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Rochelle France.
2Littoral Environnement et Sociétés Université de La Rochelle and CNRS (UMR7266) La
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Abstract

We decompose the monthly global Ocean Bottom Pressure (OBP) from GRACE(-FO) mass concentration solutions, with

trends and seasonal harmonics removed from the signal, to extract 23 significant regional modes of variability. The 23 modes

are analyzed and discussed considering Sea-Level Anomalies (SLA), Wind Stress Curl (WSC), and major climate indices.

Two-thirds of the patterns correspond to extratropical regions and are substantially documented in other global or regional

studies. Over the equatorial band, the identified modes are unprecedented, with an amplitude ranging between 0.5 and 1

centimeter. With smaller amplitude than extratropical patterns, they appear to be less correlated with the local SLA or WSC;

yet, they present significantly coherent dynamics. The Pacific Ocean modes show significant correlations with the Pacific

Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO).
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Component Analysis and the Varimax rotation; 13 

• 13 patterns are significantly correlated to the wind stress curl and are located in areas 14 
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• The other 10 are typically tropical and related to spatially coherent mass variations that 16 

deserve further study.  17 
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Abstract 18 

We decompose the monthly global Ocean Bottom Pressure (OBP) from GRACE(-FO) mass 19 

concentration solutions, with trends and seasonal harmonics removed from the signal, to extract 20 

23 significant regional modes of variability. The 23 modes are analyzed and discussed 21 

considering Sea-Level Anomalies (SLA), Wind Stress Curl (WSC), and major climate indices. 22 

Two-thirds of the patterns correspond to extratropical regions and are substantially documented 23 

in other global or regional studies. Over the equatorial band, the identified modes are 24 

unprecedented, with an amplitude ranging between 0.5 and 1 centimeter. With smaller amplitude 25 

than extratropical patterns, they appear to be less correlated with the local SLA or WSC; yet, 26 

they present significantly coherent dynamics. The Pacific Ocean modes show significant 27 

correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation 28 

(ENSO). 29 

Plain Language Summary 30 

In the oceans, water mass may vary due to the hydrological cycle, its modification resulting from 31 

climate change, or astrophysical cycles influencing the Earth system resulting in phenomena like 32 

tides or annual/semi-annual cycles of mass variations. Apart from trends and cyclic variations, 33 

water mass variations in the ocean are less known except at the poles and at the middle or high 34 

latitudes, where they are often associated with the gyratory effect from winds interacting with the 35 

ocean bottom topography. This study analyzes the monthly water mass variations between 2002 36 

and 2020 measured by the GRACE mission satellites over the global ocean without trends and 37 

cycles. Our method highlights the regional areas where a coherent dynamic behavior is observed 38 

over the global ocean. These consistent patterns are compared to the dynamics of sea-level 39 

variations, winds, and well-known indices associated with climate dynamics. In doing so, we 40 

recover known patterns from high and mid-latitudes but also other patterns from lower latitudes 41 

that are poorly documented in the scientific literature and would benefit from further study. In 42 

the Pacific, these patterns are associated with the climate phenomenon known as the El Niño-43 

Southern Oscillation. 44 

1 Introduction 45 

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor 46 

GRACE Follow-On (GRACE-FO) satellite missions allow monthly estimations of ocean mass 47 

distributions at the global scale, with a 3°×3° spatial resolution (Landerer et al., 2020; Tapley et 48 

al., 2004). GRACE products show a sensitivity at the subcentimetric level when expressed in 49 

equivalent water height (Chambers, 2006; Chambers et al., 2004). Besides GRACE(-FO), 50 

oceanic mass distributions are estimated through a limited set of Ocean Bottom Pressure (OBP) 51 

in-situ sensors, or from sea-level variations, indirectly, by removing steric effects (Chambers et 52 

al., 2004), or using Ocean General Circulation Models (OGCMs). Yet, OGCMs and GRACE(-53 

FO) products have co-evolved along with our understanding of the global ocean. OGCMs offer 54 

opportunities of correcting GRACE(-FO) solutions from aliasing errors (Dobslaw et al., 2017; S. 55 

Han et al., 2004; Quinn & Ponte, 2011). The physical representativeness of GRACE(-FO) 56 

product over oceans was acknowledged early on (Chambers, 2006), even more today with recent 57 

mass concentration solutions better matching with in-situ OBP sensors (Piecuch et al., 2018; 58 

Save et al., 2016; Watkins et al., 2015). Conversely, empirical analyses of GRACE(-FO) 59 

products, or their assimilation in OGCMs, offer the opportunity of improving our understanding 60 
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and model representation of the global ocean functioning (e.g., Chambers & Willis, 2008; 61 

Fukumori et al., 2021; Köhl et al., 2012). 62 

Our study is part of this empirical process of understanding and targets the global 63 

detection of regionally consistent spatiotemporal patterns within the GRACE(-FO) data. In the 64 

literature, such global studies often consist of global sea-level budgets and comparisons with 65 

other models or datasets (Cazenave et al., 2018; Cheng et al., 2021; Humphrey et al., 2016; 66 

Johnson & Chambers, 2013; Kanzow et al., 2005; Ponte et al., 2007). Besides, except for some 67 

studies focusing on interannual or intraseasonal variations (Piecuch et al., 2013; Quinn & Ponte, 68 

2012), most of these global ocean studies focus on trends or seasonal cycles given the substantial 69 

variance attributed to these components alongside anthropic concerns about sea-level rise.  70 

Still, there are reasons to expect relevant signals and processes at interannual and 71 

intraseasonal time scales. Regarding processes, the mass distribution in the ocean is governed by 72 

the hydrostatic equilibrium, which implies that OBP reflects the mass of the ocean-atmosphere 73 

fluid column. The effect of the atmosphere tends to cancel out at timescales longer than a few 74 

days (Ponte, 1994). Oceanic barotropic signals are supposed to be prominently related to high 75 

frequencies (Gill & Niller, 1973; Quinn & Ponte, 2012; Willebrand et al., 1980) but were also 76 

reported at intraseasonal (Afroosa et al., 2021; Rohith et al., 2019) and interannual scales 77 

(Piecuch et al., 2013). Besides land-ocean transfers, the ocean circulation, mass, and sea-level 78 

variations result from water density gradients or wind-driven Ekman transport (Stammer et al., 79 

2013). Especially at mid-high latitudes such as in the southern ocean (Bingham & Hughes, 2008; 80 

Piecuch et al., 2013; Quinn & Ponte, 2012; Vinogradova et al., 2007), regional-scale sea-level 81 

variations mostly correspond to barotropic, i.e., depth-independent, wind-driven mass variations 82 

(Fu & Davidson, 1995). At lower latitudes, OBP variations potentially have a baroclinic 83 

contribution, typically at the subcentimetric level (Piecuch et al., 2015). However, instances of 84 

regional-scale barotropic sea-level variability were reported (Afroosa et al., 2021; Piecuch et al., 85 

2015; Rohith et al., 2019; Willebrand et al., 1980). Climate dynamics also impact sea level and 86 

mass variation whatsoever the triggered mechanism (Hamlington et al., 2020; W. Han et al., 87 

2017). Patterns of OBP variability are often related to climatic modes, especially the El Niño–88 

Southern Oscillation (ENSO) in the Pacific (e.g., Chambers, 2011; Volkov et al., 2017). 89 

Hence, by investigating GRACE(-FO) beyond seasonality and trends, we expect to reveal 90 

less understood patterns that would remain hidden otherwise and relate them to the above-91 

mentioned processes discussed in regional studies. Our decomposition method for identifying 92 

patterns in interannual and intraseasonal GRACE(-FO) signals is based on Principal Component 93 

Analysis (PCA), also known as Empirical Orthogonal Functions (EOF) (von Storch & Zwiers, 94 

1999). This method was applied in regional GRACE(-FO) study cases (Chambers & Willis, 95 

2008; Liau & Chao, 2017; Piecuch et al., 2021; Wang et al., 2017) or globally as a collection of 96 

regional EOF (Marcos et al., 2011). Our approach differs as it is combined with a method to 97 

select the significant modes followed by a Varimax rotation (Kaiser, 1958; Vejmelka et al., 98 

2015). As far as the dataset allows, the PCA-Varimax produces regionally concentrated patterns, 99 

thus comparable with regional case studies for further insights. 100 
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2 Data 101 

2.1 GRACE(-FO) Data 102 

We use JPL GRACE(-FO) RL06v02 mascons solution (DOI: 10.5067/TEMSC-3JC62, 103 

Watkins et al., 2015; Wiese et al., 2016) because of its fine representation of ocean dynamics. 104 

The trend, seasonal harmonics at the yearly and six-month periods, and the 161-days tidal alias 105 

resulting from S2 semidiurnal solar tide corrections (Chen et al., 2009) were subtracted by a 106 

least-squares fit. The time-domain covers 175 months from April 2002 to October 2020. Missing 107 

time-steps are those initially missing in the data or removed because of an incomplete and 108 

asymmetric sub-monthly coverage, as identified from the product metadata (Supplementary 109 

Table S1). 110 

From the original 0.5°×0.5° grid, we sampled 10255 time-series over ocean area beyond 111 

200 m depth, evenly distributed at the 16002 summits of an icosahedron. We removed areas 112 

affected by earthquakes above magnitude 8.8: Sumatra 2004, Chile 2010, and Japan 2011. 113 

Unrelated with ocean mass variation, earthquakes introduce sharp ruptures, the coseismic effect, 114 

and/or changes of trend, the postseismic effect, in the time-series (de Linage et al., 2009). 115 

Finally, time-series were standardized to have a zero mean and a unit standard deviation. 116 

2.2 Co-related datasets: wind stress curl, sea level anomaly, and climate indices 117 

The barotropic component of sea-level variability linearly responds to the Wind Stress 118 

Curl (WSC) under the assumption of quasi-geostrophic balance (Fu & Davidson, 1995). Wind 119 

data and Sea-Level Anomaly (SLA) were accessed through the Copernicus Climate Change 120 

Service (C3S). Both datasets were monthly averaged and coarsened from the 0.25°×0.25° to the 121 

0.5°×0.5° grid of GRACE. Wind stress data are computed from ERA5 10 m zonal U and 122 

meridional V wind component (Hersbach et al., 2019). SLA is defined from multi-mission 123 

satellite altimetry as the deviation from the mean sea surface height from 1993-2012 (Taburet et 124 

al., 2019). The SLA dataset only covers the latitude range +/- 66 N°. The SLA and WSC time-125 

series are five time-steps shorter than the GRACE(-FO) time-series due to the unavailability of 126 

the most recent time steps at the time of acquisition.  127 

In addition, 42 climate indices were selected from the NOAA Physical Sciences 128 

Laboratory or Climate Prediction Center portals. The entire climate indices list is reported in the 129 

supplementary materials (Table S2). The main manuscript focuses on a smaller set of important 130 

indices being discussed: Arctic Oscillation (AO), Antarctic Oscillation (AAO), Multivariate 131 

ENSO Index version 2 (MEIv2), North Atlantic Oscillation (NAO), and Pacific Decadal 132 

Oscillation (PDO). For a consistent comparison, all time-series from the co-related datasets are 133 

processed with the same treatment as the GRACE(-FO) data (section 2.1). 134 

3 Spatiotemporal pattern definition 135 

Following Vejmelka et al. (2015), we identified GRACE-(FO) spatiotemporal patterns 136 

using rotated Principal Component Analysis (PCA-Varimax; Kaiser, 1958). PCA selects an 137 

orthogonal coordinate system of reduced dimensions capturing most of the variance of the data. 138 

This coordinate system is expressed in eigenvectors and eigenvalues, defining the axes' 139 

orientation and importance in terms of captured variance. Following PCA, the Varimax rotation 140 

tends to concentrate the energy on a minimum amount of time-series, i.e., to produce regionally 141 
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concentrated patterns. In the end, PCA-Varimax components are associated with a spatial pattern 142 

and a time dimension as the original GRACE-(FO) dataset.  143 

Regarding PCA, the number of coordinate axes or components is regularly set based on 144 

heuristic thresholds on the captured variance. Vejmelka et al. (2015)’s approach proposes an 145 

objective basis to define this number by comparison with random substitutes of the original 146 

dataset containing independent time-series. Such random substitutes, known as surrogates, are 147 

built to preserve some dynamical traits of the original dataset (Schreiber & Schmitz, 2000). In 148 

our case, the surrogate models result from autoregressive processes of order 𝑝 (ARp), with 𝑝 149 

determined independently for each series to minimize the Bayesian Information Criterion 150 

(Schwarz, 1978), and the coefficient fit on the time-series using the Linear State-Space model 151 

framework (Durbin & Koopman, 2012; Seabold & Perktold, 2010). 152 

4 Results 153 

Figure 1 illustrates the selection of the number of principal components: Fig. 1a maps the 154 

distribution of the 𝑝 orders of the surrogate models, while Fig. 1b shows the comparison between 155 

the GRACE(-FO) PCA eigenvalues and those from the decomposition of 100 surrogate datasets. 156 

The results led us to select 23 components (0 to 22), capturing together 72% of the original 157 

variance. 158 

 159 

Figure 1. Selection of the 23 PCA components. (a) Order of the surrogates model (Eq. 1), and (b) Comparison of 160 

eigenvalues magnitude between the decomposition of GRACE(-FO) and the surrogate dataset. 161 

Figure 2 displays the resulting 23 Varimax spatial patterns by showing the above-98th 162 

percentile filled contour of the load. Since it is a percentile, contours represent equal areas 163 

despite possible variations in the patterns’ concentration. For more details, spatial and temporal 164 
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patterns are shown individually in the supplementary materials (Fig. S1, S2). The patterns’ labels 165 

are centered on the maximum load location and ordered by decreasing percentages of captured 166 

variance in the standardized GRACE(-FO) dataset (𝐶𝑉𝑠𝑡𝑑 column in Table 1). Providing that 167 

PCA-Varimax is applied on the standardized dataset, 𝐶𝑉𝑠𝑡𝑑 gives an estimate of the 168 

spatiotemporal importance of the identified dynamics regardless of their physical magnitude. 169 

From the 𝐶𝑉𝑠𝑡𝑑’s perspective, the Western Equatorial Pacific pattern #0 is the most important, 170 

while pattern #22, over the Hudson and Baffin Bay, Labrador Sea, North Atlantic, and 171 

Mediterranean Sea, is the least significant.  172 

Table 1 also displays 𝐿𝑊𝐸𝑐𝑜𝑣 reflecting the importance of the patterns in mass variations 173 

(cm of liquid water equivalent or LWE). 𝐿𝑊𝐸𝑐𝑜𝑣 is the average covariance between the 174 

standardized GRACE(-FO) PCA-Varimax temporal patterns (Fig. S2) and the original GRACE(-175 

FO) time-series, without trends and seasonality, over the 98th percentile envelope shown in Fig. 176 

2. From that perspective, the Arctic pattern #12 is the most important, followed by the 177 

Australian-Antarctic pattern #11. Conversely, the intertropical Atlantic Pattern #1 and #9 are the 178 

least important in terms of mass deviations, despite their high captured variance in the 179 

normalized data set (𝐶𝑉𝑠𝑡𝑑). 180 

The last two columns of Table 1, |ρ(#,SLA)| and |ρ(#,WSC)|, report absolute values of 181 

Pearson’s correlation coefficients between the GRACE(-FO) temporal pattern and the respective 182 

temporal projection of the SLA and WSC datasets (section 2.2). They indicate the coherence 183 

between the spatiotemporal pattern of mass variations for sea-level dynamics and the surface 184 

WSC. We tested the 99% significance by confronting the statistic to those obtained with 200 185 

ARp surrogates of the GRACE(-FO) PCA-Varimax temporal pattern. In the supplementary 186 

materials, Fig. S3 and S4 show the spatial patterns of correlations for SLA and WSC, while Fig. 187 

S5 and S6 report the spatial patterns of correlations for zonal (𝜏𝑥) and meridional wind stress 188 

(𝜏𝑦). 189 

Finally, Fig. 3 shows the result of the cross-correlation analysis for time lags between -12 190 

and +12 months for the five selected climate indices: Arctic Oscillation (AO), Antarctic 191 

Oscillation (AAO), Multivariate ENSO Index version 2 (ENSO MEIv2), North Atlantic 192 

Oscillation (NAO), and Pacific Decadal Oscillation (PDO). More indices are tested in the 193 

supplements (Table S2 and Fig. S7). Below, Fig. 3b shows the auto-correlation of each PCA-194 

Varimax GRACE-(FO) time-series. Results are presented in the form of cross-correlation clocks. 195 

In Fig. 3a, given the arrow of time, significant dependencies in the left quadrants denote a 196 

potential causal effect of the climate indices on the PCA-Varimax GRACE(-FO) patterns. 197 
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 198 

Figure 2. The 23 patterns obtained from the Varimax rotation of the PCA coordinate systems. Each pattern is sorted by decreasing captured variance and labeled 199 

accordingly from 0 to 22, with the label box located at the Varimax pattern’s maximum concentration. The colored contour shows the extent of the area between 200 

98% and the maximum. The gray background contours represent the ocean SRTM15+ bathymetry in meters (Tozer et al., 2019). White areas represent either 201 

land, shallow ocean (>-200m), or earthquake-impacted areas excluded from the analysis. The colormap was generated using colorgorical (Gramazio et al., 2017). 202 

 203 
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Table 1. Summary statistics and summary correlation statistics for the 23 PCA-Varimax patterns. 204 

# Lat. 

°N 

𝑳𝑾𝑬𝒄𝒐𝒗 

cm 

𝑪𝑽𝒔𝒕𝒅
 

% 

|𝝆(#, 𝑺𝑳𝑨)| 

[0-1] 

|𝝆(#,𝑾𝑺𝑪)| 

[0-1] 

0 -0.13 0.85 6.42 0.39 0.06 

1 -14.63 0.54 4.84 0.23  0.02 

2 -28.13 0.86 4.07 0.40 0.20 

3 24.38 0.81 4.07 0.37 0.14 

4 15.88 0.77 4.01 0.16 0.16 

5 -40.13 1.21 3.95 0.15 0.57 

6 -24.63 0.73 3.57 0.36 0.03 

7 28.38 0.79 3.40 0.12 0.26 

8 -72.63 1.30 3.37 0.34* 0.55 

9 22.38 0.55 3.36 0.23 0.07 

10 -13.13 0.64 3.15 0.00 0.14 

11 -48.63 2.11 3.11 0.67 0.69 

12 85.38 2.15 3.01 0.58* 0.49 

13 35.88 0.68 2.88 0.24 0.35 

14 -34.13 0.92 2.74 0.19 0.24 

15 36.38 1.58 2.49 0.40 0.61 

16 -49.13 1.85 2.37 0.73 0.38 

17 -57.13 1.71 2.24 0.71 0.33 

18 -36.13 0.69 2.22 0.06 0.15 

19 -58.13 1.45 1.89 0.64 0.70 

20 -39.13 0.81 1.81 0.09 0.02 

21 48.38 0.76 1.76 0.11 0.30 

22 35.88 1.00 1.53 0.42 0.26 

Legend 

Lat: Latitude of the pattern based on Figure 2 label’s position; 

𝑳𝑾𝑬𝒄𝒐𝒗: Average covariance between the standardized GRACE-FO temporal pattern and the original 

GRACE(-FO) dataset over the 98th percentile envelope shown in Figure 2;  

𝑪𝑽𝒔𝒕𝒅: Percentage of captured variance for the standardized GRACE(-FO) dataset; 

|𝝆(#, 𝑺𝑳𝑨)|: Absolute Pearson’s correlation coefficient between the GRACE(-FO) temporal 

pattern # and the temporal projection of the SLA dataset onto the GRACE(-FO) Varimax coordinate system; 

|𝝆(#,𝑾𝑺𝑪)|:  Idem for the WSC dataset; 

In bold: significant correlation coefficient 𝜌 from the surrogate testing 

*: The values are potentially biased at the pole as the SLA spatial domain is limited to +/- 66N° 

 205 

 206 

 207 
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 208 

Figure 3. Cross-correlation analysis between the PCA-Varimax GRACE(-FO) patterns and (a) the climate indices 209 

Arctic Oscillation (AO), Antarctic Oscillation (AAO), Multivariate ENSO Index version 2 (ENSO MEIv2), North 210 

Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO); and (b) the auto-correlation of the pattern. The 211 

results are presented on 25-segments clocks. Only significant dependencies are colored, based on 200 ARp 212 

surrogates comparison. 12 o'clock indicates instantaneous correlation. The left quadrants relate to negative lags of 213 

the climate indices (a) or the pattern (b), counterclockwise down to -12 months. The right quadrants contain positive 214 

lags clockwise up to +12 months. 215 

5 Discussion 216 

Overall, the significant patterns show spatial consistency, often matching bathymetric 217 

contours (Fig. 2), or having their limits over bathymetric features, in line with the known ability 218 

of oceanic slopes to trap barotropic transients (e.g., Rohith et al., 2019). Yet, relationships with 219 

the SLA and WSC are not systematically significant (Table 1, |𝜌(#, 𝑆𝐿𝐴)|,|𝜌(#,𝑊𝑆𝐶)|), 220 

whereas such a relation is expected from the literature (Fu & Davidson, 1995). This implies 221 

significant remote forcing of SLA by WSC, as already evidenced in some regions of the world 222 

Ocean (e.g., Afroosa et al., 2021; Rohith et al., 2019), and/or a prominent fraction of SLA 223 

variability that is baroclinic in nature. In Fig. 4, correlations between WSC and load patterns 224 

from Table 1 are plotted against latitude. The linear fit shows an overall poleward increase of 225 

correlation in both hemispheres, from insignificant values close to the equator to values above 226 

0.2 at higher latitudes.  227 
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 228 

Figure 4. Graphical analysis of the statistics of Table 1. The correlation |ρ(#,WSC)| between temporal PCA-229 

Varimax GRACE(-FO) patterns and temporal projections of WSC onto the PCA-Varimax system is reported against 230 

the absolute latitude of spatial pattern maximum’s concentration (Fig. 2). Markers with a black edge have a 231 

significant correlation. The markers’ size and color respectively map to 𝐶𝑉𝑠𝑡𝑑 and 𝐿𝑊𝐸𝑐𝑜𝑣. The pattern index from 232 

Fig. 2 is labeled in blue. 233 

The mid-latitude patterns #11, #16, #17, and #19 in the Southern Ocean and #15 in the 234 

North Pacific Ocean echo to a highly significant driving by regional winds, associated with 235 

strong mass variations (𝐿𝑊𝐸𝑐𝑜𝑣) with a dominant high frequency (Fig. 3.b). Their load patterns 236 

concentrate at medium and high latitudes, as discussed in the literature (Piecuch et al., 2013, 237 

2015; Quinn & Ponte, 2012).  238 

At the North Pole, the high absolute variance Arctic pattern #12 owes its coherence to the 239 

semi-enclosed character of the Arctic Ocean and is wind-driven. It has been the subject of 240 

substantial literature (Fukumori et al., 2015; Peralta-Ferriz et al., 2014; Volkov & Landerer, 241 

2013). In the Northern Atlantic, the Artic pattern is related to #22, as WSC plays an important 242 

role in the mass exchange among the Arctic and North Atlantic Ocean (Fukumori et al., 2015, 243 

and Fig. S4 to S6). This pattern #22 extends to the semi-enclosed Canadian lakes and the 244 

Mediterranean Sea. It was discussed in several studies about its link to NAO (Fig. 3) or the 245 

Atlantic Meridional Overturning Circulation (AMOC) (Fukumori et al., 2007; Piecuch & Ponte, 246 

2015; Tsimplis et al., 2013; Volkov et al., 2019). It shows a smaller consistency (𝐶𝑉𝑠𝑡𝑑) in Table 247 

1 and Fig. 4, probably due to its extensive and fragmented spatial distribution. To the South, 248 

pattern #13 appears to be driven by the wind stress and statistically related to the AMOC as well 249 

as to NAO and AO (Landerer et al., 2015; Piecuch & Ponte, 2014b, and Fig. 3). 250 

In the North Pacific, patterns #12 and #21 are connected through the Bering Strait 251 

(Peralta-Ferriz & Woodgate, 2017; Volkov & Landerer, 2013). The subpolar pattern #15 was 252 

reported in previous studies focusing on interannual, annual, or seasonal scales (Bingham & 253 

Hughes, 2006; Chambers, 2011; Chambers & Willis, 2008; Song & Qu, 2011; Song & Zlotnicki, 254 

2008). Accordingly, #15 would be coupled with pattern #7, which is forced by the ENSO-255 
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influenced northern subtropical Pacific gyre (Fig. 3). This same pattern #7 is an area of maxima 256 

in terms of dynamic topography subject to steep changes in sea level, with the mass component 257 

related to the variability of Easterlies (Fig. S5) and of the North Equatorial Current over decadal 258 

timescales (Moon & Song, 2013; Qiu & Chen, 2010; Timmermann et al., 2010), in phase with 259 

PDO (Cheng et al., 2013, and Fig. 3). 260 

In the southern hemisphere, besides the afore-mentioned highly significant patterns (#11, 261 

#16, #17, and #19), the South Pacific Gyre pattern #5 correlates significantly with SLA and 262 

WSC (Table 1 and Fig S4 to S6). Together with the Indian Ocean (~#2), this area is exposed to 263 

heat uptake and decadal sea-level change where heat transfers are related to Ekman pumping 264 

(Llovel & Terray, 2016; Roemmich et al., 2016; Volkov et al., 2017). It is also associated with 265 

transport from the Antarctic Bottom Water into the Pacific Ocean (Mazloff & Boening, 2016; 266 

Volkov et al., 2017). The South Indian Ocean pattern (~#2) involves both barotropic and 267 

baroclinic processes at the annual scale (Piecuch & Ponte, 2014a). Other recent studies present 268 

further evidence of barotropic processes at intraseasonal timescale over the Indian Ocean 269 

(Afroosa et al., 2021; Manche et al., 2021; Rohith et al., 2019). In a region close to our pattern 270 

#14, a sea-level trend associated with the Atlantic subtropical gyre has been shown by Drouin et 271 

al. (2021) and Ruiz-Etcheverry & Saraceno (2020). The Antarctic Pattern #8 is driven by the 272 

zonal wind stress (Fig. S5.i) driving meridional Ekman transport and related to the AAO climate 273 

index (Ponte & Quinn, 2009, and Fig. 3). This pattern has been well documented and studied 274 

using the GRACE dataset (Feng et al., 2013; Liau & Chao, 2017; Ponte & Piecuch, 2014). 275 

Despite their spatially significant dynamical consistency, the remaining ten patterns (#0 276 

to #4, #6, #9, #10, #18, and #20) are not significantly associated with WSC based on our 277 

indicator (Table 1, Fig. 4), which does not mean that they are uncorrelated with the wind stress, 278 

as the correlation is often significant over remote regions located outside patterns’ boundaries 279 

(see Fig. S4 to S6). They are also less documented in the literature. Still, Pattern #20, 280 

corresponding to the eddy-influenced area of the Agulhas current, is discussed in Kuhlmann et 281 

al. (2013), whereas patterns #10 and #18 correspond to the Coral Sea and the Tasman Sea, both 282 

bordered by steep bathymetric features to the East and the North, and known to be influenced by 283 

remote WSC from the Maritime Continent at intra-seasonal timescales (Afroosa et al., 2021). 284 

The mechanisms of patterns #0, #3, and #6 remain unclear and may be related to the barotropic 285 

response of OBP to remote WSC. They show long memory and are related to ENSO (MEIv2) or 286 

PDO (Fig. 3). Besides, these patterns may not be physically large enough (𝐿𝑊𝐸𝑐𝑜𝑣) to allow 287 

identification of significant correlations with WSC and SLA, especially for the weakest ones in 288 

the Equatorial Atlantic (#1, #9). Possibly, a part of the OBP response in GRACE(-FO) could be 289 

baroclinic but this phenomenon should be marginal (<0.4 cm) and mostly annual (Piecuch, 2013, 290 

2015; Piecuch et al., 2015; Piecuch & Ponte, 2014a).  291 

6 Conclusions 292 

We have shown that the spatiotemporal decomposition method, Principal Component 293 

Analysis followed by a Varimax rotation (PCA-Varimax), can objectively evidence in a global 294 

analysis the GRACE(-FO) patterns that are usually extracted by Empirical Orthogonal Function 295 

(EOF) or PCA alone within arbitrary regional bounding boxes. The resulting 23 significant 296 

interannual and intraseasonal GRACE(-FO) patterns are spatially coherent and scattered over the 297 

global ocean, with mass deviations ranging between 0.54 cm and 2.15 cm. Thirteen of them 298 

significantly relate to wind stress curl and echo to barotropic OBP variations documented in the 299 
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literature. Conversely, the remaining ten patterns are mainly intertropical and are less 300 

documented in the published literature, although our analysis shows that they represent coherent 301 

dynamical modes with centimetric mass signatures. Those in the Pacific Ocean are mainly 302 

related to the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO). In 303 

addition to this empirical analysis, the patterns we have identified would benefit from being 304 

studied from a mechanistic perspective, e.g., relying on Ocean Global Circulation Models. In this 305 

sense, these particular patterns call for dedicated ocean modeling investigations. 306 
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Introduction  

Table S1 shows the GRACE(-FO) time steps used for the analysis reported in the main 

manuscript. In the original dataset, the time steps are expressed in days after 

01/01/2002. Table S1 expresses the dates converted into MM-dd hh:mm format. Some 

time-steps do not point to the middle of the month. They highlight months for which 

days have been asymmetrically discarded during processing (see 

https://grace.jpl.nasa.gov/data/grace_months/ ). For the analysis, days with a time lag of 

more than 5 days have been ignored (gray in table S1). Out of the initial 190, we, 

therefore, considered 175 time-steps.  

Table S2 shows the complete list of climate indices, with download links, that were 

correlated to the temporal patterns of the GRACE(-FO) patterns. All data were acquired 

from https://psl.noaa.gov/data/climateindices/list/, which also provides a brief 

description and the appropriate references for the indices. 

Figure S1 shows the 23 spatial patterns of the PCA-Varimax retrieved modes. 

Figure S2 shows the 23 temporal patterns of the PCA-Varimax retrieved modes. 

Figures S3 to 6 show the spatial pattern of Pearson’s correlation between PCA-Varimax 

GRACE(-FO) temporal pattern (Fig. S2) and Sea-Level Anomaly (SLA), Wind Stress Curl 

(WSC), zonal wind stress (𝜏𝑥), and meridional wind stress (𝜏𝑦). 

Figure S7 presents the correlation analysis results, same as Figure 3 in the main 

manuscript, however, for the full list of climate indices reported in Table S2.  



Month 
Year 

1 2 3 4 5 6 7 8 9 10 11 12 

2002    0 
04-17 
12:00 

1 
05-10 
12:00 

  2 
08-16 
12:00 

3 
09-16 
00:00 

4 
10-16 
12:00 

5 
11-16 
00:00 

6 
12-16 
12:00 

2003 7 
01-16 
12:00 

8 
02-15 
00:00 

9 
03-16 
12:00 

10 
04-16 
00:00 

11 
05-11 
12:00 

 12 
07-16 
12:00 

13 
08-16 
12:00 

14 
09-16 
00:00 

15 
10-16 
00:00 

16 
11-16 
00:00 

17 
12-16 
12:00 

2004 18 
01-07 
12:00 

19 
02-17 
00:00 

20 
03-16 
12:00 

21 
04-16 
00:00 

22 
05-16 
12:00 

23 
06-16 
00:00 

24 
07-16 
12:00 

25 
08-16 
12:00 

26 
09-16 
00:00 

27 
10-16 
12:00 

28 
11-16 
00:00 

29 
12-16 
12:00 

2005 30 
01-16 
12:00 

31 
02-15 
00:00 

32 
03-16 
12:00 

33 
04-16 
00:00 

34 
05-16 
12:00 

35 
06-16 
00:00 

36 
07-16 
12:00 

37 
08-16 
12:00 

38 
09-16 
00:00 

39 
10-16 
12:00 

40 
11-16 
00:00 

41 
12-16 
12:00 

2006 42 
01-16 
12:00 

43 
02-15 
00:00 

44 
03-16 
12:00 

45 
04-16 
00:00 

46 
05-16 
12:00 

47 
06-16 
00:00 

48 
07-16 
12:00 

49 
08-16 
12:00 

50 
09-16 
00:00 

51 
10-16 
12:00 

52 
11-16 
00:00 

53 
12-16 
12:00 

2007 54 
01-16 
12:00 

55 
02-15 
00:00 

56 
03-16 
12:00 

57 
04-16 
00:00 

58 
05-16 
12:00 

59 
06-16 
00:00 

60 
07-16 
12:00 

61 
08-16 
12:00 

62 
09-16 
00:00 

63 
10-16 
12:00 

64 
11-16 
00:00 

65 
12-16 
12:00 

2008 66 
01-16 
12:00 

67 
02-15 
12:00 

68 
03-16 
12:00 

69 
04-16 
00:00 

70 
05-16 
12:00 

71 
06-16 
00:00 

72 
07-16 
12:00 

73 
08-16 
12:00 

74 
09-16 
00:00 

75 
10-16 
12:00 

76 
11-16 
00:00 

77 
12-16 
12:00 

2009 78 
01-16 
12:00 

79 
02-15 
00:00 

80 
03-16 
12:00 

81 
04-16 
00:00 

82 
05-16 
12:00 

83 
06-16 
00:00 

84 
07-16 
12:00 

85 
08-16 
12:00 

86 
09-16 
00:00 

87 
10-16 
12:00 

88 
11-16 
00:00 

89 
12-16 
12:00 

2010 90 
01-16 
12:00 

91 
02-15 
00:00 

92 
03-16 
12:00 

93 
04-16 
00:00 

94 
05-16 
12:00 

95 
06-16 
00:00 

96 
07-16 
12:00 

97 
08-16 
12:00 

98 
09-16 
00:00 

99 
10-16 
12:00 

100 
11-16 
00:00 

101 
12-14 
12:00 

2011  102 
02-18 
12:00 

103 
03-16 
12:00 

104 
04-16 
00:00 

105 
05-16 
12:00 

 106 
07-18 
12:00 

107 
08-16 
12:00 

108 
09-16 
00:00 

109 
10-16 
12:00 

110 
11-01 
12:00 

 

2012 111 
01-01 
00:00 

113 
02-15 
12:00 

114 
03-16 
12:00 

115 
04-04 
12:00 

 116 
06-16 
00:00 

117 
07-16 
12:00 

118 
08-16 
12:00 

119 
09-13 
00:00 

 120 
11-18 
12:00 

121 
12-16 
12:00 

112 
01-16 
12:00 

2013 122 
01-16 
12:00 

123 
02-14 
00:00 

 124 
04-21 
00:00 

125 
05-16 
12:00 

126 
06-16 
00:00 

127 
07-16 
12:00 

  128 
10-16 
12:00 

129 
11-16 
00:00 

130 
12-16 
12:00 

2014 131 
01-09 
12:00 

 132 
03-16 
12:00 

133 
04-16 
00:00 

134 
05-16 
12:00 

135 
06-13 
00:00 

 136 
08-16 
12:00 

137 
09-16 
00:00 

138 
10-16 
12:00 

139 
11-17 
00:00 

 

2015 140 
01-22 
12:00 

141 
02-15 
00:00 

142 
03-16 
12:00 

143 
04-16 
00:00 

  145 
07-15 
12:00 

146 
08-16 
12:00 

147 
09-14 
12:00 

  148 
12-23 
12:00 

144 
04-27 
00:00 

2016 149 
01-16 
12:00 

150 
02-14 
00:00 

151 
03-16 
12:00 

 152 
05-20 
00:00 

153 
06-16 
00:00 

154 
07-15 
12:00 

155 
08-21 
12:00 

  156 
11-27 
12:00 

157 
12-24 
12:00 

2017 158 
01-21 
00:00 

 159 
03-31 
12:00 

160 
04-24 
12:00 

161 
05-12 
12:00 

162 
06-11 
00:00 

      

2018     GRACE 
FO 

163 
06-16 
00:00 

164 
07-10 
00:00 

  165 
10-31 
12:00 

166 
11-16 
00:00 

167 
12-16 
12:00 

2019 168 
01-16 
12:00 

169 
02-14 
00:00 

170 
03-16 
12:00 

171 
04-16 
00:00 

172 
05-16 
12:00 

173 
06-16 
00:00 

174 
07-16 
12:00 

175 
08-16 
12:00 

176 
09-16 
00:00 

177 
10-16 
12:00 

178 
11-16 
00:00 

179 
12-16 
12:00 

2020 180 
01-16 
12:00 

181 
02-15 
12:00 

182 
03-16 
12:00 

183 
04-16 
00:00 

184 
05-16 
12:00 

185 
06-16 
00:00 

186 
07-16 
12:00 

187 
08-16 
12:00 

188 
09-16 
00:00 

189 
10-16 
12:00 

  

 

Table S1. GRACE time indices: 190 Time stamps in TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2 (ix MM-

dd hh:mm). Missing values are left blank. Dropped time-stamps are in gray.   

  



Abbrev. Name Download Link 

aao Antartic Oscillation https://psl.noaa.gov/data/correlation/aao.data  

ammsst Atlantic Meridional Mode (SST) https://psl.noaa.gov/data/timeseries/monthly/AMM/ammsst.data  

ammwind Atlantic Meridional Mode (wind) https://psl.noaa.gov/data/timeseries/monthly/AMM/ammwind.data  

amonsm Smoothed Atlantic Multidecadal Oscillation https://psl.noaa.gov/data/correlation/amon.sm.data  

amonus Unsmoothed Atlantic Multidecadal Oscillation  https://psl.noaa.gov/data/correlation/amon.us.data  

ao Arctic Oscillation https://psl.noaa.gov/data/correlation/ao.data  

atltri Atlantic Tripole SST EOF https://psl.noaa.gov/data/correlation/atltri.data  

CAR_ersst Caribbean Index (CAR) https://psl.noaa.gov/data/correlation/CAR_ersst.data  

censo Bivariate ENSO Timeseries https://psl.noaa.gov/data/correlation/censo.data  

dmi Dipole Mode Index https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data  

dmieast Dipole Mode Index (East) https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data  

dmiwest Dipole Mode Index (West) https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data  

ea Eastern Asia/Western Russia https://psl.noaa.gov/data/correlation/ea.data  

eofpac Tropical Pacific SST EOF https://psl.noaa.gov/data/correlation/eofpac.data  

epo East Pacific/North Pacific Oscillation https://psl.noaa.gov/data/correlation/epo.data  

espi ENSO precipitation index https://psl.noaa.gov/data/correlation/espi.data  

glaam Globally Integrated Angular Momentum https://psl.noaa.gov/data/correlation/glaam.data.scaled  

gmsst Global Mean Lan/Ocean Temperature Index https://psl.noaa.gov/data/correlation/gmsst.data  

ipotpi Tripole Index for the Interdecadal Pacific Oscillation https://psl.noaa.gov/data/timeseries/IPOTPI/ipotpi.hadisst2.data  

meiv2 Multivariate ENSO Index Version 2 https://psl.noaa.gov/enso/mei/data/meiv2.data  

nao North Atlantic Oscillation https://psl.noaa.gov/data/correlation/nao.data  

nina1anom Extreme Eastern Tropical Pacific SST https://psl.noaa.gov/data/correlation/nina1.anom.data  

nina34anom East Central Tropical Pacific SST https://psl.noaa.gov/data/correlation/nina34.anom.data  

nina3anom Eastern Tropical Pacific SST https://psl.noaa.gov/data/correlation/nina3.anom.data  

nina4anom Central Tropical Pacific SST https://psl.noaa.gov/data/correlation/nina4.anom.data  

noi Northern Oscillation Index https://psl.noaa.gov/data/correlation/noi.data  

np North Pacific Pattern https://psl.noaa.gov/data/correlation/np.data  

NTA_ersst North Tropical Atlantic Index https://psl.noaa.gov/data/correlation/NTA_ersst.data  

oni Oceanic Niño Index https://psl.noaa.gov/data/correlation/oni.data  

pacwarm Pacific Warmpool Region https://psl.noaa.gov/data/correlation/pacwarm.data  

pdo Pacific Decadal Oscillation https://psl.noaa.gov/data/correlation/pdo.data  

pna Pacific North American Index https://psl.noaa.gov/data/correlation/pna.data  

qbo Quasi-Biennial Oscillation https://psl.noaa.gov/data/correlation/qbo.data  

sahelrain Sahel Standardized Rainfall https://psl.noaa.gov/data/correlation/sahelrain.data  

soi Southern Oscillation Index https://psl.noaa.gov/data/correlation/soi.data  

solar Solar Flux https://psl.noaa.gov/data/correlation/solar.data  

swmonsoon SW Monsoon Region rainfall (NM and AZ) https://psl.noaa.gov/data/correlation/swmonsoon.data  

tna Tropical Northern Atlantic Index https://psl.noaa.gov/data/correlation/tna.data  

tni Trans-Niño Index https://psl.noaa.gov/data/correlation/tni.data  

tsa Tropical Southern Atlantic Index https://psl.noaa.gov/data/correlation/tsa.data  

whwp Western Hemisphere warm pool https://psl.noaa.gov/data/correlation/whwp.data  

wp Western Pacific Index https://psl.noaa.gov/data/correlation/wp.data  

 

Table S2.  Full list of climate indices and download links 

  

https://psl.noaa.gov/data/correlation/aao.data
https://psl.noaa.gov/data/timeseries/monthly/AMM/ammsst.data
https://psl.noaa.gov/data/timeseries/monthly/AMM/ammwind.data
https://psl.noaa.gov/data/correlation/amon.sm.data
https://psl.noaa.gov/data/correlation/amon.us.data
https://psl.noaa.gov/data/correlation/ao.data
https://psl.noaa.gov/data/correlation/atltri.data
https://psl.noaa.gov/data/correlation/CAR_ersst.data
https://psl.noaa.gov/data/correlation/censo.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data
https://psl.noaa.gov/data/correlation/ea.data
https://psl.noaa.gov/data/correlation/eofpac.data
https://psl.noaa.gov/data/correlation/epo.data
https://psl.noaa.gov/data/correlation/espi.data
https://psl.noaa.gov/data/correlation/glaam.data.scaled
https://psl.noaa.gov/data/correlation/gmsst.data
https://psl.noaa.gov/data/timeseries/IPOTPI/ipotpi.hadisst2.data
https://psl.noaa.gov/enso/mei/data/meiv2.data
https://psl.noaa.gov/data/correlation/nao.data
https://psl.noaa.gov/data/correlation/nina1.anom.data
https://psl.noaa.gov/data/correlation/nina34.anom.data
https://psl.noaa.gov/data/correlation/nina3.anom.data
https://psl.noaa.gov/data/correlation/nina4.anom.data
https://psl.noaa.gov/data/correlation/noi.data
https://psl.noaa.gov/data/correlation/np.data
https://psl.noaa.gov/data/correlation/NTA_ersst.data
https://psl.noaa.gov/data/correlation/oni.data
https://psl.noaa.gov/data/correlation/pacwarm.data
https://psl.noaa.gov/data/correlation/pdo.data
https://psl.noaa.gov/data/correlation/pna.data
https://psl.noaa.gov/data/correlation/qbo.data
https://psl.noaa.gov/data/correlation/sahelrain.data
https://psl.noaa.gov/data/correlation/soi.data
https://psl.noaa.gov/data/correlation/solar.data
https://psl.noaa.gov/data/correlation/swmonsoon.data
https://psl.noaa.gov/data/correlation/tna.data
https://psl.noaa.gov/data/correlation/tni.data
https://psl.noaa.gov/data/correlation/tsa.data
https://psl.noaa.gov/data/correlation/whwp.data
https://psl.noaa.gov/data/correlation/wp.data


 

Figure S1. The 23 Spatial PCA-Varimax patterns (a to w) from the decomposition of GRACE(-FO) data.   

  



 

Figure S2. The 23 standardized temporal PCA-Varimax patterns (a to w) from the decomposition of GRACE(-FO) data. Line colors match 

with the pattern color of Figure 2 in the main manuscript. 

  



 

Figure S3. Spatial pattern of Pearson’s correlation between PCA-Varimax GRACE(-FO) temporal pattern (Figure S2) and Sea Level 

Anomaly (SLA). Black dots represent significant correlations based on surrogates of the GRACE(-FO) temporal patterns. The cyan 

contour is the 98th percentile envelope of the corresponding spatial GRACE(-FO) PCA-Varimax pattern (Figure S1). 

  



 

Figure S4. Spatial pattern of Pearson’s correlation between PCA-Varimax GRACE(-FO) temporal pattern (Figure S2) and Wind Stress Curl 

(WSC). Black dots represent significant correlations based on surrogates of the GRACE(-FO) temporal patterns. The cyan contour is the 

98th percentile envelope of the corresponding spatial GRACE(-FO) PCA-Varimax pattern (Figure S1). 

  



 

Figure S5. Spatial pattern of Pearson’s correlation between PCA-Varimax GRACE(-FO) temporal pattern (Figure S2) and zonal wind 

stress (𝜏𝑥). Black dots represent significant correlations based on surrogates of the GRACE(-FO) temporal patterns. The cyan contour is 

the 98th percentile envelope of the corresponding spatial GRACE(-FO) PCA-Varimax pattern (Figure S1). 

  



 

Figure S6. Spatial pattern of Pearson’s correlation between PCA-Varimax GRACE(-FO) temporal pattern (Figure S2) and meridional wind 

stress (𝜏𝑦). Black dots represent significant correlations based on surrogates of the GRACE(-FO) temporal patterns. The cyan contour is 

the 98th percentile envelope of the corresponding spatial GRACE(-FO) PCA-Varimax pattern (Figure S1). 

  



 

Figure S7. Cross-correlation analysis between the PCA-Varimax GRACE(-FO) patterns and (a) the climate indices of Table S2 and (b) the 

auto-correlation of the pattern. Same method and display as for Figure 3 in the main manuscript. 


