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Abstract

The Patagonian slab window has been proposed to enhance the solid Earth response to ice mass load changes in the overlying

Northern and Southern Patagonian Icefields (NPI and SPI, respectively). Here we present the first regional seismic velocity

model covering the entire north-south extent of the slab window. A slow velocity anomaly in the uppermost mantle indicates

warm mantle temperature, low viscosity, and possibly partial melt. Low velocities just below the Moho suggest that the

lithospheric mantle has been thermally eroded over the youngest part of the slab window. The slowest part of the anomaly

is north of 49°S, implying that the NPI and the northern SPI overlie lower viscosity mantle than the southern SPI. This

comprehensive seismic mapping of the slab window provides key evidence supporting the previously hypothesized connection

between post-Little Ice Age anthropogenic ice mass loss and rapid geodetically observed glacial isostatic uplift ([?] 4 cm/yr).
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Key Points: 13 

 We observe anomalously low upper mantle shear wave velocities (less than 4.1 km/s) in 14 
the Patagonian slab window 15 
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 Low viscosities in the slab window link observed rapid geodetic uplift to geologically 18 
recent ice mass loss in Patagonia 19 
  20 
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Abstract 21 

The Patagonian slab window has been proposed to enhance the solid Earth response to ice mass 22 
load changes in the overlying Northern and Southern Patagonian Icefields (NPI and SPI, 23 
respectively). Here we present the first regional seismic velocity model covering the entire north-24 
south extent of the slab window. A slow velocity anomaly in the uppermost mantle indicates 25 
warm mantle temperature, low viscosity, and possibly partial melt. Low velocities just below the 26 
Moho suggest that the lithospheric mantle has been thermally eroded over the youngest part of 27 
the slab window. The slowest part of the anomaly is north of 49°S, implying that the NPI and the 28 
northern SPI overlie lower viscosity mantle than the southern SPI. This comprehensive seismic 29 
mapping of the slab window provides key evidence supporting the previously hypothesized 30 
connection between post-Little Ice Age anthropogenic ice mass loss and rapid geodetically 31 
observed glacial isostatic uplift (≥ 4 cm/yr). 32 

Plain Language Summary 33 

A gap in the subducting plate beneath Patagonia has enabled hotter, less viscous mantle material 34 
to flow underneath South America. Icefields in the Austral Andes above the gap in the plate have 35 
recently been shrinking, removing weight that had caused the continent to flex downward. We 36 
use seismic data to image the subsurface structure and find very low seismic velocity within and 37 
around the gap, as well as thinning of the rigid South American lithosphere overlying the gap. 38 
The low mantle velocity implies that mantle viscosity is also low beneath the shrinking icefields, 39 
and low viscosity enables the region to rebound upwards. 40 

1 Introduction 41 

Slab windows form when a spreading ridge subducts and the plates continue to diverge, 42 
opening a gap in the subducting plate interface (Groome & Thorkelson, 2009; Thorkelson, 43 
1996). Volcanic products associated with several Cenozoic slab windows can be found at 44 
subduction margins around the Pacific Ocean, indicating that this phenomenon is widespread 45 
(McCrory et al., 2009). The Patagonian slab window began forming ~18 Ma, when the Chile 46 
Ridge started subducting beneath South America near 54°S (Breitsprecher & Thorkelson, 2009). 47 
The Chile Triple Junction (CTJ) has since migrated north to its present-day location offshore the 48 
Península de Taitao near 46.5°S. Expressions of the slab window include gaps in arc volcanism 49 
and subduction zone seismicity (Agurto-Detzel et al., 2014; DeLong et al., 1979); adakitic 50 
volcanism near slab edges (Bourgois et al., 2016; Gorring et al., 1997; Stern & Kilian, 1996; 51 
Thorkelson & Breitsprecher, 2005); near-trench volcanic activity (Forsythe et al., 1986; Guivel 52 
et al., 2003; Marshak & Karig, 1977); anomalously high heat flow (Ávila & Dávila, 2018; Cande 53 
et al., 1987) and low upper mantle seismic velocity (Gallego et al., 2010; Russo, VanDecar, et 54 
al., 2010); positive dynamic topography (Georgieva et al., 2016; Guillaume et al., 2009) 55 
associated with low-viscosity asthenospheric mantle upwelling (Boutonnet et al., 2010; Gorring 56 
et al., 1997); and mantle flow patterns influenced by the slab window geometry (Murdie & 57 
Russo, 1999; Russo, Gallego, et al., 2010; Russo, VanDecar, et al., 2010). Volcanic products 58 
associated with several Cenozoic slab windows can be found at subduction margins around the 59 
Pacific Ocean, indicating that this phenomenon is widespread (McCrory et al., 2009).  60 

The extent of the Patagonian slab window has previously been estimated based on plate 61 
kinematic reconstructions (Breitsprecher & Thorkelson, 2009) and has been mapped using body 62 
wave tomography in the immediate vicinity of the CTJ (Russo, VanDecar, et al., 2010). These 63 
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two methods are in good agreement near the CTJ (Figure 1), but the full extent of the slab 64 
window remains poorly defined. Reconciling tectonic reconstructions with observations such as 65 
the locations of slab-edge adakitic volcanism requires invoking ridge jumps and changes in 66 
spreading rates, which are poorly constrained due to the subduction of seafloor magnetic 67 
anomaly records (Bourgois et al., 2016).  68 

 69 

 70 

Figure 1: Map of the study region in Patagonia. Seismic stations and volcanoes are marked.  71 
Data sources are described in Section 2. Previously estimated slab window extents are shown for 72 
Russo, VanDecar, et al. (2010) and for Breitsprecher and Thorkelson (2009). The present-day 73 
NPI and SPI are shaded in grey (Davies et al., 2020) . Background map colors show bathymetry 74 
and elevation data (Ryan et al., 2009). Red lines show present-day plate boundaries. Tierra del 75 
Fuego (TdF) and the Península de Taitao are labeled. 76 

The co-location of the Patagonian slab window with the Northern and Southern 77 
Patagonian Icefields (NPI and SPI) in the Austral Andes makes Patagonia an excellent place to 78 
study the effects of lateral variations in Earth structure on glacial isostatic adjustment (GIA). 79 
Low-viscosity mantle in the slab window beneath the icefields is expected to speed the GIA 80 
response to ice mass changes on decadal to centennial timescales, and ongoing glacial unloading 81 
is thought to drive extremely high uplift rates (up to 40 mm/yr) measured in the NPI and SPI 82 
(Dietrich et al., 2010; Ivins & James, 2004; Klemann et al., 2007; Lange et al., 2014; Richter et 83 
al., 2016). Improved constraints on the extent of the slab window and on lateral variations in the 84 
viscosity structure of the mantle beneath the icefields are necessary for improving GIA models 85 
and interpreting geodetic observations in terms of changing ice mass. More robust GIA models 86 
provide stronger constraints on past icefield mass and climate change (Oerlemans, 2005). 87 

While surface volcanism provides some information on slab window formation and 88 
geometry, reliably reconstructing slab window mantle dynamics is a long-standing challenge in 89 
geodynamics (Dickinson, 1981; S. Lin, 2014). Seismic tomography is an essential tool for 90 
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connecting surface features to subsurface structure. In this study, we use seismic data recently 91 
collected by the GUANACO broadband seismic deployment to derive a new seismic velocity 92 
model for Patagonia, map the full extent of the slab window, and investigate how associated 93 
mantle dynamics have affected the overriding lithosphere. We show that the dynamics of the slab 94 
window are responsible for inferred low viscosities in the upper mantle and the unusually rapid 95 
glacial isostatic response to ice mass loss in the region.  96 

2 Data and methods 97 

We obtained a shear velocity (Vsv) model for Patagonia by jointly inverting Rayleigh 98 
wave dispersion curves from ambient noise and earthquake tomography with P receiver 99 
functions in a Bayesian framework that enables us to quantify velocity uncertainties statistically. 100 
Data were from the GUANACO (Magnani et al., 2020), SEPA (Wiens et al., 1998), and CRSP 101 
(Russo, VanDecar, et al., 2010) temporary seismic networks; and from the Chilean National 102 
Seismic Network, the GEOSCOPE Network, the Antarctic Seismographic Argentinian Italian 103 
Network, and ENAP (Empresa Nacional del Petróleo) monitoring stations. 104 

2.1 Rayleigh wave tomography from ambient noise and earthquake records 105 

We used ambient noise tomography to obtain isotropic Rayleigh wave phase velocities at 106 
8 to 40 seconds period, and group velocities from 10 to 30 seconds (Bensen et al., 2007) (Figure 107 
S1). Temporal normalization was done with the running average method, and we incorporated 108 
time-frequency phase weighted stacking of the daily cross-correlation records (Schimmel et al., 109 
2011; Schimmel & Gallart, 2007). We then obtained dispersion curves from the stacked cross-110 
correlations using Automated Frequency Time Analysis (Bensen et al., 2007) and performed 111 
tomography using the method of Barmin et al. (2001). Uncertainties were estimated using a 112 
scaling relationship with ray path coverage, with group velocity uncertainties taken to be double 113 
the phase velocity uncertainties (Barmin et al., 2001; Shen et al., 2016). 114 

Surface wave tomography was performed using shallow events (<50 km depth) within 115 
20-150° of the study region (Figure S2). A balanced azimuthal distribution was constructed by 116 
starting with all events with Mw>6 and adding non-overlapping events down to Mw 5.4 at 117 
undersampled azimuths. We performed visual quality control on all waveforms. Helmholtz-118 
corrected phase velocity maps were calculated from 20 to 100 seconds period using the 119 
Automated Surface-Wave Measurement System (ASWMS) (Jin & Gaherty, 2015; F.-C. Lin et 120 
al., 2009; F.-C. Lin & Ritzwoller, 2011) (Figure S3). The minimum inter-station distance for 121 
calculating cross-correlations was set to 50 km, and the maximum distance was varied with 122 
period such that it did not exceed ~4 wavelengths. The bandwidth range for the Gaussian filters 123 
applied to the waveform cross-correlations was 0.04-0.07 Hz.  Automated quality controls based 124 
on the fraction of good measurements per event were intentionally relaxed for stations in the 125 
CRSP temporary network to obtain adequate data coverage near the Chile Triple Junction, and 126 
the larger velocity uncertainties near the triple junction at short periods reflect this choice. 127 

Phase velocity dispersion curves from 8 to 100 seconds were constructed by combining 128 
the results from ambient noise and earthquake tomography (Figure S4). We used linear 129 
weighting across the overlapping periods, with ambient noise velocities weighted more at shorter 130 
periods and earthquake results at longer periods. 131 



Accepted for publication in Geophysical Research Letters. Copyright 2022 American Geophysical Union. Further 
reproduction or electronic distribution is not permitted. 

 

2.2 P receiver functions 132 

We selected events 30-90° away from our study area with Mw>5.1 and a signal-to-noise 133 
ratio greater than 3 on the vertical component for the receiver function (RF) calculation. The 134 
seismograms were filtered from 0.33-1 Hz, and P first arrival picks were refined using STA/LTA 135 
(Withers et al., 1998) in a time window around the predicted onset time from the global model 136 
IASP91 (Kennett & Engdahl, 1991). P-to-s RFs were then calculated using the multitaper 137 
deconvolution method (Helffrich, 2006; Park et al., 1987; Park & Levin, 2000; Shibutani et al., 138 
2008) and corrected for moveout using IASP91. For each station, a composite RF with 139 
uncertainties was obtained by taking the zeroth order component from harmonic decomposition 140 
(Bianchi et al., 2010). If azimuthal coverage was not sufficient to fit harmonics, the station 141 
average RF was used instead. 142 

2.3 Bayesian inversion for velocity-depth models 143 

We inverted for 1D velocity-depth models using a Markov chain Monte Carlo (MCMC) 144 
method (Shen et al., 2013). Each velocity-depth model was described by 14 parameters: layer 145 
thicknesses for sediments and crust; top and bottom velocities for the sediment layer; four cubic 146 
basis spline coefficients for crustal velocities; and six cubic basis spline coefficients for mantle 147 
velocities (Table S1). The total model depth was fixed at 300 km, with the lowermost 100 km of 148 
the model gradually converging to the global model AK135 (Kennett et al., 1995) since the data 149 
provide no constraints at these depths. 150 

Initial prior distributions for the sediment and crustal layer thicknesses were set based on 151 
RFs. We used bootstrap stacking of H-k stacks to estimate an initial Moho depth for each station 152 
(Sandvol et al., 1998; Zhu & Kanamori, 2000). For sediment thickness, we performed a K-means 153 
clustering analysis (Pedregosa et al., 2011) on the first six seconds of the RF stacks for the 154 
stations, and used the clusters to divide the stations into those overlying “thick” sediments and 155 
“thin” sediments. The “thick” sediment cluster agreed well with the mapped extent of the 156 
Austral-Magallanes Basin (Cuitiño et al., 2019). For stations overlying “thick” sediment, the 157 
prior distribution for sediment thickness was set to 4 ± 4 km, and for stations with “thin” 158 
sediment the thickness prior distribution was set to 1 ± 1 km. 159 

Prior distributions for velocities in all layers were set to typical values with large search 160 
ranges to allow for variation (Table S1). The sixth mantle spline coefficient at the base of our 161 
model was fixed at 4.7 km/s based on AK135, since the data have almost no sensitivity at 300 162 
km depth. 163 

We imposed some velocity constraints to ensure that accepted models were physically 164 
reasonable: all velocity parameters were less than 4.9 km/s, crustal velocities were less than 4.2 165 
km/s, the velocity jump across the Moho was less than 0.7 km/s, and velocities were not allowed 166 
to decrease with depth through the sediments and crust. Dispersion curves and receiver functions 167 
were weighted equally in the joint misfit function after normalizing their respective uncertainties. 168 
We used 15 chains of 5000 steps each for the MCMC calculation. The posterior distributions for 169 
the 14 model parameters were calculated from the set of accepted models based on the misfit 170 
function (Shen et al., 2013) (Figure S5). 171 

Inversions were first done for station locations. Prior distributions for the sediment and 172 
crustal layer thicknesses were then adjusted in places where the inversion failed to find a well-173 
fitted model. This was particularly important for stations within the Austral-Magallanes Basin, 174 
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where the thick sediments violated the H-k stacking assumption of a constant-velocity crustal 175 
layer. We then inverted dispersion curves alone for velocity-depth model at grid points set at 0.3° 176 
intervals throughout the study area, using smoothed maps of crustal and sediment thicknesses 177 
from the station inversions to set layer thickness prior distributions. 178 

The grid point and station results were combined by averaging together the 14 model 179 
parameters for each grid point with those for any stations within a 50 km radius. Weights for the 180 
station parameters were calculated based on proximity to the grid point. The model was 181 
smoothed laterally at each depth using a Gaussian filter with a standard deviation equal to the 182 
grid spacing. 183 

2.4 Mantle viscosity calculation 184 

Although there is no direct relationship between seismic velocity and mantle viscosity, 185 
velocity is commonly used to indirectly estimate viscosity since both are largely controlled by 186 
temperature. Mantle viscosities were estimated based on differences between our velocity model 187 
and Vsv from the global 1D model STW105 (Kustowski et al., 2008). The seismic anomalies 188 
were used to estimate temperature anomalies relative to a global average temperature model, 189 
which were then used along with experimentally-derived flow laws to estimate deviations from a 190 
global 1D viscosity model (Ivins et al., 2021; Wu et al., 2013). We used rheologic parameters for 191 
dry diffusion creep of olivine (Hirth & Kohlstedt, 2003; Karato, 2008), a reference mantle 192 
viscosity from IJ05-R2 (Ivins et al., 2013), and temperature derivatives that included both 193 
anharmonic and anelastic contributions (Karato, 2008). The calculated viscosities would not be 194 
significantly different for wet diffusion creep given parameter uncertainties (Hirth & Kohlstedt, 195 
2003). The reference global average temperatures were calculated by proportionally weighting 196 
continental average geotherms (Stacey & Davis, 2008) and adiabatic temperature gradients 197 
beneath oceanic regions, giving 1486 K at 100 km, and 1582 K at 150 km. We set the fraction of 198 
the velocity anomaly attributed to temperature to 0.65, as found in a geodetic study of North 199 
America and Fennoscandia (Wu et al., 2013). While this temperature fraction may be different in 200 
Patagonia compared to stable cratonic regions, such variation would not change the pattern of 201 
relative viscosity differences across Patagonia. The remaining velocity anomaly is attributed to 202 
compositional variations in the mantle. 203 

3 Results 204 

3.1 Extent of the Patagonian slab window 205 

Mantle velocities are low throughout the inferred slab window region, with a minimum 206 
velocity less than 4.1 km/s at 50 km depth, ~8% slower than the global average given by 207 
STW105 (Kustowski et al., 2008). The most intense portion of the shallow slow anomaly is north 208 
of 49°S, in the youngest part of the slab window (Figure 2). North of 51°S, the western edge of 209 
the anomaly at 100 km depth aligns with estimates of the extent of the subducting Antarctic slab 210 
from plate kinematic reconstructions (Breitsprecher & Thorkelson, 2009) and the trend of 211 
adakitic volcanism along the Austral Andes Volcanic Arc (Figure 2). Increased velocities north 212 
of Tierra del Fuego delineate the southeastern extent of the slab window effects and are 213 
consistent with xenolith studies suggesting the presence of a continental lithospheric block with 214 
thicker lithosphere (Schilling et al., 2017). 215 
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 216 

Figure 2: Velocity-depth slices. Maps show Vsv in km/s: (a) 50 km depth, contour at 4.15 km/s 217 
(solid black line); (b) 100 km depth; (c) 150 km depth. Other lines and symbols are as in Figure 218 
1. Velocity uncertainties are ~0.1 km/s across most of the maps; velocity uncertainty maps are 219 
shown in Figure S6. 220 

3.2 Thermal erosion of the South American lithosphere 221 

Velocities directly beneath the crust near the CTJ are much lower than expected for 222 
continental lithosphere (4.1 km/s at 50 km, compared to 4.5 km/s for STW105; Kustowski et al., 223 
2008), indicating that the lithospheric mantle is missing in the youngest part of the slab window 224 
(Figure 2a). Vertical cross sections through the slab window show that anomalously slow mantle 225 
velocities are present immediately below the Moho, with thin (<10 km thick) patches of faster 226 
mantle material at the Moho in places (Figure 3a, 45 to 47ºS). 227 
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 228 

Figure 3: Velocity cross sections. Cross sections show Vsv along (a) 73.5°W, (b) 47.5°S, and (c) 229 
50°S, with transect locations shown on a map (d). Other lines and symbols on the map are as in 230 
Figure 1. Topography over each transect is plotted above the velocities (Ryan et al., 2009). 231 
Dashed black lines mark the base of the sediments and the Moho on each cross section, and 232 
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labeled lines show isovelocity contours. The Vsv color scale is saturated at 3.6 km/s on the low 233 
end to emphasize slow anomalies in the mantle. 234 

The absence of lithospheric mantle near the CTJ suggests that mantle dynamics 235 
associated with the slab window have eroded the base of the plate. Thermal erosion of the 236 
overriding plate is predicted by thermo-mechanical models of ridge subduction (Groome & 237 
Thorkelson, 2009), and shallow slow velocity anomalies beneath the Antarctic Peninsula have 238 
been similarly interpreted (Lloyd et al., 2020). Previous studies have inferred that the Patagonian 239 
lithosphere has thinned above the slab window based on regional heat flow data (Ávila & Dávila, 240 
2018), crustal thickness measurements (Robertson Maurice et al., 2003), and GIA models fit to 241 
observed uplift rates (Lange et al., 2014; Richter et al., 2016).  242 

The process of thermal erosion likely requires the presence of melt or fluids, as purely 243 
conductive heating is too slow relative to the age of the slab window. In the absence of a present-244 
day slab and slab-derived volatiles, melt may be supplied by decompression of upwelling 245 
asthenospheric mantle. There are no known active Holocene volcanos over the slowest part of 246 
the velocity anomaly, but the presence of the icefields complicates the mapping of volcanic 247 
activity. Shear wave splitting analyses show a strong E–W fast direction near the CTJ, indicating 248 
vigorous mantle flow around the edge of the Nazca slab (Russo, Gallego, et al., 2010; Russo, 249 
VanDecar, et al., 2010; Wiens et al., 2021), and fast mantle flow in the shallow asthenosphere 250 
may assist in the removal of lithospheric material. 251 

Lithospheric erosion near the CTJ contrasts with the structure farther south, where fast 252 
velocities indicate that the lithospheric mantle is largely intact beneath the Austral-Magallanes 253 
Basin. Patagonia has a complex history of terrane accretion (Ramos & Ghiglione, 2008), and it is 254 
possible that the lithosphere in the south was thicker prior to the opening of the slab window. 255 
Alternatively, thermal erosion may have been less efficient during the earliest stages of ridge 256 
subduction, becoming more efficient over time as the slab window thermally perturbed the 257 
surrounding mantle. As ridge subduction initiated only 18 Ma and subsequent ridge segments 258 
entered the trench at ~12 Ma, 6 Ma, and 3 Ma, we expect that timescales of conductive cooling 259 
are too short relative to the age of the slab window to allow for significant re-formation of 260 
mantle lithosphere even in the oldest parts of the window (Boutonnet et al., 2010). 261 

The crust thins by >10 km from north to south over the slab window (Figure 3, S7, S8). 262 
This trend is opposite the lithospheric erosion seen at the Moho, and is unlikely to be entirely due 263 
to surface erosion since the thinning is not primarily in the upper crust. Along the west coast of 264 
North America, the passage of the migrating Mendocino Triple Junction is thought to have 265 
caused rapid, temporary crustal thickening followed by crustal thinning (Furlong & Govers, 266 
1999). The same mechanism may be at work in Patagonia, but the trend of mean relief along the 267 
Austral Andes does not match predictions for flexural downwarping associated with this model 268 
for crustal modification (Georgieva et al., 2016). Preexisting structure, overthrusting of terranes, 269 
thermal erosion, and tectonic extension have also been proposed to explain crustal structure near 270 
the CTJ (Rodriguez & Russo, 2020), and further measurements extending north of our study 271 
region would help clarify the source of the variations in crustal thickness. 272 

4 Implications for glacial isostatic adjustment 273 

Mantle viscosity structure strongly controls GIA, which in turn responds to spatial and 274 
temporal ice-mass variations. High geodetic uplift rates around the NPI and SPI (≥4 cm/yr) have 275 
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been attributed to anomalous mantle viscosities lower than 2x1018 Pa s (Ivins & James, 2004; 276 
Lange et al., 2014; Richter et al., 2016), and recent GIA models suggest that reproducing 277 
observed uplift rates requires either mantle viscosities that are significantly lower beneath the 278 
NPI compared to the SPI or more ice mass loss in the NPI than previously estimated (Lange et 279 
al., 2014; Russo et al., 2021). The observed location of the slowest part of the seismic velocity 280 
anomaly north of 49°S is consistent with the former explanation, and viscosities estimated from 281 
our velocity model also point to both low overall viscosity in the slab window and a difference in 282 
structure beneath the two icefields (Figure 4). Our estimated viscosities are mostly higher than 283 
the values obtained by previous geodetic studies (Lange et al., 2014; Richter et al., 2016), but we 284 
emphasize that the absolute viscosity values we obtain are highly sensitive to uncertain 285 
parameters such as the fraction of velocity variation due to temperature. The extent of the slow 286 
anomaly also suggests that gradients in uplift rates along the SPI may reflect latitudinal variation 287 
in mantle viscosity. In broader terms, the strong lateral heterogeneity in mantle viscosity 288 
indicated by the velocity model implies that the geodetic response to glacial unloading in 289 
Patagonia will be highly three-dimensional, and cannot be fully described by symmetric 290 
deformation predicted for a radially layered mantle, particularly with respect to the prediction of 291 
horizontal crustal motions (Klemann et al., 2007). 292 
 293 

 294 

Figure 4: Estimated mantle viscosity based on the seismic velocity model. Maps of log10(η) at 295 
(a) 100 km and (b) 150 km depth. Other lines and symbols on the map are as described in the 296 
captions for Figures 1 and 2. 297 

The patterns of lithospheric erosion and thinning observed in our velocity model are also 298 
expected to affect GIA. While the seismic lithosphere is not exactly equivalent to the elastic 299 
lithosphere relevant to geodetic models, both terms refer to a layer of colder, more rigid material 300 
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that acts as a lowpass filter on the response of the mantle to changes in surface loading. The thin 301 
lithosphere observed near the CTJ enables shorter wavelength signals from GIA loading and 302 
mantle viscosity variations to be observed in surface deformation and topography. In the south, 303 
the fast velocities to the east indicate that thicker continental lithospheric mantle beneath the 304 
Austral-Magallanes Basin may constrain mantle flow patterns in the older parts of the slab 305 
window by blocking shallow latitudinal flow (Klemann et al., 2007). In this scenario, horizontal 306 
surface motions on the eastern side of the SPI are predicted to be dominantly to the east, and 307 
GNSS observations of horizontal surface displacements support this prediction where data are 308 
available along the eastern side of the northern SPI (Richter et al., 2016). 309 

Quantifying ice mass changes on the Patagonian Icefields is crucial for projecting future 310 
water resources and informing models of global sea level rise. Temperate mountain glaciers 311 
including the NPI and SPI currently contribute substantially to global mean sea level rise (Jacob 312 
et al., 2012; Radić & Hock, 2011). Ice and hydrological mass changes are efficiently monitored 313 
by satellite gravimetry, provided the GIA gravity effect is accurately removed (Ivins et al., 314 
2011). However, there are large trade-offs in GIA modeling between ice mass history and mantle 315 
viscosity structure (Lange et al., 2014), so uncertainties in mantle viscosity propagate forward 316 
into highly uncertain ice mass change rates (Richter et al., 2019). Constraining the regional 3D 317 
viscosity structure provides the space gravimetry community with key information on the solid 318 
Earth contribution to the secular mass change signal in Patagonia. 319 

The geologically rapid response of Patagonian topography to ice mass changes makes the 320 
area above the slab window ideal for studying the connections between the solid Earth rheology 321 
and dynamics, surface processes, and climate. The heterogeneous mantle structure indicated by 322 
seismic velocities implies that the isostatic response to ice mass changes will also be 323 
heterogeneous, and the absence of mantle lithosphere over the slab window promotes the 324 
observation of shorter wavelength variations in surface deformation. Lateral heterogeneity in 325 
mantle viscosity and lithospheric thickness, guided by seismic models and other geophysical 326 
observations, must be incorporated into GIA modeling in this region. The resulting higher 327 
quality models will help advance our understanding of the history and the future of the 328 
cryosphere and hydrosphere in Patagonia. 329 
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Open Research 344 

Data used in this study is from the GUANACO, SEPA, and CRSP temporary seismic 345 
networks (network codes: 1P, 10/2018-03/2021; XB, 02/1997-10/1998; YJ, 12/2004-12/2006), 346 
permanent stations from the Chile Network, GEOSCOPE, and the Antarctic Seismographic 347 
Argentinian Italian Network (network codes: C, C1, G, AI), and stations operated and 348 
maintained by ENAP. Data for all except the ENAP stations can be obtained from the IRIS DMC 349 
(https://ds.iris.edu/ds/nodes/dmc). The earthquake records and ambient noise cross-correlations 350 
for ENAP stations used in this study are publicly available (Mark et al., 2021a, 351 
https://doi.org/10.5281/zenodo.5508198). The final velocity and viscosity models presented in 352 
this paper are also available (Mark et al., 2021b, https://doi.org/10.5281/zenodo.5794167). 353 

Publicly released versions of the codes used for analysis can be found at: 354 
https://github.com/NoiseCIEI/Seed2Cor, https://github.com/NoiseCIEI/AFTAN,  355 
https://github.com/NoiseCIEI/RayTomo, https://github.com/trichter/rf, 356 
https://github.com/jinwar/matgsdf, and 357 
http://diapiro.ictja.csic.es/gt/mschi/SCIENCE/tseries.html#software. These codes are currently 358 
only available on github and researchers’ personal websites. Color palettes for all figures are 359 
from Fabio Crameri’s ScientificColourMaps7 (https://doi.org/10.5281/zenodo.1243862). 360 
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Figure S1. Phase velocity maps from ambient noise tomography. The left column 
shows phase velocities in km/s, and the right column shows path density smoothed over 
the map. Phase velocities are shown at periods of (a) 8 seconds, (b) 14 seconds, (c) 20 
seconds, (d) 26 seconds, (e) 32 seconds, and (f) 40 seconds. Velocities are only shown 
where path density is greater than 10 and the resolution length scale is greater than 0.02. 
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Figure S2. Event distribution map. Blue dots mark the locations of earthquakes used 
for tomography. The study region is outlined by a red box. 
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Figure S3. Phase velocity maps from earthquake tomography. The left column shows 
Helmholtz-corrected phase velocities in km/s, the middle column shows one standard 
deviation (in km/s) of the velocities calculated from stacking maps for each earthquake, 
and the right column shows log10 of the number of paths used in each grid cell. Phase 
velocities are shown at periods of (a) 20 seconds, (b) 26 seconds, (c) 32 seconds, (d) 40 
seconds, (e) 50 seconds, (f) 60 seconds, (g) 80 seconds, and (h) 100 seconds. Velocities 
are only shown for grid cells where velocity measurements were obtained for at least 10 
events. 
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Figure S4. Comparison between earthquake and ambient noise tomography. The 
left column shows earthquake phase velocities as in Figure S3, the middle column shows 
ambient noise phase velocities as in Figure S1, and the right column shows the difference 
between the two velocity maps at (a) 20 seconds, and (b) 40 seconds. All velocities and 
velocity differences are in km/s. For the maps of velocity differences, magenta contours 
outline regions where the difference between the two velocity maps is greater than 0.1 
km/s. 
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Figure S5. Inversion results for station TRLG. (a) Map showing station locations (black 
triangles) and the location of station TRLG (red inverted triangle). (b) Input station 
receiver function (grey line and shading) plotted with the forward-calculated receiver 
function for the average of all accepted velocity models for this station (dark blue line). 
(c) Input group and phase velocity measurements (pink and orange errorbars) with 
forward-calculated dispersion curves for the average of all accepted velocity models for 
this station (navy lines). (d) Inversion results to 200 km depth, showing the model for the 
centroid of the parameter prior distributions (orange line), the average of all accepted 
models (dark blue line), one standard deviation of all accepted models (green lines), and 
the range spanned by all accepted models (grey shading). (e) Shallow structure of 
accepted velocity models, with the same lines as in (d). (f) Histogram showing the 
distribution of sediment thicknesses for all accepted models. (g) Histogram showing the 
distribution of Moho depths for all accepted models. 
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Figure S6. Velocity uncertainty maps. Maps show one standard deviation for Vsv (in 
km/s) at (a) 50 km, (b) 100 km, and (c) 150 km depth. The uncertainty maps correspond 
to the velocity depth slices shown in Figure 2 of the main text. On all maps, previously 
estimated slab window extents are shown from Russo et al. (2010) at depths of 50 km 
(dot-dashed line) and 100 km (dotted line), and from Breitsprecher and Thorkelson 
(2009) (dashed line)1,17. The present-day NPI and SPI are shaded in grey, and the 
locations of volcanoes are marked with black triangles (adakitic) and black circles 
(basaltic). 
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Figure S7. Sediment thickness and Moho depth from the velocity model. Maps of 
(a) sediment layer thickness and (b) Moho depth (sediments plus crust) show thick 
sediments in the Austral-Magallanes basin to the south, and a north-to-south decrease 
in crustal thickness across the study region. Features marked on the maps, including slab 
window outlines from previous studies, locations of volcanoes, and present-day icefield 
extents, are the same as in Figure 1. Uncertainty maps for interface depths are shown in 
Figure S8. 
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Figure S8. Sediment thickness and crustal thickness uncertainty maps. Maps show 
one standard deviation of (a) the sediment layer thickness, and (b) the crustal thickness, 
excluding sediments. Features marked on the maps, including slab window outlines from 
previous studies, locations of volcanoes, and present-day icefield extents, are the same 
as in Figure 1. 
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 Layer type Parameter Value Perturbation range 
Sediments Gradient Thickness (Tseds) 1 or 4 km ± 1 or 4 km 
  Top velocity 1.5 km/s ± 0.5 km/s 
  Bottom velocity 2.2 or 2.8 km/s ± 0.6 km/s 
Crust Cubic splines Thickness (Tcrust) From H-k stacks ± 9 km 
  1st spline coeff. 3.2 km/s ± 25% 
  2nd spline coeff. 3.4 km/s ± 25% 
  3rd spline coeff. 3.6 km/s ± 25% 
  4th spline coeff. 3.9 km/s ± 25% 
Mantle Cubic splines Thickness 300 km - Tcrust - Tseds  
  1st spline coeff. 4.2 km/s ± 25% 
  2nd spline coeff. 4.3 km/s ± 25% 
  3rd spline coeff. 4.4 km/s ± 25% 
  4th spline coeff. 4.5 km/s ± 25% 
  5th spline coeff. 4.6 km/s ± 25% 
  6th spline coeff. 4.7 km/s Held constant 

Table S1. Prior parameter distributions for Bayesian inversion.   
 
 


