter is a relatively simple model with few parameters, but similar effects are988

likely to be found in more complex downscaling algorithms.989

In general, the uncertainties of a scenario approach, used alone or in conjunction990

with climate projections, are amplified at smaller scales. This is demonstrated in Fig-991

ure 6, which shows a simple socioeconomic metric (population), a simple climate met-992

ric (gridcell-days above 35°C), and a related joint metric (people-days above 35°C) at993

increasingly smaller spatial scales. In each case, relative uncertainty (as measured by the994

ensemble spread) increases at smaller scales. We also see that for population projections,995

the downscaling algorithm (delineated by different colors) becomes more important than996

the SSP scenario (delineated by different shapes) at smaller scales. At all scales, the joint997

metric is more uncertain than either single metric.998

4.2.3 Temporal Scales999

The appropriate temporal scale of forcing data should be dictated by the relevant1000

sectoral dynamics and outcomes of interest. As such, choices should be carefully moti-1001

vated by the relevant scales for system dynamics of primary interest: long-term trends1002

or short-term stresses? Systems and outcomes that are more sensitive to transitory phe-1003

nomena, including tail events that are limited in time, are likely to require forcing data1004

generated by an alternative suite of models. For example, time series approaches can be1005

used to model various economic indicators at different temporal resolutions (De Winne1006

& Peersman, 2021; Koop & Korobilis, 2009). This contrasts with a SSP-like framework1007

that aims to understand decadal-scale changes in socioeconomics and thus produce quan-1008

titative trajectories that are typically smoothly varying and with 5-year time steps.1009

The temporal scale of analysis may also influence other modeling decisions in non-1010

trivial ways. For example, most population datasets project residential populations rather1011

than ambient population, which accounts for daily population movements to and from1012

work or school (McKee et al., 2015). Ambient population is likely a more useful metric1013

for understanding exposure to short-lived climate or weather hazards.1014

5 Scenario Discovery and Characterizing Dynamics1015

5.1 The Role of Scenario Discovery in MSD1016

From its inception, MSD has aimed to be societally-relevant by improving our un-1017

derstanding of the dynamics of integrated human-Earth systems and impacts on com-1018

plex societal changes (Reed et al., 2022). The identification and communication of key1019

uncertainties to other researchers, decision-makers, and the public are therefore key com-1020

ponents of MSD analyses. However, the high dimensionality, interconnectivity, and com-1021

plexity of the uncertainty space discussed in the preceding sections presents a significant1022

challenge to this goal. The response of the public and stakeholders to uncertainty is highly1023

complex and dependent on a number of factors, including how that uncertainty is com-1024

municated to them (Ho & Budescu, 2019; Howe et al., 2019). As such, uncertainties of-1025

ten are not fully accounted for in planning processes (Carlsson Kanyama et al., 2019).1026

To ensure stakeholders consider uncertainty in their decision-making, researchers must1027

supply information that is relevant to addressing their concerns, but does not danger-1028

ously narrow the framing of the decision problem.1029

Our inability to predict a priori the leading sources of uncertainty and understand1030

how they impact complex outcomes necessitates large ensemble simulations, with hun-1031

dreds to millions of scenarios in order to capture tail risks, interactions, and key dynam-1032
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ics (Lamontagne et al., 2018). This requires a method to select a few key desirable or1033

undesirable outcomes, ideally representative of a broader class of dynamics, from a large1034

set of model runs. Scenario discovery (Bryant & Lempert, 2010) is one class of such meth-1035

ods, which has already seen wide adoption in MSD-related work (e.g., Moallemi, Kwakkel,1036

de Haan, and Bryan (2020); Lamontagne et al. (2018); Dolan et al. (2021); Jafino and1037

Kwakkel (2021); Quinn et al. (2018); Guivarch et al. (2016); Halim et al. (2016); Wang1038

et al. (2013)).1039

Scenario discovery is a computer-assisted approach to scenario development that1040

identifies regions of the uncertainty space that are tied to outcomes of interest (Bryant1041

& Lempert, 2010; Kwakkel, 2019). These methods begin by sampling possible values of1042

uncertain factors, which are then simulated using one or more system models to gener-1043

ate a large ensemble of potential future system conditions. Typically, a binary classifi-1044

cation is applied to designate scenarios of interest in which some notable outcome is ob-1045

served (e.g., a satisficing constraint for objective attainment) (Herman et al., 2015). Machine-1046

learning classification methods are then applied to identify the leading predictors of a1047

case of interest (Bryant & Lempert, 2010). The most commonly used methods are the1048

Patient Rule Induction Method (PRIM, (Friedman & Fisher, 1999)) and Classification1049

and Regression Trees (CART, (Breiman et al., 2017)), though other methods can be used,1050

such as logistic regression (Quinn et al., 2018; Lamontagne et al., 2019). Once the lead-1051

ing predictors and conditions associated with the cases of interest are identified, they are1052

ideally translated into qualitative, comprehensible narratives to facilitate communica-1053

tion and interpretability (Parker et al., 2015; Trutnevyte et al., 2016; Moallemi et al.,1054

2017; Jafino & Kwakkel, 2021). As can be seen by its procedure, scenario discovery is1055

primarily focused on parametric uncertainties, which are an accessible if incomplete way1056

of defining the space of possible futures.1057

Scenario discovery is often referred to as a “bottom-up” or a posteriori approach1058

because it defines key drivers and scenarios after generating and analyzing a large sim-1059

ulation ensemble. In contrast, “top down” or a priori approaches begin with expert as-1060

sessment of key drivers and associated uncertainties to develop a small number of sce-1061

nario narratives, which are in turn simulated with systems models (Bryant & Lempert,1062

2010; Kwakkel, 2019; Maier et al., 2016). The nature of multi-sector systems, which are1063

characterized by a large number of uncertainties, emergent complexity, and correlated1064

outcomes across sectors, severely limits the ability of any group of experts to anticipate1065

key drivers and dynamics (Helbing, 2013; Marchau et al., 2019). In such cases, a priori1066

approaches may suffer from narrow problem framing, inadequate coverage of surprising1067

or paradoxical outcomes, and may be less conducive to participatory decision making1068

with diverse stakeholders (Bryant & Lempert, 2010).1069

As an illustrative example, we once again turn to the impacts of Winter Storm Uri1070

in Feburary 2021 (Busby et al., 2021). Despite recent precedent for similarly or more se-1071

vere weather conditions (Doss-Gollin et al., 2021), energy and gas operators failed to win-1072

terize equipment in Texas. As a result, gas production and delivery were severely cur-1073

tailed during the peak of the cold, disrupting electricity production from natural gas while1074

smaller outages from wind, nuclear, and coal generating plants also occurred (Busby et1075

al., 2021). At the same time, electricity demand for heating spiked, bringing the Texas1076

power grid to within minutes of collapse, leading regulators to curtail electricity supply1077

to millions of people. The days-long outage severely curtailed the delivery of basic ser-1078

vices such as water and wastewater, internet, medical services, food, and heat (Busby1079

et al., 2021; Watson et al., 2021). This is an example of a chain of events leading to the1080

failure of a critical infrastructure system which, in retrospect, ought to have been fore-1081

seen, but which seems to have been missed in scenario planning, particularly as the dis-1082

ruption transcended traditional sectoral boundaries.1083
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5.2 Challenges for Scenario Analysis in Multi-Sector Systems Model-1084

ing1085

The uncertainties that arise in multi-sector modeling often go beyond what has typ-1086

ically been explored with Scenario Discovery. In particular, MSD analyses present chal-1087

lenges to typical scenario discovery approaches for three reasons: (a) the high dimension-1088

ality of the uncertainty and outcome space, (b) the challenge of defining cases of inter-1089

est across sectors, and (c) the difficulty of interpreting a posteriori scenarios. MSD re-1090

searchers should be aware of these gaps, and potential alternative methods, as they iden-1091

tify scenarios of interest for further analysis and communication.1092

5.2.1 High Dimensional Uncertainty and Outcome Spaces1093

Any scenario analysis begins with a design of experiment, which is unavoidably an1094

a priori narrowing of the uncertainty space to be explored. In the MSD setting this is1095

increasingly difficult as complex systems interactions and teleconnections massively ex-1096

pand the space that needs to be considered, while simultaneously obscuring the key un-1097

certainties and amplifying the consequences of an incomplete representation. This presents1098

a major challenge to scenario discovery in MSD. Incomplete representations of uncer-1099

tainty typically manifest in three ways: the selection of factors, the number of samples,1100

and the range of samples.1101

In Section 3.2.2, we discussed factor-fixing through sensitivity analysis. These tech-1102

niques may fail when confronted with path dependence, emergence, and multiple out-1103

puts of interest. Factor influence may evolve over time and depend on earlier systems1104

evolution, and is unlikely to be the same across output metrics (Lamontagne et al., 2018).1105

Often, a more informal factor-fixing ensues in MSD studies, driven by “lamp-post sci-1106

ence,” where factors are varied because existing databases, such as the RCPs or the SSPs,1107

make them easy to include, while other factors are fixed simply because they are more1108

difficult to sample or because existing products fail to account for their uncertainties (as1109

discussed in Section 4). A common example is an under-representation of structural un-1110

certainties in scenario discovery, such as model structural uncertainty or the decision prob-1111

lem framing (Quinn et al., 2017; Rozenberg et al., 2014). Such experimental designs are1112

often necessary to limit computational expense, but the resulting consequences for pro-1113

jections and planning are difficult to quantify.1114

Sparse sampling of uncertainties is one way to limit the computational cost of gen-1115

erating ensembles of model runs, but this can severely limit our ability to identify lead-1116

ing drivers of outcomes. As an example, Lamontagne et al. (2018) considered more than1117

33,000 scenarios derived as hybrids of the SSPs: a marked increase over the 3-5 canon-1118

ical SSPs considered in many analyses. This decoupling of the SSP dimensions highlighted1119

plausible yet overlooked narratives with serious global consequences. However, the ex-1120

perimental design in Lamontagne et al. (2018) did not disentangle, for instance, the yield1121

improvements for different crops in each of the 285 modeled land-use regions across the1122

globe, nor were GDP or energy technology trajectories decoupled for individual coun-1123

tries, instead opting to vary “consistent” SSP narratives for different sectors. It is not1124

clear that such consistency is epistemically valuable for scenario discovery. Sectoral stud-1125

ies in water resources suggest these choices may substantially bias robustness and sce-1126

nario discovery assessments (Quinn et al., 2020; McPhail et al., 2020).1127

The high dimensionality of the uncertainty space often necessitates inadequate cov-1128

erage of extreme cases that are likely to drive cases of interest. This is particularly acute1129

in the case of deep uncertainty, where full UQ may be inappropriate. One approach is1130

to use multiple models with varying structures instead of a single, more complex model;1131

scenario discovery on the resulting multi-model ensemble can yield insights into differ-1132

ent dynamical pathways leading to outcomes of interest under varying assumptions (Kwakkel1133

et al., 2013; Auping et al., 2014).1134
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5.2.2 Multiple Outcomes of Interest1135

Within a single-sector or regional analysis, defining cases of interest can be rela-1136

tively straightforward (e.g., when is a levee overtopped, or when is there a blackout?).1137

Many sectoral studies have utilized satisficing criteria across several metrics, often uti-1138

lizing the logical connection between those metrics to identify cases of interest, followed1139

by binary classification on those scenarios (Herman et al., 2014). In MSD settings, this1140

process is more complicated as the number of sectors and regions increase, with corre-1141

spondingly more complex interactions and teleconnections. For these complex systems,1142

it is not necessarily clear a priori which output(s) might be correlated and simultane-1143

ously achieve the satisficing criteria. For instance, Jafino and Kwakkel (2021) illustrate1144

diverse inequality patterns in adaptive water-food management that defy binary clas-1145

sification. The dynamical nature of MSD systems also presents a challenge to traditional1146

binary scenario discovery, as the timing of failure conditions can be an important con-1147

sideration (Steinmann et al., 2020). Another complication is the presence of spatial and1148

temporal teleconnections, which may mean that outcomes of interest in different sectors1149

occur at different time steps or different spatial regions.1150

One potentially promising category of techniques is multinomial classification, wherein1151

scenario discovery simultaneously identifies multiple different “cases of interest” (Gerst1152

et al., 2013). Typically, this is performed in a sequential approach, where the output space1153

is first partitioned into classes of interest, then classification tools are used to identify1154

input factors that are most predictive of individual class membership (Jafino & Kwakkel,1155

2021). The partition of the outcome space could be manual (Lamontagne et al., 2018;1156

Rozenberg et al., 2014), or utilize clustering algorithms (Gerst et al., 2013; Steinmann1157

et al., 2020). Manual classification has the advantage of interpretability but suffers from1158

the same weaknesses as a priori scenario development for high dimensional problems.1159

On the other hand, while clustering with statistical algorithms is more scalable, the re-1160

sulting classes can be difficult to interpret, and the results can be sensitive to a number1161

of choices, such as the number of classes. Standard scenario discovery is then often im-1162

plemented on each of the classes individually through a series of binary classification prob-1163

lems. One drawback of this is that the membership rules between classes might not be1164

easily distinguishable (Kwakkel & Jaxa-Rozen, 2016), which may hinder stakeholder en-1165

gagement (Jafino & Kwakkel, 2021). Because the classification is conducted independently,1166

the relationship between classes may also be difficult to interpret. Alternatively, a con-1167

current multinomial scenario discovery approach has also been proposed (Jafino & Kwakkel,1168

2021), which simultaneously partitions the data and predicts class membership through1169

the use of multivariate regression trees. This approach can reveal more detailed classes1170

than the sequential approach, but this comes at the expense of interpretability and com-1171

municability.1172

The scale, diversity, and interconnectivity of the uncertainty space in MSD prob-1173

lems poses a significant challenge to traditional scenario discovery techniques. For ex-1174

ample, how can we identify the potential for cross-sector interactions to lead to cascad-1175

ing failures? One route is through the application of methods from the complexity sci-1176

ences to investigate nonlinear feedbacks, emergent behavior, and tipping points (Berkes,1177

2007). Similar to scenario discovery, these approaches aim to understand the space of1178

possible trajectories of a system rather than prediction of the particular system state at1179

a given point in time (Brugnach & Pahl-Wostl, 2008), in part reflecting the high levels1180

of uncertainty in MSD systems (Vogel et al., 2015).1181

A complex systems approach to understanding parametric uncertainty can provide1182

more information than typical sensitivity analyses about the importance of model pa-1183

rameters in determining qualitative behavior. Qualitative behavior of interest, for ex-1184

ample, would involve regime shifts toward an unstable equilibrium consisting of a dif-1185

ferent set of feedbacks. Examples of regime shifts include a lake switching from being1186

oligotrophic to eutrophic (Carpenter, 2005), as well as the collapse of communities that1187
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are economically dependent on local natural resources (Y. Chen et al., 2009). The pos-1188

sibility of this type of sudden, discontinuous change in equilibrium behavior does not nec-1189

essarily exist in all systems, but becomes more likely in highly coupled systems (Lade1190

et al., 2013).1191

One example of a dynamical systems tool with potential application to MSD anal-1192

yses is topological data analysis (TDA) (Wasserman, 2018; Smith et al., 2021; Chazal1193

& Michel, 2021) to understanding the network structure of coupled model output. An-1194

other example is generalized modeling, which is a form of dynamical systems analysis1195

that does not require specifying functional forms. Instead, it allows the functional forms1196

and magnitudes of relationships between variables to be treated as parameters (Gross1197

& Feudel, 2006; Lade & Gross, 2012; Lade & Niiranen, 2017). Finally, structural uncer-1198

tainty in agent-based modeling can be addressed using pattern-oriented modeling, a method1199

that involves formulating alternative theories of agents’ behavior and testing them by1200

how well they reproduce characteristic patterns at multiple levels (Grimm et al., 2005).1201

5.2.3 Scenario Interpretability1202

A primary goal of decision support for MSD is to identify broadly plausible path-1203

ways by which good or bad outcomes might occur and be influenced by changes to ex-1204

ogenous forcings, system dynamics, and/or policy interventions. This requires identify-1205

ing and articulating the patterns and mechanisms by which these changes propagate through1206

the coupled system. However, a typical theme in statistical learning is the tension be-1207

tween classification ability and the interpretability of the resulting classes. In scenario1208

discovery, the emphasis is to maximize interpretability, at the expense of “optimal“ clas-1209

sification.1210

Interpretability is particularly difficult in MSD settings given the presence of tele-1211

connections and emergent dynamics. While a powerful classifier may be able to identify1212

the experimental factors related to scenarios of interest, the resulting scenarios may not1213

be tied to a clear narrative explaining the circumstances and dynamics driving the out-1214

comes. The interpretability-prediction tradeoff is not unique to scenario discovery or MSD,1215

and there exists an opportunity to include emerging developments in machine learning1216

and visual analytics with existing scenario discovery workflows to improve interpretabil-1217

ity. One such direction is the use of machine learning methods to predict future vulner-1218

able conditions based on observed system states and fluxes (B. Robinson et al., 2020),1219

and to design dynamic adaptation policies to mitigate them (J. S. Cohen & Herman, 2021).1220

Advances in interpretable machine learning (Rudin, 2014; Rudin et al., 2021; Murdoch1221

et al., 2019; Molnar et al., 2020) also present opportunities to help navigate the trade-1222

off between interpretability and classification when analyzing model output ensembles.1223

Interpretable approaches to machine learning also have the potential advantage of in-1224

creased transparency, which might help expose systematic biases in MSD modeling which1225

could be relevant to decision-making.1226

Despite challenges to interpretability, MSD model projections and analyses can be1227

useful in informing policy under uncertainty. For example, lower-dimensional models have1228

been used in social-ecological systems literature to provide broad insight into resource1229

management problems relevant to MSD while remaining interpretable. The robust con-1230

trol framework has been used to identify fundamental tradeoffs in the robustness of dif-1231

ferent institutional arrangements, modeled as different controllers for the system, to pa-1232

rameter uncertainty (Anderies et al., 2007; Rodriguez et al., 2011). This approach has1233

also shown how preparing for certain types of shocks may make a system more vulner-1234

able to novel ones (Cifdaloz et al., 2010; Carlson & Doyle, 1999, 2000; Doyle & Carlson,1235

2000; Manning et al., 2005). This same modeling framework has also been used to ex-1236

plore how policy implementation issues that result from or exacerbate uncertainty, such1237

as infrequent sampling or implementation delays, impact policy performance (Rodriguez1238
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et al., 2011), especially under the possibility of regime shifts (Polasky et al., 2011). Fi-1239

nally, MSD models have been used to identify safe operating spaces (Barfuss et al., 2018;1240

Cooper & Dearing, 2019; Rockström et al., 2009) and identify threats to system resilience1241

and the importance of cross-sectoral policies (Brunner & Grêt-Regamey, 2016).1242

Model development is a component of uncertainty characterization and can aid the1243

process of communication, social learning, and exploration of scenarios and solutions among1244

diverse stakeholders (Brugnach & Pahl-Wostl, 2008). Methods for exploring structural1245

uncertainty, especially when paired with expert elicitation and participatory processes,1246

help identify conflicts and agreements and make explicit different problem framings and1247

mental models (Brugnach & Pahl-Wostl, 2008; Hare & Pahl-Wostl, 2002; Rouwette &1248

Vennix, 2020). In addition to improving the model predictions, this process also increases1249

the likelihood of stakeholders accepting model results (Pahl-Wostl, 2007; Giordano et1250

al., 2020). For MSD systems, scaling these participatory modeling approaches to higher1251

levels of governance with far more stakeholders remains a challenge, though there is an1252

emerging environmental governance literature aimed at informing these higher level pro-1253

cesses, particularly in the context of global climate change policy (Cloutier et al., 2015;1254

Figueiredo & Perkins, 2013; Fröhlich & Knieling, 2013).1255

6 Conclusions & Best Practices1256

MSD is an emerging area of research focused on identifying and analyzing complex1257

systems related to critical societal questions. Conclusions based on limited analysis (for1258

example, analyses which only account for a handful of scenarios), could harm decision-1259

making by anchoring stakeholders to a range of outcomes which might not be represen-1260

tative of true risks. As a result, all MSD analyses ought to explicitly discuss how the re-1261

search methods treated uncertainty (or consciously chose not to, for example in a bench-1262

marking activity).1263

It is not necessarily reasonable or even desirable for every MSD analysis to account1264

for all types of uncertainties. For example, while we have focused on quantitative aspects1265

of uncertainty analysis for MSD systems, there are a number of other considerations which1266

might influence an MSD research design (Renn et al., 2020). For example, governance1267

or stakeholder concerns might reduce the range of uncertainties, system configurations,1268

or decision alternatives under consideration. The translation of systemic risk analyses1269

into governance strategies is also critical, and requires an interdisciplinary, layered ap-1270

proach (Renn et al., 2020; Hochrainer-Stigler et al., 2020). Additionally, it can often be1271

easier to focus on specific uncertainties or dynamics with reduced-form representations1272

or samples of less-relevant model components.1273

Rather, best practices in MSD uncertainty analysis should facilitate communica-1274

tion across interdisciplinary teams of investigators and emphasize transparency, so that1275

uncertainties that were not considered or fully treated in a given analysis can be exam-1276

ined in subsequent studies. One of the key points we have tried to emphasize is that many1277

uncertainty-relevant research decisions should be made intentionally, to ensure that they1278

are aligned with the research question, and that the resulting interpretation of results1279

takes place within the context of the research design. To this end, we suggest that MSD1280

research should include the following best practices and principles, though this list is by1281

no means exhaustive and will likely evolve as practices and methods change over time.1282

1. Develop consistent vocabulary : Differing uses of terms such as “uncertainty char-1283

acterization” can hinder the interdisciplinary collaboration which is intrinsically1284

part of MSD. Standard definitions of approaches and a standard classification of1285

uncertainty types can help clarify how uncertainties were and will be conceptu-1286

alized and treated.1287
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2. Include wiring diagrams and graphical representations of modeling choices: As dis-1288

cussed in Section 2.2, choices related to control volumes and coupling direction-1289

alities can limit how uncertainties can be represented and alter the resulting dy-1290

namics, such as introducing amplifying or dampening feedbacks. Contextualizing1291

the results of an MSD analysis can be difficult without transparent communica-1292

tion of these choices. We prefer the inclusion of graphical representations of cou-1293

pling frameworks, such as those seen in Figure 4, as they illustrate the control vol-1294

ume while making cycles and other connections clear.1295

3. Deliberate selection of methods and data products for uncertainty analysis: Almost1296

every choice about the treatment of uncertainty, from calibration through scenario1297

discovery, involves tradeoffs affecting the ability to address the driving research1298

question. As a result, these choices should be justified based on the aims of the1299

analysis. Documenting the motivation behind these choices, and their limitations,1300

helps to contextualize the results and defines clear opportunities for future research.1301

4. Test sensitivities to UQ assumptions about deep uncertainties: In Section 3, we1302

discussed the importance of the prior ranges and distributions used in an uncer-1303

tainty analysis. When deep uncertainties are present and could influence calibra-1304

tion results through data or constraints, the use of a single input distribution to1305

produce probabilistic projections could be misleading. When computationally tractable,1306

one approach could be to re-calibrate the model under various realizations of deeply1307

uncertain factors (e.g. , Srikrishnan et al. (2022)), but in general, a sensitivity anal-1308

ysis should be conducted to explore the dependence of the obtained projections1309

on the choices made in quantifying inputs.1310

5. Make model code and configurations open-source and open-access: One category1311

of uncertainties mentioned in Kennedy and O’Hagan (2001) that we do not ex-1312

plicitly account for in our taxonomy (though it is a subset of structural uncertainty1313

in our framework) is “code uncertainty,” as the specific implementation of model1314

code can create uncertainty in outcomes. Well-documented and open-source code1315

increases transparency around this class of uncertainties. Moreover, MSD mod-1316

eling frameworks are complex, and potentially highly sensitive to specific choices1317

of parameter values. Configuration files can be easily shared in public reposito-1318

ries along with the model code used for the analysis and documentation. Align-1319

ment with the FAIR principles (Wilkinson et al., 2016) for data and code shar-1320

ing should also be encouraged.1321

Throughout our discussion, we have also identified several challenges and poten-1322

tial research opportunities, some of which cut across the different stages of MSD uncer-1323

tainty analyses. One always-present challenge is created by the increased computational1324

complexity of MSD models relative to single-sector models. Further advances in statis-1325

tical computing via emulation or parallelized calibration methods can help navigate this1326

tradeoff and leverage high-performance computing environments. Innovation applications1327

of machine-learning methods could be particularly fruitful, either for use as emulators1328

or as a direct replacement for mechanistically-motivated models (though this requires1329

careful model construction and post hoc UC and SA exercises to avoid overfitting a black-1330

box model). Advanced machine learning methods, particularly those that feature increased1331

interpretability, could also be fruitful when applied to high-dimensional scenario clas-1332

sification and identification. Methods from closely-related disciplines, such as complex-1333

ity science and network analysis, should also be tested for suitability in MSD applica-1334

tions, to further address these challenges.1335
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van der Watt, L.-M. (2017). Towards extended shared socioeconomic path-2072

ways: A combined participatory bottom-up and top-down methodology with2073

results from the Barents region. Global Environmental Change, 45 , 124–132.2074

doi: 10/f99ptf2075

O’Hagan, T. (2004). Dicing with the unknown. Significance, 1 (3), 132–133. doi: 10/2076

d7vn9v2077

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman,2078

D. S., . . . Solecki, W. (2017). The roads ahead: Narratives for shared so-2079

cioeconomic pathways describing world futures in the 21st century. Global2080

Environmental Change, 42 , 169–180. doi: 10/f3pvqj2081

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt,2082

G., . . . Sanderson, B. M. (2016). The scenario model intercomparison2083

project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9 (9), 3461–3482.2084

doi: 10/f87n562085

Oppenheimer, M., O’Neill, B. C., & Webster, M. (2008). Negative learning. Climatic2086

Change, 89 (1-2), 155–172. doi: 10/bgbnq32087

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and2088

confirmation of numerical models in the Earth sciences. Science, 263 (5147),2089

641–646. doi: 10/ct36kv2090

Pahl-Wostl, C. (2007). The implications of complexity for integrated resources2091

management. Environmental Modelling & Software, 22 (5), 561–569. Retrieved2092

2021-12-20, from https://www.sciencedirect.com/science/article/pii/2093

S1364815206000417 doi: 10.1016/j.envsoft.2005.12.0242094

Palazzo, A., Vervoort, J. M., Mason-D’Croz, D., Rutting, L., Havĺık, P., Islam, S.,2095
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