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Abstract

Streamflow prediction is a long-standing hydrologic problem. Development of models for streamflow prediction often requires

incorporation of catchment physical descriptors to characterize the associated complex hydrological processes. Across different

scales of catchments, these physical descriptors also allow models to extrapolate hydrologic information from one catchment

to others, a process referred to as “regionalization”. Recently, in gauged basin scenarios, deep learning models have been

shown to achieve state of the art regionalization performance by building a global hydrologic model. These models predict

streamflow given catchment physical descriptors and weather forcing data. However, these physical descriptors are by their

nature uncertain, sometimes incomplete, or even unavailable in certain cases, which limits the applicability of this approach.

In this paper, we show that by assigning a vector of random values as a surrogate for catchment physical descriptors, we can

achieve robust regionalization performance under a gauged prediction scenario. Our results show that the deep learning model

using our proposed random vector approach achieves a predictive performance comparable to that of the model using actual

physical descriptors. The random vector approach yields robust performance under different data sparsity scenarios and deep

learning model selections. Furthermore, based on the use of random vectors, high-dimensional characterization identifies the

uniqueness of catchments, thereby improving regionalization performance in gauged basin scenario when physical descriptors

are uncertain, or insufficient.
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Abstract13

Streamflow prediction is a long-standing hydrologic problem. Development of mod-14

els for streamflow prediction often requires incorporation of catchment physical descrip-15

tors to characterize the associated complex hydrological processes. Across different scales16

of catchments, these physical descriptors also allow models to extrapolate hydrologic in-17

formation from one catchment to others, a process referred to as “regionalization”. Re-18

cently, in gauged basin scenarios, deep learning models have been shown to achieve state19

of the art regionalization performance by building a global hydrologic model. These mod-20

els predict streamflow given catchment physical descriptors and weather forcing data.21

However, these physical descriptors are by their nature uncertain, sometimes incomplete,22

or even unavailable in certain cases, which limits the applicability of this approach. In23

this paper, we show that by assigning a vector of random values as a surrogate for catch-24

ment physical descriptors, we can achieve robust regionalization performance under a25

gauged prediction scenario. Our results show that the deep learning model using our pro-26

posed random vector approach achieves a predictive performance comparable to that of27

the model using actual physical descriptors. The random vector approach yields robust28

performance under different data sparsity scenarios and deep learning model selections.29

Furthermore, based on the use of random vectors, high-dimensional characterization im-30

proves regionalization performance in gauged basin scenario when physical descriptors31

are uncertain, or insufficient.32

1 Introduction33

In hydrology, streamflow prediction is essential for the forecast of water supply, floods,34

and droughts. It is a challenging task because of interacting hydrological processes (Beven,35

1989, 1987; Freeze & Harlan, 1969; Freeze, 1974), spatial-varying parameter uncertain-36

ties (Beven & Binley, 1992), and limited observations (Blöschl & Sivapalan, 1995). These37

challenges have motivated the advancement of hydrologic models from simple to com-38

plex. Encompassing more underlying hydrological processes, a complex hydrologic model39

includes more hydrologic parameters and detailed catchment physical descriptors to ad-40

dress the complexities (Beven, 2001, 2002) and associated scaling issues (McDonnell et41

al., 2007). But parameterizing such a complex hydrologic model for any individual catch-42

ment becomes difficult when hydrologic data are unavailable. Thus, regionalization, which43

is defined as “how to extrapolate hydrologic information from one area to another” (Blöschl44

& Sivapalan, 1995), specifies a research topic of modeling catchment runoff prediction45

using hydrologic information from multiple catchments, which will be given a brief back-46

ground review in section 2.47
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Regionalization heavily relies on physical descriptors, such as, soil porosity, catch-48

ment elevation, etc. These physical descriptors account for hydrologic complexities and49

regional differences and are thus intensively used in regionalized hydrologic models, ei-50

ther process-based or data-driven.51

Recently, Kratzert et al. (2019a) have presented a regionalized data-driven hydro-52

logic model that greatly outperforms local process models. Specifically, they trained a53

single deep learning model (LSTM, abbreviated for the Long Short-Term Memory net-54

works) for 531 basins in the US CAMELS (Catchment Attributes and Meteorology for55

Large Sample studies) dataset (Addor et al., 2017) and show that it is able to greatly56

outperform the well-established process-based models (e.g., SAC-SMA (Burnash, 1995),57

VIC (Liang et al., 1994), etc) that have been individually parameterized for each basin,58

and thus offer a better route to regionalization (Kratzert et al., 2019a).59

Building such a model requires streamflow observation and weather forcings for many60

basins with diverse physical descriptors. It also relies upon the fact that all relevant basin61

physical descriptors are available and of high quality. Performance of such models may62

suffer if some of the descriptors are missing or are incorrect/uncertain. Our paper presents63

an approach where it is possible to build a data driven regionalized model even in the64

absence of any basin specific physical descriptors. It is able to use the weather forcing65

and streamflow data from a set of basins to build a global model without having any in-66

formation about the physical descriptors of individual basins (For the background in-67

formation of the global model, please see section 2). However the structure of this model68

is identical to the one used by Kratzert et al.(2019a), as it only replaces the individual69

catchment physical descriptors by random vectors that simply provide a distinct char-70

acterization to each basin. Our results show that this approach provides global models71

at least as good as the ones produced using the knowledge of all available physical de-72

scriptors. But the performance is much better relative to the scenario where some of phys-73

ical descriptors are missing and/or are incorrect/uncertain.74

We note that the random vector and physical descriptor approaches are not in con-75

flict and in fact give comparable results. In fact, for ungauged basins, Kratzert et al.’s76

model can be used (Kratzert et al., 2019b) and shows that physical descriptors serve as77

a bridge between gauged basins and ungauged basins. In our approach, the random vec-78

tors do not connect gauged basins and ungauged basins due to the lack of streamflow79

observation for the ungauged basins.80

The paper is organized as follows. Section 2 introduces relevant background infor-81

mation, in particular the regionalization. Section 3 explains the details of the random82

vector method as well as the deep learning architecture involved. This section also ex-83

plains the dataset and the set up of the experiment. The experiment includes an exhaus-84

tive analysis on the applicability of our proposed random vector methods under various85

data scarce situations and modeling structures. Section 4 lists our benchmarking results86

and the exhaustive analysis of the random vector applicability. Section 5 highlights sci-87

entific implications from our results and suggests a few future directions. Section 6 sum-88

marizes the scientific conclusions.89

2 Background90

Performing hydrologic prediction from multiple catchments, regionalization is closely91

related to the problem addressed in “prediction in ungauged basins” (PUB) (Sivapalan92

et al., 2003), and most literature uses“PUB” and “regionalization” interchangeably (Pagliero93

et al., 2019; de Lavenne et al., 2019; Choubin et al., 2019; Ecrepont et al., 2019; Zamoum94

& Souag-Gamane, 2019; Prieto et al., 2019; Guo et al., 2021; Alipour & Kibler, 2018).95

An underlying assumption behind regionalization is that similar basins have similar hy-96

drologic behaviors. This implies that differences/similarities across catchments can be97
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classified into physical descriptors such as, climatology, geology, geomorphlogy, etc, with98

the assumption that incorporating these descriptors will improve streamflow prediction.99

In other words, hydrological behaviors as predicted from models for different catchments100

shall be based on similarities with regional information that is characterized by catch-101

ment physical descriptors. These approaches have been given a comprehensive review102

in particular for PUB (Guo et al., 2021; Samaniego et al., 2017; Beck et al., 2016) and103

can be grouped into model-dependent (process-driven) and model-independent (data-104

driven) methods, where ’model’ denotes process-based models (Prieto et al., 2019).105

Model-dependent methods give hydrologic predictions from process-based models.106

Information from the existing process-based hydrologic model is transferred to ungauged107

catchments based on certain criteria that link gauged to ungauged catchments. In prac-108

tice, since those existing hydrologic models are calibrated to a specific catchment, this109

relies on some strategy of information transfer. A typical application of a model-dependent110

method implements a well-calibrated local hydrological process-based model and appro-111

priate connections among catchments. In the review paper by Guo et al. (2021), model-112

dependent methods can be classified into three categories: similarity based methods, re-113

gression based methods, and hydrological signature-based methods or some hybrid of each.114

The model-independent approaches are data driven and do not rely on physical pro-115

cesses to simulate streamflow. Data driven methods learn how to predict streamflow from116

weather drivers and catchment physical descriptors directly without involving any hy-117

drological process descriptions. Depending on either one or multiple catchments of data118

used, the data driven model will learn localized or regionalized hydrologic behaviors re-119

spectively. A local model is referred to as the model using hydrologic data from only one120

catchment. By contrast, when the hydrology data from multiple catchments are used and121

those catchments cover a wide range of all available hydrologic behaviors, the model is122

called a global model.123

For data driven methods, one family is the neural network (Besaw et al., 2010; Hsu124

et al., 1995). Besaw built an artificial neural network on one catchment and transferred125

to another similar catchment without adaptation. It yielded unsatisfactory predictive126

performance (Besaw et al., 2010). In recent years, the Long Short-Term Memory (LSTM)127

networks (Hochreiter & Schmidhuber, 1997), one sub-family of neural networks, have shown128

burgeoning applicability in streamflow prediction tasks (Kratzert et al., 2018). LSTM129

based methods predict streamflow from antecedent weather drivers. Kratzert et al. (2019a)130

have shown that using physical descriptors will train a universal global LSTM based model131

that outperforms process-based individual models given the same forcing data. One of132

the two versions of the LSTM developed by Kratzert et al. provides additional physi-133

cal interpretation, that is, basin similarities are preserved in the well trained machine134

learning (ML) model. In gauged scenarios, Feng (Feng et al., 2020) embedded a global135

LSTM within a data integration framework (using predicted discharge from previous day)136

and found that it could marginally reduce prediction bias in regions with high flow auto-137

correlation. Frame showed that global LSTM outperforms the National Water Model (NWM)138

(Frame et al., 2020). In the poorly gauged scenarios, Ma (Ma et al., 2021) showed that139

fine tuning a global LSTM learned from data rich basins improved predictive performance140

in poorly gauged basins in contrast to local models learned solely from limited data.141

It bears emphasis that regionalization approaches, either model-dependent and model-142

independent, rely heavily on physical descriptors. However, to obtain a satisfactory re-143

gionalization performance, physical descriptors need to be sufficient such that process144

complexities and associated scaling issues (Blöschl & Sivapalan, 1995) are encompassed.145

Otherwise, catchment scale prediction will be handicapped by the lack of sufficient in-146

formation. For instance, modeling hydrological behaviors at the small scale can be ac-147

complished by incorporating local processes with a few parameters. However, the incor-148

porated processes and parameterization need to be adjusted, either made simpler or more149

complex, to model hydrologic behaviors at a larger scale. The same adjustment also oc-150
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curs when modeling hydrological behaviors between global scale and local scale, upstream151

and downstream. Accounting for these complexities and heterogeneities, sufficient phys-152

ical descriptors must be involved. For example, Drost and Mudersbach found that merely153

incorporating landuse data with no additional physical descriptors provided little improve-154

ment to streamflow prediction and therefore may not benefit regionalization (Drost &155

Mudersbach, 2021). However, due to the complexity of each catchment, such a complete156

characterization to resolve hydrologic complexity is difficult and challenging (Beven, 2020).157

This issue will be even more pronounced in applying models to data sparse regions where158

physical descriptors are limited, or even unavailable.159

3 Methods160

3.1 Long Short-Term Memory Network161

Long short-term memory network (LSTM) (Hochreiter & Schmidhuber, 1997) is162

a special type of recurrent neural network designed especially for modeling time series163

predictions. Indeed, LSTM is the state-of-the-art deep learning model to predict stream-164

flow (Kratzert et al., 2018, 2019a; Frame et al., 2020; Feng et al., 2020; Ma et al., 2021).165

In contrast to a traditional recurrent neural network, LSTM avoids gradient vanishing166

or explosion (Bengio et al., 1994) and therefore preserves long term temporal dependen-167

cies for time series forecasting. This is achieved by using the gating architecture, which168

explicitly controls information flow and updates system hidden features. This memoriz-169

ing mechanism and long term dependency allows LSTM to be well suited to model stream-170

flow on a catchment scale. In particular, weather inputs feed and alter catchment response171

in various temporal scales. Although flooding season yields quick surface water response,172

the streamflow in winter periods in northern climates tends to have much longer response173

time because of involved snow and snowmelt processes. With the capability of the LSTM174

to account for long term dependency, it automatically learns these streamflow behav-175

iors from data. Furthermore, it has been shown that some of the hidden features learned176

by the LSTM resemble snow processes (Kratzert et al., 2018).177

An LSTM maps a sequence of time series input into the response variable. In this
paper, we consider an LSTM based architecture that uses input features (x) spanning
T days to predict the observed discharge on the last day of the T-day window. The in-
volved equations of an LSTM models are given below.

i [t] = σ(Wix[t] +Uih[t− 1] + bi) (1)

f [t] = σ(Wfx[t] +Ufh[t− 1] + bf ) (2)

g[t] = tanh(Wgx[t] +Ugh[t− 1] + bg) (3)

o [t] = σ(Wox[t] +Uoh[t− 1] + bo) (4)

c [t] = f [t]⊙ c [t− 1] + i [t]⊙ g [t] (5)

h [t] = o [t]⊙ tanh(c [t]) (6)

where σ(·) is sigmoid function, tanh(·) is the hyperbolic tangent function, and
⊙

means178

element wise multiplication. W, U, b are model parameters, which will be learned dur-179

ing optimization. Other variables in equations represent basic computation units involved180

in the calculation. As gating variables, i[t], f [t], and o[t] are input gate, forget gate, and181

output gate, respectively. They filter the information from the current and the previ-182

ous time stamp, then combine them to update cell state c[t]. c[t] underlines the intu-183

ition that motivates the LSTM design. c[t] is maintained serially and embeds the tem-184

poral contextual information, which is characterized in g[t], to then update the hidden185

representation h[t]. The stacked input x enters the LSTM sequentially and alters the186

information inherited from the previous timestamp. The previous information is stored187

in cell states c[t] and hidden states h[t], both of which characterizes the system mem-188

ory. Cell states c[t] and hidden states h[t] are initialized as zero vectors and then grad-189
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ually modified until the final date in T -day time windows is reached. After a linear trans-190

formation, x[t] infuses with previous hidden state h[t−1] and then is non-linearly trans-191

formed in i[t], f [t], g[t], and o[t] via a corresponding activation function. The previous192

timestamp’s cell state c[t− 1] is updated with f [t] and then merges with an element-193

wise product of i[t] and g[t], which injects new information, to form a new cell state c[t].194

After another hyperbolic tangent activation, this new cell state c[t] merges with o[t] and195

therefore updates the current hidden state h[t]. After the consecutive alteration of T time196

stamps, the final hidden state h[T ] is then transformed into the target variable, which197

in our case is streamflow.198

In the context of regionalization based streamflow prediction, both dynamic weather
variables and static catchment physical descriptors as formulated in equation 7:

Qt = f(xd,xs) (7)

where Qt is streamflow, xd is weather input vector, and xs is a d-dimensional vector of199

physical descriptors. It bears emphasis that for a given catchment, xs is assumed to be200

temporally static, while xd is temporally dynamic. We assume catchment physical de-201

scriptors do not vary with the time. In this paper, we consider two widely used LSTM202

based models as illustrated in Figure 1. Namely, these two models are EA-LSTM and203

CT-LSTM (Kratzert et al., 2019a), where ‘EA’ denotes entity awareness while ‘CT’ de-204

notes concatenation.These models differ in terms of how xs is added into the network.205

In CT-LSTM physical descriptors are added before LSTM cell, whereas in EA-LSTM,206

they are used within the cell. For clarifications, the CT-LSTM refers to the normal LSTM207

used in Kratzert et al.’s paper (2019a). We add prefix ‘CT’ to ‘LSTM’ to emphasize that208

xs is concatenated with weather drivers before entering the LSTM cell.

Figure 1: LSTM family illustration. Figure is from “Towards learning universal, regional,
and local hydrological behaviors via machine learning applied to large-sample datasets”
by Kratzert et al. (2019a), Hydrology and Earth System Sciences, 23, 5092 (Kratzert et
al., 2019a)

209

3.1.1 CT-LSTM210

In CT-LSTM,at each timestamp, the dynamic weather input xd is concatenated
with the physical descriptors xs to form the model input x[t]:

x [t] =
[
xs,xd[t]

]
(8)

This model input enters the LSTM (equation 1 to 6), gets updated via the calculation211

of gates, and yields the final output - streamflow prediction. Through the calculation,212

physical descriptors are not placed within the LSTM cells or gates.213
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3.1.2 EA-LSTM214

First proposed in (Kratzert et al., 2019a), EA-LSTM (Entity Aware LSTM) uses
a modified version of LSTM where input gate takes physical descriptors as input instead
of input features as previously shown in Equation 1. The key idea here is to explicitly
empower the LSTM to customize its learning ability for catchment-wise adaptation.

i = σ(Wix
s + bi) (9)

f [t] = σ(Wfx
d[t] +Ufh[t− 1] + bf ) (10)

g[t] = tanh(Wgx
d[t] +Ugh[t− 1] + bg) (11)

o[t] = σ(Wox
d[t] +Uoh[t− 1] + bo) (12)

c[t] = f [t]⊙ c[t− 1] + i[t]⊙ g[t] (13)

h[t] = o[t]⊙ tanh(c[t]) (14)

As illustrated in Figure 1b and also equations 9 to 14, xs enters the LSTM via in-215

put gates, learns customized embedding (equation 9) for each basin, and updates the cell216

states recurrently at each timestamp. It therefore explicitly controls what modules in217

LSTM respond to different catchments. This learned embedding will merge with other218

gates (f [t], g[t], o[t]), whose alteration are contributed by only dynamic weather inputs219

xd. This separated role of xs and xd in EA-LSTM splits the contributions towards stream-220

flow prediction from xs in contrast to xd. Additionally, the learned embedding affords221

an opportunity to examine cross-catchment response in a global model, which was shown222

to be close to the cross-catchment analysis using true basin characteristics (Kratzert et223

al., 2019a).224

3.2 Data225

Our experiments use the continental hydrology dataset, CAMELS (Catchment At-226

tributes and Meteorology for Large Sample studies) (Addor et al., 2017). The CAMELS227

data set contains continuous meteorologic input, observed streamflow data, and catch-228

ment dependent spatially varying but temporally physical descriptors. CAMELS encom-229

passes a total of 671 watersheds across the contiguous US. Due to some watershed de-230

lineation errors (Addor et al., 2017), we followed the suggestion from Kratzert et al. (2019a)231

to select 531 basins whose watershed boundaries are confirmed to be correctly delineated232

without digital errors. Each watershed is supplied with observed discharge and climate233

forcing data from remote sensing products (Daymet(Thornton et al., 2020), NLDAS(Xia234

et al., 2012), MAURER(Maurer et al., 2002)), climate models, and data assimilation with235

daily temporal resolution. Additionally, a corresponding hydrological model (SAC-SMA.236

Sacramento Soil Moisture Accounting model) is well calibrated for each watershed and237

its physical simulation is also available. Adopting such a wide distribution of watersheds,238

CAMELS provides a comprehensive and detailed physical description of watersheds. Se-239

lecting only a subset of those features as suggested by Kratzert et al. (2019a), we choose240

27 physical descriptors from climatology, geomorphology and geology perspectives to char-241

acterize and discriminate across watersheds (Table A1 in the Appendix A. ).242

These 27-d catchment physical descriptors are static vectors (xs) characterizing243

each catchment. We selected meteorological data from an updated version of MAURER244

as model dynamic input (xd), which are daily precipitation, daily minimum air temper-245

ature, daily maximum air temperature, average short-wave radiation, and vapor pres-246

sure. The observed discharge from USGS is our target variable (QO). Both daily me-247

teorological weather inputs and discharge data cover a reasonably long record spanning248

from 1980 to 2014. The data for each catchment was partitioned into training and test-249

ing periods while building and evaluating deep learning models. Some experiments in-250

volved using a subset of training years or a subset of basins, therefore, we specify a de-251

fault assessment scheme as to train a global model using data from 531 basins with 20252
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years of data. Under this assessment scheme, the training period starts from October253

1st 1999 and ends on September 30th 2008. For a consistent evaluation, through all ex-254

periments, the testing period ranges between October 1st 1989 and September 30th 1999.255

3.3 General setup256

Among different LSTM-based models, We apply the same optimization algorithm257

(Adam optimizer (Kingma & Ba, 2017)) for training purposes to determine model pa-258

rameters. Model parameters are learned from data and are thus continuously updated259

during training. The machine learning implementation also needs to specify hyper-parameters,260

which are set before training without learning from data. During training, hyper-parameters261

will not be updated. A few essential hyper-parameters include the look back period T262

and the dimension of hidden states h[t]. Adopting the previous work’s specification (Kratzert263

et al., 2019a) of these hyper-parameters, we determine T to be 270 days and the dimen-264

sion of hidden states to be 256. For the details on other hyper-parameters (e.g., learn-265

ing rate, batch size), please read the Appendix B in Kratzert et al.’s paper (2019a).266

Machine learning models have uncertainties in model parameters after training. Ini-267

tialized randomly, model parameters will often be optimized to different values during268

training. In simplistic terms, different model initializations will yield different models269

after training. Accounting for uncertainty, it has been shown that ensemble results from270

multiple model runs will facilitate the overall model performance (Kratzert et al., 2019a).271

Therefore, the streamflow prediction result in all following sections is an ensemble mean272

of five model realizations. For instance, the prediction of the EA-LSTM using physical273

descriptors is an average of five model predictions, which are optimized from different274

initializations. Note that for the Gaussian vector experiment, the randomness originates275

from two sources, including model initializations and the Gaussian vector assignment.276

For each of the five runs, their Gaussian vectors are assigned with different values.277

Training deep learning models also requires a specification of the objective func-
tion. To account for cross-catchment variance, which is not considered in the commonly
used mean squared error option, we use a smooth-joint NSE function (Kratzert et al.,
2019a). The smooth-joint NSE function is shown below.

NSE∗ =
1

B

B∑
b=1

N∑
t=1

(Qm
t −Qo

t )
2

(s(b) + ϵ)2
(15)

where B is the number of catchments, N is the number of daily data (days) for one catch-278

ment, which is indexed by b. Qm
t is the predicted discharge at timestamp t(1 ≤ t ≤279

N), while Qm
t is the corresponding observed discharge. s(b) is the standard deviation280

of the Qo
t in basin b during training periods. ϵ is a constant term (ϵ = 0.1) to avoid po-281

tential loss function explosion issue, which happens for catchments with extremely low282

s(b).283

For consistent model comparison, we’re using the NSE score instead of RMSE (root
mean squared error) to evaluate streamflow prediction. NSE is a metric suited partic-
ularly to evaluate hydrological predictions.

NSE = 1− ΣT
t=1(Q

m
t −Qo

t )
2

ΣT
t=1(Q

o
t − Q̄o)2

(16)

Qm is predicted discharge, Qo is observed discharge, Q̄o is the mean of observed discharge.284

A NSE score of 1 indicates a perfect time series prediction.285

3.4 State of the Art286

In terms of data-driven regionalization methods, CT-LSTM and EA-LSTM have287

been shown to perform satisfactorily for the streamflow prediction task (Kratzert et al.,288
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2019a). To remind readers of the state-of-the-art performance which relies on the phys-289

ical descriptors as shown in Table A1, in Figure 2, we show the testing NSE score for290

each catchment in the CAMELS dataset.291

Table 1: State of the art LSTM based model. Mean and median refer to the summary
statistics of the testing NSE scores across all 531 catchments in CAMELS.

Model Mean Median

Local LSTM 0.543 0.576

Global LSTM w/o static vectors 0.529 0.634

Global EA-lstm with 27-d descriptors 0.698 0.733

Figure 2: State of the art global regionalization performance using LSTM based deep
learning architecture.

Local LSTM uses hydrologic data from only one catchment and does not need phys-292

ical descriptors (xs) to combine data from multiple catchments. Thus, for 531 catchments,293

there are 531 Local LSTM models. On the other hand, global LSTM refers to a global294

model learned from the training data of 531 catchments. While the Global LSTM merges295

data from multiple catchments but does not use physical descriptors to adapt the net-296

work for different basins, the Global EA-LSTM with 27-d descriptors is also a global model297

trained and tested using all 531 catchments but it takes advantage of 27-d physical de-298

scriptors to perform robust regionalization. As shown in Table 1, both the mean and me-299

dian of its NSE score is the highest (0.698 and 0.733 respectively) among the three model300

options. In this gauged prediction scenario, cross-catchment information sharing ben-301

efits global training and thus elevates predictive performance. These results have been302

previously shown by Kratzert et al. (2019a).303

3.5 Proposed Approach304

In this paper, our aim is to answer the question “How to perform regionalization305

when catchment physical descriptors are unavailable, uncertain, or of insufficient dimen-306

sion?” To address this issue, we propose to assign a vector of random values as a sur-307

rogate for missing physical descriptors. Since a set of random vectors doesn’t have any308

similarity structure (i.e. correlation between any two random vectors is zero), they are309

a suitable baseline to incorporate the fact we don’t have any prior information on catch-310

ment similarity due to missing physical descriptors. By using these random vectors, we311
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enable the deep learning network to account for heterogeneity in catchment responses312

while sharing data across multiple basins.313

Furthermore, the proposed concept of using random vectors as a baseline can also314

be used to evaluate the efficacy of known catchment physical descriptors. In other words,315

the performance difference between using random vectors and physical descriptors can316

imply the quality of physical descriptors. In section 4, we provide an extensive analy-317

sis of this concept in the context of streamflow prediction. In this paper, we consider two318

different strategies to create random vectors (Figure 3) as described below.319

3.5.1 Gaussian Random Vectors320

Figure 3: Random vector illustration. (a) refers to the d-dimensional Gaussian vector,
while (b) illustrates the one-hot vector concept.

Figure 3a is a visual representation of the Gaussian vector (d-dimension) for all catch-321

ments. Random colors represent random numbers drawn from Gaussian distribution. In322

this strategy we assign d-dimensional vectors to each catchment where the vector val-323

ues are drawn from a Gaussian distribution with zero mean and unit standard deviation.324

In other words, we randomly map each basin to a point in d-dimensional feature space.325

3.5.2 One-hot Vectors326

Figure 3b illustrates the one-hot vector representation. Each catchment is associ-327

ated with a binary vector that is 1 for one dimension and is zero elsewhere. The dimen-328

sion of the one-hot vectors equals the number of catchments. These one-hot vectors orig-329

inated from the binary vectors used to encode categorical variables in regression, where330

in our case, the variable is catchment ID. There is one such one-hot binary vector for each331

basin and these vectors are orthogonal to each other. It bears emphasis that there’s no332

freedom for the user to determine the dimension of the one-hot vector after the number333

of catchments in a global model is known. For k basins, the length of the one-hot vec-334

tor for each basin is k. Although the one-hot vector does not involve random numbers,335

the randomness in this random vector assignment is from basin order. Regardless of how336

basins are sorted, one-hot vector assignment assures each basin will be assigned uniquely.337

4 Experiments and Results338

We evaluate the effectiveness of our random vector approach with a series of ex-339

periments. First, in Section 4.1 we compare the random vector performance to that of340

the state-of-the-art EA-LSTM model. Next, we investigate the applicability of the ran-341

dom vector approach under varying data richness scenarios. In Section 4.2, we create a342

data inadequacy scenario by limiting the number of basins used in the training data. We343

also examine the impact of limiting the number of years of training data, as demonstrated344

by the experiment in Section 4.3. To further assess the generalizability of the random345

–9–



manuscript submitted to Water Resources Research

vector approach, we evaluate other model settings in Section 4.4 and present our anal-346

ysis of the performance of the CT-LSTM model using random vectors along with the data347

inadequacy scenario. Additionally, we compare the efficacy of the EA-LSTM and CT-348

LSTM models using random vectors. In Section 4.5, we explore the practical implica-349

tions of employing random vectors to model catchment complexities where physical de-350

scriptors for the system are incomplete. Finally, we show how the use of high-dimensional351

representation of catchments improves regionalization by distinguishing them from one352

another.353

Implementing these experiments needs to specify a selective combination of the model354

architecture (EA-LSTM or CT-LSTM) and static vectors(xs). Options for xs include355

27-d physical descriptors, random vectors, and mixing Gaussian vectors. For the sim-356

plicity of representing the results, we’ll use acronyms to denote corresponding results of357

those experiments, that is, the combination of model architecture and xs. These acronyms358

are shown in the table 2. Models for the incomplete physical systems are not given acronyms.359

The comparisons across different models also involve statistical significance tests. Through-360

out the rest of this paper, we conducted pairwise statistical significance tests (Wilcoxon361

signed-rank tests) to evaluate model results differences. The statistical significance is eval-362

uated using a 0.05 p-value threshold.363

Table 2: This acronym table denotes the acronyms of model implementations. Combi-
nations of model architecture and xs specifications are shown in their acronyms. The
“d” in these notations represent the dimension of xs, which is only needed to specify the
models using Gaussian vectors. For instance, EG-512 means EA-LSTM model using 512-d
Gaussian vectors. ‘*’ means the corresponding models were not implemented.

xs EA-LSTM CT-LSTM

27-d physical descriptors EP CP

Random
vectors

Gaussian d-dimension EG-d CG-d
One-hot EO CO

Mixed Gaussian d-dimension vectors EM-d *

4.1 Effectiveness of Random vectors364

To evaluate the applicability of our proposed random vectors method in regional-365

ization, we first compared the predictive performance of a global model using random366

vectors (Gaussian or one-hot) against that using physically meaningful 27-d descriptors367

under EA-LSTM settings. The baseline model is the EP(Kratzert et al., 2019a) to show368

the state-of-the-art predictive performance. Substituting the 27-d physical descriptors369

with random vectors, our proposed method is implemented as either EG-d or EO.370

Implementing Gaussian vectors requires a specification of d, which is determined371

empirically. The cumulative density function plot of the NSE score, shown in Figure 4372

suggests using 512 (black solid line) as the Gaussian vector dimension because its test-373

ing performance is optimal compared to others.374

The scatter plot (Figure 5) shows the testing NSE of the EG-512 and the EO ver-375

sus the EP respectively across all 531 basins. Among these results, testing NSE scores376

less than -0.1 are forced to be -0.1 for illustration purposes. For each scatter plot, a cu-377

mulative density function (cdf) plot of NSE is also given. The EG-512 scatter plot is slightly378

upper skewed, the cdf of the EG-512 is also slightly right skewed compared to the EP.379

Figure 5a and Figure 5c shows that the EG-512 prediction performance is comparable380
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Figure 4: Cumulative density functions of the NSE score across different d Gaussian vec-
tors for the EG-d. The X-axis is NSE score, which is truncated between 0.4 and 1 for a
better illustration. The black dashed line represents the testing score corresponding to the
EP. The black solid line corresponds to the EG-512, which yields the best performance in
the EG-d.

Figure 5: Performance comparison cross the EP, EG-512 and EO. Model architecture is
EA-LSTM. (a) shows the NSE score scatter plot that compares EG-512 and EP while its
cdf comparison is shown in (c). (b) shows the comparison between EO and EP while its
cdf comparison figure is (d).

to, if not slightly better than, the EP (statistically significant). In Table 3, the mean and381

median of the EG-512 is 0.711 and 0.746, both of which yield slightly more satisfactory382

results than the EP. The same comparison between the EO and the EP also yields a sim-

Table 3: Performance comparison of the EA-LSTM using random vectors against phys-
ical descriptors. Statistical summaries across all 531 basins are in column ‘mean’ and
‘median’. The EG-512 and the EO are statistically different than the EP at 0.05 level.

Catchment static vectors Mean Median

27-d physical vectors (EP) 0.698 0.733

512-d random vectors (EG-512) 0.711 0.746

one-hot vectors (EO) 0.707 0.745

383

ilar trend. The mean and median of NSE score for the EO is 0.707 and 0.745. The EO384

reaches comparable prediction performance to the EP (statistically different at 0.05 level).385
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For the statistical comparison of Table 3 and all following tables (Table 4 to Table 10),386

their corresponding p-value can be found in the supplemental information (Table S1 to387

Table S9).).388

As we can see, using random vectors gives performance comparable to using known389

physical descriptors. Furthermore, the random vector approach leads to significantly bet-390

ter results when compared to other strategies that do not use known physical descrip-391

tors (i.e. Figure 2, building local models or trivial merging of data from multiple basins).392

Hence, the random vector approach is a viable solution when catchment characteristics393

are not available. This performance is evaluated using the standard setting (section 3.2,394

10 years training data from 531 basins). Although such abundant training data shows395

slightly elevated testing performance, the proposed random vector method might still396

be inapplicable in data poor situations. To assess the impact of data sparsity, we con-397

ducted an exhaustive analysis on the different data inadequacy scenarios with either fewer398

number of basins or fewer number of training years.399

4.2 Effect of number of basins400

For this situation we’re creating a data inadequacy scenario where the training data401

consists of a limited set of k basins. Such a group of limited basins forms an insufficient402

global hydrologic dataset to train an LSTM based model. This experiment aims to an-403

swer the question ”Given only k basins without physical descriptors, will the proposed404

random vector strategy be applicable for regionalization?” We vary k from 10 to 50 to405

100 and follow the default assessment scheme as outlined in Section 3.2.406

To generate the basin sets, we randomly select k basins as a group repetitively with-407

out replacement until all basins are selected. When the remaining basins cannot form408

a group with exactly the size k, those basins are either merged with the last group or409

form a stand-alone group as long as its order of magnitude approximates to k. For in-410

stance, when selecting 10-basin group, we select 53 groups in total, and the last group411

contains 11 basins. Similarly, the last group (11th group) in the 50-basin group has 31412

basins. The last group (fifth group) in 100-basin group has 131 basins.413

For the 53 groups of 10-basin groups, we compare the predictive performance us-414

ing random vectors relative to the performance of the model using 27-d physical descrip-415

tor. This comparison is illustrated in Figure 6. The X-axis denotes one-hot vector and416

Gaussian vectors (varying d). Each category shows a box plot of performance compar-417

ison across basins. Median (blue dots), 25th percentile and 75th percentiles (upper and418

lower box line) are shown for each box. Black hollow circles outside the upper and lower419

box lines are outliers outside the specified quantile range. The Y-axis is the NSE score420

improvement for each individual catchment compared to the 27-d physical descriptors.421

The red line indicates the threshold for improved performance. A box plot whose NSE422

distribution is skewed to positive NSE score improvement (above the threshold line) in-423

dicates a general performance improvement in that random vector category. Both the424

EG-256 and the EG-512 show an performance improvement more pronounced than other425

Gaussian vector dimensions and one-hot vectors. They both improve the NSE score on426

an average of 0.082 (or in median 0.066). The reference performance of the EP is reported427

at the table 4. The mean predicting NSE score is 0.308 while the median is 0.317, both428

show that the 10-basin group downgrades the model performance because fewer basins429

provide only limited training data and thus constrains model learning generalizable hy-430

drologic behavior.431

For the 50-basin group and 100-basin group, the plot of NSE improvement is shown432

in Figure 7 except that we plot only the median of each case for a succinct visualization.433

The red line also marks the performance improvement threshold. Table 4 summarizes434

the NSE score improvement for all cases. As data from a greater number of basins are435

involved, the model performance gradually increases from 0.317 (10-basin) to 0.599 (50-436
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Figure 6: Random vectors implementation for 10-basin group EA-LSTM. Categories
along the X-axis represent random vectors, including one-hot vectors (length of 10) and
Gaussian vectors (dimension d varies from 2 to 1024). The Y-axis shows the individual
basin NSE score improvement of the random vector in contrast to its corresponding EP,
which is trained using the same basins. A zero NSE improvement indicates an improve-
ment threshold marked by the red line. Within each category, 531 NSE improvement
scores are distributed in the box plot where outliers exceeding 25th and 75th quantile are
marked by black hollow circles.

Figure 7: Random vectors implementation for k-basin group EA-LSTM. k varies from 10
to 50 to 100. The median in Figure 6 are blue lines. Within each random vector category
as shown in X-axis, the median of the individual-basin NSE score improvement in con-
trast to EP for k basins is plotted. Orange dots are the 50-basin group while green color
represents 100-basin group

basin) to 0.656 (100-basin), all of which are lower than 0.733, the performance of the model437

using all 531 basins. Note that both the trend and the performance are comparable to438

the previous work, where the impact of the training data inadequacy on the EA-LSTM439

performance is explored (Gauch et al., 2021). Table 4 and Figure 6 show a consistent440

performance improvement comparison. Regardless of how limited the number of basins,441

the Gaussian vector strategy (with an optimal dimension of either 256 or 512) slightly442

improves the 27-d physical vectors. In particular, the performance improvement from443

the Gaussian vectors becomes saturated when d reaches 256 or 512. For 50-basin group,444
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Table 4: The individual-basin performance improvement of the EG-d and the EO to the
EP. Note that the EP row does not show the NSE improvement, instead it shows the
NSE score performance, which is the red dashed line performance in Figure 6 and 7. The
largest performance improvement as indicated by the positive largest numbers is in bold
font.

k-basin group 10 50 100 10 50 100
d mean median

Gaussian
vector
(EG-d)

2 -0.073 -0.085 -0.09 -0.054 -0.076 -0.077
8 -0.051 -0.061 -0.058 -0.033 -0.053 -0.046
16 -0.032 -0.031 -0.03 -0.019 -0.029 -0.025
32 -0.015 -0.01 -0.008 -0.01 -0.007 -0.004
64 0.014 0.018 0.025 0.01 0.016 0.021
128 0.047 0.045 0.039 0.035 0.036 0.031
256 0.082 0.062 0.053 0.066 0.054 0.044
512 0.082 0.055 0.053 0.066 0.048 0.046
1024 0.06 0.038 0.039 0.04 0.036 0.034

one-hot (EO) -0.066 -0.035 -0.03 -0.043 -0.029 -0.022
27-d physical descriptors (EP) 0.308 0.569 0.620 0.317 0.599 0.656

the average of the single-basin NSE improvement is 0.062 at 256-d while the median of445

the single-basin NSE improvement is 0.54. For 100-basin group, EG-512 improves the446

NSE score slightly with a mean of 0.053 while the median is 0.046, which is approximately447

the same to the extent of what EG-256 improves. When the dimension of the Gaussian448

vector becomes a higher 1024-d, the performance improvement begins to degrade as in-449

dicated by a smaller NSE improvement. In summary, we show that random vector ap-450

proach shows robust performance even with fewer number of catchments in the dataset451

and hence can be used in situations where only few catchments are available.452

4.3 Effect of number of training years453

In addition to the number of basins, another perspective on data inadequacy is the454

number of training years. Varying the training years from 1 to 2 to 5 years, we sought455

the answer to this question “Given only a few years of training data, will the proposed456

random vector strategy be applicable for regionalization? ” An LSTM model is trained457

for all 531 basins with a limited number of years. The EG-d is tested against the EP un-458

der three sparse data cases, which are 1 year of data (October 1st 2007 to September459

30th 2008), 2 years of data (October 1st 2006 to September 30th 2008) and 5 years of460

data (October 1st 2003 to September 30th 2008). Models are tested for the same years461

(October 1st 1989 to September 1st 1999) for consistent comparison.462

Our previous empirical analysis indicates an optimal specification of d (Gaussian463

vector dimension) to be 512 (Section 4.1), so the implementation of basin random vec-464

tors includes either 512-d Gaussian vectors or one-hot vectors. The Figure 8 shows that465

both random vector strategies lead to prediction performance similar to the case utiliz-466

ing 27-d physical descriptors. For the reference, as the number of years of training data467

increases, the performance of EP also increases from 0.632 (1 year) to 0.697 (two years)468

to 0.766 (five years). This increasing trend was also identical to what Gauch et al. showed.469

In particular, the EG-512 yields a more satisfactory performance than the EO. As shown470

in Table 5, a NSE score improvement (both in mean and median) is observed when im-471

plementing 512-d Gaussian vectors, while the NSE score improvement is only observed472

when using 5 years of training data when the one-hot vector strategy is applied. The re-473
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sults show that even when training data are limited, randomly assigned vectors are still474

able to learn as well as 27-d physical features.475

Table 5: The impact of the number of training years on the performance improvement of
random vectors for EA-LSTM. “Mean” and “Median” refer to statistics of the individual-
basin NSE score improvement in relative to EP. The EP row does not show NSE score
improvement, instead it shows the NSE score performance, which is the reference perfor-
mance in Figure 8. Positive numbers mean that random vectors yield better predictive
performance.

Number of training years 1 2 5

Gaussian 512-d (EG-512)
mean 0.013 0.052 0.026
median 0.009 0.041 0.019

one-hot (EO)
mean -0.025 -0.003 0.015
median -0.023 -0.005 0.013

27-d physical descriptors (EP)
mean 0.399 0.628 0.719
median 0.632 0.697 0.766

Figure 8: The impact of the number of training years on EA-LSTM. The Y-axis repre-
sents the individual-basin NSE score difference between the corresponding category in
X-axis and the predictive performance using 27-d physical descriptors (EP). The red line
indicates performance improvement threshold.

4.4 Performance of alternative models476

As outlined in the section 3.1, both EA-LSTM and CT-LSTM adopt xs in differ-477

ent ways. From previous sections (section 4.1, 4.2, and 4.3), we’ve shown the efficacy of478

the random vectors in EA-LSTM in both data rich and data poor scenarios. It remains479

unknown whether random vectors are applicable to the CT-LSTM. Experiments of this480

section are designed to clarify this doubt.481

We first evaluated the performance of random vectors under the CT-LSTM set-482

ting to answer this question “Under different model architectures, will the proposed ran-483

dom vector strategies be applicable for regionalization?”. We then examined the region-484
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alization performance of random vectors across the EA-LSTM and the CT-LSTM to an-485

swer the question “Which random vector strategy is better suited for regionalization, Gaus-486

sian vectors or one-hot vectors?” Last, we selected the CT-LSTM as the model archi-487

tecture for an exhaustive analysis on the data inadequacy cases in terms of basin num-488

bers.489

4.4.1 Random vectors in the CT-LSTM490

For the CT-LSTM, the Gaussian vector implementation needs to specify the op-491

timal vector dimension d. Figure 9 shows that the CG-16 yields the most satisfactory492

performance among different Gaussian vector dimension options. Therefore, we empir-493

ically select 16 as the optimal Gaussian dimension to represent the CG-d performance494

(Figure 10c). Note that the optimal 16-d of the CG-d is less than the optimal 512-d of495

the EG-d. We’ll explain this in the section 5.1 in “Discussion” section. Using 27-d phys-496

ical descriptors, CP achieves performance comparable and slightly better than EP (Fig-497

ure 10a and Table 6). The median NSE score performance improves from 0.733 (CP) to498

0.744 (CO). Random vector options (CO and CG-16) slightly outperform 27-d physical499

descriptors (CP). The median of testing NSE performance improves from 0.744 to 0.754500

when using the one-hot vector strategy, while the CG-16 elevates the performance to 0.752.501

Figure 9: Cumulative density function plots of the NSE score across different d Gaussian
vectors for the CT-LSTM. The X-axis is truncated between 0.4 and 1 for a better illus-
tration. The black dashed line represents the testing score of the CP, the black solid line
corresponds to the optimal 16-d performance among the Gauusian vector groups (CG-16).

Table 6: Random vector comparison cross different models (The CT-LSTM based random
vector performance is statistically different from the CP at 0.05 level).

models Mean Median

EP 0.698 0.733

CP 0.715 0.744
CO 0.720 0.754

CG-16 0.717 0.752
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Figure 10: Predicted performance comparison of a random vector implementation in CT-
LSTM (CO and CG-16) in contrast to CT-LSTM using 27-d physical descriptors (CP).
(a) is the comparison between CP and EP; (b) is the comparison between CO and CP; (c)
is the comparison between CG-16 and CP.

Although the slight improvement of the CO and the CG-16 in contrast to the CP502

imply the applicability of random vectors in the CT-LSTM, data abundance has always503

been an important factor impacting the machine learning model performance. To con-504

solidate the argument that CT-LSTM with random vectors, especially one-hot vectors,505

yields better performance consistently under various data richness scenarios, we repeated506

the experiments outlined in section 4.2 for the CT-LSTM. Training data are limited by507

the number of basins.508

Table 7: The improvement of random vectors over 27-d physical features in the CT-
LSTM. “Mean” and “Median” refer to statistics of NSE score improvement for individual
basins in relative to the CP. Note that the CP row shows the NSE value for the CP, in-
stead it shows the NSE score performance, which is the reference performance in Figure
11 and 12. The most satisfactory performance is in bold font: 32-d Gaussian vector, 64-d
Gaussian vector, and one-hot vector. For 10-basin and 50-basin group, their NSE perfor-
mance difference between random vectors and the CP counterpart is significantly different
at 0.05 level, while the NSE difference comparison at 100-basin group does not show sta-
tistical significance.

k-basin group 10 50 100 10 50 100
d mean median

Gaussian
vector
(CG-d)

2 -0.079 -0.073 -0.074 -0.075 -0.063 -0.063
8 -0.055 -0.031 -0.024 -0.050 -0.028 -0.023
16 -0.037 -0.015 -0.007 -0.037 -0.018 -0.010
32 -0.022 -0.006 0.004 -0.023 -0.008 0.001
64 -0.023 -0.004 0.002 -0.021 -0.006 0.000
128 -0.041 -0.019 -0.019 -0.039 -0.016 -0.003
256 -0.074 -0.059 -0.033 -0.072 -0.048 -0.026
512 -0.103 -0.125 -0.094 -0.097 -0.114 -0.083
1024 -0.134 -0.188 -0.174 -0.129 -0.191 -0.171

one-hot (CO) -0.046 -0.007 -0.005 -0.042 -0.005 0.001
27-d physical descriptors (CP) 0.454 0.655 0.684 0.481 0.687 0.709

Figure 11 exhibits a box plot showing the NSE improvement for the 10-basin group509

using the CT-LSTM architecture. Any point above the red line (NSE score improvement510

threshold) indicates a performance improvement in contrast to 27-d physical descriptors.511
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Figure 11: Impacts of random vectors on CT-LSTM for a 10-basin group. Categories
on the X-axis represent random vectors, including one-hot vectors (length of 10) and
Gaussian vectors (dimension d varies from 2 to 1024). The Y-axis show the NSE score im-
provement for individual basin of the random vectors in contrast to the CP. A zero NSE
improvement indicates no performance improvement marked by the red line.

In the 10-basin group category, the optimal Gaussian d for the CG-d is lower than that512

of the EG-d. The optimal Gaussian vectors performance is comparable to that of one-513

hot vectors. To obtain a general insight, we varied k from 10 to 50 to 100 and therefore514

produced the following result in Figure 12 and Table 7.

Figure 12: A random vector implementation for a k-basin group CT-LSTM. k varies from
10 to 50 to 100. Within each random vector category as shown in X-axis, the median of
NSE improvement score for individual basin in contrast to the CP for k basins is plotted.
Blue dots are 10-basin group, orange dots are 50-basin group, while green color represents
100-basin group

515

Figure 12 shows the median of the NSE improvement using random vectors in the516

CT-LSTM in contrast to the CP. Dots below the red line mean the prediction perfor-517

mance of the corresponding categories is worse than the CP. As the number of catch-518

ments available for training increases, the one-hot vector strategy and optimal Gaussian519

vectors in the CT-LSTM yields performance comparable to the CP. The optimal d for520

the CG-d is either 32 or 64, which is lower than the optimal 512-d in the EG-d. As also521

recognized in Figure 10, this discrepancy of optimal Gaussian d between the CT-LSTM522

and EA-LSTM can be explained by the number of parameters involved in these model523

architectures and we’ll expand this discussion in section 5.1. We point out that these ran-524

dom vector strategies are approximate to but do not marginally exceed the CP perfor-525

mance. In particular, the relative significant performance improvement occurs when us-526

–18–



manuscript submitted to Water Resources Research

ing the one-hot vector in the 100-basin group but to a much lesser extent. Varying k from527

10 to 50 to 100, as more catchments are involved until 531 basins are included, the one-528

hot vector is a preferable random vector strategy for CT-LSTM than Gaussian vectors.529

4.4.2 Best performance of using random vectors530

In the CT-LSTM setting, the above experiments demonstrate that random vector531

strategies still prevail over 27-d physical vectors. The best random vector strategy for532

the CT-LSTM is one-hot vector, while the best random vector method for the EA-LSTM533

is 512-d Gaussian vectors. The preferable random vector strategy varies depending on534

the model setting.535

In a pursuit of model performance when utilizing random vectors, we need to pro-536

vide a practical solution to the question “When implementing random vectors to per-537

form regionalization, shall I use Gaussian vectors or one-hot vectors?”. We next com-538

pared the optimal random vector performance between the CT-LSTM and EA-LSTM.539

Figure 13 shows the testing NSE difference from the various EG-d against the CO. Based540

on the previous result showing that the EO is not as good as EG-d, ‘one-hot’ on X-axis541

(EA-LSTM random vector strategy) is omitted. Figure 13 shows the median of the NSE542

difference for various selections of k basins. All points are below the performance thresh-543

old line, indicating that the CO slightly outperforms EG-d. When implementing the ran-544

dom vector strategy as a surrogate for missing physical descriptors, the best performance545

is obtained when applying CO.546

Figure 13: The performance of EG-d in contrast to the CO for k-basin group. k varies
from 10 to 50 to 100. The Y-axis is the NSE difference score quantifying the performance
of the EG-d (categories in X-axis) relative to the CO for individual basin. The red line
marks no NSE difference. Plotted points are median of the NSE difference across all
basins. For points below the red line, they mean that the CO yields more satisfactory
performance

4.5 Incompleteness of physical descriptors547

So far we considered the scenario where physical descriptors are not available and548

assessed the performance of our random vector approach. In this section, we consider549

a more common regionalization challenge where physical descriptors are incomplete. In-550

complete physical descriptors under-represent a system of catchments and can only help551

regionalization in a limited degree. To tackle this problem, the question becomes “will552

the proposed random vector strategy benefit the model regionalization in this informa-553

tion deficient physical system?” To assess the performance caused by this deficiency, we554

define a physically underrepresented global system in CAMELS where only a subset of555

27-d physical descriptors is used to distinguish basins. We compare the global LSTM us-556
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ing random vectors in contrast to the global model using these insufficiently informative557

descriptors. One extreme case is a system without any static catchment descriptors, which558

has been shown in the section 3.4 (Figure 2).559

Ignoring the model selection differences, we select EA-LSTM for this experiment560

because it explicitly modulates LSTM via static vectors. The EA-LSTM using some sub-561

set of 27-d physical descriptors is trained and compared. EA-LSTM using 9-d climate562

features, 10-d geology features, and 8-d geomorphology features are trained separately563

and compared to the EA-LSTM using random vectors.564

Catchment hydrologic models are formulated to resolve complexity and associated565

scaling issues in hydrological processes. Both issues will require a comprehensive phys-566

ical understanding. From a practical perspective, static physical descriptors (for instance,567

Table A1) can only characterize complex catchments to a limited dimension because a568

sufficient catchment complexity characterization is challenging across scales. In the field569

scale, a hydrological model might characterize local hydrological processes completely,570

but the applicability of this locally built model to a larger basin might fail if the model571

is not adjusted, either simplified (reduce the number of parameters) or made more com-572

plex (enrich physical parameters). Therefore, for the regionalization involving catchments573

at various scales, the question becomes “Are any given physical descriptors sufficient for574

modeling the complexity of catchments?” This question also implies another question:575

“how many physical dimensions do we need for characterizing the complexities of stream-576

flow generation processes?”

Figure 14: The performance of the EG-512 in contrast to EA-LSTM under a physically
incomplete catchment system. Scatter plots show testing NSE scores comparison between
the Y-axis and the X-axis. The y label is EG-512 and is fixed in the above 4 figures. The
X-axis changes from a no physical feature system, a climate feature system, a geology fea-
ture system, to a geo-morphology feature system. The below cumulative density function
plot collects NSE scores together for each category aforementioned. The black line is EG-
512. We also plotted the benchmark performance with sufficient 27-d physical descriptors
(grey solid line, EP) to remind the reader of the performance under a physically sufficient
catchment system.

577
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Table 8: Physical system completeness identification. The most satisfactory performance
is in bold font (EG-512). In contrast to the EP, EG-512 and other physically incomplete
system shows statistically different performance (at 0.05 level).

catchment static vectors Mean Median

(0-d) Without static features 0.529 0.634
512-d Gaussian vectors (EG-512) 0.707 0.745

9-d climate features 0.611 0.665
10-d geology features 0.638 0.679

8-d geomorphology features 0.630 0.680
27-d physical descriptors (EP) 0.698 0.733

To answer these questions, we compared our random vector results to models uti-578

lizing incomplete sets of physical vectors. In Table A1, 27-d physical descriptors are cat-579

egorized into three groups: climate, geology and geo-morphology. Among these, the de-580

scriptors of any single group are an under-representative description for basins. For in-581

stance, 9-d climate descriptors presumably characterize basins less informatively than582

27-d physical descriptors. For this experiment, we choose the EA-LSTM as the model583

structure and use 512-d Gaussian vector as its optimal random vector strategy. Each one584

of the three descriptor subset groups leads to an EA-LSTM under a physically uninfor-585

mative system since complexities are simplified and the system incurs information loss.586

For the extreme case where there are no physical descriptors present, the global model587

is a simple global LSTM without basin characteristics, results of which were shown early588

in section 3.4 (Figure 2).589

In Figure 14, a distribution of scatters above the diagonal line (exactly equal per-590

formance from the methods indicated by axes) indicates that Gaussian 512-d vectors out-591

perform all these physically incomplete conditions. This fact is better illustrated in the592

cumulative density function plot as the distribution of NSE scores is skewed to upper593

tail. Both its mean and median NSE scores are higher than any physically incomplete594

characterization (Table 8). Note that as shown earlier, the EG-512 case reaches compa-595

rable and slightly better performance than EP. This observation also implies that 27-596

d physical vectors are lacking additional physical characterizations.597

4.6 Effectiveness of Distinguishing Basins in the High-dimensional Space598

Missing or incomplete physical descriptors make catchments less distinguishable599

from each other. Even for the assumed complete 27-d physical descriptor, they suffer from600

losing information as heterogeneous catchment systems are spatially simplified. Of the601

27-d physical descriptors, the spatially dependent descriptors are deterministic represen-602

tations of catchments, such as soil porosity, silt fraction, etc. This simplification also re-603

duces the functionality of static vectors to distinguish catchments from each other, which604

might produce disadvantages for regionalization.605

Further, the proposed random vector strategy projects catchments in the high-dimensional606

space. In particular, the EG-512 assigns a Gaussian vector of 512-dimension to catch-607

ments, while the CO uses the 531-d one-hot encoded vector to represent catchments. In608

other words, it seems that characterizing catchments in a high-dimensional space dis-609

tinguishes them from each other and thus improves regionalization. Recognizing this,610

the question becomes: “Can we incorporate 27-d physical descriptors in the high-dimensional611

space? ”612
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We offer two methods to include the 27-d physical descriptors in the high dimen-613

sional space and compare the performance of these methods with the performance of the614

random vector approach. We use EA-LSTM in these experiments rather than CT-LSTM615

because training CT-LSTM increases the computational burden and complicates machine616

learning. Additionally, EA-LSTM explicitly modulates the LSTM architecture. In the617

first method, we concatenate the 27-d physical descriptors with additional Gaussian vec-618

tors to expand the dimension of xs. We refer to this as the mixed Gaussian vector ap-619

proach. In the second method, we create an embedding layer to explicitly project xs into620

a high dimensional space before entering the EA-LSTM cell.621

4.6.1 Mixed Gaussian Vector622

The 27-d physical vectors are augmented with extra dimensions filled by Gaussian623

vectors, which is named as “mixed Gaussian vectors” (denoted as ‘EM’). Catchments624

are gradually more distinguishable as their Gaussian vector dimension increases. These625

appended Gaussian vectors improve the distinctiveness of catchment characterization.626

We define a global system with 64-d, 128-d, 256-d, and 512-d vectors, all of which in-627

clude the 27-d physical descriptors. For instance, for the 64-d xs, besides the 27-d phys-628

ical descriptors, 37-d (64-27=37) vectors are randomly drawn from the Gaussian distri-629

bution.630

Figure 15: Comparison of the performance between Gaussian vectors (EG-d, blue box)
and mixed Gaussian vectors (EM-d, flaxen box). The X-axis is the dimension of the static
vector (from 64 to 1024), while the Y-axis shows the NSE difference in contrast to the EP
for individual basin. The red line specifies the performance improvement threshold. Box
portions above the red line indicate performance improvement.

As shown in Figure 15, compared to the baseline performance, which is the EP, the631

mixed Gaussian vector (EM-d) yields better performance and achieves the maximal per-632

formance improvement at EM-512. On average, the NSE improvement is 0.018. From633

64-d, to 1024-d, all of the EM-d results yield better performance (positive NSE score im-634

provement statistics in Table 9). In contrast to a pure random Gaussian system, given635

the same d Gaussian dimension (blue and flaxen box in the same X-axis category), the636
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Table 9: NSE performance difference of the mixed Gaussian vectors (EM-d) and Gaussian
vectors (EG-d) in contrast to 27-d physical vectors (EP) for individual basin. Positive
scores mean that the EP yielded worse predictive performance (these results are statisti-
cally different from the EP at 0.05 level). The highest value is highlighted in bold.

static vector dimension (d) 64 128 256 512 1024

Gaussian vectors (EG-d)
mean -0.007 0.010 0.010 0.009 0.002
median -0.006 0.002 0.004 0.007 0.000

Mixed Gaussian vectors (EM-d)
mean 0.009 0.013 0.014 0.018 0.009
median 0.004 0.006 0.007 0.011 0.008

EM-d also marginally improves the NSE score. In Table 9, the NSE improvement in ‘Mixed637

Gaussian vectors’ are consistently more pronounced than ‘Gaussian vectors’ across vary-638

ing static vector dimension d. The mixed Gaussian vector leads to marginally better global639

model performance compared to either pure random Gaussian vector system or pure phys-640

ical system. As such, it suggests that when physical descriptors are augmented with Gaus-641

sian vector in a high dimension space, catchments are more distinctively represented, which642

supports and benefits regionalization.643

4.6.2 Additional Embedding644

Besides the mixed Gaussian vector approach, the other method to characterize catch-
ments in a high dimensional space is to create an embedding layer between xs and the
input gate i of the LSTM cell. That is to say, the equation 9 in EA-LSTM is replaced
by 17 and 18:

v = σ(Wvx
s + bv) (17)

i = σ(Wiv + bi) (18)

where v is the embedding layer that xs is mapped into. We chose 512 as the dimension645

of v for its empirical outstanding performance in the EG-512. We first mapped the phys-646

ical descriptors into a 512-d embedding layer (denoted as ‘PEA’). Then as its random647

counterpart when xs is not available, we also experimented to map random vector into648

the embedding layer (denoted as ‘REA’). To preserve the modeling capacity without in-649

cluding additional model parameters, the dimension of the random vectors in the REA650

is still 27.651

Table 10: Performance comparison of the EA-LSTM using additional embedding layers
against previous random vector approaches. Statistical summaries across all 531 basins
are in column ’mean’ and ’median’. This result is statistically different from the EP at
0.05 level.

Catchment static vectors Mean Median

27-d physical descriptors (EP) 0.698 0.733

512-d Gaussian vectors (EG-512) 0.711 0.746

27-d physical descriptors with 512-d embedding (PEA) 0.713 0.753

27-d Gaussian vectors with 512-d embedding (REA) 0.714 0.757
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As shown in Table 10, the mean of testing NSE scores for the ‘PEA’ is 0.713 while652

its median is 0.753. With similar performance, the mean and the median of the testing653

NSE scores for the ‘REA’ is 0.714 and 0.757 respectively. Note that both ‘PEA’ and ‘REA’654

shows slightly better performance than EG-512. In particular, ‘PEA’ and ‘REA’ yields655

comparable performance.656

5 Discussion657

This section is organized as four subsections. The first section (5.1) presents com-658

parison across the experiments in Section 4.1, 4.2, 4.3, 4.4 and shows the presence of an659

optimal large d. The second section (5.2) compares the results in Section 4.5 and 4.6 and660

discusses the regionalization advantage from high-dimensional characterization of catch-661

ments. The third section (5.3) presents the analysis of the embedding layers in both EG-662

512 and EP. It also shows the discussion on what all of our results will imply to under-663

standing catchment similarities and complexities. The forth section (5.4) presents a dis-664

cussion on the impact of our results towards the understanding of deep learning in the665

context of streamflow prediction, and shows one practical utility of random vectors in666

assessing the completeness of physical descriptors. The fifth section (5.5) outlines the667

limitations of the current study and describes possible future directions.668

5.1 Random Vectors669

Results in section 4.1 show that the proposed random vector method achieves a per-670

formance comparable to the state-of-the-art model (Figure 5, Table 3). In other words,671

without any knowledge of physical descriptors, the global LSTM based model using ran-672

dom vectors successfully learns universal hydrologic behavior and sustains benchmark673

streamflow prediction performance. These random vectors retain practical feasibility with-674

out having to obtain any physical descriptions of basins. This is arguably the most sig-675

nificant scientific contribution of this paper.676

The exhaustive analysis from section 4.2, 4.3, and part of 4.4 verifies the applica-677

bility of employing random vectors in data scarce regions. For a limited number of basins678

(Figure 6, 7, 11, 12, Table 4, 7) and a few years of training data (Figure 8), the two sit-679

uations which restrict hydrologic extrapolation across catchments, random vectors are680

still viable for hydrologic regionalization.681

The prediction performance achieved by random vectors varies between the EA-682

LSTM and the CT-LSTM, which we hypothesize is the result of different modulation683

levels in their architectures. Random vectors functionalize as static vectors (xs) that rep-684

resent each basin, from which the LSTM family models modulate its internal computa-685

tion and mapping across neurons for each basin distinctively. That is, for a given weather686

input xd, the global model is aware of which basin the xd data originates from and thus687

modulates how streamflow shall be predicted differently in contrast to other basins. Yet688

this modulation extent likely varies between EA-LSTM and CT-LSTM. CT-LSTM con-689

catenates xs with xd at each timestamp and thus performs a stronger modulation be-690

cause this catchment awareness is passed through all gates in the LSTM. Merely feed-691

ing into the input gate, the EA-LSTM does not modulate the network as well as the692

CT-LSTM but it ensures xs is involved in the temporal context update (memorizing and693

forgetting). Across those different LSTM model selections with various catchment mod-694

ulation degree, random vectors consistently perform as well as, if not better than, phys-695

ical descriptors for learning across basins (Table 3, 6).696

Random vectors can either be Gaussian vector or one-hot vector. For the Gaus-697

sian vector, note that its implementation needs to specify its dimension d, which is em-698

pirically obtained. The optimal d for the Gaussian vector is different between the EA-699

LSTM and the CT-LSTM. For the EA-LSTM, the optimal d is either 256 or 512 (Fig-700
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ure 4, 7, 6), while for the CT-LSTM, it is in the range of 16 to 64 (Figure 9, 11, 12). This701

means that the EA-LSTM needs a higher dimension of static vectors to perform region-702

alization than the CT-LSTM. We explain this difference by the amount of trainable ma-703

chine learning parameters. The increasing number of trainable model parameters of CT-704

LSTM hinders the training processes. For the CT-LSTM, an increased static input will705

expand the concatenated input x[t] dimension (Equation 8), which in turn enlarges the706

dimension of the transformation matrices Wi, Wf , Wg, Wo. In contrast, the static in-707

put (xs) dimension only impacts EA-LSTM’s input gate dimension (Wi). Consequently,708

given the same xs dimension augmentation, the parameter increment of CT-LSTM is709

four times the increase of the number of parameters in EA-LSTM. A higher d-dimension710

Gaussian vector CT-LSTM becomes more difficult to optimize than that for the EA-LSTM.711

Although the optimal d differs between the CT-LSTM and the EA-LSTM, the per-712

formance saturation trend is identical. As illustrated by the results between section 4.1713

and 4.4, when expanding static vector dimension, the predictive performance saturates714

at a certain point and then deteriorates. This pattern indicates a presence of the opti-715

mal d, which cannot be too large or too small and is suitable for achieving best model716

performance. In particular, the optimal d is universal regardless of the number of basins717

involved (Figure 6, 7, 11, 12) as well as the number of training years (Figure 8). Thus,718

it suggests implications for addressing catchment modeling complexities, which are of-719

ten entangled with associated scaling issues between catchments as one of the Two Clouds720

in hydrology (Beven, 1987). Traditional hydrological models need to either be simpli-721

fied or made more complex to account for scaling transformations between catchments722

that have different complexities. This can be done by reducing or increasing the num-723

ber of hydrologic parameters, which can also be reasonably interpreted as the dimension-724

ality of static vectors. A recognized optimal d in deep learning models illustrates that725

the level of an appropriate scale for regionalization exists and the involved cross-catchment726

hydrologic complexities exceed what the physical descriptors can provide.727

The performance of the CT-LSTM with one-hot vectors (CO) is slightly better than728

the CT-LSTM with Gaussian vectors (CG-16) as shown in Table 3, 7. To the EA-LSTM,729

Gaussian vector is a more suitable choice yielding better performance. Although the spe-730

cific random vector strategy is favored by different LSTM choices, the outperformed ran-731

dom vector strategy all enjoys an advantage of high dimension characterization. On a732

continental scale for 531 catchments, the one-hot vector is a vector with a length of 531,733

while the optimal-d is 512, both of which far exceed the 27-d physical descriptors. The734

high-dimensional static vector xs enhance the LSTM’s ability to learn across basins to735

a similar or even better extent than what the 27-d catchment physical descriptors are736

capable of performing. This insight and discovery has a broad and significant implica-737

tion for hydrologists to examine the value of xs (either physical descriptors or random738

vectors) that were brought in for modeling catchment complexities. Specifically, a more739

relevant hydrologic question to ask is:“Are catchment physical descriptors sufficient to740

model streamflow generation complexities and gauged catchment systems? If not, how741

many dimensions do we need?”742

5.2 High Dimensional Catchment Characterization for Regionalization743

The performance using 27-d physical descriptors is slightly worse than that of the744

512-d random vectors. We interpret this to mean that the high dimensional character-745

ization of catchments benefits regionalization performance. This idea is further supported746

by the result in Section 4.5, where we see a certain subset of 27-d physical descriptors747

is also outperformed by 512-d Gaussian vectors. When physical descriptors are incom-748

plete, catchments are less distinguishable from each other and the regionalization per-749

formance worsens, as shown in Figure 14. Also note that Kratzert et al. (2019a) pointed750

out that the 27-d physical features utilized in their study are intrinsically uncertain since751

spatial heterogeneities are simplified as spatial averages and therefore lose certain regional752
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information. Uncertainties in physical descriptors might be another source that down-753

grades the distinctiveness across basins.754

Therefore, to create a system where a system of catchments can be more distin-755

guishable from each other, or the complexity of catchment systems can be more suffi-756

ciently quantified, we showed two strategies to expand the dimension of physical descrip-757

tors, the mixed Gaussian vector (Section 4.6.1) and the use of additional embedding (Sec-758

tion 4.6.2).759

The mixed Gaussian vector concatenates physical descriptors with additional Gaus-760

sian vectors. The added Gaussian vectors do not have any physical meaning and only761

fill the expanded dimension with a Gaussian random number. Overall, with physical de-762

scriptors, this high-dimensional mixed static vector preserves the physical hydrological763

information and the randomness simultaneously. Results (Figure 15, Table 9) in section764

4.6.1 show that the high-dimensional mixed Gaussian vectors effectively distinguish catch-765

ments and thus improve the regionalization. The peak performance is realized by 512-766

d, which shows the largest NSE score improvement. The results also indicate that mixed767

Gaussian vectors always outperform pure Gaussian vectors. Given the same dimension768

of static vectors, the information contained in 27-d physical features improves regional769

modeling. In contrast to a pure random system formed by all dimensions of Gaussian770

vectors, the mixed Gaussian vectors introduce ordered information and physical simi-771

larities, and thus benefit regionalization.772

Inserting an embedding layer before the input gates allows an opportunity to learn773

more information in xs as xs is transformed into a high-dimensional space (512-d). When774

xs is physical descriptors (PEA), its performance is approximate to the EG-512 and also775

much better than the EP. After the transformation, the information of the original 27-776

d physical descriptors is extracted in a way that benefits regionalization. Meanwhile, this777

performance improvement is also recognized to the case where xs is 27-d Gaussian vec-778

tors (REA). Note that the modeling capacity for both PEA and REA is identical since779

both have exactly the same amount of training parameters. This observation illustrates780

that, within a context of the gauged basin scenario, a higher dimensional space with op-781

timal d-dimension where catchments become more distinguishable will always elevate the782

regionalization performance regardless of how such a high dimension space originates (ei-783

ther from physical descriptor or Gaussian vector).784

5.3 Implications for Catchment Systems785

Besides the discussion on evaluating the effectiveness in random vectors and the786

high dimensional characterization advantage, the random vector approach itself and its787

mapping mechanisms has significant implications for understanding the current work of788

modeling hydrologic regionalization using the LSTM based models.789

Both the Gaussian vectors and the one-hot vectors map catchments into a high di-790

mensional space. The Gaussian vector characterizes catchments as statistically indepen-791

dent from each other. For the one-hot vectors, the static vectors of catchments are or-792

thogonal to each other. Although these random vectors do not quantify catchment sim-793

ilarities, they ensure catchments are different from each other in a consistent way. This794

implies that distinguishing catchments in a gauged system achieves state-of-the-art re-795

gional modeling performance in a deep learning framework, which reflects a recently raised796

hydrologic concern expressed by Beven (2020) “When essential catchment characteris-797

tics are not well understood or defined and thus not even included in catchment phys-798

ical descriptors, how could a derived deep learning model perform satisfactory regional-799

ization performance?” Although not explicitly defining catchment characteristics, our800

proposed random vectors can be interpreted as high-dimensional non-physical descrip-801

tors characterizing the complexity of catchments. Catchment systems are composed of802

linked components representing the functional relationships between weather inputs and803
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Figure 16: Clustering maps for the embedding layer of the LSTM using (a) 27-d physical
descriptors and (b) 512-d Gaussian vectors. The number of cluster is six. (a) shows the
clustered embedding of EP, which was also shown in the Figure 11.b in Kratzert et al.
2019a. (b) shows the clustering analysis of the EG-512 embedding.

streamflow. Arguably, a catchment system involves organized complexities where com-804

plexity may be manifested by randomness (Nearing et al., 2020; Dooge, 1986; Weinberg,805

2001). The deep learning framework leverages this ”random” complexity for streamflow806

prediction and it benefits regionalization performance to a similar extent of (if not worse807

than) what physical descriptors provide, which is also recognized by the observation that808

both PEA and REA give similar streamflow prediction performance.809

Although the random vector distinguishes catchments effectively and the correspond-810

ing regionalization performance is similar to physical descriptors, it is not sufficient to811

self-prove the catchment uniqueness and it only serves as a surrogate of physical descrip-812

tors. Discussion on catchment uniqueness exceeds the scope of this paper. Our results813

imply insights to understand hydrologic similarities within a system of catchments. We814

analyzed and compared the patterns in the input gate (equation 9) of the EG-512 (the815

EA-LSTM using 512-d Gaussian vector) as well as those in the EP (the EA-LSTM us-816

ing phsyical descriptors). This analysis intends to assess whether the original random817

patterns of Gaussian vectors are transformed into regional patterns internally. To remind818

the readers, the input gates are an embedding layer of 256-dimension as required by the819

LSTM model for modeling temporal complexities, which are predetermined (See the Ap-820

pendix B of Kratzert et al. (2019a)). We conducted the K-means clustering analysis and821

created the following map below (Figure 16). The number of clusters is set to be six as822

suggested by Kratzert et al. (2019a).823

It was previously shown that the EP automatically learns hydrological similarities824

and benefits the regionalization. The embeddings of the EP show a clear regional pat-825

tern (Figure 16 (a)). By contrast, for the Gaussian vector, the learned embeddings ac-826

tually exhibit non-regional patterns, which implies the presence of hydrologic similar-827

ities that physical descriptors do not capture (Figure 16 (b)).828

There are two interpretations for Figure 16. First, it clearly demonstrates that ran-829

dom vectors are not automatically transformed to physical descriptors based patterns830

within the LSTM cell. Second, it implies that hydrologic similarities/differences are com-831

plex patterns that go beyond what physical descriptors can explain. For two catchments832

geographically located far away from each other, certain hydrologic similarities in their833

runoff behaviors might exist and thus cluster them into similar groups. This would not834

be discovered by learning based on physical descriptors. Our proposed random vectors835

seemingly allow an opportunity for deep learning models to automatically discover such836

an implicit hydrologic similarity. The current 27-d physical descriptors might not be suf-837

ficient to fully represent cross-catchment hydrologic behavior similarities that are encoded838

in the runoff behavior. Further research is merited to investigate catchment hydrologic839
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similarities within a catchment system, including but not limited to the role of physi-840

cal descriptors in such a context.841

5.4 Implications for Deep Learning in Hydrology Regionalization842

Our results are delivered in a deep learning framework. The random vector approach843

exhibits the strong modeling capacity of deep learning and shows a potential solution844

to involving complexity into a deep learning model without explicitly incorporating hy-845

drologic processes. This approach does not add physical process understanding into the846

model architecture; instead, it is developed purely from a data driven perspective. We847

hypothesize that an appropriate dimension that accommodates catchment complexities848

exists and allows deep learning models to automatically distinguish cross basin similar-849

ities and therefore benefits regional modeling.850

Recognizing the feasibility of using random vectors when physical descriptors are851

not available, another critical thought is that the current LSTM based models might not852

have had an appropriate architecture to fully and explicitly leverage the physical descrip-853

tors. Physical descriptors have, by their nature, physical meanings when delivered in hy-854

drology processes. For instance, soil porosity, which is the fraction of the soil pore space,855

impacts the amount of water stored in the vadose zone and thus it will determine the856

amount of water released from soil into the discharge. This storage-discharge process shall857

happen after precipitation infiltrates into the subsurface, which will often be impacted858

by some vegetation descriptors, such as forest fraction. In short, the use of the forest frac-859

tion descriptor in process-based models comes before that of soil porosity. However, this860

relationship is not explicitly modeled in the current LSTM-based model since both soil861

porosity and forest fraction are used in an equal manner without any precedence to dis-862

tinguish their hydrologic roles. The same mis-utilization of other physical descriptors is863

also present in particular between geomorphology descriptors and geology descriptors.864

It seems natural to question the validity of how the LSTM model uses xs since the use865

does not explicitly reflect the hydrologic roles of physical descriptors although the LSTM866

might implicitly learn such a relationship considering the fact that the LSTM model out-867

performs physical process based models (Kratzert et al., 2019a). Therefore, future re-868

search is merited to investigate and understand how the current LSTM uses xs. It might869

also improve the regionalization performance to adapt the LSTM model architecture by870

incorporating the physical meanings of the xs inputs.871

The proposed random vector approach also has practical usage to assess if any given872

physical descriptors are complete to model catchment systems complexities. Compared873

to the performance with incomplete features (climate features, geology features, or ge-874

omorphology features) and to the performance without any physical descriptors, the pre-875

dictive performance of the random Gaussian vectors method significantly outperforms876

in those scenarios. Random Gaussian vectors enable deep learning models to learn com-877

plexities more sufficiently than those physically limited descriptors. This insight has prac-878

tical utility for determining the sufficiency of physical descriptors in the real world, which879

is challenging considering the uncertainties and complexities in hydrologic processes. When880

LSTM models using a specified set of physical descriptors are outperformed by random881

vectors, it demonstrates that those given physical descriptors are not able to resolve catch-882

ment complexities and thus suggests a need to complement them with missing features883

for regional modeling. For instance, as a direct illustration, Figure 4 and Table 3 sug-884

gests that 27-d physical descriptors partially address hydrologic complexities and need885

a certain degree of feature augmentation.886

5.5 Limitations and future direction887

Although the predictive performance of random vectors proves to be comparable888

to 27-d physical descriptors, we want to emphasize that this result is limited to gauged889
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prediction. The deep learning model has to have training data of the basin to predict,890

so the scope of this research cannot not be expanded to PUB. Therefore, recognizing this891

limitation, it merits future research to leverage the complexity modeling capacity found892

in random vectors into PUB. Note that the PEA (27-d physical descriptor with 512-d893

embedding) is likely a suitable option to expand into PUB since it does not involve Gaus-894

sian vectors but it applicability needs further tests.895

Our ability to model catchment complexities depends on the dimension of the ran-896

dom vector. We show the presence of an optimal larger d, which recognizes the existence897

of physical processes that are not characterized, we do not provide further quantitative898

interpretations of the optimal d. How to utilize the observation that the optimal-d of EA-899

LSTM is 512 for regionalization models except for the embedding (section 4.6.2)? In fu-900

ture studies it will be important to identify physical processes that are not captured by901

physical descriptors (e.g., variable recession characteristics (Beven, 2020)) and adapt ma-902

chine learning models to resolve them. Furthermore, as brought out by Beven (2020),903

hydrological processes are unique in different catchments. Although our results do not904

prove this statement of catchment uniqueness, the discovery of the regionalization effec-905

tiveness brought by random vectors could arguably have scientific implications in inves-906

tigating the uniqueness of catchment. Future research is merited to investigate how to907

use random vectors to identify the uniqueness of catchments.908

The results focus on 531 basins in the United States. Their catchment area exhibits909

a wide range between 4 to 1980 square kilometers, which indicates strong spatial het-910

erogeneities across catchments. An interesting hypothesis to test is that a heterogeneous911

catchment prefers high dimension Gaussian vectors to account for model complexities.912

To test this hypothesis it will be necessary to obtain the data from catchments express-913

ing different levels of heterogeneities. Because catchments are naturally heterogeneous,914

this test will require the use of synthetic data generated by physically based hydrolog-915

ical models. It is hypothesized that a collection of homogeneous catchment will require916

fewer static vectors while a collection of more complex catchment will require many static917

vectors. The synthetic data set will represent a system of catchments with a controlled918

level of heterogeneities, which will allow an opportunity to investigate how heterogeneous919

and homogeneous catchment systems differentiate hydrologic regionalization and mod-920

eling complexities.921

Random vectors characterize a system of basins quite distinguishable in high di-922

mensional space. The only physically distinctive information involved becomes weather923

inputs and associated catchment responses. This insight suggests the possibility of learn-924

ing catchment similarities from weather inputs and is thus closely related to the inverse925

modeling problem, a field where machine learning is also advancing (Ongie et al., 2020)(Tayal926

et al., 2022). It therefore merits future research for an improvement in unveiling catch-927

ment characterization mysteries in a physically consistent way, likely inferred from weather928

inputs and catchment responses.929

Our discovery has strong generalizable implications for other applications in wa-930

ter related or science problems. Regionalization can be conceptualized in a broader con-931

cept, that is, each local entity contributes to learn a regional or global model where cross932

entity information sharing benefits the predictive performance. In the context of stream-933

flow prediction, an entity is a catchment. For water science, an entity can also be a reser-934

voir, lake, stream, etc. The target variable might vary depending on specific problems935

to solve where each problem may require a different set of entity descriptors. Mathemat-936

ically, entities can be approximate functions in identical formulations with varying pa-937

rameters. The benefit of random vectors in modeling regional complexities merits fur-938

ther research to demonstrate their practical applicability. We expect further research can939

test our proposed random vector approach to solve general regionalization problems across940

disciplines.941
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6 Conclusion942

In this work we showed that random vectors can be used for hydrologic regional-943

ization when catchment physical descriptors are not available. Random vector based hy-944

drologic regionalization shows robust performance even under data sparsity and differ-945

ent model strategies. This method can also identify if any given physical descriptors are946

sufficient to account for rainfall runoff complexities. In summary, the scientific contri-947

butions of this paper are:948

• The random vector method was proposed and used for regionalization in the ab-949

sence of explicit physical descriptors.950

• Random vectors show robust performance even under different data sparsity sce-951

narios and different LSTM based model selection.952

• Characterizing catchments in high-dimensional characteristics will improve region-953

alization performance.954

• Random vectors can improve streamflow prediction when insufficient and uncer-955

tain basin characteristics are hard to distinguish basins. Thus, random vectors have956

a practical usage in determining if any given physical features are sufficient.957

We also investigated scientific implications of the dimension of random vectors. This pro-958

vides useful insights for the development of hydrologic models to address the model com-959

plexity and associated scaling issues.960
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Appendix A physical descriptor description (CAMELS)982

Table A1: 27-d physical descriptors in CAMELS. Descriptions are from (Addor et al.,
2017)

Category Physical descrip-
tors

Description

climate (9)

p mean Mean daily precipitation
pet mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.
p seasonality Seasonality and timing of precipitation. Estimated by

representing annual precipitation and temperature as
sine waves. Positive (negative) values indicate precip-
itation peaks during the summer (winter). Values of
approx. 0 indicate uniform precipitation throughout
the year.

frac snow daily Fraction of precipitation falling on days with temper-
atures below 0 .

high prec freq Frequency of high-precipitation days (≥ 5 times mean
daily precipitation).

high prec dur Average duration of high-precipitation events (num-
ber of consecutive days with ≥ 5 times mean daily
precipitation).

low prec freq Frequency of dry days (< 1 mm d−1).
low prec dur Average duration of dry periods (number of consecu-

tive days with precipitation < 1 mm d−1.

Geomorphology(8)

elev mean Catchment mean elevation.
slope mean Catchment mean slope.
area gages2 Catchment area.
forest frac Forest fraction.
lai max Maximum monthly mean of leaf area index.
lai diff Difference between the max. and min. mean of the

leaf area index.
gvf max Maximum monthly mean of green vegetation fraction.
gvf diff Difference between the maximum and minimum

monthly mean of the green vegetation fraction.

Geology(10)

soil depth pelletier Depth to bedrock (maximum 50 m).
soil depth statsgo Soil depth (maximum 1.5 m).
soil porosity Volumetric porosity.
soil conductivity Saturated hydraulic conductivity.
max water content Maximum water content of the soil.
sand frac Fraction of sand in the soil.
silt frac Fraction of silt in the soil.
clay frac Fraction of clay in the soil.
carb rocks frac Fraction of the catchment area characterized as “Car-

bonate sedimentary rocks”.
geol permeability Surface permeability (log10).
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Appendix B FM-LSTM983

FM-LSTM uses the feature modulation concept as another modelling approach.984

The key idea here is to use a separate gate that takes static features as input and gen-985

erates a modulation vector to modulate (adapt) the features learned by a traditional LSTM.986

By contrast, the FM-LSTM performs the weakest modulation since the xs is only in-987

volved for updating the hidden representation, which is the last step in an LSTM up-988

date cycle before proceeding to next timestamp.989

Figure B1: FMLSTM illustration, which is based on the LSTM family illustration from
“Towards learning universal, regional, and local hydrological behaviors via machine learn-
ing applied to large-sample datasets” by Kratzert et al. (2019a), Hydrology and Earth
System Sciences, 23, 5092 (Kratzert et al., 2019a)

As illustrated in Figure B1, xs is mapped to an embedding layer customized for990

each basin (equation B6). This is then used to modulate the hidden states output (equa-991

tion B7). xs does not participate in the calculation in i[t], f [t], g[t], o[t], or c[t].992

i[t] = σ(Wix
d[t] +Uih[t− 1] + bi) (B1)

f [t] = σ(Wfx
d[t] +Ufh[t− 1] + bf ) (B2)

g[t] = tanh(Wgx
d[t] +Ugh[t− 1] + bg) (B3)

o[t] = σ(Wox
d[t] +Uoh[t− 1] + bo) (B4)

c[t] = f [t]⊙ c[t− 1] + i[t]⊙ g[t] (B5)

p = σ(Wpx
s + bp) (B6)

h[t] = p⊙ o[t]⊙ tanh(c[t]) (B7)

Table B1: Random vector comparison in the FM-LSTM structure

models Mean Median

FP 0.653 0.698
FO 0.716 0.746

FG-512 0.695 0.738

For the FM-LSTM, we specify the optimal Gaussian vector dimension as the same993

of the EA-LSTM because they share the similar model modulation strategy, that is, static994

vectors enter the LSTM separately from the dynamic weather inputs. Using 27-d phys-995

ical descriptors, Figure B2a illustrates that the FP yields worse prediction performance996
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Figure B2: Predicted performance comparison of a random vector implementation in the
FM-LSTM (FO and FG-512) in contrast to the FM-LSTM using 27-d physical descriptors
(FP). (a) is the NSE score scatter plot of FP and EP. (b) shows the comparison between
FO and FP, while (c) shows the comparison between FG-512 and FP.

compared to the EP. Even so, the FM-LSTM also attains benefits performance improve-997

ment from random vectors. Both one-hot vector and Gaussian 512-d vectors lead to sig-998

nificantly better predictive performance. In terms of the median, in contrast to the FP,999

FO elevates the performance from 0.698 to 0.746, while FG-512 improves the performance1000

to 0.738. The one-hot vector benefits are more pronounced than those of 512-d Gaus-1001

sian vectors in FM-LSTM.(H̊akanson & Karlsson, 1984)1002
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de Lavenne, A., Andréassian, V., Thirel, G., Ramos, M. H., & Perrin, C. (2019). A1049

Regularization Approach to Improve the Sequential Calibration of a Semidis-1050

tributed Hydrological Model. Water Resources Research, 55 (11), 8821–8839.1051

doi: 10.1029/2018WR0242661052

Dooge, J. C. I. (1986). Looking for hydrologic laws. Water Resources Research,1053

22 (9S), 46S-58S. Retrieved from https://agupubs.onlinelibrary.wiley1054

–34–



manuscript submitted to Water Resources Research

.com/doi/abs/10.1029/WR022i09Sp0046S doi: https://doi.org/10.1029/1055

WR022i09Sp0046S1056

Drost, N. F. W.-A. A., S., & Mudersbach, C. (2021). The impact of land cover data1057

on rainfall-runoff prediction using an entity-aware-lstm.. doi: https://doi.org/1058

10.5194/egusphere-egu21-1136,2021.1059

Ecrepont, S., Cudennec, C., Anctil, F., & Jaffrézic, A. (2019). PUB in Québec: A1060
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Tables S1 to S7

Table S1. The p-value table for Table 3 and Table 10 in the main article.

Catchment static vectors p-value (to EP) p-value (to EG-512)
27-d physical vectors (EP) NA 9.25e-06
512-d random vectors (EG-512) 9.25e-06 NA
one-hot vectors (EO) 3.14e-10 0.121
27-d physical descriptors + 512-d embedding (PEA) 1.40e-10 0.003
27-d Gaussian vectors + 512-d embedding (REA) 1.41e-09 2.09e-05

Table S2. The p-value table for Table 4 in the main article

k-basin group 10 50 100
d p-value to its EP counterpart

Gaussian vector (EG-d) 2 1.41e-56 4.05e-58 1.99e-59
8 5.29e-05 6.69e-51 2.10e-43
16 2.29e-19 7.47e-35 1.72e-21
32 2.17e-07 6.31e-06 0.003
64 1.49e-09 1.08e-17 8.84e-27
128 7.95e-55 2.66e-58 6.13e-42
256 2.17e-72 9.55e-65 1.29e-53
512 4.18e-63 8.24e-59 1.64e-52
1024 9.46e-31 2.28e-33 2.98e-36

one-hot (EO) 6.05e-45 8.24e-40 1.47e-24
27-d physical descriptors (EP) NA NA NA

Table S3. The p-value table for Table 5 in the main article

Number of training years 1 2 5
Gaussian 512-d (EG-512) to EP 2.69e-09 0.022 1.67e-07

one-hot (EO) to EP 0.049 1.65e-36 1.42e-18

Table S4. The p-value table for Table 6 in the main article.

models p-value (to CP)
CP NA
CO 9.72e-05

CG-16 0.003
CG-32 2.37e-06
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Table S5. The p-value table for Table 7 in the main article

k-basin group 10 50 100
d p-value to its CP counterpart

Gaussian vector (CG-d) 2 2.25e-48 1.20e-56 1.05e-54
8 4.06e-48 3.34e-30 1.02e-24
16 6.64e-36 2.13e-14 2.29e-08
32 1.07e-16 1.01e-05 0.231
64 7.970e-18 0.0112 0.956
128 9.72e-40 1.89e-14 0.027
256 1.78e-64 2.57e-51 1.11e-29
512 9.23e-73 6.91e-79 7.02e-72
1024 1.68e-78 2.68e-83 5.50e-82

one-hot (CO) 3.33e-32 3.93e-05 0.173
27-d physical descriptors (CP) NA NA NA

Table S6. The p-value table for Table 8 in the main article

catchment static vectors p-value (to EP)
(0-d) Without static features 1.09e-75

512-d Gaussian vectors (EG-512) 9.25e-06
9-d climate features 4.21e-72
10-d geology features 7.04e-62

8-d geomorphology features 1.87e-62
27-d physical descriptors (EP) NA

Table S7. The p-value table for Table 9 in the main article

catchment static vectors d p-value (to EP) p-value (to EG-d, the same d)
mixed Gaussian vector (EM-d) 32 1.55e-08 6.38e-03

64 2.42e-04 4.75e-17
128 2.21e-08 3.47e-06
256 2.44e-08 2.43e-04
512 5.63e-14 2.81e-07
1024 3.31e-04 7.19e-11
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