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Abstract

A new method is presented to estimate urban OH concentrations using the downwind decay of the TROPOMI derived NO2/CO

ratio combined with Weather Research Forecast (WRF) simulations. Seasonal OH concentrations, NOx and CO emissions for

summer (June to October, 2018) and winter (November, 2018 to March, 2019) are derived for Riyadh. WRF is able to simulate

NO2 and CO urban plumes over Riyadh as observed by TROPOMI. However, WRF simulated NO2 plumes close to center of the

city are overestimated by 25 % in summer and 40 to 50 % in winter compared to TROPOMI observations. WRF simulated CO

plumes differ by 10 % with TROPOMI in both seasons. The differences between model and TROPOMI are used to optimize

the OH concentration, NOx and CO emissions iteratively using a least squares method. For summer, both the NO2/CO

ratio optimization and the XNO2 optimization imply that the OH prior from the Copernicus Atmospheric Monitoring Service

(CAMS) has to be increased by 32.03±4.0% . The OH estimations from the NO2/CO ratio and the XNO2 optimization differ by

10 % indicating that the method is quite robust. Summer Emission Database for Global Atmospheric Research v4.3.2 (EDGAR)

NOx and CO emissions over Riyadh need to be increased by 42.1±8.7 % and 100.8±9.5%. For winter, the optimization method

increases OH by ˜52.0±5.3 %, while reducing NOx emission by 15.4±3.4% and doubling the CO emission.
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Abstract. A new method is presented to estimate urban hydroxyl radical (OH) concentrations using the downwind decay of 

the Tropospheric Monitoring Instrument (TROPOMI) derived nitrogen dioxide (NO2)/carbon monoxide (CO) ratio combined 

with Weather Research Forecast (WRF) simulations. Seasonal OH concentrations, nitrogen oxides (NOx)  and CO emissions 

for summer (June to October, 2018) and winter (November, 2018 to March, 2019) are derived for Riyadh. WRF is able to 

spatially simulate NO2 and CO urban plumes over Riyadh as observed by TROPOMI. However, WRF-simulated NO2 plumes 15 

close to center of the city are overestimated by 25 % in summer and 40 to 50 % in winter compared to TROPOMI observations. 

WRF simulated CO plumes differ by 10 % with TROPOMI in both seasons. The differences between model and TROPOMI 

are used  to optimize the OH concentration, NOx and CO emissions iteratively using a least squares method. For summer, both 

the NO2/CO ratio optimization and the XNO2 optimization imply that the OH prior from the Copernicus Atmospheric 

Monitoring Service (CAMS) has to be increased by 32.03±4.0% . The OH estimations from the NO2/CO ratio and the XNO2 20 

optimization differ by 10 %. Summer Emission Database for Global Atmospheric Research v4.3.2  (EDGAR) NOx  and CO 

emissions over Riyadh need to be increased by 42.1±8.7 % and 100.8±9.5%. For winter, the optimization method increases 

OH by ~52.0±5.3 %, while reducing NOx emission by 15.45± 3.4% and doubling the CO emission. TROPOMI derived OH 

concentrations and pre-existing Exponentially Modified Gaussian function fit (EMG) method differ by 18 % in summer and 

7.5 % in winter, confirming that urban OH concentrations can be reliably estimated using the TROPOMI-observed NO2/CO 25 

ratio. 

1 Introduction  

The rapidly growing urbanization has led to an increase in the number of big cities globally. More than 55 % of the global 

population resides in cities and this fraction is projected to increase to 68% in 2050  (United Nations, 2018). The associated 
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rise in consumption of energy and materials leads to severe air pollution, threating the health of the large urban population 30 

(Pascal et al., 2013; Sicard et al., 2021). Air pollution control measures and the application of cleaner technology have reduced 

the NO2 concentrations in developed cities such as Los Angeles and Paris by 1.5 to 3.0 % yr-1 between 1996  to 2017 

(Georgoulias et al., 2019). The CO emission is reduced by 28.8 % to 60.7 % in these cities in the period 2000 to 2008 (Dekker 

et al., 2017). In developing cities such as Tehran and Baghdad, however, NO2 concentrations have increased by 8.6 % yr−1 and 

16.9% yr−1 between 1996 to 2017  (Georgoulias et al., 2019). The CO emission increased by 15% in New Delhi in the period 35 

2000 to 2008 (Dekker et al., 2017). As a consequence, air pollution monitoring and mitigation in developing cities is becoming 

an increasingly important priority.  

Nowadays, urban air pollution can be studied using a combination of ground-based measurement networks and satellite 

observations (Ialongo et al., 2020; Sannigrahi et al., 2021). Satellite observations have helped to investigate urban air pollution, 

particularly in cities without a ground-based monitoring network (Beirle et al., 2019; Borsdorff et al., 2019). In past decades, 40 

improvements in the quality and spatial resolution of satellite measurements have allowed the detection of trends in air 

pollutants and the quantification of urban emissions (Lorente et al., 2019; Verstraeten et al., 2018; Wennberg et al., 2018).  

Several studies have focused on NOx, using NO2 observations from the SCanning Imaging Absorption spectroMeter for 

Atmospheric CartograpHY (SCIAMACHY) , the Ozone Monitoring Instrument (OMI) and TROPOMI (Ding et al., 2017; 

Lorente et al., 2019). At the resolution and sensitivity of TROPOMI, urban NO2 enhancements can be detected readily, even 45 

in single satellite overpass. OMI derived NO2 data have been used to quantify NOx emissions, as well as the urban lifetime of 

NO2, as demonstrated by Beirle et al.  (2011) using the Exponentially Modified Gaussian function fit (EMG) method. 

In the EMG method, the satellite observed exponential decay of NO2 downwind of the city centre is used to quantify the first 

order loss of NO2, driven primarily by its reaction with the hydroxyl radical (OH). Liu et al. (2016) modified the EMG method 

for application to complex emission patterns. The quantification of CO emissions from cities is more complicated compared 50 

with NO2 because of its longer lifetime, and the related importance of CO sources from the surroundings of cities. Nevertheless, 

a few studies have demonstrated the feasibility of  quantifying relative changes in urban CO emission, using Measurement of 

Pollution in the Troposphere (MOPPIT), Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Infrared 

Sounder (AIRS), and TROPOMI observations (Borsdorff et al., 2019; Dekker et al., 2017; Pommier et al., 2013).  

In recent years, methods have been developed that combine satellite measurements of different trace gases, for example the 55 

combined use of NO2 and CO, to obtain specific information about pollutant sources (Lama et al., 2020, Hakkarainen et al., 

2015; Miyazaki et al., 2017; Reuter et al., 2019; S. Silva & Arellano, 2017 ). The emission factors of CO and NOx from fuel 

combustion are uncertain and vary strongly with the combustion efficiency (Flagan and Seinfeld, 1988). The satellite observed 

NO2/CO ratio is particularly sensitive to this fuel burning efficiency, as demonstrated by Lama et al., (2020) and  can be used 

to evaluate emission inventories. However, another important uncertainty arises from the removal of NO2 by OH. OH is an 60 

important oxidant in the atmosphere, which determines the lifetime of trace gases such as CO, NOx, sulphur dioxide (SO2) 

and volatile organic compound (VOCs) (Monks et al., 2009) . OH plays the important role in atmospheric chemistry on scales 

ranging from urban air pollution to the global residence times of greenhouse gases. The direct measurement of OH is possible 
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using spectroscopic methods, but the spatial representativeness of the data is limited due to its short lifetime (de Gouw et al., 

2019). OH estimates from global Chemical Transport Models (CTM’s), which has an uncertainty of > 50 % (Huijnen et al., 65 

2019). Urban measurement campaigns point to large discrepancies between modelled and observed OH abundances, for 

example in Lu et al., (2013) who found a factor 2.6 difference in a campaign in the suburbs of Beijing. 

The aim of this study is therefore to estimate the average OH concentration in the urban plume of large cities (hereafter referred 

to as urban OH) from the downwind decay of the TROPOMI observed NO2/CO ratio. The proposed method makes use of the 

WRF model (Grell et al., 2005) to simulate the meteorological fields and atmospheric transport. The TROPOMI instrument 70 

(Veefkind et al., 2012), launched on 13 October 2017 on board the Sentinel-5 Precursor satellite, is particularly well suited for 

this task, as it measures both compounds with high sensitivity and spatial resolution.  Our method uses CO, because it has a 

longer lifetime than NO2 (weeks-months compared to a few hours). Therefore, CO can be considered as an inert tracer at the 

time-scale of urban plumes. The difference in the rate of decay between NO2 and CO provides therefore information about the 

photochemical oxidation of NO2, because atmospheric dispersion is expected to have a very similar impact on both tracers and 75 

therefore cancels out in their ratio. The use of the NO2/CO ratio for estimating urban scale OH is further compared to the 

Exponentially Modified Gaussian function fit (EMG) method, using only satellite retrieved NO2 (Beirle et al., 2011).  

The city of Riyadh (24.63° N, 46.71°E ) is chosen as a test case. Riyadh is an isolated city and a strong source of CO and NO2 

pollution (Beirle et al., 2019; Lama et al., 2020). The frequent clear sky conditions over Riyadh yield a large number of valid 

TROPOMI CO and NO2 data. The signal to noise in TROPOMI is high enough to detect the enhancement of CO and NO2 80 

over Riyadh in a single overpass (Lama et al., 2020). Model results from the Copernicus Atmospheric Monitoring Service 

(CAMS) for Riyadh show a distinct seasonality in OH (see Fig S1), which we attempt to evaluate using TROPOMI data for 

summer and winter.  

This paper is organized as follows: Section 2 describes the TROPOMI NO2 and CO data, the WRF model setup that was used, 

and the optimization method that is used for estimating OH. Optimization results and comparisons between TROPOMI and 85 

WRF are presented in section 3, followed by a summary and conclusion of the main finding in section 4. Additional figures 

and information about the optimization method are provided in the Supplement.  

2. Data and Method  

2.1 TROPOMI NO2 tropospheric column  

We used the offline TROPOMI level 2 tropospheric column NO2 [mole m-2] data from retrieval versions 1.2.x for 2018 and 90 

1.3.x for 2019 available at https://s5phub.copernicus.eu; http://www.tropomi.eu (last access: 21 September, 2020). NO2 data 

of versions 1.2.x and 1.3.x have minor processing differences such as removal of negative cloud fraction, better flagging and 

uncertainty estimation. However, they use the same retrieval algorithm applied to level-1b version 1.0.0 spectra  (Babic et al., 

2019) recorded by the TROPOMI UV-Vis module in the 405-465nm spectral range. The TROPOMI NO2 DOAS software, 
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developed at KNMI, is used for the processing of NO2 slant column densities  (van Geffen et al., 2019). The improved NO2 95 

DOMINO algorithm of Boersma et al. (2018) has been used to translate slant columns into tropospheric column densities. In 

this algorithm, stratospheric contributions are subtracted from the slant column densities and the residual tropospheric slant 

column density is converted to tropospheric vertical column density using the air mass factor (AMF).  The AMF depends on 

the surface albedo, terrain height, cloud height and cloud fraction (Eskes et al., 2018; Lorente et al., 2017). The comparison of 

MAX-DOAS ground based measurements in European cities shows that TROPOMI underestimates of NO2 columns by 7 % 100 

to 29.7 % (Lambert et al., 2019). To avoid biases, we re-calculated the AMF by replacing the tropospheric AMF, which is 

based on a vertical NO2 column simulated by TM5, with the WRF-chem equivalent (Boersma et al., 2016; Lamsal et al., 2010; 

Visser et al., 2019), using the equation provided in the Appendix A. During summer, the bias correction increases TROPOMI 

NO2 by 5 to 10 % and in winter by 25% to 30 % in the urban plume over Riyadh, whereas background areas are less affected 

(see Fig S2 ).  105 

2.2 TROPOMI CO  

For CO, the offline level 2 CO data product version 1.2.2  has been used, available at  https://cophub.copernicus.eu/s5pexp 

(last access: 20 September, 2020). The SICOR algorithm is applied to TROPOMI 2.3 μm spectra to retrieve CO total column 

density [molec cm−2] (Landgraf et al., 2016). The retrieval method is based on a profile scaling approach, in which TROPOMI-

observed spectra are fitted by scaling a reference vertical profile of CO using the Tikhonov regularization technique (Borsdorff 110 

et al., 2014). The reference CO profile is obtained from the TM5 transport model (Krol et al., 2005). The averaging kernel (A) 

quantifies the sensitivity of the retrieved total CO column to variations in the true vertical profile (ρtrue), as follows (Borsdorff 

et al., 2018a): 

𝐶𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐴. 𝜌𝑡𝑟𝑢𝑒 + ∈𝐶𝑂                                                            (1) 

where, Cretrieval is the retrieved column average CO mixing ratio, ∈CO is the retrieval error, statistically represented by the 115 

retrieval uncertainty that is provided for each CO retrieval.  

2.3 Satellite Data Selection and Filtering Criteria  

As NO2 and CO are retrieved from different channels of TROPOMI using different retrieval algorithms, the filtering criteria 

and spatial resolutions of CO and NO2 are different. The data filtering makes use of the quality assurance value (qa) and is 

provided with the CO and NO2 retrievals, ranging from 0 (no data) to 1 (high quality data). We selected NO2 retrievals with 120 

qa ≥ 0.75 (clear sky condition) and CO retrievals with qa ≥ 0.7 (clear sky or low level cloud) as in Lama et al., (2020). The 

SICOR algorithm was originally developed for SCIAMACHY to account for the presence of low elevation clouds, increasing 

the number of valid measurements (Borsdorff et al., 2018a). In addition, the CO stripe filtering technique is applied as described 

by Borsdorff et al. (2018). Using dry air column density derived from the surface pressure data in CO and NO2 TROPOMI 

files, the total CO column and tropospheric NO2 column densities are converted to dry column mixing ratios XCO (ppb) and 125 

https://cophub.copernicus.eu/s5pexp
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XNO2 (ppb). The spatial resolution of the NO2 data is finer compared to the CO data (3.5x7 km2 versus 5.5x7 km2). After the 

CO and NO2 retrievals pass the filtering criteria, their co-location is approximated by assigning the centre coordinates of an 

NO2 retrieval to the CO footprint in which it is located (Lama et al., 2020).  

2.4 Weather Research Forecast model (WRF) 

We have used WRF- chemistry model (http://www.wrf-model.org/ ), version 3.9.1.1 to simulate NO2 and CO mixing ratios 130 

over Riyadh. WRF is a non-hydrostatic model designed by the National Center for Environmental Protection (NCEP) for both 

atmospheric research and operational forecasting applications. For this study, we have setup three nested domains in the model 

at resolutions of 27 km, 9 km and 3 km, centred at 24.63°N, 46.71°E. The first and second domain cover Saudi Arabia and 

provide the boundary conditions for the nested third domain (see Fig. S3). The analysis in this paper uses the 500 x 500 km2 

sub region around Riyadh in the third domain, containing 161 by 161 grid cells. All domains are extended vertically from the 135 

Earth’s surface to 50 hPa, using 31 vertical layers, with 17 layers in the lowermost 1500 m. WRF simulations are performed 

using a time step of 90 seconds for the period June 2018 to March 2019, using a spin-up time of 10 days.   

We have used the Unified Noah land surface model for surface physics (Ek et al., 2003; Tewari et al., 2004), an updated 

version of the Yonsei University (YSU) boundary layer scheme (Hu et al., 2013) for the boundary layer processes, and the 

Rapid Radiative Transfer Method (RRTM) for short-wave and long-wave radiation (Mlawer et al., 1997). Cloud physics is 140 

solved with the new Tiedtke cumulus parameterization scheme (Zhang and Wang, 2017). The WRF Single Moment 6-class 

scheme is used  for microphysics (Hong and Lim, 2006). The WRF coupling with chemistry (WRF-chem) allows the 

simulation of tracer transport and the chemical transformation of trace gases and aerosols. Here, we used the passive tracer 

transport function instead of the encoded chemistry in WRF to speed up the model simulation. In addition, the passive tracer 

option helps in separating the influences of wind, OH and the rate constant of the NO2+OH reaction (KNO2.OH) on the NO2/CO 145 

ratio in the downwind city plume. The function of different tracers, their acronym and explanation of different WRF 

simulations is provided in Table 1. 

The meteorological initial and boundary conditions are based on NCEP data at 1°x1° spatial and 6-hr temporal resolution 

available at https://rda.ucar.edu/datasets/ds083.2/. Nitrogen Oxides (NOx = NO2 +NO) and CO anthropogenic emissions 

have been taken from the Emission Database for Global Atmospheric Research v4.3.2 (EDGAR) 2012 at 0.1°x0.1° spatial 150 

resolution (Crippa et al., 2016). The EDGAR 2012 data have been re-gridded to the resolution of the WRF domains and 

hourly, weekly and monthly emission variations are taken into account using the temporal emission factors provided by van 

der Gon et al. (2011). The chemical boundary conditions for CO and NOx are based on the CAMS chemical reanalysis 

product at 0.75°x0.75° spatial, and 3-hourly temporal resolution (Inness et al., 2019), retrieved from 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last access: 1st November, 155 

2020). XCO and XNO2 boundary condition based on CAMS is assumed to be representative as background value within the 

http://www.wrf-model.org/
https://rda.ucar.edu/datasets/ds083.2/
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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domain. Since we do not explicitly compute the sources and sinks of background NO2 inside the domain, we decide to 

transport the boundary conditions as background passive tracers. 

Table 1. Summary of WRF simulations and the definition of tracers and acronym used. 

WRF Simulation / Tracer WRF input / Tracer definition  

Prior WRF run using NCEP meteorological data, EDGAR CO and NOx emissions, CAMS 

OH, and CAMS CO and NOx as initial and lateral boundary conditions.                                                    

WRFOH*1.1   Prior run with CAMS OH increased by 10 %  

Optimized run1st iter  Optimized state (background, emission, OH) after iteration 1 

Optimized run2nd iter   Optimized state (background, emission, OH) after iteration 2 

CO 

𝐗𝐂𝐎𝐞𝐦𝐢𝐬 The contribution of urban CO emissions to XCO   

𝐗𝐂𝐎𝐁𝐠 The contribution of the background to XCO  

𝐗𝐂𝐎 𝐖𝐑𝐅  XCO from the Prior run   

𝐗𝐂𝐎 𝐖𝐑𝐅,𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 XCO from Optimized run1st iter 

𝐗𝐂𝐎 𝐖𝐑𝐅,𝐨𝐩𝐭 XCO from Optimized run2nd iter   

NO2 

𝐗𝐍𝐎𝟐 𝐞𝐦𝐢𝐬 The contribution of urban NOx emissions to XNO2, ignoring the OH sink   

𝐗𝐍𝐎𝟐 (𝐞𝐦𝐢𝐬,𝐎𝐇) As XNO2 (emis,OH) accounting for the OH sink 

𝐗𝐍𝐎𝟐 (𝐞𝐦𝐢𝐬,𝐎𝐇∗ 𝟏.𝟏) As XNO2(emis,OH) with CAMS OH increased by 10 %  

 𝐗𝐍𝐎𝟐 𝐁𝐠 The contribution of the background to XNO2   

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  XNO2 from the Prior run.  

𝐗𝐍𝐎𝟐 (𝐖𝐑𝐅 ,𝐎𝐇∗ 𝟏.𝟏) XNO2 from WRFOH*1.1. 

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 XNO2 from Optimized run1st iter 

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  𝐨𝐩𝐭 XNO2 from Optimized run2nd iter 

Ratio (NO2/CO) 

𝐑𝐚𝐭𝐢𝐨𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐎𝐇  Ratio of  XNO2 emis and  XCOemis  

𝐑𝐚𝐭𝐢𝐨𝐰𝐢𝐭𝐡 𝐎𝐇  Ratio of  XNO2 (emis,OH) and  XCOemis  

𝐑𝐚𝐭𝐢𝐨𝐁𝐠  Ratio of   XNO2 Bg and XCOBg  

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨  Ratio of   XNO2 WRF and XCOWRF  

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝐎𝐇∗𝟏.𝟏 Ratio of  XNO2 (WRF,OH∗ 1.1) and XCOWRF 

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 Ratio of  XNO2 WRF ,1st iter and XCO WRF,1st iter 
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𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝐨𝐩𝐭 Ratio of  XNO2 WRF,opt and XCO WRF,opt 

 160 

The atmospheric transport in WRF causes the influence of NOx  and CO emissions from Riyadh on their column average 

mixing ratios  to be linear. . In addition, we account for the chemical transformation of NOx to HNO3 in the reaction of NO2 

with OH. This is a simplified treatment of the lifetime of NOx as other photochemical pathways play a role, such as:  

- The oxidation of NO2 in reaction with organic radicals (RO2) to form the alkyl and multifunctional nitrates 

(RONO2) (Romer Present et al., 2019)  165 

- NOx loss due to the formation dinitrogen pentoxide (N2O5) followed by heterogeneous transformation to HNO3 

(Shah et al., 2020).  

- Peroxyacetyl nitrate (PAN) formation in equilibrium between NO2 and the peroxyacetyl radical (Moxim, 1996).  

- The dry deposition of NO2 on the surface and plant stomata (Delaria et al., 2020).   

The loss of NO2 by OH to HNO3 accounts for 60% of the global NOx emission (Stavrakou et al., 2013). Macintyre and 170 

Evans.,(2010) showed that the N2O5 pathway reduces NOx concentrations by 10 % in the tropics (30o N to 30o S) and 40 % 

at northern latitudes. The NOx loss through N2O5 hydrolysis is largest at northern latitudes during winter (50 % to 150 %), 

unlike the tropics where its seasonality is small. Moreover, the removal of N2O5 is primarily important during night time 

because of its photolysis during daytime, whereas our analysis focuses on the midday overpass time (13:30) of TROPOMI 

when OH abundances are highest. For these reasons, we consider it save to neglect the loss of NOx through N2O5 in our 175 

analysis for Riyadh. The dry deposition flux is also expected to be low as it is controlled largely by stomatal uptake, which is 

assumed to be insignificant for the low vegetation cover of Riyadh. The same is expected to be true for PAN formation 

because of its thermal decomposition at increasing temperatures. We acknowledge that our OH estimates should be regarded 

as upper limits due to the neglect of other NOx transformation pathways. A quantification of the combined effect would 

require full chemistry simulations, which we consider outside of the scope of this paper.  180 

Note that in this study, OH is only applied to the urban NOx emission tracer (XNOx (emis,OH)).  The CAMS NOx background 

tracer (XNOx Bg  ) is transported in WRF without OH decay, since it already represents the balance between regional sources 

and sinks. CAMS hydroxyl radical (OH) data at a resolution of 0.75° x 0.75° spatial and 3 hourly temporal resolution (Inness 

et al., 2019) retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last 

access: 1st July, 2020) is spatially, temporally and vertically interpolated to the WRF grid. The NOx lifetime is derived as 185 

follows: 

 
𝑑𝑁𝑂2

𝑑𝑡
  =     𝐾𝑁𝑂2 𝑂𝐻 . [𝑂𝐻]. [𝑁𝑂2   ]                                                            (2) 

 

𝑓𝑎𝑐𝑡 =  
𝑁𝑂𝑥

𝑁𝑂2

                                                                                             (3) 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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𝜏𝑁𝑂𝑥 =  
1

 
𝐾𝑁𝑂2 𝑂𝐻

𝑓𝑎𝑐𝑡
. [𝑂𝐻] 

                                                                            (4) 190 

 

where, KNO2 OH is the International Union of Pure and Applied Chemistry (IUPAC) 2nd order rate constant for the reaction of  

NO2 with OH. “fact” represents the fractional contribution of NO2 to NOX (NOx/NO2). This NOx to NO2 conversion factor is 

derived from the CAMS reanalysis and re-gridded to WRF, to account for its spatial and temporal variation. τNOx is the lifetime 

of NOx.  195 

 

 

 

In earlier work with satellite NO2 data, the Jet Propulsion Laboratory (JPL) high pressure limit was used as rate constant to 

represent the first order loss of NO2 (Beirle et al., 2011; Lama et al., 2020; Lorente et al., 2019).  However, we found this 200 

approximation to be too crude, and therefore apply the full IUPAC recommended pressure dependent formula for the 2nd order 

rate constant.  Supplement Figure S4 shows the difference between the three rate constants, i.e. JPL high pressure limit, JPL 

2nd order and IUPAC 2nd order, confirming the importance of accounting for the pressure dependence.  

WRF output for the third domain is interpolated spatially and temporally to the footprints of TROPOMI. The interpolated 

WRF- NOx tracers are converted to NO2 using the conversion factor derived from the CAMS reanalysis accounting for its 205 

spatial and temporal variation (for the names and functions of tracers see Table 1). The averaging kernel available for each 

TROPOMI CO and NO2 observation is applied to the WRF output, after interpolation to the vertical layers of the TROPOMI 

Figure 1. TROPOMI derived XCO (left) and average wind speed and wind direction from the surface to the top of 

boundary layer derived from the CAMS global reanalysis eac4 data at the TROPOMI overpass time over Riyadh for 

August 4th, 2018. The white star represents the centre of Riyadh. The black box (B1) with a dimension of 300 x 100 

km2 is rotated in the average wind direction at 50 km radius from the centre of Riyadh at the TROPOMI overpass time 

resulting in the red box. For the calculation of cross-directional averaged NO2 and CO, the red box is divided into 29 

smaller cells with the width (∆x) ~11 km. For this TROPOMI derived XCO is gridded at 0.1°x0.1°. 
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retrieval. To compare WRF output to TROPOMI,  WRF derived XNO2  (XNO2 WRF ) is calculated by combining the NO2 

emission tracer that accounts for the OH effect (XNO2 (emis,OH)) and the CAMS NO2 background  ( XNO2 Bg) (see Fig. S5 and 

S6) . Similarly, the CO emission tracer (XCOemis) is added to the CAMS CO background (XCOBg) to calculate WRF simulated 210 

XCO (XCO WRF ) (see Fig. S7 and S8).  

2.5 NO2/CO ratio calculation using box rotation  

The variation of the NO2/CO ratio in the downwind city plume is calculate as a function of distance x from the city centre in 

downwind direction.  We select days with an average wind speed (U) in the range of 3.0 ms-1  (Beirle et al., 2011) < U < 8.5 

ms-1 (Valin et al., 2013) within a 50 km radius from the centre of Riyadh (24.63° N, 46.71° E). The horizontal distribution of 215 

EDGAR emissions over Riyadh is used within this 50 km radius (Fig S9). Ninety five days in summer and 70 days in winter 

meet the wind speed criteria over Riyadh for the ratio calculation. The boundary layer average wind speed and direction is 

calculated using the CAMS global reanalysis eac4 (retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-

global-reanalysis-eac4?tab=form , last access : 1st August, 2020) at a resolution of 0.75°x0.75° spatial and 3 hourly temporal 

resolution.  For this, the CAMS wind vector is spatially and temporally interpolated to the central coordinate of TROPOMI 220 

pixels.  

To compute the NO2/CO ratio as function of the downwind distance x, TROPOMI and WRF data have been re-gridded at 

0.1°x0.1°. A box (B1) is selected with a width of 100 km, from 100 km in upwind to 200 km in downwind direction of the city 

centre (see Fig 1a). The dimension of the box is motivated by multiple TROPOMI overpasses over Riyadh showing NO2 and 

CO enhancements advected downwind over a ~200 km distance, without other large sources of NO2 and CO within a 100 km 225 

radius of the city centre (see Fig. 1a). Figure 1(b) shows the boundary layer averaged wind speed and wind direction over 

Riyadh indicating flow towards the northeast on 4th of August, 2018. The box is rotated for every TROPOMI overpass 

depending upon the daily average wind direction within a 50 km radius from centre of Riyadh as shown in Figure 1(a) and 

Figure S10. The rotated box B1 is divided into N rectangular boxes, orthogonal to the wind direction with length (∆x) ~11 km 

(see Fig. 1 and Fig. S10). The XNO2 and XCO grid cells that fall within the N rectangular boxes are selected  to derive zonally 230 

averaged XNO2 and XCO for summer and winter.   

Unlike the enhancements over the city, ∆XNO2 and ∆XCO become smaller than retrieval uncertainties at large distance from 

the city, where the ratio ∆XNO2/∆XCO becomes ill-defined. Therefore, we decided to use the ratio of mean XNO2 and XCO 

instead of enhancements over the background.  To analyse the influence of atmospheric transport and the OH sink on the WRF 

derived XNO2/XCO ratio two different ratios are derived: 1. 
XNO2 emis

XCOemis
, named “Ratiowithout OH”, 2. 

XNO2 (emis,OH)

XCOemis
, named 235 

“Ratiowith OH”( see Table 1). The CAMS background accounts for the balance between regional source and sink in CTMs so 

it is excluded to analyse the influence of atmospheric transport on the ratio. For the comparison between TROPOMI and WRF, 

the CAMS backgrounds are included in  “WRF RATIO” (
XNO2 WRF

XCOWRF
) (see Table 1). The comparison of WRF RATIO to 

TROPOMI ratio, and the contribution of its components,  is presented in  section 3.2.  

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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2.6 OH estimation: satellite data only  240 

In the EMG method, following Beirle et al. (2011), 2D NO2 column densities maps are assigned to eight equal wind sectors, 

spanning 360 degree for summer and winter. 1D column densities per wind sector are computed by averaging in cross wind 

direction. This way, average NO2 column density functions of the downwind distance to the city centre have been constructed 

for summer and winter (see Fig. S11). Using the EMG method as in Beirle et al., (2011), the e-folding distance x0 and NO2 

emissions have been estimated. The NO2 lifetime is derived by dividing x0 by the average wind speed (5.46 ms-1 and 5.24 ms-245 

1 for winter and summer, respectively) and is provided in Table 2. The OH concentration is derived from the inferred NO2 

lifetime using the IUPAC second order rate constant (for details see section S2 and S3). Using Eq. (4) , the NOx life time is 

derived. EMG derived NO2 emissions are also converted to NOx emissions using the CAMS-derived conversion factor. 

Summer and winter averaged CAMS derived conversion factors for the box of 300 km x 100 km are 1.28 and 1.31, respectively.   

2.7 OH estimation: WRF optimization   250 

To jointly estimate the NOx and CO emissions as well as the OH concentration from the TROPOMI data, a least squares 

optimization method is used. This method fits the model to the data by minimizing a cost function (J) (see S1 for details). The 

reaction of NO2 with OH introduces a non-linearity in the OH optimization. To account for this non-linearity, we linearize the 

problem around the a priori starting point, using small perturbations (10 %) ∆background, ∆emission, ∆OH. The non-linear 

model is fitted to the observations, by optimizing scaling factors fBg, femis , fOH to the perturbation functions ∆background, 255 

∆emission and  ∆OH, respectively. This process is repeated iteratively, updating the linearization point and re-computing the 

perturbation functions.   

We estimate OH by optimizing WRF with TROPOMI in two ways 1) optimizing the simulated NO2/CO ratio using 

TROPOMI-derived ratios, named as “Ratio optimization” and 2) optimizing NO2 and CO separately using TROPOMI derived 

XCO and XNO2 named as “Component wise optimization”. First the ratio optimization is described followed by the component 260 

wise optimization. Optimized ratios are derived as follows: 

𝐹𝑇𝑅𝑂𝑃𝑂𝑀𝐼           =  𝐹 +
∆𝐹

∆𝑒𝑚𝑖𝑠
∗

𝑓𝑒𝑚𝑖𝑠 

10
+ 

∆𝐹

∆𝑂𝐻
∗

𝑓𝑂𝐻

10
+

∆𝐹

∆𝐵𝑔
∗

𝑓𝐵𝑔

10
                         (5)   

𝐹                       =   
𝑋𝑁𝑂2 𝑊𝑅𝐹

𝑋𝐶𝑂𝑊𝑅𝐹

   

𝑋𝑁𝑂2 𝑊𝑅𝐹        =  𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻) +  𝑋𝑁𝑂2 𝐵𝑔                                                     (6) 

𝑋𝐶𝑂 𝑊𝑅𝐹         =  𝑋𝐶𝑂𝑒𝑚𝑖𝑠 +  𝑋𝐶𝑂𝐵𝑔                                                                      (7) 265 

∆𝐹

∆𝑒𝑚𝑖𝑠
             =   

𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻) ∗ 1.05 + 𝑋𝑁𝑂2 𝐵𝑔

𝑋𝐶𝑂𝑒𝑚𝑖𝑠 ∗ 0.95 + 𝑋𝐶𝑂𝐵𝑔

 − 𝐹                                (8) 
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∆𝐹

∆𝑂𝐻
                  =  

𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻∗1.1)+𝑋𝑁𝑂2 𝐵𝑔

𝑋𝐶𝑂𝑒𝑚𝑖𝑠+𝑋𝐶𝑂𝐵𝑔
 −  𝐹                                                    (9)  

∆𝐹

∆𝐵𝑔
               =  

𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻 ) + 𝑋𝑁𝑂2 𝐵𝑔 ∗ 1.05

𝑋𝐶𝑂𝑒𝑚𝑖𝑠 + 𝑋𝐶𝑂𝐵𝑔 ∗ 0.95
 −  𝐹                                   (10) 

Here, FTROPOMI is the TROPOMI derived NO2/CO ratio, F is the WRF Ratio , 
∆F

∆emis
 is the change in F due to an increase in the 

NO2 emission by 5 % and a decrease in the CO emission by 5 %  (1.05/0.95 = ~10 %), 
∆F

∆OH
  is the change in F due to an increase 270 

in OH by 10 % and 
∆F

∆Bg
 is the change in F due to an increase in the XNO2 background by 5 % and a decrease in the CO 

background by 5 %. XNO2 (emis,OH) is the contribution of city NOx emissions to XNO2 accounting for the OH sink, XNO2 Bg 

is the NO2 background. XCOemis  is the contribution of the EDGAR city CO emissions to XCO and XCOBg  is the CO 

background derived from CAMS.  XNO2 WRF  and XCOWRF   is the WRF derived XNO2 and XCO respectively.  

XNO2 (emis,OH∗ 1.1) is the contribution of city NOx emissions to XNO2 after increasing CAMS OH by 10 %.  275 

Although the ratio optimization is sensitive to the emission ratio and the OH sink of NO2, it is not sensitive to the absolute 

emissions of CO and NO2. Therefore, we performed component-wise optimizations for XCO and XNO2  to optimize absolute 

emissions. We also compare the OH factor obtained from the ratio optimization and component-wise optimization to test the 

robustness of the method.  The optimized XNO2 is derived using Eq. (11). XCO is optimized using the same equation but 

without considering the OH sink (see Appendix B).  280 

𝑋𝑁𝑂2 𝑇𝑅𝑂𝑃𝑂𝑀𝐼 =  𝑋𝑁𝑂2 𝑊𝑅𝐹 + ∆𝑋𝑁𝑂2 𝑒𝑚𝑖𝑠 ∗
𝑓𝑒𝑚𝑖𝑠 

10
+  ∆𝑋𝑁𝑂2 𝑂𝐻 ∗

𝑓𝑂𝐻 

10
+  ∆𝑋𝑁𝑂2 𝐵𝑔 ∗

𝑓𝐵𝑔 

10
        (11) 

∆𝑋𝑁𝑂2 𝑒𝑚𝑖𝑠 = 𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻) ∗ 1.10 −  𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻)                                          (12) 

∆𝑋𝑁𝑂2 𝑂𝐻 = 𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻∗ 1.1) −  𝑋𝑁𝑂2 (𝑒𝑚𝑖𝑠,𝑂𝐻)                                                  (13) 

∆𝑋𝑁𝑂2 𝐵𝑔 = 𝑋𝑁𝑂2 𝐵𝑔 ∗ 1.10 − 𝑋𝑁𝑂 2 𝐵𝑔                                                                    (14) 

Here, XNO2 TROPOMI is the TROPOMI derived XNO2, XNO2 WRF is the WRF XNO2. ∆XNO2 emis is the change in XNO2 due 285 

to an increase in emission by 10 %, ∆XNO2 OH is change in XNO2 due to an increase in CAMS OH by 10 % and ∆XNO2 Bg  is 

a change in the background XNO2 by 10 %. 
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3. Results and Discussion 

3.1.  XNO2 and XCO over Riyadh   290 

In this subsection, we compare WRF-derived XCOWRF  and   XNO2 WRF  with TROPOMI for summer (see Fig.  2) and winter 

(see Fig. S6) over Riyadh. TROPOMI and WRF derived XCO and XNO2 are averaged from June to October 2018 for summer 

and November 2018 to March 2019 for winter in a domain of 500 x 500 km2 centered around Riyadh.  

The comparison for summer in Figure 2 shows bias-corrected TROPOMI NO2 after replacing the TM5-based tropospheric 

AMF with WRF profiles as described in Visser et al. (2019). The enhancement of XNO2 and XCO over Riyadh due to urban 295 

emissions is clearly separated from the background for TROPOMI and WRF, showing that the city of Riyadh is well suited to 

investigate the use of the NO2/CO ratio to quantify OH in urban plumes. Due to the longer life-time of CO, the TROPOMI-

observed XCO plume extends further in the southeast direction compared to XNO2.  Figure 2 shows that our WRF simulations 

are able to reproduce the TROPOMI retrieved XNO2 (r2 = 0.96) and XCO (r2 =0.78) plumes, confirming that WRF-derived 

Figure 2. Comparison between XNO2 (left) and XCO (right) from TROPOMI and WRF over Riyadh averaged over  June to 

October, 2018. Top panels show TROPOMI data and bottom panels the corresponding co-located WRF results. 𝐗𝐍𝐎𝟐 𝐖𝐑𝐅 is 

derived by adding  𝐗𝐍𝐎𝟐 (𝐞𝐦𝐢𝐬,𝐎𝐇)  and 𝐗𝐍𝐎𝟐 𝐁𝐠  . 𝐗𝐂𝐎 𝐖𝐑𝐅  is derived by adding  𝐗𝐂𝐎𝐞𝐦𝐢𝐬  and 𝐗𝐂𝐎𝐁𝐠 . The white star 

represents the centre of city. TROPOMI and WRF results are gridded at 0.1˚x0.1˚. 
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XNO2 WRF 

XCOWRF
 is suitable for the optimization of CTM-derived OH concentrations using TROPOMI data.  XNO2 WRF is higher by 300 

25 % compared to TROPOMI in the city centre. In the background, XCOWRF shows a similar spatial distribution as TROPOMI 

XCO, but the values are higher by 5 to 10 % (see Fig 2.).  Close to the city centre, XCOWRF is ~5.7 % higher than TROPOMI 

XCO. In EDGAR 2011, emission sources are located in the centre of Riyadh (see Fig. S9). However, as noted by Beirle et al. 

(2019) they extend to a larger part of the city in reality. This difference in spatial distribution leads to higher XNO2 WRF  and 

XCOWRF close to centre of Riyadh compared to TROPOMI.  305 

In winter, the wind direction is predominantly from the south easterly sector in WRF and TROPOMI (see Fig S12). The spatial 

distribution of XCOWRF  (r
2 = 0.73) and XNO2 WRF (r2 = 0.88 ) matches quite well with TROPOMI. Therefore, the difference 

between summer and winter should offer the opportunity to quantify the seasonality in emissions and OH concentrations over 

Riyadh. In winter, XCOWRF is ~5 to 10 % higher than TROPOMI, while XNO2 WRF is higher by  40 % to 50 %. The difference 

could either point to uncertainties in the emission NO2/CO emission ratio, uncertainties in the NO2 lifetime, or inaccuracies in 310 

the background. By quantifying OH, we can evaluate these explanations (see section 3.3). XNO2 WRF is higher by 20 % in 

winter than in summer. Contrary, TROPOMI NO2 is lower by ~30 % in winter (Fig S12.) compared to summer (Fig. 2). Again, 

to disentangle the role of changing sources and sinks, we need an independent estimates of OH.  
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3.2. The XNO2/XCO ratio and OH 315 

Before comparing TROPOMI and WRF-derived XNO2/XCO ratios, we first analyse the influence of atmospheric transport 

and the OH sink on the WRF derived XNO2/XCO ratio. To do this three ratios are used 1. Ratiowithout OH  2. Ratiowith OH  3. 

WRF RATIO  (see Table 1). As seen in Figure 3, S13 and S14,  WRF is able to reproduce the TROPOMI-observed downwind 

evolution of XNO2 and XCO in summer and winter. The peak of the XNO2 and XCO plumes is shifted away from the city 

centre due to the balance between the accumulation of urban emissions in the atmospheric column and atmospheric transport 320 

(Lorente et al., 2019).  

As expected, Ratiowithout OH  shows an approximately straight line when the background is removed, because transport 

influences NO2 and CO in the same way and therefore cancels out in the ratio (see Fig. 3b).  The Ratiowith OH  however, shows 

an approximately Gaussian relation with distance due to the influence of the sink on NO2. This comparison demonstrates the 

Figure 3. Comparison of WRF and TROPOMI  zonally averaged a) XNO2, b) XCO and c) WRF Ratio (XNO2/ XCO) 

without CAMS background d) TROPOMI and WRF Ratio (XNO2/ XCO) with  background as a function of distance to 

the centre of Riyadh  for summer ( June, 2018  to October, 2019).  



15 

 

sensitivity of the relation between XNO2/XCO ratio and downwind distance to the NO2 lifetime, which we want to exploit to 325 

quantify OH.  When including the background, the shapes of the functions  in Figure 3c change (not shown), because the 

relative weights of the background and city contributions to the ratio vary with distance of the city centre. In summer, the WRF 

RATIO is higher by ~15 % close to centre of city TROPOMI due to the overestimation of XNO2 WRF  in WRF (see Fig. 3d). 

However in the downwind plume, at a distance of 100 km WRF RATIO is higher by 20 to 50 % compared to TROPOMI.  

In winter, Ratiowithout OH and Ratiowith OH  show relations with downwind distance that are similar to summer, confirming 330 

that an OH sink leads to a Gaussian structure of the ratio (see Fig. S14). The winter WRF RATIO  is 49 % higher than 

TROPOMI due to the overestimation of XNO2 by 40 to 50 %. The WRF RATIO close to the centre of city is also 20% higher 

in winter than in summer, due to higher winter XNO2 WRF  than in summer (see Fig S12 and S15).  In contrast, TROPOMI 

shows a higher ratio in summer compared to winter (see Fig S15). These differences between TROPOMI and WRF-derived 

ratios offer an opportunity to address uncertainties in CTM computed urban OH and emission inventories, which will be 335 

explored next. 



16 

 

  

Figure 4. Comparison between TROPOMI and WRF, before and after optimization for Summer (averaged over June 

to October, 2018).  a) XNO2/XCO ratio, b) XNO2 and c) XCO in comparison to TROPOMI. fOH, femis and fBg  are 

optimized scaling factors obtained iteratively for OH, emissions and background by least square optimization method. 

femis , fOH and fBg are derived by accounting the total change in emission, OH and background  using the corresponding 

scaling factors obtained from 1st and 2nd iterative step. The unit of scaling factor is in percent (%). 
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3.3 WRF optimization 

To translate the discrepancies between TROPOMI and WRF derived ratios of section 3.2 into implied differences in emissions 

and OH, the least squares optimization method has been used as described in section 2.6. Before optimizing WRF using 340 

TROPOMI, pseudo data experiments in WRF have been carried out to test if the optimization method is capable of recovering 

true emissions and OH levels. To this end, changes in OH concentrations, emissions and background by known scaling factors 

have been applied to the WRF prior simulation to create a synthetic dataset. This process is repeated multiple times to create 

thousands of synthetic datasets. Subsequently, the scaling factors are obtained in the inversion procedure. These tests reveal 

that the estimation errors for femis , fOH and fBg are less than 2.5 % (see Fig. S16). This confirms that the least square optimization 345 

method works, with two iterations leading to a sufficient accuracy, and can be used to estimate emissions and OH from 

TROPOMI data. Using TROPOMI data, estimation errors for femis , fOH and fBg are expected to be higher due to atmospheric 

transport errors, simplified  chemistry, and XCO and XNO2 retrieval uncertainties . These errors did not play a role in the 

pseudo-data experiments, in which perfect transport and sampling was assumed. The results for summer are summarized in 

Figure 5. As Figure 4, for Winter (averaged over November, 2018 to March, 2019) 
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Figure 4, showing the optimized fit to the TROPOMI data as well as the corresponding scaling factors femis , fOH and fBg that 350 

are estimated. The optimized emission, OH and Bg obtained from 2nd iteration is divided by Prior to derive the femis , fOH and 

fBg. The results of iterative step for summer and winter is shown in Fig S17 and S18.   

Figure 4a shows WRF ratios for summer in comparison to TROPOMI, before and after optimizing the OH concentration. The 

optimized WRF ratios fit the TROPOMI ratios well with Χ2 = 0.1 (for the derivation of Χ2 see section S4) . The estimated 

uncertainties for the scaling factors femis, fOH and fB are derived by summing the contribution of wind speed, length and width 355 

of box and NO2 bias correction in quadrature as provided in Tables S1 and S2.  For summer and winter,  the uncertainties of 

the optimized OH concentrations range from 11 % to 15 %. For NOx and CO emissions, these uncertainty ranges are ~25 % 

and ~10 to 15 %, respectively.  According to the ratio optimization, the CAMS OH and the emission ratio are underestimated 

by 32.03±4.0 % and 155.1±14.9 % respectively. The CAMS background ratio is overestimated by 70.1± 6.2%. It should be 

realized here that the ratio optimization does not estimate the absolute emission of NO2 and CO, but only their ratio.  360 

To investigate the implication of this, we performed component-wise optimizations of WRF-derived XCOWRF  and XNO2 WRF. 

Optimized XCOWRF  and XNO2 WRF fit well to the TROPOMI data (see Fig. 4b and 4c). In the XNO2 optimization, the EDGAR 

NOx emission is increased by 42.1±9.5 % and the CAMs background is reduced by 75.92± 10.0 %. OH is increased by 28.3± 

3.7%, close to the results obtained from the ratio optimization. In the XCO optimization, EDGAR CO emissions are roughly 

doubled and the background is reduced by 4.55± 0.5% compared to CAMS . The ratio optimization suggests to increase the 365 

prior emission ratio 0.68 by 155.1%. The summer optimized NOx/CO emission ratio derived from the component wise 

optimization is 0.38. The optimized emission ratio from ratio optimization is larger by factor 4.7  compared to component wise 

optimization. The difference between two estimates can be explained by different constraints on the solution in the two 

methods. In particular, the ratio inversion allows emission adjustment in a fixed relation between NO2 and CO emissions 

whereas the component wise has the full flexibility to adjust CO and NO2 emission. The difference between the two estimates 370 

is larger than expected but does not affect the OH estimation. Lama et al., (2020) calculated TROPOMI derived summer 

emission (NO2/CO) ratio for 2018  over Riyadh and mentioned that Monitoring Atmospheric Chemistry and Climate and 

CityZen (MACCity) emission ratio is more consistent with the TROPOMI derived ratio than EDGAR. The optimized emission 

ratio obtained from component wise optimization is consistent to Lama et al., (2020) and MACCity summer emissions. This 

shows that for the accurate estimation of the emission and emission ratio, the component wise optimization method is  375 

preferable. 

Figure 5  presents optimization results for winter, where optimized WRF is in similar good agreement with  TROPOMI as for 

summer with Χ2 = 0.11 . For winter, the ratio optimization increases OH by 52.0±5.3  % and the emission ratio by 58.8± 

30.2%. The ratio and component-wise optimizations again show similar OH adjustments, demonstrating the robustness of our 

method.  The background ratio is reduced by 66.80±5.8 %. The component-wise optimization for XNO2 reduces the EDGAR 380 

NOx emission by 15.45±3.4%  and the CAMS background by 70.23±6.1 %. For XCO, the WRF XCOBg  is reduced by 1.73±0.1 
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% in combination with a doubling of the EDGAR CO emission.  The optimized emission ratio (NOx/CO) derived from 

component wise optimization is 0.33 which is lower by 3.5 times than optimized emission ratio obtained from ratio 

optimization.    

Table 2. Overview of WRF optimized OH and NOx emissions for Riyadh and comparison to the EMG method.  The estimated 385 

uncertainty for EMG and WRF derived NOx emission and OH concentration is the sum of the contribution of wind speed, 

length and width of box and NO2 bias correction provided in Table S1, S2 and S3.  

 

To investigate the consistency between our method and the EMG method, the derived NOx lifetimes, emissions and OH 

concentrations using both methods are listed in Table 2 for winter and summer. Our optimization  and the EMG method agree 390 

well on the seasonal change in NOx emission and OH concentration. Both methods result in higher NOx emissions and shorter 

lifetimes in summer; lower NOx emissions and longer lifetimes in winter. Riyadh has a dry and warm summer days and the 

increase in power consumption due to the use of air conditioning contributes to the higher emission in summer than in winter  

(Lange et al., 2021). During the summer, EMG and the WRF optimization method both increase the NOx emission and OH 

concentration compared with the prior. The size of the NOx emission and OH concentration increase, obtained using the WRF 395 

optimization method is higher than the EMG method by 15%  to 29 %. However, the difference between the EMG method 

and the component optimization method are smaller compare to the uncertainty of the emission and OH concentration derived 

for the optimization method. For winter, the dissimilarity between the EMG method and the prior reduces after optimization. 

The NOx emission after optimization differs from the EMG method by 33 %. Optimized OH concentration and NOx lifetime 

differs by <10 % compared to EMG method. In general, the difference between the EMG and optimization results is within 400 

the uncertainty range of 20 to 30 %, confirming their consistency and strengthening the confidence in the estimates that are 

obtained from TROPOMI data.  

 

 

Parameter  

Summer  

WRF Optimization 

Summer 

EMG 

Winter 

WRF Optimization 

Winter  

EMG  

Prior After Prior  After  

NOx emission 

(kg/second) 

8.2 11.6±2.4 8.6±1.2 9.4 7.9±1.8 5.3±1.5 

OH  

(1e7, molecules/cm3) 

1.3 1.7 ± 0.2 1.4 ± 0.2 0.86 1.3 ±0.14 1.2 ± 0.1 

NOx lifetime 

(hr) 

3.1  2.4 ± 0.4 2.9 ± 0.3 4.9 3.3 ± 0.3 3.6 ± 0.3 
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In contrast to EMG method, the optimization method can be used for a single TROPOMI overpass and does not require yearly 

averaged NO2 data. Segregation and averaging of NO2 urban plume by wind sector is not required in the optimization method. 405 

The effect of transport cancels out in taking the NO2 /CO ratio and loss of NO2 is mostly governed by OH during the mid-day. 

In this study, NOx emission and OH concentration is estimated iteratively whereas the EMG method arrives it the solution in 

a single step.  However, since our optimization method requires a WRF model simulation it is computationally more expensive.  

Uncertainties in transport may create mismatches with the satellite observations, leading to errors in the optimized fit. This 

influences the quality of derived emission estimates (Dekker et al., 2017). Therefore, finding a simplified approach using 410 

satellite data to derive the emission ratio and to estimate OH concentration in urban plumes will be our focus in the future.  

 

It should be realized that the a priori EDGAR emissions and TROPOMI optimized estimates represent different years (2012 

and 2018, respectively). To check whether the emission differences that are found may be explained by trends in emissions, 

we compare EDGAR 2012 NOx and CO emissions with 2018 accounting for seasonal and diurnal emission variations using 415 

temporal emission factors by van der Gon et al., (2011). EDGAR 2018 NOx and CO emissions are derived by linear 

extrapolation using emission from 2000 to 2015 (see Figure S19). For summer mid-day NOx emissions, the EDGAR emissions 

increased by 17.7 % from 2012 to 2018, which is lower than our optimization results. For winter, mid-day NOx emissions 

increase in EDGAR by 13 % from 2012 to 2018, whereas the WRF optimization yield reductions by 15.6%. In EDGAR, 

summer and winter CO emissions increased from 2012 to 2018 by 25.5  % and 20.0 %, respectively. However, the WRF 420 

optimization suggests that the EDGAR CO emissions for summer and winter need to be doubled (see Table S4). Borsdorff et 

al., (2018b) mentioned that EDGAR CO emissions has to be increased significantly to match with TROPOMI CO observations 

over middle eastern cities such as Tehran, Yerevan, Tabriz and Urmia. Overall , this points to a significant uncertainty in the 

EDGAR emission inventory at the city scale.  

To test the accuracy of the linear extrapolation of EDGAR data, we compare the relative change in NOx and CO emission in 425 

2012 to 2018 using CAMS Global (CAMS–GLOB) anthropogenic v4.2 emission datasets 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview).  CAMS –GLOB 

shows that for summer and winter NOx emission increases by 26 % from 2012 to 2018, which is higher by a factor 2 than 

EDGAR. CAMS-GLOB based  summer and winter CO emission increases by 20 % from 2012 to 2018 which differs by ~20 

% compared to EDGAR. In general, the relative increase in CO and NOx emission from EDGAR and CAMS-GLOB is much 430 

smaller compared to the difference with our optimization method.  

We realise that our method only considers the first order loss of NO2 by OH forming HNO3. In reality, the NO2 lifetime is 

influenced by more spatially and temporally varying factors such as temperature, ozone, and radiation (Lang et al., 2015; 

Romer et al., 2018). In cities, the loss of NO2 via the formation of alkyl and multifunctional nitrates (RONO2) are also important 

reactions influencing the lifetime of NO2 (Browne et al., 2013; Sobanski et al., 2017). For CO, secondary production from 435 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
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short-lived volatile organic compounds can also play an important role in urban pollution plumes. The application of full 

chemistry that includes all the sources and losses of NO2 and CO could therefore further improve the accuracy of OH estimates.  

Another complicating factor is the strong variation in chemical regime that is expected in city air pollution plumes. Close to 

high NOx sources, OH tends to be titrated away by the NO2 (Valin et al., 2011). Further from the source, chemical conditions 

may be favorable for OH formation and recycling, reducing the NO2 lifetime. To investigate this in order to refine the OH 440 

estimates presented in this paper, again a full chemistry framework would be required. 

Figure S20 shows that power plants and manufacturing industries are the largest pollutant emitter over Riyadh  (Beirle et al., 

2019). In this study, NOx and CO anthropogenic emissions are introduced at the surface, whereas the emission height of 

different sources is expected to vary in reality. The different emission heights for NOx and CO emission sources can also 

influence the result. In the future, realistic emission heights should also be incorporated in WRF for accurate estimation of 445 

OH. Moreover, the temporal emission factors that have been used by van der Gon et al., (2011) are based on European 

countries. The comparison of  van der Gon et al., (2011) with the Copernicus Atmosphere Monitoring Service TEMPOral 

profiles (CAMS-TEMPO) suggests that temporal emission factors for weekend road transport and monthly residential 

combustion are different in Riyadh compared to European countries. Road transport, CO emission has the largest contribution 

~75 % to the total emission over Riyadh, whereas NOx emission from road contributes by 24 % to the total NOx emission. 450 

Residential combustion has the smallest contribution of ~0.3 to 0.4 % to total NOx and CO emissions (see Fig S20 ).  In the 

future, the application of accurate diurnal emission factors for road transport can further improve the accuracy of urban OH 

concentrations estimated using TROPOMI derived XNO2/CO ratios. In addition, the seasonality for NOx and CO emissions 

is different in Riyadh than in Europe, which should be accounted for in future studies also.  

5 Conclusions 455 

In this study, a new method is presented for estimating OH concentrations in urban plumes using TROPOMI observed 

XNO2/XCO ratios in combination with WRF simulations of the downwind pollution plume of large cities. Our new method 

has been tested for the city of Riyadh using synthetic as well as real TROPOMI data.  Seasonal emissions and OH 

concentrations have been estimated for summer (June to October, 2018) and winter (Nov, 2018 to March, 2019).  

WRF is well able to reproduce the spatial distribution of TROPOMI retrieved XNO2 and XCO plumes over Riyadh during the 460 

summer and winter seasons.  However, the TROPOMI observed level of XNO2 is lower than simulated using WRF by 25 % 

in summer and 40 to 50 % in winter. In both seasons, TROPOMI XCO agrees within 10 % with WRF. The variation in XNO2, 

XCO and their ratio as a function of downwind distance to the centre of Riyadh agrees well between WRF and TROPOMI. 

However, the WRF derived XNO2/XCO ratio is higher by 15 % to 30 % in summer and 49 % in winter compared to TROPOMI, 

explained mostly by the difference in XNO2.  465 
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The differences between WRF and TROPOMI observations have been used to optimize emissions and the NO2 lifetime. To 

this end, scaling factors for the city emissions, OH and the background level have been optimized iteratively using a least 

squares method. Ratio and component wise optimizations have been compared to test the overall consistency of the method. 

In summer, the ratio and XNO2 optimization for XNO2 suggest that the OH prior from CAMS is underestimated by 32.03±4.0 

%. Estimates obtained from the ratio and NO2-only optimization agree within 10 %, demonstrating the robustness of the 470 

method. Summertime emissions of NOx and CO from EDGAR are increased by 42.1±8.7 % and 100.8±9.5 %. For winter, the 

ratio and component wise optimizations increase OH by ~52.0±5.3 % to fit TROPOMI inferred ratios. In the optimization of 

winter data, NOx emissions are reduced by 15.45± 3.4 % and CO emissions are doubled. In the future, the remaining 

differences between TROPOMI observations and WRF simulations could be reduced further by the use of precise temporal 

and monthly emission factors, emission heights and full chemistry to account for secondary sources of CO and NO2.   475 

TROPOMI inferred OH concentrations obtained from the least squares optimization method have been compared to the EMG 

method. For the summer, the optimized OH concentrations differ by 18 %, whereas they are within 7.5 % during winter. These 

results confirm that urban emissions and OH concentrations can robustly be estimated from TROPOMI data. With our method, 

single TROPOMI overpass can be used to estimate OH whereas EMG method requires averaging of NO2 urban plume by wind 

sector. The iterative approach allows to test the factors i.e. femis, foh and fbg  obtained from optimization method, whereas EMG 480 

method does not allows such flexibility.   

An important remaining uncertainty is the bias correction of the TROPOMI XNO2 retrieval. Following the recommended 

procedure, the air mass factor AMF is recalculated by replacing the tropospheric AMF based on TM5, that is provided with 

the data, with WRF-chem. The TROPOMI XNO2 bias correction increases the mixing ratio in the urban plume of Riyadh by 

5 to 10 % in summer and 25 to 30 % in winter. The background is less affected by the bias correction.  Without TROPOMI 485 

XNO2 bias correction, the uncertainty in scaling factor for OH can vary up to 20 % and NOx emission to 60 % over Riyadh.    

Appendix A: AMF recalculation  

The air mass factor (AMF) used in the retrieval of TROPOMI XNO2 has been re-calculated by replacing the tropospheric 

AMF, calculated from the NO2 column simulated by TM5, with its WRF-chem equivalent, as described by Lamsal et al. (2010) 

and Boersma et al. (2016) using the following Eq. (16), 490 

𝑀𝑡𝑟𝑜𝑝,   𝑊𝑅𝐹 =  𝑀𝑡𝑟𝑜𝑝,   𝑇𝑀5  ×  
∑ 𝐴𝑡𝑟𝑜𝑝,𝑙𝑥𝑙,𝑊𝑅𝐹

𝐿
𝑙=1

∑ 𝑥𝑙,𝑊𝑅𝐹
𝐿
𝑙=1

                                     (16)                                

where, Mtrop,WRF   and Mtrop,TM5 are the tropospheric air mass factors derived from WRF and TM5, respectively.  Atrop,l is 

the tropospheric averaging kernel, ranging from the surface to the uppermost layer of the troposphere in the TM5 model (l). 

xl,WRF is the equivalent NO2 column density in model layer l, based on WRF. Atrop in Eq. (16)  is derived using Atrop = A ×
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M

Mtrop
, where M and Mtrop are the total and tropospheric AMF’s respectively. Finally, the bias corrected NO2 vertical column 495 

density is computed using, 

𝑁𝑂2,   𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  =  
𝑀𝑡𝑟𝑜𝑝,   𝑇𝑀5

𝑀𝑡𝑟𝑜𝑝,   𝑊𝑅𝐹

 × 𝑁𝑂2 

where,  NO2  is the TROPOMI tropospheric NO2 vertical column density and NO2,   bias corrected   is the bias corrected 

 TROPOMI tropospheric NO2 vertical column density. 

Appendix B 500 

The component wise optimization of XCOWRF  to estimate the emission and background of CO uses the following equation, 

𝑋𝐶𝑂𝑇𝑅𝑂𝑃𝑂𝑀𝐼 =  𝑋𝐶𝑂𝑊𝑅𝐹 + ∆𝑋𝐶𝑂𝑒𝑚𝑖𝑠 ∗
𝑓𝑒𝑚𝑖𝑠 

10
+  ∆𝑋𝐶𝑂𝐵𝑔 ∗

𝑓𝐵𝑔 

10
 

𝑋𝐶𝑂𝑊𝑅𝐹       =  𝑋𝐶𝑂𝑒𝑚𝑖𝑠 + 𝑋𝐶𝑂𝐵𝑔 

∆𝑋𝐶𝑂𝑒𝑚𝑖𝑠     =  𝑋𝐶𝑂𝑒𝑚𝑖𝑠 ∗ 1.10 − 𝑋𝐶𝑂𝑒𝑚𝑖𝑠 

∆𝑋𝐶𝑂𝐵𝑔        =  𝑋𝐶𝑂𝐵𝑔 ∗ 1.10 − 𝑋𝐶𝑂𝐵𝑔 505 

Here, XCOTROPOMI is TROPOMI XCO, XCOWRF is the WRF simulated XCO accounting for emissions and background CO, 

XCOemis is the XCO contribution from the urban CO emission and XCOBg is the CAMS-derived XCO background. ∆XCOemis 

is the change in XCO due to emission and  ∆XCOBg is the change in the XCO background level.  

 Data Availability Statement. TROPOMI CO and NO2 data can be downloaded from https://cophub.copernicus.eu/s5pexp. 

EDGAR emission data is available at https://edgar.jrc.ec.europa.eu/emissions_data_and_maps. CAMS data can be 510 

downloaded from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form. WRF 

simulations output are available at https://zenodo.org/deposit?page=1&size=20  
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Text S1. Least square optimization 

 

We have model M to simulate data dmod with the given model parameter x  

dmod = M(x) 

For the non-linear case, the model search the most probable solution of x at the minimum 

of cost function (J) .  

J(x) =  
1

2
. [(dobs − M(x))

T
 R−1(dobs − M(x)) + (x − x0)TB−1(x − x0)] 

R =  [

σd1
2 . cov(d3, d1)

. σd2
2 .

cov(d1, d3) . σd3
2

]  B =  [

σdx1
2 . cov(x3, x1)

. σdx2
2 .

cov(x1, x3) . σx3
2

] 

 

The cost function has two terms, the first measures the distance between the 

observations(dobs) and the model (M), the second measures the distance between the 

parameter(x) solution and its first guess (x0). R and B are the covariance matrices for dobs 

and x, showing their uncertanity.  

 
Text S2. Derivation of EMG method  

 

τNO2 = 
xo

U
  

xo is the downwind decay length [km] obtained from EMG method and U [m/s] is the 

boundary layer averaged wind speed for the box 100kmx400km. The unit of lifetime is hr 

. 

τNO2 = 
1

KNO2 OH[OH]
 

 

Converting the hour into second  

 

τNO2*60.0*60.0 = 
1

KNO2 OH[OH]
 

OH          = 
1

τNO2∗60.0∗60.0∗ KNO2 OH
 

 

KNO2 OH is the IUPAC second order rate constant [s-1molecules-1cm3] and OH 

[moleculescm-3] is the hydroxyl radical concentration over Riyadh at time TROPOMI 

overpasses.  

 

Text S3. Conversion of NO2 emission in molecule cm-1 into mole second-1 

 

     ENO2 ∗ U  
Converting the ms-1  into cm s-1 and molecules into moles  

    
ENO2∗U∗100

6.023e23  

 

E_NO2 is the NO2 emission [molecule cm-1] obtained from EMG method. U[m s-1 ] is the 

wind speed.   

 



 

 

3 

 

Text S4. Χ2 calculation  

Χ2 =  ∑
(Observedi −  expectedi)

2

expectedi

𝑛

𝑖=1 

 

Observed data is TROPOMI output and expected data is the results of WRF optimization  

 

 

Text S5. Uncertainty estimation on OH concentration, NOx and CO emission using 

least square method and EMG method  

 
For the error calculation, the relative change in the OH concentration, NOx and CO emission with 

alteration in the width of box, downwind length of box , wind speed and NO2 bias correction is 

estimated. The width of the box is changed from 100km to 90 km and 110km. Downwind length 

of box is changed from 200km to 190km and 210km. For the effect of wind speed, we used WRF 

wind data and compare the results with the CAMS wind data. To estimate the error from NO2 

bias correction, we increase and decrease bias corrected NO2 by  5 % in the city plume. The total 

uncertainties is derived by adding the contribution of individual component in quadrature. 

 
Table S1. Estimated uncertainties in femis , fOH and fBg obtained by ratio optimization of 

XNO2 and XCO for summer and Winter over Riyadh. 

 

 
Table S2. Same as Table S1 but the estimated uncertainties in femis , fOH and fBg obtained by 

component wise optimization of XNO2 and XCO.  

 Uncertainty Summer (%)  Uncertainty Winter (%)  

OH NOx 
Emission  

NOx 
Bg  

CO 
Emiss
ion 

CO 
Bg  

OH NOx 
Emission  

NO

x 

Bg 

CO 
emissi
on 

CO 
Bg 

Width of the box  
(A) 

5.8 10.0 9.8 9.1 8.7 8.1 6.5 4.1 9.4 4.5 

Downwind length 
(B) 

4.5 4.5 1.5 0.9 0.2 2.9 3.4 3 1.4 0.5 

Wind speed (C) 8.4 8.4 8.4 8.4 8.4 4.1 4.1 4.1 4.1 4.1 

NO2 Bias 
Correction (D) 

2.4 17.9 1.0 x x 3.0 20.4 1.0 X x 

 Uncertainty Summer (%)  Uncertainty Winter (%)  

OH Emission 
ratio  

Bg 
ratio   

OH  Emission 
ratio  

Bg 
ratio  

Width of the box  (A) 4.8 2.5 1.0 8.2 16.0 4.1 

Downwind length (B) 4.5 3.2 1.7 4.0 12.0 3.0 

Wind speed (C) 8.4 8.4 8.4 4.1 4.1 4.1 

NO2 Bias Correction (D) 2.4 0.50 1.2 4.9 53.0 1.0 

Total Uncertainty  

(√(𝐀𝟐 + 𝐁𝟐 + 𝐂𝟐 + 𝐃𝟐) 

(%) 

11.0 9.3 8.7 11.1 56.8 6.6 
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Total Uncertainty  

(√(𝐀𝟐 + 𝐁𝟐 + 𝐂𝟐 + 𝐃𝟐) 

(%) 

11.
4 

22.6 13.0 12.4 11.6 10.
0 

22.1 6.7 10.4 6.1 

Table S3. Same as Table S1 but the estimated uncertainties in OH and NOx emission 

obtained by EMG method  

 Uncertainty Summer (%)  Uncertainty Winter (%)  

OH  Emission   OH  Emission  

Width of the box  (A) 4.0 7.5 4.0 10.0 

Downwind length (B) 2.0 2.5 2.0 10.0 

Wind speed (C) 8.4 8.4 4.1 4.1 

NO2 Bias Correction (D) 5.0 7.0 4.4 25.0 

Total Uncertainty (%) 

(√(𝐀𝟐 + 𝐁𝟐 + 𝐂𝟐 + 𝐃𝟐) 

10.8 13.5 7.5 29.0 

 
Table S4. Comparison of EDGAR CO emission 2012, 2018  with the Optimized CO 

emission over Riyadh at the time TROPOMI overpasses. Emission presented below includes 

diurnal, weekly and monthly emission factor. 

 

 2012 2018  OPTIMIZED EMISSION  

Summer  Winter  Summer  Winter Summer  Winter  

CO emission 

(kg/s) 

11.9 11.7 16.4 14.4 23.8 23.4 
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Figure S1. Boundary layer averaged CAMS OH concentration a) Summer,  b) Winter and c) Relative difference  

over Riyadh at the time TROPOMI overpasses.  

Figure S2. TROPOMI derived  XNO2 before and after bias correction using AMF recalculation  for summer 

(bottom) and winter (top) over Riyadh.   
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Figure S3. WRF domains d01, d02 and d03 with the spatial resolutions of 27km, 9km and 3 km over 

Riyadh  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Lifetime profile for high pressure rate constant, JPL 2nd order and IUPAC 2nd order rate 

constant at the center of Riyadh  
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Figure S5. WRF simulated  NO2 a) linearly related to emission  (XNO2,emis ) b)  OH effect on 

XNO2,emis ( XNO2,(emis ,OH)  ) c) NO2 background based on CAMS (XNO2 Bg )  and d) sum of 

XNO2,(emis ,OH)  and XNO2 Bg to derive XNO2 WRF over Riyadh averaged from June to October, 2018. 

Figure S6. Same as Fig. S5 but for winter  (November, 2018 to March, 2019)   
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Figure S7. WRF simulated  CO  a) linearly related to emission  (XCO emis ), b) background based on CAMS 

(XCO Bg )  and c) sum of XCOemis  and XCO Bg to derive XCOWRF over Riyadh averaged from June to October, 

2018. 

Figure S8. Same as Fig. S7 but for winter (November, 2018 to March, 2019)   
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Figure S10. TROPOMI derived a) XCO, b) XNO2 and WRF derived c) XCO and d) XNO2 over Riyadh for 4 th  

August, 2018. The white star represents the centre of Riyadh. The black box (B1)  with a dimension of 

300kmx100km is rotated depending upon the average wind direction 50 km radius from the centre of  Riyadh at 

the TROPOMI overpasses resulting red box. For the calculation of zonally averaged NO2 and CO, red box is 

divided into 29 smaller cells with the width (dx) ~11km. TROPOMI and WRF derived XCO and XNO2  is 

gridded at 0.1°x0.1°. 

 

Figure S9. EDGAR 2012 CO (left) and NOx (right) emission over Riyadh. The white star represents 

the center of Riyadh.  
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Figure S11. Zonally averaged NO2 tropospheric column densities ( mean ±SME)  for North east wind as a 

function of the distance over  Riyadh ( 420 kmx250 km) for  summer (left) and winter (right). The red line 

represents the fitted NO2 column densities using EMG method. The correlation between observation and fit for 

summer is r2= 0.94 and for winter is r2= 0.96.    

Figure S12. Co-located TROPOMI derived a) XNO2 and b) XCO for November, 2018 to 

March, 2019  over Riyadh. Temporally, bilinear and vertically interpolated WRF simulated 

c)XNO2 WRF and d) XCO WRF  at the resolution of TROPOMI. The white star represents the 

centre of city. TROPOMI and WRF results are gridded at 0.1˚x0.1˚ 
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Figure S13. Zonally averaged a) summer XNO2 emis  and XNO2 (emis , OH) , b) summer  XCOemis , c) winter XNO2 

emis and XNO2 (emis , OH) and d) winter XCOemis. For the function of each of the tracer see Table 1.  

Figure S14. Comparison of WRF and TROPOMI  zonally averaged a) XNO2, b) XCO and c) WRF 

Ratio (XNO2/ XCO) without CAMS background d) TROPOMI and WRF Ratio (XNO2/ XCO) with  

background as a function of distance to the centre of Riyadh  for winter ( November, 2018  to March, 

2019).  
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Figure S15. Comparison of WRF and TROPOMI  derived Ratio (XNO2/ XCO)  as a function of distance to the 

centre of Riyadh  for summer and winter.  

Figure S16. Summer (June to October,2018) averaged  WRF derived Ratio before and after 

optimization  in comparison to synthetic data (data ±std). Femis, FOH and FBg represents the factor for 

emission, OH and background by which synthetic data is higher compared to WRF ratio.   
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Figure S17. Summer (June, 2018 to October ,2018) averaged  WRF derived a) Ratio, b) XNO2 and c) XCO  in 

comparison to TROPOMI. Step1: fOH1, femis1 and fBg1  is the first scaling factor for OH, emission and background 

derived from least square method while comparing WRF  prior  run to TROPOMI. Step2: Change the emission , 

background and OH used in prior run by applying  fOH1, femis1 and fBg1  and derive WRF Ratio 1st iter,  XNO2 1st iter and 

XCO WRF,   1st iter.  Step 3: fOH2, femis2 and fBg2  second scaling factor derived from least square method while 

comparing the result of 1st iteration to TROPOMI. Step 4: Apply fOH2, femis2 and fBg2 to the emission, background and 

OH concentration used for 1st iteration and derive WRF Ratioopt  , XNO2 WRF,opt . To get the final scaling factor, 

divide the results of 2nd iteration  by Prior run.   
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Figure S18. Same as Figure S10 but for Winter (November, 2018 to March,2019). 

Figure S19. EDGAR a) CO and b) NOx emission from 2000 to 2018 for summer and winter at the time 

TROPOMI overpasses over Riyadh. EDGAR 2000 to 2015 data is linearly extrapolated to derived emission 

data for 2018.   
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Figure S20. EDGAR NOx and CO emission for different source sectors  for summer 2012 and 2015 at the 

time TROPOMI overpasses over Riyadh.  

 

 
 


