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Abstract

The Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) provides the long-term soil moisture (SM) products

and this study conducts a comprehensive assessment of SM products of multiple CMIP6 model simulations over conterminous

China. Both near-surface (0-10 cm) SM simulations from 40 models and root-zone (0-100 cm) SM from 25 models are compared

with a set of station measurements in the growing season (April to September) for 1992-2013 in term of magnitude, spatial and

temporal variability, and the long-term trend and interannual variability of near-surface SM for 1961-2014 are further evaluated

with an offline land surface modeling dataset. Simulations from most models broadly capture the spatial characteristics of

observation and the multi-model mean (MME) well reproduces seasonal variations over majority regions regardless of large-

spread across models. Models from the same institution likely manifest similar performances and the land surface scheme plays

a dominant role in the SM reproduction. The majority of models well simulate the overall drying trend in China as a whole

and the signs of SM trend are highly consistent across models, but the areas with significant wetting/drying trends vary with

models. The spatial patterns of SM interannual variability are model-dependent in term of spatial patterns. MME is overall

superior to the simulations of individual model and may have potential applications in the future research. The heterogeneity

SM performances across models reveal the complexity in modeling land surface variables, suggesting the need for improving

representations of land surface processes in the coupled models.
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Key points:

• Station observation and a pre-derived dataset in China are used to assess
near-surface and root-zone soil moisture in CMIP6 simulations.

• The soil moisture simulations are similar for models in the same institu-
tions, most models reproduce the recent drying trend in China.

• The multi model mean performs overall superior to individual model,
which is suggested for future applications.

Abstract

The Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) pro-
vides the long-term soil moisture (SM) products and this study conducts a com-
prehensive assessment of SM products of multiple CMIP6 model simulations
over conterminous China. Both near-surface (0-10 cm) SM simulations from
40 models and root-zone (0-100 cm) SM from 25 models are compared with
a set of station measurements in the growing season (April to September) for
1992-2013 in term of magnitude, spatial and temporal variability, and the long-
term trend and interannual variability of near-surface SM for 1961-2014 are
further evaluated with an offline land surface modeling dataset. Simulations
from most models broadly capture the spatial characteristics of observation and
the multi-model mean (MME) well reproduces seasonal variations over majority
regions regardless of large-spread across models. Models from the same institu-
tion likely manifest similar performances and the land surface scheme plays a
dominant role in the SM reproduction. The majority of models well simulate
the overall drying trend in China as a whole and the signs of SM trend are
highly consistent across models, but the areas with significant wetting/drying
trends vary with models. The spatial patterns of SM interannual variability are
model-dependent and the result of MME relatively resembles to the reference
dataset. In summary, MME is overall superior to the simulation of individual
model and may have potential applications in the future research. The het-
erogeneity SM performances across models reveal the complexity in modeling
land surface variables, suggesting the need for improving representations of land
surface processes in the coupled models.

Plain Language Summary
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Soil moisture influences the exchange of energy, water and carbon within the
soil-vegetation-atmosphere system. Climate models are extensively applied to
simulate soil moisture data that are required to be assessed prior to applications.
In this study, we comprehensively evaluate the soil moisture simulations in the
Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) historical
experiments, with a set of station observations and a high-quality pre-derived
SM product in China as the reference datasets. The results show that the spatial
and temporal characteristics of soil moisture simulated by majority models are
consistent with observation and the multi-model mean (MME) well reproduces
SM seasonal variations in most regions. Resemble performances are found for
models from the same institution. For China as a whole during 1961-2014, the
drying trend is reproduced by most models. There are high consistencies of
trend patterns across country among models although the magnitudes of trend
are model-dependent. The interannual variability of soil moisture varies with
models in term of spatial patterns, for which MME overall shows better per-
formance than the simulation of individual model. This study provides a basic
reference for selecting soil moisture products in CMIP6 for future applications.

1 Introduction

Soil moisture (SM) is one of key elements in the terrestrial hydrology and ecosys-
tem and it determines exchange of energy, water and carbon within the soil-
vegetation-atmosphere system. The role of SM in the climate system has been
extensively studied (e.g., Seneviratne et al., 2010) and it has been used in various
applications including drought reconstruction and identification (e.g., Wang et
al., 2011; Wang & Kong, 2021), hydrological forecast (e.g., Koster et al., 2014),
short-term climate prediction (e.g., Yeh et al., 1984), climate variability (e.g.,
Yang et al., 2016), dust emission (e.g., Kim & Choi, 2015) and wildfire behavior
prediction (e.g., Krueger et al., 2016). For above applications, the long-term
reliable SM datasets with continuously spatial coverage are crucial.

There are several ways to obtain SM dataset and each of them has strengths and
weaknesses. Ground-based measurements provide the most accurate SM records,
but they are less spatial coverage and temporal continuity (Dorigo et al., 2011;
Robock et al., 2000; Wang & Shi, 2019). Remote-sensing based SM datasets may
extend longer term with broad coverage, whereas they only represent moisture
state within a few centimeters below ground and their accuracies are impacted
by many factors such as the retrieval approach and frequent and coverage of
satellite measurements (Liu et al., 2011). Numerical models are widely used
to produce SM dataset for decades. For instance, land surface model (LSMs)
forced by observation-based meteorology datasets can offline simulate the land
surface hydrology elements and fluxes over regional and global land areas, but
the accuracy of simulations strongly depends on the model physical process,
parametrization schemes and forcing dataset (Miao & Wang, 2020; Wang et al.,
2016; Xia et al., 2014).
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The Six phase of Coupled Model Intercomparison Project (CMIP6) provides
the collection of climate and land datasets derived from Earth System Mod-
els (ESMs) for historical simulations and future climate projections (Eyring et
al., 2016). Products of CMIP6 have been and will support many aspects not
only in research communities, but also in the social economic policy-makings in
the next few years. For instance, the CMIP6 SM products have been used to
project drought in the future under different SSP scenarios (Cook et al., 2020).
There is a common consensus that better performances of climate models in
certain aspects during historical simulations would also be more reliable in fu-
ture projection. Therefore, evaluation of CMIP6 model historical simulations
with reliable datasets is very important and may provide a reference for model
selection in future projection.

In CMIP6 models, SM is one of the prognostic variables in the land surface model
(i.e., LSM) that is an essential component of ESM. The performances of SM in
ESMs depend on many aspects, primarily including representation of model
physical processes, coupling schemes, as well as the external forcing imposed
on the CMIP6 historical experiments. Among them, LSM is crucial for SM
production and its physical processes and corresponding computation schemes
directly determine the accuracy of SM (Wang et al., 2016). Previous evaluations
of CMIP simulations mainly focus on the near-surface SM (e.g., SM within top
10 cm soil layer). For example, compared to its predecessor (i.e., CMIP5), Yuan
et al. (2021) indicated that surface SM in CMIP6 better captures its trends in
term of the whole contiguous United States and the multi model agreements are
also enhanced. Sang et al. (2021) also compared the 0-10 cm SM of BCC-CSM
simulations and reported overall improvements of SM in CMIP6 against CMIP5.
There are two reasons: i) it is one of standard output variables in CMIPs and all
endorsed models are required to provide this variable; and ii) the remote sensed
SM that represents within 2~5cm soil depth can be directly used to be compared
with simulations in CMIPs. However, the root zone SM (roughly denoted as
SM in 0-100 cm soil layer) is essentially important for climate prediction and
ecosystem production. Near-surface SM has large temporal variability because it
is directly affected by atmosphere process, while root-zone SM may have season
to intra-seasonal time scales (Nie et al., 2008). Although some studies showed
that there is a strong relationship of SM between near-surface and root-zone
(Ford et al., 2014; Mahmood & Hubbard, 2007), model performances of both
SMs are not necessarily consistent (e.g., Yuan & Quiring, 2017). Berg et al.
(2017) also reported the divergent projections of SM in the vertical soil profile
under global warming. Therefore, to fully understand the SM from multi model
simulations in CMIP6, it necessarily performs evaluation both near-surface and
root-zone SM.

In this study, we conduct a comprehensive assessment of SM products from 40
CMIP6 models over the conterminous China in terms of their magnitude, spatial
and temporal variation, long-term variabilities. A set of high-quality station-
based SM dataset and a well-validated LSM simulated long-term SM product
are used as the reference datasets. We compare both near-surface and root-zone
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SM at individual sites, regional scale and country scale. Results of this evalua-
tion may provide guidelines for both model output users and modeling groups
to understand their SM simulations among others. Section 2 describes SM sim-
ulations from CMIP6 models, reference datasets and methods. Sections 3 and
4 present the detailed comparisons against two reference datasets, respectively.
Section 5 discusses possible sources of uncertainties in CMIP6 SM simulations
and reference datasets, and conclusions of this study are summarized in Section
6.

2. Data and method

2.1 CMIP6 SM datasets

In this study, we evaluate 0-10 cm and 0-100 cm SM, representing near-surface
and root-zone SM, respectively. We downloaded the outputs of “mrsos” and
“mrsol” from historical (1850–2014) simulations that are the core DECK experi-
ments from the data site of CMIP6 (https://esgf-node.llnl.gov/search/cmip6/).
In CMIP6 variable name system, “mrsos” is referred to as “the mass of water
in the upper 0-10 cm of the soil layer”, and “mrsol” is “the mass of water in
each soil layer”. At the time of this study, there are 40 CMIP6 models with
“mrsos” available (the first ensemble, r1i1p1) and 25 models provide the “mrsol”
and soil layer thickness dataset. Information of each model including resolution,
institution, and land module and its vertical layer are summarized in Table
1. Of all 40 CMIP6 models, 16 LSMs are adopted and the total soil column
depth varies from 1.9 to 35.2 meters and the number of soil levels varies 5 to
20 (Table 1). The root-zone SM is computed as the integrated “mrsol” within
0-100 cm weighted by the soil layer thicknesses in each model. Several ESMs
share identical LSMs, in particular for models hosted by the same institution.
For instance, the community land model (CLM) with different versions has
been used as the land module in 13 CMIP6 models. Among them, eight mod-
els (i.e., FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, NorCPM1, NorESM2-LM,
NorESM2-MM, SAM0-UNICON, TaiESM1) adopt CLM4 as the land module,
while two CESM2 models use CLM5 and three CMCC-models use CLM4.5. Dif-
ferences among those versions of CLM have been well documented (Lawrence
et al., 2019). Intercomparisons of SM from different ESMs with the same LSM
may exclude the impact of land process parameterizations and facilitate explor-
ing the influences of other model components on SM simulations.

2.2 Reference SM datasets

a. Station observation

We adopted an in-situ measured SM dataset in China as a reference (Wang
& Shi, 2019, hereafter referred as to WS2019). This dataset was originally
derived from the gravimetric method at 1471 Chinese agrometeorology stations
and then after strictly quality-controlled and post-processed, the WS2019 SM
dataset contains the monthly volumetric SM records for up to 732 stations in five
soil layers (Figure 1). The gravimetric method is regarded as the most accurate
approach to measure total moisture in the soil sample (Lekshmi et al., 2014).
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Thus, those measurements are widely used as the benchmark for other datasets.
For example, WS2019 SM has been used as a reference to assess the climate
model and LSM simulations (Miao & Wang, 2020; Sang et al., 2021; Wang &
Kong, 2021). In this study, WS2019 SM at 0-10cm (732 stations) and 0-100 cm
(117 stations) during growing seasons (April to September) for 1992-2013 are
used to evaluate CMIP6 simulations.

b. Offline VIC model simulations

A common deficiency of SM station measurements, particularly based on the
gravimetric method, is the lack of continuity in both space and time. Most
stations in WS2019 locate in the east part of China and few of them are in
the western China, especially the northwest and the Tibetan Plateau (Figure
1). Moreover, in-situ measurements in cold months are usually not available
or contain too many missing values due to soil frozen and snow cover. To
evaluate the long-term variability of CMIP6 SM over the whole China domain,
it is necessary to have a reliable long-term SM reference dataset. Using the
advanced Variable Infiltration Model (VIC, Liang et al., 1994) model and a pure
observation-based atmospheric forcing dataset, Miao & Wang (2020) conducted
an offline modeling experiment at 0.25°×0.25° horizontal resolution during1961-
2017 and then produced a set of land hydrology and fluxes variables (referred
as to VIC-CN05). Compared with various sources of datasets, the VIC-CN05
well reproduced land surface hydrology and fluxes in term of their magnitude
and spatiotemporal variability. Compared with WS2019 and other independent
datasets, the VIC-CN05 SM displayed high performance in SM spatiotemporal
characteristics. The VIC-CN05 contains three layers of SM datasets with the
first layer given as 0-10 cm below ground, and the second and the third layers
vary between 50 cm to 250 cm across China. In this study, the 0-10 cm VIC-
CN05 SM for 1961-2014 is adopted to evaluate CMIP6 SM in terms of their
annual trend and interannual variability across the whole China mainland.

2.3 Method

To facilitate comparisons, all monthly CMIP6 SM values are firstly remapped to
0.25°×0.25° using the near-neighbor interpolation method to match the CN05-
VIC resolution. In order to compare model simulations with WS2019, the near-
neighbor interpolation method is employed again to interpolate each model sim-
ulation to the station location. Because the station measurements are strongly
influenced by local land surface conditions, regional average may reduce the
noises of point observation and highlight the distinct characteristics of SM. For
both observation and model simulations, the regional mean is computed as the
average of values at all available stations with each subregion (Figure 1a). The
comparisons are conducted at both point sites and subregions for the growing
season during 1992-2013.

In the following texts, SM from both station observation and CN05-VIC are
denoted as “OBS” for convenience. Results from individual model and multi-
model ensemble mean (MME), derived from 40 models for 0-10 cm and 25
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models for 0-100 cm SM, are compared with OBS. To quantify the performance
of simulated SM, we also compute and compare both temporal and pattern
correlation coefficients between simulations and OBS, and the long-term linear
trend and interannual variability of SM. The linear trend is computed as the
least-square regression method and the interannual variability is represented by
the standard deviation (STD) of annual data.

3. Results

3.1 Spatial variation at point-to-point sites

In this section, we evaluate CMIP6 multi-model simulation with the in-situ
observation at each station and each subregion. To perform the meaningful
comparison and also consider the observation data availability (Wang & Shi,
2019), the annual mean SM are computed from April to September in each year
firstly, and then they are averaged for the period of 1992-2013. Figure 1 shows
the spatial distribution of SM fromMME and OBS. Similar plots from individual
CMIP6 model are shown in Figure S1 and Figure S2. In both soil layers, MME
broadly captures the spatial pattern of OBS, gradually wetting from north to
south. As shown, station-to-station variations in MME are smaller than that
in OBS, partially due to MME offsetting the variabilities across models (Figure
S1). Because station measured SM values are derived from the soil sample
at the point site, it represents a small-scale soil hydrological condition. The
magnitude of SM is strongly affected by the soil characteristic, vegetation cover
and other local factors, which are very heterogeneous over large areas (Entin
et al., 2000; Wu et al., 2014). Intercomparisons of simulations from individual
model, the spatial patterns of mean SM show apparently disparity across models
(Figure S1). For example, the KACE-1-0-G simulates very extreme dry soil in
East China where the climate is relatively humid, while some other models, e.g.,
NorESM2 and CESM2, produce relatively wetting soil. Because soil variables
in near ground are directly interacted with overlying atmosphere process, the
near-surface SM is to large extent reflection of near surface climate state, in
particular, precipitation. The large biases of surface SM somehow imply the
poor simulations of precipitation in the models (e.g., Dirmeyer, et al., 2006; Li,
et al., 2020; Wang & Zeng, 2011).

We also adopt boxplots to display the SM distribution across all available sta-
tions from individual model, MME and OBS (Figure 2). It can be seen that SM
for 10th, 25th, mean,75th, and 90th spatial percentiles across all available sta-
tions are also indicated in the figure. For near-surface soil layer, the mean SM
from MME (0.26 cm3/cm3) are slightly larger than OBS (0.24 cm3/cm3), while
10th-90th spatial ranges of SM from MME (0.19 ~0.30 cm3/cm3) are slightly
smaller than OBS (0.16~0.32 cm3/cm3). The mean SM from individual model
varies between 0.16 cm3/cm3 (KACE-1-0-G) and 0.32 cm3/cm3 (NorESM2-LM).
For the mean root-zone SM, the simulation of MME (0.26 cm3/cm3) is very
closer to OBS (0.27 cm3/cm3). Above results indicate that MMEs in both soil
layers well reproduce the mean SM for China as whole. Meanwhile, we also find
that ESMs from the same institution show similar performance. For example,
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SM from all five EC-earth ESMs do not show large differences in terms of mean
and spread, and three GISS ESMs and two CESM ESMs respectively simulate
nearly identical SM. Both CESM2 and CESM2-WACCM use the same modeling
framework, but their atmospheric models have different vertical representations,
with the latter one spanning much high altitude from the Earth’s surface to the
thermosphere (Marsh et al., 2013). This suggests that the atmospheric vertical
structures do not affect simulations of land surface hydrology process because
they have less effects on precipitation simulations (Marsh et al., 2013). For
those CMIP6 models sharing the same LSMs but hosted by different institu-
tions, their simulated SM show relatively small differences. Whereas there are
large differences for ESMs from different institutions. The above results indicate
that the model horizontal resolutions or slightly different atmosphere schemes
are likely have little effect on the mean SM magnitude and spatial spread.

To further quantify spatial variability of mean SM across stations from each
model simulation and MME, we compute the pattern-correlation (CORR) and
normalized spatial standard derivation (NorSTD) against OBS. The Taylor di-
agram is adopted to display CORR and NorSTD (Figure 3). As seen clearly,
simulations from all models in both soil layers show positive CORR, indicating
overall reproduction skills of SM spatial patterns in CMIP6 models. For near-
surface SM, the CORR varies between 0.10 (NorCPM1) and 0.51(EC-Eath3-Veg
and EC-Earth-CC) across 40 models, and it is 0.46 for MME that is larger than
simulations of most models. For root-zone SM, CORRs are overall larger than
those from the near-surface layer, varying between 0.22 (NorESM2-LM and
MIROC6) and 0.52 (EC-Eath3-Veg and EC-Earth-CC) across 25 models and
being 0.49 in MME. The NorSTDs of SM across all stations represent the spatial
variability of model simulations in comparison with OBS. It denotes the perfect
matching of simulation and OBS when NorSTD is equal to 1, The NorSTD varies
between 0.54 cm3/cm3 (ACCESS-ESM1-5) to 1.31 cm3/cm3 (CAS-ESM-0) for
the near-surface SM, and between 0.44 cm3/cm3 (ACCESS-ESM1-5) to 1.04
cm3/cm3 (MPI_ESM1-1-HR) for root-zone SM. Especially, NorSTD in three
models (i.e., GFDL-CM4 and KACE-1-0-G for near-surface SM, EC-Eath3-Veg
for root-zone SM) are very close to one, indicating high skill in reproduction of
SM spatial variation. NorSTDs of MME for both soil layers are less than one
(0.66 for near-surface SM and 0.58 for root-zone SM), indicating the underesti-
mation of spatial gradient of SM across stations in China. Consistent with the
results in Figure 2, similar magnitudes of CORR and NorSTD are also found in
models from the same institution. For instance, regarding to results from five
EC-Earth3 ESMs for 0-10 cm and 0-100 cm SM, the CORR is 0.48~0.50 and
0.48~0.52, while NorSTD is 1.21~1.28 cm3/cm3 and 0.63~0.64 cm3/cm3 respec-
tively. This result further emphasizes the strong dependence of SM simulations
on the LSM implemented in the climate models.

3.2 Regional comparison

Figures 4 and 5 receptively show the monthly climatology of near-surface and
root-zone SM from OBS, individual model and the MME averaged in six subre-
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gions for the period of 1992-2013. As seen clearly, the SM seasonal variations
of MME and OBS are well matched in five of six subregions (except for HY)
although there are large spreads across models. In XJ, specifically, all models
produce apparently drier soil compared to OBS, indicating a systematical under-
estimation of SM. This underestimation is also evident for root-zone SM (Figure
5). In NW and CE, MMEs are wetter than OBS in both layers. In YH, the
OBS SM slightly increases from April to September, but MME shows oppositely
variations. Because the climate of this region is strongly impacted by the East
Asian Monsoon System as well as other larger scale circulation teleconnections
(Xiao et al., 2015), climate prediction and simulation are extremely difficult (Si
& Ding, 2011). For example, Wang & Kong (2021) assessed the SM products
from the Weather Forecast Model (WRF) experiments driven by two reanalysis
products and also found a negative correlation against OBS in this region.

To examine the SM temporal variability of model simulations, the temporal cor-
relation (CORR) between individual model and OBS, between MME and OBS
are computed from the available monthly data in each subregion (Figure 6). For
near-surface SM, simulations of majority models and MME are positively corre-
lated with OBS, and CORRs are significant at the 95% level in five subregions
except for YH, where CORR is negative or very small positive among models.
It is surprising that the CORRs in XJ are significant in all models and also
highest among all subregions. For root-zone SM, CORRs are slightly smaller
than those in near-surface layer and only simulations from a few models and
MME in NW and CE are significantly correlated with OBS. In YH, similar as
near-surface layer, most models produce negative CORRs. The possible reason
of that has been discussed preciously. Therefore, it is suggested that caution
should be paid when using CMIP6 SM in YH subregion. Regarding the SM
modelling deficiency in this region, it is needed to have in-depth research.

4. Evaluation of long-term variability of soil moisture

In this section, we evaluate the long-term variability of near-surface SM from
individual CMIP6 model, MME and OBS for the period of 1961-2014. The
long-term linear trend for annual SM and the interannual standard deviation
(STD) of detrended SM at each grid cell are computed and compared. Noted
that the SM unit of plots in this section use millimeter (i.e., mm) for visual
purpose and it can be easily converted to the volumetric unit (i.e., cm3/cm3).

4.1 Annual trends

Figures 7 a) and b) respectively show the maps of annual SM trend from OBS
and MME. Similar results from individual model are in Figure S4. Signifi-
cant wetting trends of OBS appear in the northwest, Three-rivers source region,
northeast China, but there are offset by significant drying trends in the east-
ern Gansu along the middle reach Yellow River basin, eastern Tibetan Plateau
and southwest China. In contrast, the significant wetting trends of MME oc-
cur in the western of 105°E and lower reaches of Yellow River basin, but a
large portion of the rest of land area displays significant downtrend, patterns
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of which are roughly consistent with OBS except for the Xinjiang-Tibet border
along Kunlun Mountain, where trends show opposite signs. Consequently, the
country-mean SM shows a slightly increasing (wetting) trend from both OBS
(0.54×102 mm/year) and MME (0.26×102 mm/year). Intercomparison of SM
trend simulations from individual model, the most distinct biases against OBS
are that several models (e.g., NorESM2-LM, NorESM2-MM, CESM2, CEM2-
WACCM, and five EC-Earth3 models) produce strongly wetting trend (>0.04
mm/year) in the western Tibetan Plateau that induces a wetting center in
MME. This disparity might be partially resulted from poor representations of
land surface processes in the complex topography regions and the near-surface
climate simulations also contains lager uncertainties in those regions (Wang et
al., 2018).

In order to explore the inter-consistency of SM trend sign across models, we
also compute the percentage of models with the same trend sign (negative or
positive) as the OBS in each grid cell (Figure 7c). The average consistency
across conterminous China is near 56% and areas with relatively high consistency
appear in Northwest, the lower reach of Yellow River basin, and Yunan province,
where more than 80% (i.e., at least 32 models) of the models show consistent
SM trend sign. In contrast, the lowest consistency locates at the south of lower
reach Yangtze River basin where less than 30% of the models agree on the sign
of SM trend. One purpose of the CMIP6 historical experiments is to reproduce
the reliable variables that may support to exploring the long-term variability
in climate, hydrology and other related research (Eyring et al., 2016). High
consistency denotes the robustness and the reliability in representation of long-
term SM trend within the CMIP6 multi-model ensemble. Similar analysis may
also be applied to assess other modeled variables.

Figure 7d) shows the aggregation of land areas with positive or negative SM
trends that significantly exceed the 95% confidence level. The significant wet-
ting areas are much smaller than that of drying from OBS, indicating overall
expansion of dryland in China (Cheng et al., 2015; Wang et al., 2011; Wang
& Kong, 2021). The MME captures this feature, although either significantly
wetting or drying areas are more extensively compared to those in OBS. There
are nearly 70% of land areas that show significant SM trends in MME, which
are much larger than that from individual models as well as OBS (25%). For
individual model, majority of models produce more drying areas than wetting
areas, although the magnitude of above metric varies with models. This may
imply certain ability of ESMs on reproducing SM trend pattern in China. It
should be noted that models with the same LSM do not necessarily produce
similar SM trend patterns.

4.2 Interannual variability

Figure 8 shows the spatial distribution of interannual variability of near-surface
SM from OBS and MME, represented by the interannual STD of detrended an-
nual mean SM for 1961-2014. The results from each individual model are listed
in Figure S5. The STD varies spatially and it is lowest (less than 0.4 mm) in
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northwest regions, where MME is consistent with OBS (Figure 8a). A noticeable
mismatch between MME and OBS appears in northeast China and the Tibetan
Plateau, which is resulted from the diverse performance of several models (e.g.,
NorESM2_MM, NorESM2_MM, CESM2, CENS2_WACCM, CanESM5 and
KACE-1-0-G). Over the Tibetan Plateau, high STD in MME may be also in-
duced by the uncertainties of parameterization schemes of LSM used in models.
To further quantify the spatial patterns of interannual variability, we also cal-
culate the centered pattern correlations (CORR) of STD from each individual
model and MME against OBS (Figure 8c). CORRs from all models and MME
are positive, indicating overall consistency of simulations and OBS in terms of
spatial pattern of STD. It is noticeable that correlations derived from five EC-
Earth models are relatively larger, especially CORR of EC-Earth3-Veg (0.51)
is even larger than that of MME (0.48). Similar to Figure 7d, models with the
same LSMs do not produce coherently patterns of STD. The long-term variabil-
ity of near surface SM mainly depends on the atmospheric forcing dataset but
is less affected by land surface scheme (Cheng et al., 2015; Wang et al., 2016).
The magnitude of STD denotes the year-to-year variability of near-surface SM,
which mainly reflects the annual variation of near surface climate, in particular
precipitation (Liu et al., 2017). This needs to explore the model simulated near
surface climate variables, which are beyond the scope of current work.

5 Discussions

5.1 Uncertainties of soil moisture in the CMIP6 model simulations

As a prognostic variable in the model, SM is usually computed through solving
land surface water balance equations in the climate models. The performance of
SM simulations in climate models depends on many factors that may be roughly
divided into two categories: near-surface atmosphere variables and parametriza-
tion schemes in LSM. Previous studies based on offline LSM experiments have
indicated that the simulated SM magnitude has largely depended on the accu-
racy of input surface meteorology variables, in particular precipitation, while
its temporal variability may be also affected by the parameterization schemes
in the LSM (Wang & Yang, 2018; Decker &Zeng, 2009; Dirmeyer et al., 2006).
Variations of near-surface moisture from monthly to season scale are generally
followed by the near land surface climate, and it highly correlates with pre-
cipitation that arrives at the soil surface (Koster et al., 2009). Evaluation of
near surface climate simulations from CMIP6 multi-model ensemble in China
have been conducted and the results show overall improvements compared to its
predecessors (i.e., CIMP5) resulted from the improvements of physical process
representation and enhanced spatial resolution (e.g., Chen et al., 2020). Com-
pared to the in-situ observations, the climate products from CMIP6 models still
contain larger biases, which in turn may transfer to the land surface hydrological
process.

The representations of land surface schemes are another important source of
uncertainty in the simulated SM. Different LSMs, even driven by the same at-
mospheric forcing dataset, may also produce larger uncertainties in the land
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surface variables (e.g., Dirmeyer et al., 2006; Wang et al., 2011; Xia et al.,
2014). The comparison of station observation and SM simulations in current
study shows the dependence on the LSMs (Figures 2 and 3). As 40 CMIP6
models employed 16 LSMs (Table 1 and Figure 2), the vertical structures of
soil column and soil water transfer schemes are model-depended. The water
transfer scheme regulates the water movement between adjacent soil layers and
determines the soil water retention time in each layer. The vertical soil layer
division within soil column also represents the vertical resolution of LSM. For
instance, the total soil depth is about 2.9 meters in ACCESS and BCC models,
but they are subdivided into 6 and 10 soil layers, respectively. The different
vertical resolution may produce different variable SM profiles that are potential
causes of simulated SM disparities among models. Furthermore, soil textures
(i.e., sand, clay and other matters in the soil), which determine the soil hydro-
logical parameters (e.g., soil hydraulic conductivity and soil matric potential),
can directly impact the water transfer in the soil (Wu et al., 2014). In CMIP6
historical experiments, soil texture datasets are specified by each model group
and might be another potential source of uncertainty in simulated SM. Further-
more, although all modeling groups in the CMIP6 historical experiments were
required to use the “land use harmonization” version 2 (LUH2) as the land cover
input (Hurtt et al., 2011), the detail settings might not be strictly the same for
different models (Lawrence et al., 2016) and they may be also different from
the real land surface conditions. All above settings in CMIP6 models might be
sources of uncertainties in SM simulations.

5.2 Uncertainties in the reference datasets and the comparison meth-
ods

We used a set of volumetric SM records at multi stations to compare the CMIP6
multi-model simulations in terms of magnitude, spatial pattern and temporary
variability at point sites. We then use a pre-produced offline hydrology model
simulation product to compare the long-time variability of SM in contiguous
China. The measured SM displays larger spatial variability because the soil wa-
ter holding capacity and soil texture are heterogeneous from station to station
(Wang & Shi, 2019). Although the point-based measurement may provide the
most accurate SM in quantity, its spatial representation is much smaller than a
grid cell area (i.e., 500~10000 km2) in climate models (Entin et al., 2000; Famigli-
etti et al., 2008). Scale-mismatching induced uncertainties are always challenge-
able for model-data comparison. Comparisons conducted with regional average
reduces observation noises across stations, but characteristics of regional SM
strongly depend on the density and distribution of stations within each region
(Xia et al., 2014; Yuan & Quiring, 2017). Upscaling sparse SM measurements
from the point site to relatively large scale may enhance the robustness of the
comparison (Crow et al., 2012), but this process requires additional informa-
tion in the observation networks that do not exist currently in Chinese in-situ
SM observation. Moreover, because the measured SM used in this study are
from agrotechnological stations in China, there are inevitable that SM records
at some stations are influenced by irrigation (Wang & Shi, 2019). It should be
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pointed that current comparisons are only conducted during the growing sea-
sons due to limited observation, and the performance of SM in CMIP6 models
might be different in cold months, in which soil water may experience phase
change owing to the freezing-thawing transition induced by soil temperature
change (e.g., Guo et al., 2018).

Offline LSM modeling products, driven by the observation-based atmospheric
dataset and parameters provide fully land surface hydrological variables that
are commonly used as a reference dataset to validate the coupled model simu-
lations. Much of research have been proved the great reliability of offline LSMs
modelling in reproduction of land surface hydrological and energy variables (e.g.,
Miao & Wang, 2020; Wang et al., 2016; Xia et al., 2014). The offline LSM sim-
ulation is indeed a passive response of forced historical climate states provided
by prescribed atmosphere forcing dataset. In other word, they do not account
for the concurrent land-atmosphere interaction, which has been proved to play
an important role in the climate variability and prediction within the climate
system (Seneviratne et al., 2010; Van den Hurk et al., 2011). Strictly, the of-
fline LSM simulation is a surrogate reference that may contain biases from both
atmospheric forcing dataset and land parametrization schemes.

6 Summary

This study assesses the SM simulations in CMIP6 historical experiment over
mainland of China. Both SM in 0-10 cm (40 models) and 0-100 cm (25 mod-
els) soil layers are compared with a set of in-situ station observation (OBS) in
term of its magnitude, spatial and temporal variabilities. Then, the long-term
trend and inter-annual variability of near-surface SM are evaluated with a pre-
validated offline LSM modeling product. Comparisons of simulated SM with
OBS reveal that a large range of variability and inconsistencies across CMIP6
models. In general, simulations of majority CMIP6 models can broadly cap-
ture spatial characteristics of mean SM. Consistent with OBS, MME shows
increasing SM from northwest to southeast. The pattern correlations between
CMIP6 simulations and OBS are all positive and the correlation of MME, com-
pared with that of individual model, is relatively high. The spatial variability
of simulated SM varies with models and the majority of them show slightly less
variability than OBS. Results indicate that climate models from the same in-
stitution produce a similar performance in terms of SM magnitude and spatial
patterns, which reveals the importance of LSM in the coupled CMIP6 models.
The seasonal SM variations are well reproduced by MME in most of the subre-
gions although a large multi-model spread exists. Especially, the near-surface
SM in all models and MME show significant correlation against OBS in arid
region, whereas most models underestimate the magnitude of SM, possibly re-
sulting from the systematic biases in the simulated near surface meteorology
variables, in particular, precipitation (e.g., Wang et al., 2016; Wang & Zeng,
2011). This also illustrates the need to improve atmosphere model in order to
provide high quality near-surface atmospheric forcing dataset for LSMs.

For the long-term variability of near-surface SM during 1961-2014, MME shows
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an overall drying trend in China as whole, consistent with OBS although the
spatial feature varies with regions. Signs of trend in 40 models are highly con-
sistent with the OBS across China mainland, and their spatial patterns with
significant wetting or drying trend are model-depended. Moreover, the MME
broadly captures the spatial features of interannual variability although there
are diverse across models. In summary, the MME seems better than individual
model in most cases and may provide a reasonable SM product for future appli-
cations. The heterogeneity performances among models reveal the complexity in
modeling land surface processes within a coupled model. In order to reproduce
reliable SM simulations, there needs to synthetically improve various compo-
nents in the models, especially the representation of land-atmosphere exchange
in water and energy and soil water transfer scheme in LSMs.
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Figure 1. The mean soil moisture averaged over the growing season (April–
September) for the period of 1992-2013. The soil moisture for 0-10cm (a, b)
and 0-100 cm (c,d) derived from WS2019 (a, c) and (c,d) CMIP6 multi-model
ensemble mean (MME). There are 732 stations for 0-10cm (a,b) and 177 stations
for 0-100 cm soil moisture (c,d), respectively. The boxes indicate the regional
range with the two-letter abbreviations provided for each region (XJ: 76°-90°E,
38-48°N; NW: 99.5°-110°E, 32.5-41°N, CE: 110°-117.5°E, 34.5-42°N, NE: 118-
130°E, 39.5-50.5°N; YH: 110-120°E 29.5-34.5°N, and SW: 102-107°E, 23-31.5°N).
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Figure 2. Boxplots of soil moisture for a) 0-10 cm and b) 0-100 cm soil depths
from individual CMIP6 model, MME and OBS, derived firstly from the average
soil moisture of growing seasons (April to September) from 1992 to 2013 at all
available stations (locations are indicated in Figure 1). Boxes indicate the 75th
(bottom) and 25th (top) spatial percentiles, center lines are median value across
all stations, and dashed outlines are the 90th (bottom) and 10th (top) spatial
percentiles. Models with the same LSM are shaded with same color and name
of LSM is also indicated at the top of the figure.

Figure 3. Taylor diagrams of (a) near-surface (0-10 cm) and (b) root-zone
(0-100cm) soil moisture statistics derived from the individual CMIP6 model
simulation, MME and OBS across all available stations. Statistics are computed
from the growing seasonal mean soil moisture from 1992 to 2013. Makers with
the same color denote CMIP6 models with the same LSM.

Figure 4. Seasonal cycles of regional mean surface (0-10cm) soil moisture for
station observation (WS2019, red curve), individual CMIP6 model simulation
(thin black curve), and MME (bold black curve) from the average soil moisture
of growing seasons (April to September) from 1992 to 2013. Regional divisions
are indicated in Figure 1a.

Figure 5. Similar as Figure 4, but for 0-100 cm soil moisture.

Figure 6. Temporal correlation coefficients of regional mean a) 0-10cm and b)
0-100cm soil moisture computed from simulations of individual CMIP6 model
simulation and MME against OBS for the period of 1992 to 2013. The model
simulations are firstly interpolated at the station locations using near-neighbor
interpolation scheme and the regional mean is then computed. Regional divi-
sions are indicated in Figure 1a. The black dots indicate the correlation coeffi-
cient passing 95% significant level test.

Figure 7. Linear trend of annual 0-10 cm soil moisture for the period of 1961-
2014 from (a) Observation (VIC-CN05) and (b) MME simulation of 25 CMIP6
models. Results from each individual model are indicated in Figure S3. Trend
passing 95% significant level test are hatched with dots. c) The percentage
number of models with their soil moisture trend-sign consistent with that from
observation at each grid cell. The value showing in the figure are the average
over conterminous land area in China. (d) The percentage of land area showing
soil moisture with significant uptrends (blue) and downtrends (red).

Figure 8. Interannual standard deviation (STD) of 0-10cm soil moisture from
(a) Observation (VIC-CN05) and (b) MME simulation of 25 CMIP6 models
for the period of 1961-2014. Results from each individual model are indicated
in Figure S4. c) shows the centered pattern correlation of interannual STD
between individual model simulation and observation, and between MME and
observation.

Table 1 List of information of 40 CMIP6 models used in this study, in-
clude model names, spatial resolutions, land surface model names, total
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soil depth, number of soil vertical layers, and the DOI ID of each model
(https://doi.org/10.22033/ESGF/CMIP6.ID).

Model
name

Spatial
Resolution
(~lon°×lat°)

Land
surface
model
(LSM)

Total soil
depth
(meter)

Number of
soil
vertical
layers

DOI ID

CESM2 ×0.94 CLM5
CESM2-
WACCM

×0.94 CLM5

CMCC-
CM2-HR4

×0.94 CLM4.5

CMCC-
CM2-SR5

×0.94 CLM4.5

CMCC-
ESM2

×0.94 CLM4.5

FGOALS-
f3-L

×1.0 CLM4

FGOALS-
g3

×2.0 CLM4

FIO-ESM-
2-0

×0.94 CLM4

NorCPM1 ×1.875 CLM4
NorESM2-
LM

×1.875 CLM4

NorESM2-
MM

×0.94 CLM4

SAM0-
UNICON

×0.94 CLM4

TaiESM1 ×0.94 CLM4
EC-
Earth3-
AerChem

×0.70 HTESSEL

EC-
Earth3-CC

×0.70 HTESSEL

EC-Earth3 ×0.70 HTESSEL
EC-
Earth3-
Veg

×0.70 HTESSEL

EC-
Earth3-
Veg-LR

×1.125 HTESSEL

AWI-ESM-
1-1-LR

×1.875 JSBACH
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Model
name

Spatial
Resolution
(~lon°×lat°)

Land
surface
model
(LSM)

Total soil
depth
(meter)

Number of
soil
vertical
layers

DOI ID

MPI-ESM-
1-2-HAM

×1.875 JSBACH

MPI-
ESM1-2-
HR

×0.94 JSBACH

MPI-
ESM1-2-
LR

×1.875 JSBACH

E3SM-1-0 ×1.0 ELM1.0
E3SM-1-1-
ECA

×1.0 ELM1.1

E3SM-1-1 ×1.0 ELM1.1
GISS-E2-1-
G-CC

×2.0 GISS-LSM

GISS-E2-1-
G

×2.0 GISS-LSM

GISS-E2-1-
H

×1.25 GISS-LSM

ACCESS-
CM2

×1.25 CABLE2.5 4271

ACESS-
ESM1-5

×1.25 CABLE2.4

BCC-
CSM2-MR

×1.125 BCC_AVIM2

BCC-
ESM1

×2.8 BCC_AVIM2

GFDL-
CM4

×1.0 GFDL-
LM4.0.1

GFDL-
ESM4

×1.0 GFDL-
LM4.1

CanESM5 ×2.8 CLASS3.6
CAS-
ESM2-0

×1.4 CoLM

IPSL-
CM6A-LR

×1.25 ORCHIDEE
2.0

KACE-1-0-
G

×1.25 JULES

MIROC6 ×1.41 MATSIRO6.0
MRI-
ESM2-0

×1.0 HAL
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Note: * models with 0-100 cm soil moisture are used in the analysis.

Figure 1. The mean soil moisture averaged over the growing season (April–

September) for the period of 1992-2013. The soil moisture for 0-10cm (a, b)
and 0-100 cm (c,d) derived from WS2019 (a, c) and (c,d) CMIP6 multi-model
ensemble mean (MME). There are 732 stations for 0-10cm (a,b) and 177 stations
for 0-100 cm soil moisture (c,d), respectively. The boxes indicate the regional
range with the two-letter abbreviations provided for each region (XJ: 76°-90°E,
38-48°N; NW: 99.5°-110°E, 32.5-41°N, CE: 110°-117.5°E, 34.5-42°N, NE: 118-
130°E, 39.5-50.5°N; YH: 110-120°E 29.5-34.5°N, and SW: 102-107°E, 23-31.5°N).
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Figure 2. Boxplots of soil moisture for a) 0-10 cm and b) 0-100 cm soil depths
from individual CMIP6 model, MME and OBS, derived firstly from the average
soil moisture of growing seasons (April to September) from 1992 to 2013 at all
available stations (locations are indicated in Figure 1). Boxes indicate the 75th
(bottom) and 25th (top) spatial percentiles, center lines are median value across
all stations, and dashed outlines are the 90th (bottom) and 10th (top) spatial
percentiles. Models with the same LSM are shaded with same color and name
of LSM is also indicated at the top of the figure.
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Figure 3. Taylor diagrams of (a) near-surface (0-10 cm) and (b) root-zone
(0-100cm) soil moisture statistics derived from the individual CMIP6 model
simulation, MME and OBS across all available stations. Statistics are computed
from the growing seasonal mean soil moisture from 1992 to 2013. Makers with
the same color denote CMIP6 models with the same LSM.
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Figure 4. Seasonal cycles of regional mean surface (0-10cm) soil moisture for
station observation (WS2019, red curve), individual CMIP6 model simulation
(thin black curve), and MME (bold black curve) from the average soil moisture
of growing seasons (April to September) from 1992 to 2013. Regional divisions
are indicated in Figure 1a.
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Figure 5. Similar as Figure 4, but for 0-100 cm soil moisture.
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Figure 6. Temporal correlation coefficients of regional mean a) 0-10cm and b)
0-100 cm soil moisture computed from simulations of individual CMIP6 model
simulation and MME against OBS for the period of 1992 to 2013. The model
simulations are firstly interpolated at the station locations using near-neighbor
interpolation scheme and the regional mean is then computed. Regional divi-
sions are indicated in Figure 1a. The black dots indicate the correlation coeffi-
cient passing 95% significant level test.
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Figure 7. Linear trend of annual 0-10 cm soil moisture for the period of 1961-
2014 from (a) Observation (VIC-CN05) and (b) MME simulation of 25 CMIP6
models. Results from each individual model are indicated in Figure S3. Trend
passing 95% significant level test are hatched with dots. c) The percentage
number of models with their soil moisture trend-sign consistent with that from
observation at each grid cell. The value showing in the figure are the average
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over conterminous land area in China. (d) The percentage of land area showing
soil moisture with significant uptrends (blue) and downtrends (red).

Figure 8. Interannual standard deviation (STD) of 0-10cm soil moisture from
(a) Observation (VIC-CN05) and (b) MME simulation of 25 CMIP6 models
for the period of 1961-2014. Results from each individual model are indicated
in Figure S4. c) shows the centered pattern correlation of interannual STD
between individual model simulation and observation, and between MME and
observation.
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