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Abstract

The dynamics of slab detachment and associated geological fingerprints have been inferred from various numerical and analogue

models. These invariably use a setup with slab-pull-driven convergence in which a slab detaches below a mantle-stationary

trench after the arrest of plate convergence due to arrival of continental lithosphere. In contrast, geological reconstructions

show that post-detachment plate convergence is common and that trenches and sutures are rarely mantle-stationary during

detachment. Here, we identify the more realistic kinematic context of slab detachment using the example of the India-Asia

convergent system. We first show that only the India and Himalayas slabs (from India’s northern margin) and the Carlsberg slab

(from the western margin) unequivocally detached from Indian lithosphere. Several other slabs below the Indian Ocean do not

require a Neotethyan origin and may be of Mesotethys and Paleotethys origin. Additionally, the still-connected slabs are being

dragged together with the Indian plate forward (Hindu Kush) or sideways (Burma, Chaman) through the mantle. We show that

Indian slab detachment occurred at moving trenches during ongoing plate convergence, providing more realistic geodynamic

conditions for use in future numerical and analogue experiments. We identify that the actively detaching Hindu Kush slab is

a type-example of this setting, whilst a 25-13 Ma phase of shallow detachment of the Himalayas slab, here reconstructed from

plate kinematics and tomography, agrees well with independent, published geological estimates from the Himalayas orogen of

slab detachment. The Sulaiman Ranges of Pakistan may hold the geological signatures of detachment of the laterally dragged

Carlsberg slab.
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 15 

Abstract 16 

The dynamics of slab detachment and associated geological fingerprints have been inferred from 17 

various numerical and analogue models. These invariably use a setup with slab-pull-driven convergence 18 

in which a slab detaches below a mantle-stationary trench after the arrest of plate convergence due to 19 

arrival of continental lithosphere. In contrast, geological reconstructions show that post-detachment 20 

plate convergence is common and that trenches and sutures are rarely mantle-stationary during 21 

detachment. Here, we identify the more realistic kinematic context of slab detachment using the 22 

example of the India-Asia convergent system. We first show that only the India and Himalayas slabs 23 

(from India’s northern margin) and the Carlsberg slab (from the western margin) unequivocally 24 

detached from Indian lithosphere. Several other slabs below the Indian Ocean do not require a 25 

Neotethyan origin and may be of Mesotethys and Paleotethys origin. Additionally, the still-connected 26 

slabs are being dragged together with the Indian plate forward (Hindu Kush) or sideways (Burma, 27 

Chaman) through the mantle. We show that Indian slab detachment occurred at moving trenches during 28 

ongoing plate convergence, providing more realistic geodynamic conditions for use in future numerical 29 

and analogue experiments. We identify that the actively detaching Hindu Kush slab is a type-example 30 

of this setting, whilst a 25-13 Ma phase of shallow detachment of the Himalayas slab, here reconstructed 31 

from plate kinematics and tomography, agrees well with independent, published geological estimates 32 

from the Himalayas orogen of slab detachment. The Sulaiman Ranges of Pakistan may hold the 33 

geological signatures of detachment of the laterally dragged Carlsberg slab. 34 

 35 

1. INTRODUCTION 36 

If negative buoyancy of subducted lithosphere pulling slabs into the mantle is the prime driver of 37 

plate tectonics, as widely thought (Conrad & Lithgow-Bertelloni, 2002; Forsyth & Uyedat, 1975; 38 

Lithgow-bertelloni & Richards, 1998a), the detachment of a slab from a surface plate is a key event to 39 

calibrate the drivers of plate motion (Fernández-García et al., 2019; van Hunen and Allen, 2011; 40 

Bercovici et al., 2015; Duretz et al., 2011). Because slab detachment occurs at depth and is not an 41 

instantaneous process it cannot be directly constrained from geophysical or geological observations 42 

(Duretz et al., 2014; van Hunen & Allen, 2011; Wortel & Spakman, 2000). For that reason snap shot 43 

observations from e.g., seismic tomography, or earthquake focal mechanisms, in regions where the 44 

process may be presently active (e.g., the Hindu Kush (Kufner et al., 2017), the southern Banda Arc 45 

(Ely & Sandiford, 2010), the south-eastern Carpathians (Sperner et al., 2001), or the central-eastern 46 

Betics (Spakman et al. 2018) are complemented with inferences made from numerical and analogue 47 
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experiments. For those experiments, however, it is important to first identify if they can represent the 48 

natural example under investigation.  49 

Earliest analogue and numerical experiments (Buiter et al., 2002; Buiter & Pfiffner, 2003; 50 

Chemenda et al., 1995; Taras V. Gerya et al., 2004; Yoshioka & Wortel, 1995; van de Zedde & Wortel, 51 

2001) were designed to evaluate whether slab detachment would be a physically plausible explanation 52 

for geological observations such as transient surface uplift, heating, and magmatism, in regions where 53 

seismological inference suggests that a slab has broken off (Davies & von Blanckenburg, 1995; Maury 54 

et al., 2002; van der Meulen et al., 1998; Wortel & Spakman, 1992, 2000). Subsequent models have 55 

become more advanced and were expanded to 3D (Duretz et al., 2014; Duretz et al., 2011; van Hunen 56 

& Allen, 2011; Regard et al., 2008; Yoshioka & Wortel, 1995). Dynamic transient topographic changes, 57 

high-temperature metamorphism, and magmatism have since become widely used as signature events 58 

to date suspected slab break-off phases (Atherton & Ghani, 2002; Kohn et al., 2002; Zhen Li et al., 59 

2014; Maheo et al., 2002; Vissers et al., 2016; Yuan et al., 2010). However, as Garzanti et al. (2018) 60 

recently wrote: “slab breakoff has been invoked in so many settings and time frames that it could have 61 

hardly taken place in each and every case in which it was called upon”. In other words, the geological 62 

observations that are widely considered as signatures of slab detachment are likely equivocal and cannot 63 

be called unique identifiers of the process.  64 

Importantly, models of slab detachment published so far invariably assume a very specific geodynamic 65 

setting involving a mantle stationary trench at which plate convergence as well as absolute plate motion 66 

come to halt when continental lithosphere enters the trench (e.g., Duretz et al., 2011; van Hunen & 67 

Allen, 2011; van de Zedde & Wortel, 2001). After this, the hanging and steepening slab gradually 68 

detaches by shearing and necking (e.g., Duretz et al. 2012) due to the still active slab pull. Following 69 

detachment the detached slabs sink vertically below the mantle-stationary suture (Figure 1) 70 

(Běhounková & Čížková, 2008; Billen, 2010; Duretz et al., 2011; Gerya et al., 2004; González & 71 

Negredo, 2012; van Hunen & Allen, 2011; Lee & King, 2011). In contrast, in  almost all natural cases 72 

where slab detachment occurred in the last tens of millions of years, plate convergence continued long 73 

after detachment. In addition, the trenches at which detachment occurred, as well as the upper and lower 74 

plates, kept moving relative to the mantle (Agard et al., 2011a; Hafkenscheid et al., 2006; van 75 

Hinsbergen et al., 2019, 2020a; van de Lagemaat et al., 2018; Parsons et al., 2020; Schellart & Spakman, 76 

2015), consequently leading to suture zones across the globe that are typically offset relative to their 77 

corresponding, detached slabs (Domeier et al., 2016; van der Meer et al., 2010; 2018; Schellart & 78 

Spakman, 2015; Vissers et al., 2016). Therefore, if the process of slab detachment occurs while relative 79 

and absolute plate motion is ongoing, this may influence the dynamics of the process and perhaps may 80 

entail different geological responses than inferred from the detachment modelling so far.  81 
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A prime example where slab detachment occurred during ongoing plate convergence is at 82 

subduction zone(s) that consumed Indian plate lithosphere during convergence with Asia. 83 

Seismological studies have revealed that (except for the far north-western corner in the Hindu Kush, 84 

Kufner et al., 2017) there is currently no subducting slab attached to northern India (Agius & Lebedev, 85 

2013; Chen et al., 2017; Nábelek et al., 2009; Replumaz et al., 2010; Van Der Voo et al., 1999), yet 86 

thousands of km of India-Asia convergence occurred since Cretaceous time and must have been 87 

accommodated by subduction (Molnar & tapponnier, 1975; Patriat & Achache, 1984).  Even today, the 88 

absolute northward Indian plate motion and relative India-Asia convergence continues, with a steady 89 

northward pace that has been ~4 cm/a for the last 13 Ma (Copley et al., 2010; DeMets & Merkouriev, 90 

2021; van Hinsbergen et al., 2011; Molnar & Stock, 2009). 91 

 The mantle below India and Indian Ocean was among the first regions where deep mantle 92 

structure was correlated to subduction history (Hafkenscheid et al., 2006; Replumaz et al., 2004; Van 93 

Der Voo et al., 1999). These studies identified multiple detached slabs, and the shallowest of these are 94 

identified hundreds to more than 1500 km to the south of the modern northern extent of the Indian 95 

continental lithosphere which is imaged sub-horizontally below Tibet over a distance of 300-800 km 96 

north of the modern plate boundary, the southern Himalayan front (Agius & Lebedev, 2013; Chen et 97 

al., 2017; van Hinsbergen et al., 2019) (Figure 2). Clearly, these geodynamic constraints differ 98 

completely from those used for the past numerical models simulating slab detachment and from which 99 

the currently perceived diagnostic geological signatures of slab detachment are derived.  100 

In this paper, we aim to investigate the kinematic history of slab detachment events during ongoing 101 

Indian plate subduction and convergence. To this end, we first need to evaluate which of the previously 102 

identified anomalies are likely representing subducted (Neotethyan) lithosphere that detached from the 103 

Indian plate, rather than from older plates whose relics are now found in Tibet. Ever since the first 104 

interpretation of  van der Voo et al. (1999) all lithosphere below India has been interpreted as 105 

Neotethyan oceanic lithosphere that detached from the Indian continental margin since the Cretaceous. 106 

However, global correlations between slabs and geological records have since then shown that 107 

anomalies in the deep mantle may represent slabs that subducted in the Permo-Triassic and Jurassic 108 

(van der Meer et al., 2010; 2018; Sigloch & Mihalynuk, 2013). Part of the slabs below the Indian Plate 109 

that were previously interpreted as Neotethyan may thus well relate to earlier, Permo-Triassic to Early 110 

Cretaceous subduction of which the corresponding geological records are located in the Mesozoic 111 

geology of accreted blocks that are now found in the Tibetan Plateau. From the anomalies that are most 112 

likely Neotethyan, we then evaluate previous estimates of the timing of detachment from the Indian 113 

plate and evaluate to what extent the conditions under which detachment occurred, differ from classical 114 

concepts. Finally, we evaluate the effects that ongoing motion during slab detachment may conceptually 115 

have on the mechanism of detachment, evaluate whether the detachment events may have first-order 116 

expressions in the geological record, and determine a set of geodynamic conditions and case study areas 117 
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for future modelling experiments to evaluate what geological observations may be diagnostic for slab 118 

detachment while the slab is be dragged by, and in the direction of the absolute motion of the lower 119 

plate.  120 

 121 

2. Identifying Neotethyan subducted slabs below India 122 

2.1 Context: global correlations between seismic tomography and geology 123 

With the development of global seismic mantle tomography towards more detailed imaging of 124 

slabs and their remnants, now some 25 years ago (Bijwaard et al., 1998; van der Hilst et al., 1997; Grand 125 

et al., 1997), came the opportunity to infer the current deep mantle locations of lithosphere that once 126 

subducted at still-active, or former and now inactive paleo-subduction zones. In the ten years prior, 127 

upper mantle slabs had been correlated to mostly active subduction zones e.g., (Fukao et al., 1992; Hilst 128 

et al., 1991; spakman et al., 1988), and the first lower-mantle anomalies became correlated to subducted 129 

oceanic lithosphere predicted by plate reconstructions in the Tethyan and Pacific realms (Duretz et al., 130 

2014; Fukao et al., 2001; Grand et al., 1997; Hafkenscheid et al., 2006; van Hinsbergen et al., 2005; 131 

Lippert et al., 2014; Lithgow-bertelloni & Richards, 1998b; Replumaz & Tapponnier, 2003; Richards 132 

& Engebretsont, 1990; Van Der Voo et al., 1999). A next development was the reconstruction of the 133 

‘mantle memory’ of subduction through systematic correlation between remnants of detached slabs in 134 

the mantle and locations of paleo-subduction in plate tectonic reconstruction models (van der Meer et 135 

al., 2010). This revealed that increasingly deeper slabs tend to be well-explained by increasingly older 136 

subduction zones, with Cenozoic subduction mostly restricted to the upper mantle, and top of the lower 137 

mantle, and slabs on the core-mantle boundary correlating to Permo-Triassic slabs (Butterworth et al., 138 

2014; Domeier et al., 2016; van der Meer et al., 2010; 2018; Sigloch & Mihalynuk, 2013). The 139 

correlations moreover showed that in general, detached sinking slabs do not tend to move laterally 140 

relative to each other (van der Meer et al., 2018), and sink more or less vertically through the mantle 141 

(Domeier et al., 2016). 142 

In contrast, slabs can and do move laterally through the mantle when they are still attached to 143 

surface plates, as suggested by the reconstructions of moving trenches in absolute plate motion models 144 

(Hall & Spakman, 2002; van de Lagemaat et al., 2018; Lallemand et al., 2008; Parsons et al., 2021; 145 

Schellart, 2008; Schellart & Spakman, 2015; Sdrolias & Müller, 2006) . Sigloch and Mihalynuk (2013) 146 

argued that the shape of slabs imaged in seismic tomography contains valuable information on the 147 

absolute motion that their corresponding trenches underwent during subduction. Schepers et al. (2017) 148 

and Boschman et al. (2018) slightly modified this concept to include effects of periods of flat slab 149 

subduction and argued that slab shape reflects the absolute motion of the location where the slab bended 150 

into the mantle during its subduction, whereby the slab bend and trench may be offset by a flat slab 151 
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segment that may vary in width through time. These concepts predict that during subduction with 152 

mantle-stationary slab bends, slabs tend to form near-vertical walls of thickened/folded slab in the 153 

mantle transition zone while sinking into the lower mantle (Figure 4a-c). At retreating slab bends (i.e. 154 

roll-back), however, slabs tend to drape on the 660 km discontinuity and become flat-lying (e.g., van 155 

der Hilst et al. 1993) (Figure 4 d-f). Advancing slab bends lead to overturned slabs (Figure 4g-i)(van 156 

Hinsbergen et al., 2019; Van Der Voo et al., 1999). These flat-lying slabs will eventually also sink 157 

vertically through the mantle while maintaining their shape (Boschman et al., 2018), causing that their 158 

average sinking rate from the moment of detachment tends to be reduced as compared to slabs sinking 159 

below a mantle-stationary trench (van der Meer et al. 2018). A current example is the Izu-Bonin slab 160 

that is subducting at a retreating part of the Izu-Bonin-Marianas trench and that is mostly overlying the 161 

660 km discontinuity (e.g. van der Hilst et al. 1993; van der Hilst and Seno 1993 ), whereas in the south 162 

where the trench has been more mantle-stationary, the Marianas slab reached as deep as 1200 km (van 163 

der Hilst and Seno 1993; Miller et al., 2005; Wu et al., 2016). Moreover, while actively subducting 164 

slabs may be dragged sideways by the absolute motion of the downgoing plate at the trench, over 165 

distances in excess of 1000 km (van de Lagemaat et al., 2018; Parsons et al., 2021; Spakman et al., 166 

2018) implying that the modern location of slab remnants in the mantle is a reasonable marker for where 167 

slabs detached, but not necessarily where they started their subduction. 168 

 169 

2.2 Geological constraints on ocean closure in Tibet 170 

We aim to identify the location and shape of slabs that detached from the Indian plate during its 171 

northward motion towards Eurasia since the Early Cretaceous. The relationships summarized above 172 

then require that we distinguish these Cretaceous and younger slabs from other slabs that were 173 

subducted in Permo-Triassic to Early Cretaceous time that globally tend to be in the lower to mid-174 

mantle(van der Meer et al., 2018; van Der Meer et al., 2010), depending on their history of subduction. 175 

The geological record of Tibet and the Himalayas shows evidence for multiple subduction zones 176 

that have been active at times between the Permian times to the present zones (Figure 2,3,8). The 177 

youngest record of subduction and accretion in the system is the Cenozoic Himalayan accretionary 178 

orogen, which forms an incomplete, thrusted, and often metamorphosed record of continent-derived, 179 

mostly sedimentary units stripped off their subducted or otherwise deep under thrusted lower crustal 180 

and mantle lithospheric underpinnings (van Hinsbergen & Schouten, 2021; Hodges, 2000; Kapp & 181 

DeCelles, 2019). The Himalayas is bounded to the north by the Indus-Yarlung (Tsangpo) suture zone 182 

with relics of Triassic ‘Neotethys’ ocean floor that subducted northward since at least Early Cretaceous 183 

time (~130 Ma) below the Lhasa terrane of southern Tibet (Hébert et al., 2012; Kapp and Decelles, 184 

2019; Maffione et al., 2015). In this time interval (since at least Early Cretaceous time) the net amount 185 

of convergence between India and Asia was ~8000 km (Figure 3). Tibetan shortening started already 186 
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in Cretaceous time and amounted a few hundred kilometres ( van Hinsbergen et al., 2011; Kapp et al., 187 

2005; Murphy et al., 1997) and between ~50 Ma and the present, Tibetan shortening, in the east aided 188 

by extrusion of Indo-China, led to ~1000-1200 km of northward indentation of the India-Eurasia plate 189 

boundary (Replumaz & Tapponnier 2003, Royden et al. 2008, van Hinsbergen et al. 2011, 2019; Ingalls 190 

et al. 2016), and a minimum of ~6500-7000 km of lithosphere must this have been consumed by 191 

subduction. Seismic tomography studies have shown that at present, Indian continental lithosphere lies 192 

horizontally directly below southern Tibetan crust, and thus interpreted that mantle lithosphere that 193 

originally underpinned Tibetan crust must have been lost to delamination (Nábelek et al., 2009). This 194 

delaminated lithosphere may thus also contribute to, presumably small-scale, seismic velocity 195 

anomalies below Tibet (Replumaz et al., 2013). 196 

The Lhasa terrane is separated by the Bangong-Nujiang suture from the Qiangtang terrane 197 

(Figure 2). The geological record of the suture zone, as well as paleomagnetic constraints from the 198 

Lhasa and Qiangtang terranes, reveal that this suture accommodated the closure of a once ~6000 km 199 

wide 'Mesotethys’ ocean between the late Triassic and early Cretaceous (Figure 3,8) (Kapp & Decelles, 200 

2019; S. Li et al., 2019; Zhenyu Li et al., 2016; Yin & Harrison, 2000). Contemporaneous arc magmatic 201 

rocks on both sides of the suture zone, and the structure of the suture zone itself, have been interpreted 202 

to show that closure of the Mesotethys ocean was likely accommodated by double sided subduction 203 

(Luo & Fan, 2020; Zhu et al., 2016). Alternatively, Kapp and DeCelles (2019) inferred that all 204 

magmatism on Lhasa since the Triassic resulted from northward Neotethys subduction along its 205 

southern margin and that Mesotethys closure was entirely accommodated by northward subduction 206 

below Qiangtang. 207 

The Qiangtang terrane is separated from NE Tibetan terranes by the Songpan-Garzi accretionary 208 

prism (Figure 2) that consists mostly of accreted Permo-Triassic clastic sedimentary rocks thought to 209 

have derived from subducted ‘Paleotethys’ ocean floor. Paleomagnetic data show that the Paleotethys 210 

was of similar width as the Meso- and Neotethys, on the order of 6000 km, and closed throughout the 211 

Permo-Triassic time (Figure 3) (Song et al., 2017). Contemporaneous arcs on either side of the 212 

subduction zone, and tectonic architecture show that also this closure was likely associated with double-213 

sided subduction (Kapp & Decelles, 2019). Sutures within NE Tibet predate the Mesozoic and predate 214 

the reconstructed mantle memory (van der Meer et al., 2018). These terranes have moved together with 215 

the North China block since Paleozoic time, until late Cenozoic shortening during Tibetan plateau 216 

growth (Wu et al., 2016; Yin & Harrison, 2000). 217 

Based on global correlations between slabs and geologically reconstructed subduction zones 218 

(Butterworth et al., 2014; van der Meer et al., 2010; 2018; Sigloch & Mihalynuk, 2013), we expect that 219 

slabs related to Paleotethys, Mesotethys, and Neotethys subduction are still visible in the mantle. And 220 

because the three oceans had similar width (Figure 3), the associated seismic velocity anomalies are 221 



   
 

8 

expected to have roughly similar volumes, if there was no additional crustal production from mid-222 

ocean-ridge spreading. We use this as a guide in our interpretation: variations in volume may also be 223 

due to differences in tomographic resolution, resolved seismic velocity amplitudes (Hafkenscheid et al. 224 

2006) and volume changes as result of compression and phase changes during sinking into the deep 225 

mantle (Van Der Meer et al., 2014).   226 

The closure of one ocean basin may be accommodated by multiple slabs, as has been argued for 227 

Mesotethys and Paleotethys closure (see above). Reconstructions of Neotethys subduction history 228 

include models that interpret (i) a single subduction zone that remained more or less mantle-stationary 229 

along southern Tibet since the Early Cretaceous (van Hinsbergen et al., 2019), (ii) a single subduction 230 

zone that rolled back from the Tibetan margin to an equatorial position in the Cretaceous that came to 231 

an arrest during Late Cretaceous (Hafkenscheid et al., 2006) or Paleocene (Kapp & Decelles, 2019) 232 

arrival of the Indian margin in the trench, followed by renewed subduction along the Eurasian margin; 233 

(iii) a double subduction zone including one along southern Tibet and an intra-oceanic one that started 234 

in the Early Cretaceous at the equator and that remained active at the until Cretaceous or Eocene arrival 235 

of India in the trench (Tapponnier et al., 1981;Aitchison et al., 2007, van Hinsbergen et al., 2012), or 236 

advanced towards the south Tibetan margin in the Eocene (Jagoutz et al., 2015; Martin et al., 2020). 237 

The latter scenario suggests that even though subduction started at the equator, the slab was dragged 238 

northward through the mantle during subduction and detached close to the southern Eurasian margin. 239 

Interpretations of when continental lithosphere arrives at the south Tibetan trench vary considerably 240 

(see overview in e.g., (Parsons et al., 2020), but only impact the type of lithosphere that is consumed 241 

by subduction and underthrusting, but not the amount, and the differences in collision age between these 242 

models are hence not of importance to our kinematic analysis and tomographic interpretation. 243 

Finally, the geological record and plate reconstructions reveal evidence for west- and east-ward 244 

subduction of Indian plate lithosphere during India’s northward flight. Westward subduction is 245 

reconstructed and documented from the Sulaiman ranges orogen and overlying ophiolites in Pakistan 246 

and occurred from ~70 Ma until the Eocene, followed by oblique underthrusting of west India below 247 

Eurasia occurred in the Neogene (Gaina et al., 2015; Gnos et al., 1998). The latter deformation is 248 

partitioned over the Sulaiman ranges fold-thrust belt and the left-lateral Chaman Fault that together 249 

form the western plate boundary of Indian plate (Figure 2). To the east, subduction occurred below the 250 

Andaman Islands and the West Burma Block since the Cretaceous (Plunder et al., 2020; Westerweel et 251 

al., 2019; Bandopadhyay et al., 2021), and became increasingly more oblique upon northward migration 252 

of the India-Asia plate boundary due to shortening in Tibet (van Hinsbergen et al., 2011; 2019). Also 253 

here, deformation is partitioned over a frontal fold-thrust belt (the Indo-Burman ranges and the 254 

Andaman-Nicobar accretionary wedge) and a transform system (the right-lateral Sagaing-Andaman 255 

Sea-Sumatran Fault system) ( e.g., Morley & Arboit, 2019) (Figure 2). 256 
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 257 

 258 

2.3. Absolute plate motions: where to search and what to search for? 259 

Searching for the anomalies that correspond to the closure of the Tethyan oceans requires 260 

constraints on absolute plate motion (i.e., relative to the mantle) of India and Asia. True polar wander-261 

corrected paleomagnetic reference frames suggest that Eurasia did not move appreciably in absolute 262 

latitude since the Jurassic (Torsvik et al., 2012), and when adding paleomagnetism-based pre-263 

Cretaceous reconstructions of North China (and Tibetan units accreted to that) relative to Siberia, the 264 

absolute paleolatitude of Tibet is about latitudinally stable before that time as well (Torsvik et al., 2012; 265 

Van Der Voo et al., 2015; Torsvik and Cocks, 2017)(Figure 3). Absolute plate motions back to 266 

Cretaceous time are reasonably well constrained by hotspot reference frames (Doubrovine et al., 2012; 267 

Torsvik et al., 2019). Prior to the Cretaceous, paleolongitudinal control is more challenging, but global 268 

correlations between subduction zones and slabs (Van der Meer et al., 2018; Van Der Meer et al., 2010) 269 

, or between intraplate volcanics correlated to stationary plume-generation-zones at the core-mantle 270 

boundary (Burke et al., 2008; Torsvik et al., 2014) suggest that Eurasia also did not move much in 271 

paleolongitude since the Triassic. Consequently, assuming vertical sinking of slab remnants, the 272 

lithosphere that was consumed by Paleo-, Meso-, and Neotethys subduction is generally expected to be 273 

still located below the Indian plate and Tibet today (Hafkenscheid et al., 2006; van der Meer et al., 274 

2018; Parsons et al., 2020; Van Der Voo et al., 1999). 275 

With Eurasia as more or less mantle-stationary, the Tethyan oceans closing during absolute 276 

northward motion of plates carrying the (micro-)continents of Qiangtang, Lhasa, and India, and using 277 

the subduction polarities interpreted from geology as summarized above, we may predict mantle 278 

structure that results from the various scenarios using the relationship between absolute trench motion 279 

and resulting slab geometry. Southward subduction below the Qiangtang and Lhasa terranes during 280 

their northward flights in the Permo-Triassic, and Triassic-Early Cretaceous, respectively, should have 281 

been associated with slab roll-back and predict flat-lying slabs of a few thousand km wide below much 282 

of the Indian Plate. If subduction was northward below the Lhasa terrane during its northward motion 283 

(Kapp & Decelles, 2019), the trench would have advanced and a flat-lying slab is also expected, 284 

although this slab would be overturned. Northward subduction of the Paleotethys below NE Tibet and 285 

of the Mesotethys below Qiangtang would have formed slab walls. Near-stationary Neotethys 286 

subduction below southern Tibet in Cretaceous to Eocene time would generate a slab wall, whereas the 287 

~1000 km of northward trench advance associated with Tibetan shortening since the Eocene would 288 

result in overturned and flat(ter) lying slabs if lithosphere subducted, and/or horizontally underthrust 289 

lithosphere below Eurasia, if deep subduction was prohibited by excess buoyancy of the underthrusting 290 

lithosphere. Equatorial subduction preceded by slab retreat (Hafkenscheid et al., 2006; Kapp & 291 
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Decelles, 2019) or followed by slab advance (Jagoutz et al., 2015; Martin et al., 2020) would lead to 292 

flat-lying slabs south of the main slab wall of south Tibetan subduction, whereas mantle-stationary 293 

equatorial subduction in the Neotethys (Tapponnier et al., 1980; Aitchison et al., 2007; van Hinsbergen 294 

et al., 2012) would produce a second slab wall along-side the one forming along southern Tibet (Figure 295 

8). Finally, slabs that subducted west and east of India in Cretaceous to Cenozoic time must have 296 

undergone northward, more or less slab-strike parallel dragging as long as they were attached to the 297 

moving Indian lithosphere, or should have been left behind and sinking vertically at the location of their 298 

detachment (Le Dain et al., 1984; van de Lagemaat et al., 2018; Parsons et al., 2021; Spakman et al., 299 

2018). 300 

 301 

3. Seismic tomographic constraints on mantle structure 302 

3.1 Approach 303 

The first study of seismic tomographic images of the mantle below India and Tibet was conducted 304 

by van der Voo et al. (1999). Together with subsequent studies about a dozen anomalies have now been 305 

identified (Hafkenscheid et al., 2006; van der Meer et al., 2010; 2018; Negredo et al., 2007; Parsons et 306 

al., 2020; Replumaz et al., 2010; 2014). The number of tomographic anomalies in the mantle below 307 

India and Tibet is far greater than the number of ocean basins that was consumed, from which it follows 308 

that there are more slab detachment phases than continental collisions.  309 

The initial studies of van der Voo et al. (1999), Replumaz et al. (2004), and Hafkenscheid et al. 310 

(2006) assumed that all slabs below southern Tibet and India represented Neotethyan lithosphere that 311 

subducted in Cretaceous and younger time. Only subducted slabs in the lower mantle below Tibet, to 312 

the north of the Indus-Yarlung suture between India and Asia, were interpreted by these authors as 313 

relicts of the Mesotethys or Paleotethys oceans that subducted before Early Cretaceous time (Figure 314 

2,8). Even though in the decade that followed global tomography-geology connections have shown that 315 

also Triassic and Jurassic subducted slabs are typically still visible in the lower mantle (van der Meer 316 

et al., 2010; 2018; Sigloch & Mihalynuk, 2013) all studies of  anomalies in the mantle below India still 317 

assume all of these are Neotethyan (Parsons et al., 2020). 318 

 As basis for our re-evaluation of Tethyan slabs, we use the nomenclature of slabs as defined in 319 

the Atlas of the Underworld compilation of tomographic anomalies of van der Meer et al. (2018), which 320 

includes all anomalies that had previously been interpreted as subducted slabs. This nomenclature 321 

names anomalies after presently overlying geographic features instead of after the lithosphere/basin that 322 

they are interpreted to represent. This objectively labels the anomalies and leaves freedom for 323 

interpretation. We refer the reader to this document for names that have been used by previous workers 324 

and note that Parsons et al. (2020) recently labelled these anomalies differently. 325 
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In addition to the compilation of van der Meer et al. (2018), we include one previously identified 326 

anomaly below Tibet described by Replumaz et al. (2013) (their AF anomaly that they interpreted as 327 

delaminated Tibetan lithosphere rather than a subducted slab) and identify several anomalies that have 328 

not previously been described, in the shallow upper mantle and in the deepest lower mantle. We use the 329 

UU-P07 P-wave tomographic model (Amaru, 2007; Hall & Spakman, 2015) that was also used by van 330 

der Meer et al. (2018), and in addition analyse vote maps (Shephard et al., 2017) to evaluate the 331 

occurrence of the identified anomalies across tomographic models (Figure 2, Figure 3). In the following 332 

paragraphs, we navigate through mantle structure below India and Tibet from the largest anomaly that 333 

has so far been interpreted as the main body of Neotethyan lithosphere, and from there correlate 334 

shallower and deeper slabs as Neotethyan, Mesotethyan, and Paleotethyan slabs. 335 

 336 

3.2 Slabs below India and Tibet and their previous interpretations 337 

The most prominent tomographic anomaly in the mantle below India is the India slab (Figure 338 

5,6). In the west, the India slab is found around 700-1600 km depth, becomes deeper (1000-1800 km) 339 

below central India, and shallower again towards the east (700-1600 km). It has a N-S width of up to 340 

1500 km suggesting major thickening. The anomaly is striking NW-SE (Figure 5,6), at the location 341 

where in the mantle frame of reference (Doubrovine 2012)  the southern Tibetan active margin is 342 

restored in Cretaceous to Eocene time (van Hinsbergen et al., 2019; Replumaz et al., 2004; Royden et 343 

al., 2008). Ever since its first identification by van der Voo et al. (1999), the India anomaly has 344 

consistently been interpreted as the main body of Neotethyan lithosphere that subducted at a trench 345 

along the Cretaceous to Paleogene south Tibetan margin. The India slab is overall more or less vertically 346 

aligned as a slab wall (Sigloch & Mihalynuk, 2013). Tectonic reconstructions supported by 347 

paleomagnetic data and placed in a mantle frame of reference (Doubrovine et al., 2012) suggest that 348 

this trench advanced over some 500 km during the late Cretaceous to early Eocene (van Hinsbergen et 349 

al., 2019; Lippert et al., 2014). This advance is likely too small to be tomographically detected in the 350 

blurred image of the thickened/buckled slab remnant. The vertical extent of the slab is an order of 351 

magnitude smaller than the amount of early Cretaceous to Eocene India-Asia convergence, and if this 352 

slab hosts the main body of Neotethyan lithosphere, it must have thickened, e.g., by buckling and/or 353 

lateral spreading. At peak convergence rates in excess of 20 cm/a (DeMets & Merkouriev, 2021), may 354 

have contributed to thickening upon entering the lower mantle. 355 

To the north of the India slab, at a shallower depth of 400-800 km, the Himalayas slab is found 356 

(HM: Figure5,7). Along-strike, the slab varies in orientation from vertical to south-dipping, the latter 357 

interpreted as an overturned orientation (Replumaz et al., 2010). The Himalayas slab is at its largest, 358 

and its base is at its deepest, below the central part of the Indian continent and becomes shallower 359 

towards the east and west. The shallowest part of top of the Himalayas slab is located below the central-360 
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eastern Himalayas (Figure 5,6). The Himalayas slab is detached and offset northward from the Indian 361 

slab even though it is interpreted to have subducted below southern Tibet along Himalayan thrusts ( 362 

Van Hinsbergen et al., 2012; Parsons et al., 2021; Replumaz et al., 2010). Its overturned position and 363 

northward offset relative to the Indian plate are interpreted to reflect subduction during northward trench 364 

advance accommodated by Cenozoic shortening and extrusion in the Tibetan plateau (van Hinsbergen 365 

et al., 2019; Replumaz et al., 2010). This slab is interpreted to be the youngest slab to have detached 366 

from the northern Indian margin (Replumaz et al., 2010; 2004). 367 

The northern margin of Indian plate lithosphere that is horizontally underthrust directly below 368 

the Tibetan Plateau crust (Chen et al., 2017; Nábelek et al., 2009) protrudes northward from the 369 

Himalayan thrust front, over a distance that varies along strike from ~800 km near the syntaxes, to ~400 370 

km from the east-central Himalayas to the north (Agius & Lebedev, 2013; van Hinsbergen et al., 2019). 371 

The northern edge of this horizontally underthrust lithosphere is offset northward from the detached 372 

Himalayas slab (Figure 6), which must reflect the amount of absolute northward motion of the Indian 373 

plate after detachment (van Hinsbergen et al., 2019).  374 

Below the Hindu Kush, to the west of the western Himalayan syntaxis, the Hindu Kush slab is 375 

located (HK: Figure 5). The slab is interpreted as oceanic lithosphere that is still attached to the north-376 

western Indian continental margin, but that lies buried below the Sulaiman Ranges of Pakistan (Kufner 377 

et al., 2017). It is a N-dipping, E-W trending, near-vertical anomaly that reaches a depth of ~600 km 378 

below Hindu Kush region in North Pakistan (Kufner et al., 2017; C. Li & Hilst, 2010; Negredo et al., 379 

2007; Replumaz et al., 2010; Van Der Voo et al., 1999) and is offset northward relative to the Himalayas 380 

slab by a few hundred km (Figure 2). Detailed seismological studies have shown that the slab is 381 

currently in the process of detaching (Kufner et al., 2017, 2021; Lister et al., 2008). 382 

In the east, the Burma slab is imaged as a N-S striking, steeply-east-dipping anomaly under the 383 

west Burma Block of Myanmar, still connected to the northward moving Indian plate (Figure 5,7). 384 

This upper mantle slab has been recognized in many earlier studies and is disconnected by a slab 385 

window below the Andaman Sea from the Sunda slab below Sumatra and Java (Huang and Zhao, 386 

2006; Li et al., 2008; Replumaz et al., 2010; Zhao and Ohtani, 2009; Parsons et al., 2021). The Burma 387 

slab has accommodated the E-W convergence component of the highly oblique subduction between 388 

India and Sundaland (Figure 2), which amounted ~600 km since ~40 Ma (van Hinsbergen et al., 389 

2011). A mirror image of the Burma slab, identified for the first time here, is formed by the Chaman 390 

slab to the west of India (CS; Figure 5,7), dipping westward below the Helmand Block and Chaman 391 

Fault of Afghanistan and Pakistan. The Chaman slab may still be connected to the western margin of 392 

India and is imaged down to a depth of ~500-600 km (Figure 5,7). 393 

The Chaman slab is separated from and offset northward relative to the Makran slab (MK; Figure 394 

5,7). Even though subduction below the Makran and the resulting formation of the major Makran 395 
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accretionary prism is well-known (Byrne et al., 1992; Kopp et al., 2000; Yamini-Fard et al., 2007), 396 

seismic tomographic images of the Makran slab are rare. Hafkenscheid et al. (2006) showed one cross 397 

section in the western Makran that reveals an upper mantle slab that is decoupled from deeper, lower 398 

mantle anomalies, but did not explicitly identify this anomaly as a slab, which we do here, to our 399 

knowledge. The Makran slab is bounded in the east by the Owen Fracture Zone-Dalrymple Trough 400 

transform-dominated India-Arabia plate boundary that towards the north splits into the Chaman Fault 401 

and Sulaiman Ranges thrust belt (Rodriguez et al., 2014). To the east, the Makran slab is bounded by 402 

the Zagros collision zone where slabs have mostly detached from Arabia (Agard et al., 2011). The 403 

Makran slab consists of Cretaceous ocean floor that is contiguous with the Oman ophiolites that 404 

obducted onto the NE Arabian margin to the southwest (Ninkabou et al., 2021). The Makran slab 405 

reaches a depth of 650 km and appears to be detached from deeper anomalies that lie directly beneath 406 

in the lower mantle (Figure 5,6) which are part of the Mesopotamia slab identified by van der Meer et 407 

al. (2010; 2018) and Agard et al. (2011a), interpreted to result from Mesozoic subduction below the 408 

southern Eurasian margin in Iran. The Makran slab is hence representing Arabian plate lithosphere, to 409 

the west of the Indian plate. 410 

To the south of the Makran slab, and to the south of the India slab, the Carlsberg slab is located 411 

at a depth of 800-1400 km (CB; Figure5), identified by Gaina et al. (2015). This is an NNE-SSW 412 

trending anomaly, striking near-orthogonal to the main trend of the India slab, and in the mantle 413 

reference frame, it is located below the late Cretaceous India-Arabia plate boundary. At this plate 414 

boundary, a series of ophiolites were obducted that reveal evidence for west-dipping Indian lithosphere 415 

subduction between ~70 and ~50 Ma, and Indian Ocean reconstructions reveal that in this time interval 416 

oblique India-Arabia motion was associated with a convergent component of ~1000 km (Gaina et al., 417 

2015; Gnos et al., 1998; van Hinsbergen et al., 2019). Gaina et al. (2015) thus interpreted the Carlsberg 418 

slab to have consumed oceanic lithosphere of the west Indian margin that was once located west of the 419 

modern Sulaiman ranges.  420 

The only slab that has so far been interpreted as Mesotethys-derived is the Nepal slab (NP; Figure 421 

6), that is located in the depth range of 1500 – 2200 km in the lower mantle below the Himalaya. The 422 

slab is NW-SE trending and south-dipping. Van Der Voo et al. (1999), van der Meer et al. (2018), and 423 

Parsons et al. (2020) interpreted this anomaly as Mesotethyan, subducted during northward subduction 424 

below Qiangtang during the closure of the Bangong-Nujiang Ocean until Early Cretaceous.  425 

Located to the south of the India slab is the Maldives anomaly, a NW-SE trending slab that is 426 

located beneath the north-western Indian Ocean, between ~1200 and 2200 km depth (Figure 6). This 427 

slab was first identified by van der Voo et al. (1999) and was interpreted to reflect Neotethyan 428 

subduction at an intra-oceanic subduction zone that had been interpreted to explain the geological record 429 

of the Kohistan arc of Pakistan, as well as ophiolites of the Zagros and Himalayan orogens (Tapponnier 430 
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et al., 1981). This interpretation was later also adopted by van der Meer et al. (2010) and van Hinsbergen 431 

et al. (2012) citing geological arguments for a Cretaceous obduction of ophiolites onto the Himalayas 432 

based on sedimentological and paleomagnetic interpretations (Abrajevitch et al., 2005; Corfield et al., 433 

2005). Hafkenscheid et al. (2006) compared slab volumes with plate reconstructions and found that the 434 

India and Maldives slab together correspond to a larger volume than expected from solely India-Asia 435 

convergence. Assuming that all anomalies below India are Neotethyan, they explained the excess 436 

volume by interpreting that the Maldives anomaly connects to the deep part of the India anomaly and 437 

has a flat-lying portion from ~20°S to the equator that resulted from Cretaceous roll-back that would 438 

have opened a back-arc basin along the south Tibetan margin, a scenario like Kapp and DeCelles (2019). 439 

Closure of the back-arc basin then explains the excess volume of the combined India-Maldives slab. By 440 

the time van der Meer et al. (2018) made their compilation, new sedimentological and paleomagnetic 441 

data from the Himalayas and Indus-Yarlung ophiolites, as well as new explanations for the older data 442 

of Abrajevitch et al. (2005) and Corfield et al. (2005) had been presented. These showed that obduction 443 

of ophiolites onto the northern Indian margin occurred shortly before collision with Asia, in Eocene 444 

time (Garzanti & Hu, 2015; W. Huang et al., 2015). Van der Meer et al. (2018) thus no longer interpreted 445 

the Maldives slab as Neotethyan, although they offered no alternative interpretation. Parsons et al. 446 

(2020) recently argued again that the Maldives slab requires a Cretaceous equatorial subduction zone, 447 

but their interpretation also relied on the assumption that the Maldives slab is of Neotethyan origin. We 448 

will return to the paleogeographic interpretation of the Maldives slab in the discussion section. We note 449 

that the Maldives slab has been defined based on its shallowest portion: the deeper portions of the slab 450 

are flat-lying and reach as far south as the equator, or beyond (Figure 6). 451 

The deepest anomalies in the mantle below India and Tibet represent the Central China slab (CC; 452 

Figure 6) which connects to an anomaly that covers much of the core-mantle boundary below the Indian 453 

ocean that we here identify as the Sri Lanka slab (SR: Figure 6). The Central China slab is a south-454 

dipping slab that is in the lower mantle from ~1500 km depth to the base of the mantle. It was originally 455 

included in the Mongol-Kazakh slab (van der Meer et al., 2018), interpreted as the relics of the Mongol-456 

Okhotsk ocean (Van Der Voo et al., 1999) that intervened North China and Siberia until the latest 457 

Jurassic (Van Der Voo et al., 2015), but it was later interpreted as a separate anomaly by van der Meer 458 

et al. (2018), who considered it possible that the slab is related to the latest Triassic closure of the 459 

Paleotethys ocean between the Qiangtang and NE Tibetan terranes. The Sri Lanka slab is found 460 

horizontally draping the core-mantle boundary below the Indian ocean and continent and Tibet (Figure 461 

6,8). 462 

 463 
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4. Discussion 464 

4.1 Paleotethyan and Mesotethyan slabs below India and Tibet 465 

To analyse the plate kinematic context of slab detachment during ongoing trench and plate 466 

motion, we aim to identify the slabs that unequivocally detached from the Indian plate, and whose 467 

geological records are hence located in the Himalayas or southern Tibet. Previous tomographic 468 

analyses all assumed that each slab located below India and Tibet to the south of the Indus-Yarlung 469 

suture reflect Neotethyan lithosphere and we therefore first assess where remains of the Triassic-Early 470 

Cretaceous Mesotethyan subduction and Permo-Triassic Paleotethyan subduction may reside. 471 

Geological evidence shows that subduction during Paleotethys and Mesotethys closure 472 

occurred both northward, below blocks that already accreted to the Tibetan margin, at mantle-473 

stationary trenches, as well as southward and retreating during the northward motion of the migrating 474 

Qiangtang (during Paleotethys closure) and Lhasa terranes (during Mesotethys closure). Hence, in 475 

both instances, slab walls may have formed below the northern, Tibetan margin, and flat-lying slabs 476 

covering a few thousand km to the south of these walls.  477 

The Sri Lanka slab overlying the core-mantle boundary is a clear candidate to represent the 478 

Paleotethys lithosphere that was consumed by southward subduction below the Qiangtang terrane 479 

during its northward flight to Eurasia. The Sri Lanka slab connects to the steeply dipping Central 480 

China slab that could represent the last parts of the southward subducted Paleotethyan lithosphere 481 

which have not reached the core-mantle boundary yet. Additionally, northward subducted 482 

Paleotethyan lithosphere could be contained in the ‘slab graveyard’ at the core-mantle boundary to the 483 

north of the Central China slab. Alternatively, the Central China anomaly may contain both north- and 484 

southward subducted lithosphere. The global correlations of slabs and geological records of van der 485 

Meer et al. (2018) suggests that slab walls, subducted at stable trenches, tend to sink into the lower 486 

mantle without the delay that flat-lying slabs, which subducted at migrating trenches, experience. But 487 

if subduction of the Paleotethys oceanic lithosphere was indeed double-sided, the final collision 488 

would have been a soft docking, since no slab pulls one continent below the other, and an upright 489 

folded lithosphere like the Molucca Sea slabs today (Hall & Spakman, 2015) would ‘detach’ from the 490 

surface. We speculate that such vertically arched ‘slab folds’ may sink slower than a single detached 491 

slab as sub-slab mantle under the slab-arch geometry needs to be removed sideways which could 492 

explain the still upright portion of the Central China slab. 493 

The only slab that has thus far been interpreted as Mesotethys-derived is the Nepal slab (Figure 494 

5,6). This slab is less than 1000 km in vertical extent, and appears much less thickened than e.g., the 495 

India slab. Because the width of the Mesotethys Ocean was like the Paleo- and Neotethys, it is 496 

unlikely that the Nepal slab contains all Mesotethys lithosphere. The evidence for Triassic to early 497 

Cretaceous subduction below the Lhasa terrane, e.g. in the form of arc magmatic rocks (Kapp & 498 
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Decelles, 2019; S. Li et al., 2019), moreover, suggests that there was subduction of lithosphere below 499 

the Lhasa terrane throughout its northward flight towards Eurasia. Kapp & Decelles (2019) suggested 500 

this was Neoththyan lithosphere subducting northward since the Triassic. We consider this unlikely: 501 

paleomagnetic data place Lhasa against the northern Gondwana margin in the late Triassic (Li et al., 502 

2016), followed by Neotethys opening until the early Cretaceous. In this view, a south-directed 503 

subduction zone as suggested by Zhu et al. (2015), would be more likely. Either way, a flat-lying slab 504 

is expected of similar magnitude as that of the Paleotethys (overturned if subducted northward, 505 

normal facing if subducted southward) at a shallower position in the mantle. We infer that the Nepal 506 

slab is the northern tip of a flat-lying slab that continues southward until near-equatorial latitudes and 507 

includes (at least part of) the Maldives slab (Figure 5,6). This interpretation assigns a similar 508 

dimension to the Mesotethys and Paleotethys-derived slabs as dictated by plate tectonic 509 

reconstructions. Below the massive slab wall of the India slab, this horizontal slab Nepal-Maldives 510 

slab would then be bent down under the likely faster sinking India slab wall (Figure8). The Nepal slab 511 

may then represent the remnants of an arched slab ‘fold’. 512 

Realizing that a large part of the mid-mantle anomalies below India may be Mesotethyan 513 

lithosphere rather than Neotethyan makes interpreting the Maldives slab as Neotethys not a necessity. 514 

As outlined above, there is no conclusive geological evidence that a slab detached at an equatorial 515 

intra-oceanic subduction zone upon arrival of the northern Indian margin in the trench. Parsons et al. 516 

(2020) recently concluded that the Maldives slab is the conclusive evidence to this end, but this 517 

argument relied on the assumption that all sub-Indian plate anomalies are Neotethyan. Tomographic 518 

evidence does not exclude an equatorial subduction zone, since the shallower part of the Maldives 519 

slab could be a separate anomaly that lies on top of a flat-lying Mesotethys slab. However, an intra-520 

oceanic equatorial subduction zone is not required by the tomographic model. Below, we focus our 521 

analysis on the anomalies whose Neotethyan affinity is undisputed. This includes the India, Himalaya, 522 

Carlsberg, Hindu Kush, Burma, and Chaman slabs and the horizontally underthrust Indian lithosphere 523 

below Tibet.  524 

 525 

4.2 Timing of Neotethyan slab detachment events 526 

Of the youngest slabs that consumed Indian plate lithosphere, the Chaman and Burma slabs are 527 

still connected to the Indian plate, the Hindu Kush slab is in the process of breaking off (Kufner et al., 528 

2021), and the Himalaya, Carlsberg, and India slabs are detached. We first evaluate when this 529 

detachment occurred, then evaluate the kinematic setting in which detachment occurred, and finally 530 

briefly evaluate the potential to detect geological signatures of this detachment from Himalayan 531 

geology. 532 



   
 

17 

 We estimate of the timing of detachment of the Himalayas through kinematic restoration of 533 

the timing and duration of horizontal Indian underthrusting below Tibet. Kinematic reconstructions of 534 

India-Asia convergence combined with reconstruction of Tibetan shortening (van Hinsbergen et al., 535 

2019) shows that the modern northern margin of the underthrust Indian plate lithosphere imaged by 536 

seismological data (Agius & Lebedev, 2013; Chen et al., 2017; van Hinsbergen et al., 2019) 537 

underthrusted below the Himalayas thrust front around 30-25 Ma at the syntaxes, becoming 538 

progressively younger towards the central-eastern Himalayas to around 15-13 Ma. This suggests that 539 

the Himalayas slab detached diachronously, starting around 25 Ma at the western and eastern syntaxes 540 

and progressively migrating inwards towards the central-eastern part of the plate boundary around 15 541 

Ma (van Hinsbergen et al., 2019). Or, alternatively, detachment may have occurred at a deeper level, 542 

after which the remaining Indian lithosphere rebounded back to a horizontal position (Magni et al., 543 

2017), although with the continued northward advance below Tibet, an inclined Indian margin would 544 

have acted as a plow (Hinsbergen et al., 2020) which could have prevented such a rebound. When 545 

viewed in a mantle frame of reference (Doubrovine et al., 2012), the reconstruction of van Hinsbergen 546 

et al. (2019) places the Himalayas thrust front above the modern position of the Himalayas slab. We 547 

therefore favour an interpretation that detachment of the Himalayas slab coincided with the base of 548 

the continental Indian lithosphere and that this lithosphere horizontally underthrusted Tibet. 549 

 The Hindu Kush slab in the west must represent a lateral equivalent of the Himalayas slab 550 

that escaped Miocene detachment, or, more likely, where detachment occurred at a deeper level. The 551 

Hindu Kush slab is ~600 km long and is offset southward from the northernmost part of the 552 

underthrust Indian lithosphere below the Pamir by ~300 km (Figure 5). Hence, when detachment of 553 

the Himalayas slab from the westernmost Indian lithosphere now below the Pamir crust occurred 554 

around 25 Ma, about 300 km of the Hindu Kush slab was likely still located at the surface adjacent to 555 

India’s northwestern margin, but the remaining deepest 300 km of the Hindu Kush lithosphere had 556 

already subducted then. The volume of the Himalayas slab suggests it contains more than 300 km of 557 

subducted lithosphere and is thus not a detached equivalent of the Hindu Kush slab: detachment of the 558 

Himalayas slab more likely removed a deeper part of the Hindu Kush slab and detached at a greater 559 

depth, of up to some 300 km, than at the north Indian continental margin where it detached at the 560 

depth of the base of the lithosphere. 561 

 Estimating the timing of decoupling between the Himalayas and India slabs is more 562 

challenging. The Himalayas slab is ~500 km long and depending on the assumed amount of 563 

thickening may contain two or three times that length in lithosphere. Comparing this with estimates of 564 

India-Asia convergence suggests that the Himalayas slab contains lithosphere that subducted 565 

sometime between ~40-35 Ma and 25-15 Ma (Replumaz et al., 2010). Hence, if detachment occurred 566 

at shallow depth, it would have occurred around 40-35 Ma. However, if detachment occurred at 567 
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greater depth, e.g. around 300 km as argued above for the Hindu Kush slab, detachment occurred 568 

later, after at least part of the Himalayas slab had already been subducted.  569 

The Carlsberg slab in the west was interpreted to contain lithosphere that subducted during highly 570 

oblique convergence between India and Arabia, between the Maastrichtian onset of subduction recorded 571 

by ophiolites in the Sulaiman ranges (Gaina et al., 2015; Gnos et al., 1998). Upper Paleocene to lower 572 

Eocene clastics in the Sulaiman ranges with ophiolite detritus (Khan & Clyde, 2013) show that 573 

obduction was underway by 60-55 Ma, and arrest of convergence and final emplacement was estimated 574 

at ~50 Ma (Gaina et al., 2015; Gnos et al., 1998). When placed in a mantle frame of reference 575 

(Doubrovine et al., 2012), the west Indian margin at 50 Ma is located above the Carlsberg slab. 576 

Moreover, reconstructions of India-Arabia motion using Indian ocean basin reconstructions (DeMets 577 

& Merkouriev, 2021; Gaina et al., 2015) reveal that post-50 Ma India-Helmand convergence at the 578 

latitude of the Chaman slab was associated with an E-W component of convergence of ~500-600 km 579 

(alongside a much larger component of left-lateral strike-slip motion) coincident with the Chaman slab 580 

length. A 50 Ma detachment age of the Carlsberg slab thus seems a reasonable estimate.  581 

 582 

4.3 Slab detachment during ongoing convergence: concept and future study areas 583 

 The plate kinematic history during which modern mantle structure evolved, reveals that despite 584 

ongoing plate convergence and absolute northward motion of the Indian plate and the plate boundary 585 

along southern Tibet, multiple slab detachment events occurred. An important corollary of this history 586 

is that commonly assumed geodynamic conditions used to simulate slab detachment in numerical and 587 

analogue experiments – an arrest of plate convergence, and a mantle-stationary trench – did not apply 588 

when the slabs detached from subducting Indian plate lithosphere. Two first-order differences between 589 

model predictions and the reconstructed history of slab detachments from the Indian plate follow 590 

straightforwardly from our analysis above. 591 

 First, the ongoing plate convergence between India and Asia implies that there cannot have 592 

been a long delay time between subduction and detachment of a slab. Model predictions suggest that 593 

slabs break-off 5-30 Ma after their subduction following a phase of gradual shearing and viscous 594 

necking (Andrews & Billen, 2009; Bercovici & Skemer, 2017; Duretz et al., 2012; Gerya et al., 2004; 595 

Royden, 1993). Plate convergence rates in the last 45 Ma have varied from 4-8 cm/a (DeMets & 596 

Merkouriev, 2021) of which no more than ~2 cm/a was accommodated by upper plate shortening in 597 

Tibet ( van Hinsbergen et al., 2019). Hence, for every 1 Ma delay time between subduction and 598 

detachment, a potential necking zone in a slab would sink 20-60 km. After the last phase of slab 599 

detachment from the northern Indian margin, no detectable slab has formed and the horizontal offset 600 

between the north Indian margin imaged below Tibet and the Himalayas slab shows that detachment 601 
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must have occurred quickly (within a few Ma) after arrival of that margin at the trench, and at a shallow 602 

depth around the base of the lithosphere.  603 

 Second, detachment was probably not only caused by vertical stretching of lithosphere. The 604 

Carlsberg slab was subducting westwards while India moved northwards: it is inevitable that this slab 605 

was dragged sideways through the mantle during its subduction, and during the arrival of the Indian 606 

continental lithosphere in the trench. At present, lateral slab dragging occurs with the Chaman and 607 

Burma slabs (Figure 7), and has also been shown for the Tonga-Kermadec and Gibraltar slabs (van de 608 

Lagemaat et al., 2018; Spakman et al., 2018; Parsons et al., 2021). This dragging of the Carlsberg slab 609 

must have been resisted by the ambient mantle leading to a slab-strike parallel resistive shear traction 610 

(Spakman et al. 2018) that may have aided break-off as this viscous coupling between slab and mantle 611 

may cause large slab-strike parallel deformation (Giardini and Woodhouse 1986; Chertova et al. 2018). 612 

Such northward dragging not only applies to the slabs on the west and east side of India, but also follows 613 

from our analysis of the Hindu Kush slab. The slab is currently located ~300 km to the south of the 614 

northern edge of the Indian plate located below the Pamir (Figure 5), and this may reflect that the slab 615 

retreated relative to India over this distance since the detachment of the Himalayas slab from India’s 616 

northwestern margin some 25-30 Ma ago (cf. the 3D convergence-detachment model of Duretz et al. 617 

2014). But in that same time period, the Indian plate moved >1000 km northward. The Hindu Kush slab 618 

must thus have been dragged northward over some 700 km through the mantle in the last ~25 Ma, 619 

consistent with its offset relative to the Himalayas slab. Such a history of northward advance also 620 

applies to the Himalayas slab given its overturned orientation. Hence, the ongoing absolute motion of 621 

the Indian plate adds an oppositely directed force on the slab as mantle material must be removed in 622 

front of the slab to accommodate forward slab transport. This forcing may localize where the slab is 623 

weakest which is classically the slab bending zone below the trench but may also occur deeper due to 624 

subducted lithosphere weakness (Gerya et al., 2021). In this scenario, the slab can be sheared-off 625 

shallowly, i.e., near the base of the lithosphere of the downgoing plate (Figure 9) which contrasts with 626 

the lithosphere-age dependent detachment depth inferred from previous modelling. 627 

 The question then arises whether slab detachment during ongoing plate motion and trench 628 

advance yields geological signatures that are like the vertical necking that is portrayed in classical 629 

experiments. The detailed earthquake hypocenter studies in the Hindu Kush slab of Kufner et al. (2017; 630 

2021) elegantly show that the shear zone along which detachment is occurring mimics the predicted 631 

shear zones by vertical necking experiments (Duretz et al., 2011), even though the Hindu Kush slab is 632 

being dragged northward. On the other hand, with ongoing absolute plate motion of the downgoing 633 

plate, a detachment zone is immediately being overridden. The classically suggested high-temperature 634 

pulse that was inferred to cause magmatism or metamorphism in a suture zone (van de Zedde and 635 

Wortel, 2001), may therefore not be recorded in the collision zone.  636 
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To determine the geological effects of slab detachment during ongoing plate and trench 637 

migration and to evaluate whether there is dependence of geological signatures on the absolute plate 638 

motion direction relative to slab strike, calls for future numerical and analogue experiments in 639 

combination with field testing. To determine the effects of near slab-strike parallel dragging, we identify 640 

the Chaman and Burma slabs as key candidates for the study of present-day geophysical expressions. 641 

Effects on the longer geological evolution associated with detachment associated with slab-strike 642 

parallel dragging may be contained in the Eocene geological record of the Sulaiman Ranges of Pakistan.  643 

The highly detailed studies of Kufner et al. (2016; 2017; 2021) of the Hindu Kush slab provide 644 

key constraints for detachment during slab-strike perpendicular dragging. The Miocene geological 645 

record of the Himalayas would provide a longer-term geological perspective on the effects of slab 646 

detachment during plate motion. In that light, the study of Webb et al. (2017) is intriguing: Those 647 

authors interpreted an evolution of slab detachment below the Himalayas that started in the syntaxes 648 

around 30-25 Ma and progressed to the central-eastern Himalayas until ~13 Ma. They concluded an 649 

identical timing and asymmetry in detachment age as we infer from the shape of the horizontally 650 

underthrust northern Indian margin below Tibet (Figure 5,6,7), but based this on an entirely independent 651 

data set and line of argumentation. Their study was based on along-strike studies of the Himalayas and 652 

southern Tibet and identified trends in high-K and adakitic magmatism and geochronological estimates 653 

of major ductile faults in the orogen. The study of Webb et al. (2017), but also earlier studies arguing 654 

for a ~25 Ma onset for changing thermal conditions in the collision zone (Maheo et al., 2002), may thus 655 

provide an excellent starting point for hypothesis building as basis for numerical and analogue 656 

experiments of slab detachment during ongoing plate convergence and trench motion.  657 

Also, the recent unprecedented high-resolution India-Asia convergence records of DeMets and 658 

Merkouriev (2021) provide key information. During the inferred detachment period between ~30-25 659 

and 13 Ma they showed a subtle slow-down in plate convergence rates and following 13 Ma a steady 660 

rate of ~4 cm/a. Intriguingly, India-Asia convergence accelerated by a few cm/a between 40 and 30 Ma, 661 

around which time the detachment of the Himalayas slab from the India slab may have occurred. This 662 

detachment would have potentially removed the mantle resistance against northward slab dragging 663 

removing, at least temporarily, this control on the northward motion of the Indian plate, but also this 664 

speculation requires future dynamic analysis.  665 

Finally, we note that the initial India-Asia collision recorded in the Tibetan Himalayas around 666 

60-50 Ma (An et al., 2021; Najman et al., 2010) is widely interpreted to be followed by slab detachment 667 

along the Indian continental margin under the assumption that this collision represented the arrival of 668 

the contiguous Indian continent at the Tibetan trench (Kohn et al., 2002; H. Lee et al., 2009; Zhu et al., 669 

2015). If there was slab detachment in the late Paleocene or early Eocene, it is not detectable within the 670 

India anomaly. We note that Indian plate subduction rates in this time period were in excess of 150 671 
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km/Ma (DeMets & Merkouriev, 2021; van Hinsbergen et al., 2019): even if slab detachment occurred 672 

in this time period, it could have taken only a few Ma for a slab to reach to the base of the upper mantle 673 

again and it is questionable whether there would have been any detectable dynamic or geological 674 

response. The kinematic restoration of van Hinsbergen et al. (2012; 2019) interpreted the Paleocene-675 

early Eocene collision reconstructed from the northern Himalayas as recording the arrival of a 676 

microcontinent at the southern Eurasian margin and interpreted the modern northern margin of India 677 

underthrusted below Tibet as the former passive margin of northern India that only arrived at the 678 

southern Himalayan margin in the Miocene. Subduction of microcontinental lithosphere without slab 679 

detachment is common in Tethyan mountain belts (van Hinsbergen and Schouten, 2021) and this 680 

scenario would suggest that detachment of the Himalayas slab occurred along the passive continental 681 

margin, as commonly inferred in slab detachment models. If all lithosphere that subducted in the 682 

Himalayas after the early Eocene (Hu et al., 2016; Ingalls et al., 2016; Replumaz et al., 2010) or late 683 

Eocene (Aitchison et al., 2007; Jagoutz et al., 2015; Martin et al., 2020) was continental, as more 684 

commonly assumed, the timing, causes, and locations of slab break-off within continental lithosphere 685 

following 1000 km or more of rapid continental subduction, remain to be explained. 686 

 687 

5. Conclusions 688 

Slab detachment is a key process in the plate tectonic cycle and may have profound impact on the 689 

geological record of orogens causing metamorphism, magmatism, economic mineralization, and 690 

surface uplift, and may be associated with plate reorganizations. Conceptual, numerical, and analogue 691 

models that aim to find the dynamic link between slab detachment and these geological observations 692 

assume that plate convergence stops prior to detachment, that the slab and trench remain mantle-693 

stationary for 10 Ma or more, and that slab detachment is then a gradual and laterally diachronous 694 

process. However, plate convergence typically continues, and trenches are rarely mantle-stationary 695 

during slab detachment. In this paper, we investigate the history of slab detachments from the Indian 696 

plate to develop a kinematic framework for slab detachment during ongoing absolute plate and trench 697 

motion. Seismic tomography has long shown that no major slabs are currently attached to the Indian 698 

plate below the Himalaya, and major anomalies located in the upper and lower mantle below India 699 

have widely been interpreted as detached relict slabs. All these slabs are located far south of the 700 

modern northern margin of the Indian continent that is seismically imaged to horizontally underthrust 701 

the Tibetan Plateau. The offset between the slabs and the margin from which they detached is 702 

consistent with the kinematic evidence that India’s absolute plate motion continued throughout the 703 

Cenozoic until the present day. 704 

To identify which slabs must have broken off the fast-moving Indian plate, we first update the 705 

correlation of subducted slabs below India and Tibet to lithosphere that subducted in Mesozoic-706 
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Cenozoic time. The slabs below India were among the first identified following the advent of global 707 

tomography and were initially all assumed to represent Neotethyan lithosphere. Because their volume 708 

far exceeds volumes predicted from India-Asia convergence reconstructions, intra-oceanic subduction 709 

was inferred within the Neotethyan realm. But global correlations have shown that slabs that 710 

subducted in Permo-Triassic and Jurassic time are generally also still imaged in the lower mantle. In 711 

the case of the mantle beneath the Indian plate, slabs that comprise of the Mesotethys that subducted 712 

in Late Triassic-Early Cretaceous time and Paleotethys (Permian - Late Triassic) oceanic lithosphere 713 

should still be visible. We use first-order estimates of expected slab shape and length to infer that a 714 

Paleotethyan derived slab (here named Sri Lanka slab) is located at the base of the mantle and may 715 

include part of the previously identified Central China slab below northern Tibet. A Mesotethyan slab 716 

horizontally underlies the India slab wall in the mid-mantle and includes the previously identified 717 

Maldives and Nepal anomalies. Whereas tomography does not exclude that an equatorial Neotethyan 718 

slab may have formed, such an interpretation is not required to explain the tomography. Only of the 719 

India, Carlsberg, and Himalayas slabs we are confident that they must represent Neotethyan 720 

lithosphere that detached from the Indian plate. The India and Himalayas slabs detached from the 721 

northern plate margin, the Carlsberg slab from the western margin. In addition, the Hindu Kush, 722 

Burma, and the newly identified Chaman slabs are still attached to India. 723 

We identify that the three detached Neotethyan slabs (India, Carlsberg, Himalayas slabs) 724 

detached during ongoing northward motion of India relative to the mantle. During their detachment, 725 

they were not passively dangling in the mantle during which time gradual necking would lead to 726 

detachment, but we hypothesize that in addition to slab pull the resistance of the mantle against 727 

forward slab dragging of laterally wide slabs may have played a key role. We discuss that slab 728 

detachment during ongoing plate motion may have different geological expressions than inferred from 729 

previous detachment modelling, and that these may differ as function of slab strike relative to absolute 730 

plate motion direction. Slabs to the west (Chaman) and east (Burma) of India are dragged near slab-731 

strike parallel through the mantle, and detachment under those circumstances must have affected the 732 

older, deeper, Carlsberg slab as well. The latter slab likely detached in Eocene time, and we identify 733 

the Sulaiman Ranges of west Pakistan as key area to test possible signatures (Figure 10).  734 

Slabs at the northern extent of the Indian plate detached following and during slab advance. 735 

This is illustrated by the northward overturned Himalayas slab that was the last to detach. An entirely 736 

independent, previously published estimate of the last phase of slab detachment using magmatism and 737 

exhumation patterns in the Himalayas coincides with our estimate of the last phase of detachment on 738 

kinematic restoration of horizontally underthrust northern Indian margin below Tibet and may provide 739 

a geological record to calibrate the geological effects of detachment during ongoing downward plate 740 

motion. In addition, the well-documented active detachment in the Hindu Kush slab, which we show 741 

was dragged through the mantle over a distance close to 700 km in the Cenozoic, may provide a 742 
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geophysical record of detachment of a forwardly dragged slab. Our analysis thus provides new 743 

conditions for slab detachment to occur in the geodynamic context of ongoing relative and absolute 744 

plate motions, which may be used by numerical and analogue experiments to evaluate geological 745 

signatures of this key geodynamic process.  746 
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 1188 

 1189 

Figure 1: Comparison of the shallow slab break off conceptual numerical model (a-d) (Duretz et al., 1190 

2011) vs proposed slab shear off model of Indian & Eurasian plate. It is observed that slab break off 1191 

numerical models are different to reality (Static Trench vs Trench Advance). (a) represents the oceanic 1192 

subduction, (b) represents continental collision, (c) represents necking and break off respectively (d) 1193 

represents the post break off rebound.  1194 

 1195 

 1196 

 1197 

Figure 2. Tectonic Map of the Asian-India collision region. Abbreviations are: An=Andaman Islands;; 1198 
bns=Bangong-Nujiang Suture; bo=Bela Ophiolite; CF=Chaman Fault; HF=Herat Fault; MFT=Main 1199 
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Frontal Thrust; IBR=Indo-Burman Ranges; IYSZ=Indus-Yarlung Suture Zone; KA=Kohistan Arc; 1200 
kao=Kabul-Altimur Ophiolite; KB=Ka- tawaz Basin; js=Jinsha Suture; mbo=Muslim Bagh Ophiolite; 1201 
mct=Main Central Thrust; mft=Main Frontal Thust; SF=Sagaing Fault; SS=Shyok Suture; ST=Sunda 1202 
Trench; std.=South Tibetan Detachment; wko=Waziristan-Khost Ophiolite. 1203 

 1204 

 1205 

Figure 3. Paleolatitude curves for a reference point (32°N, 90°E). Each curve shows a paleolatitude 1206 
predicted for the reference point by the Global Apparent Polar Wander Path of Torsvik et al. (2012), 1207 
assuming the reference point was rigidly connected to Eurasia (blue curve), Lhasa (orange curve), and 1208 
India (black curve).  Each curve indicate a lost ocean and relevent lithosphere in between and marked 1209 
with different colors. 1210 

 1211 
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 1212 

Figure 4: Conceptual models of the Slab detachment (g-i) as compared with existing models of slab 1213 
breakoff in various subduction scenarios(a-c, d-f) (Parsons et al., 2020). Proposed Trench Advance 1214 
model indicating trench moving forward and leaving detached slab behind in the mantle (g-l) oceanic 1215 
crust, continental crust and overriding plates are coloured in separate colours.  1216 

 1217 

 1218 
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 1219 

Figure 5: Tomographic Horizontal sections indicating the relative positions and geometric variations 1220 

of anomalies. Hm: Himalaya Anomaly, India: India Anomaly, MD: Maldives anomaly, BS: Burma 1221 

Slab, CC: Central China anomaly, CS: Chaman Slab NP=Nepal anomaly, DT= Detached Tibet, Tarim 1222 

& Kazak= Tarim & Kazak Anomaly, Arabia/CB= Carlsberg anomaly, Hl= Helmand anomaly, MK= 1223 

Makran anomaly .  Line of section in shown in the inset map. 1224 
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 1225 

Figure 6: Cross section through the tomography model UU-P07. Labels display the positions of 1226 

anomalies. Hm: Himalaya Anomaly, India: India Anomaly, MD: Maldives anomaly, BS: Burma Slab, 1227 

CC Central China anomaly, NP=Nepal anomaly, DT= Detached Tibet, Tarim & Kazak= Tarim & 1228 

Kazak Anomaly, Arabia/CB= Carlsberg anomaly, Hl= Helmand anomaly, MK= Makran anomaly, 1229 

SR= Sri Lanka Anomaly .  Line of section in shown in the inset map.  1230 

 1231 
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 1232 

Figure 7: E-W Tomographic section through northern Indian plate. Oblique subduction is observed at 1233 
the western and eastern margin of Indian plate. BS=Burma Slab, CS= Chaman slab, HM= Himalaya 1234 
slab. 1235 

 1236 

 1237 

 1238 

Figure 8: Interpreted models of the subducted slabs since 250 Ma and their comparison with the 1239 
reference tomographic interpretation(on left). At the present day configuration  PaleoTethys slabs (pink) 1240 
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can be found deep in the mantle at the Core mantle boundary, MesoTethys slabs (green) are just above 1241 
followed by the Neo Tethys slabs (Yellow). Notice the trench advance during all the subduction 1242 
scenarios. 1243 

 1244 
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 1246 

 1247 

 1248 

 1249 

Figure 9: Comparison of Detachment under stationary trench against Detachment under moving 1250 
trench. Notice the sub vertical shear in the Detachment under stationary and the sub horizontal shear 1251 
in case of Detachment under moving trench. Detachment under stationary is followed by the 1252 
volcanism and Detachment under moving trench is followed by the trench advance resulting in 1253 
possibly overturned slab. 1254 

 1255 



   
 

45 

 1256 
Figure 10: Map indicating the future Geological and Geophysical learning opportunities in the study 1257 
area. Geological and Geophysical evidences can be compared to resolve the complex nature of 1258 
subduction during India- Asia collision. 1259 
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