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Abstract

Secondary organic aerosols (SOA) are formed from oxidation of hundreds of volatile organic compounds (VOCs) emitted from

anthropogenic and natural sources. Accurate predictions of this chemistry are key for air quality and climate studies due to

the large contribution of organic aerosols to submicron aerosol mass. Currently, only explicit models, such as the Generator

for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A), can fully represent the chemical processing

of thousands of organic species. However, their extreme computational cost prohibits their use in current chemistry-climate

models, which rely on simplified empirical parameterizations to predict SOA concentrations. Recent applications of atmospheric

chemistry emulation with machine learning (ML) applied to the simpler chemical mechanisms of tropospheric ozone have shown

its ability to produce realistic predictions and significantly reduce the computational cost. This study proves that ML can

accurately emulate SOA formation from an explicit chemistry model for several precursors with 100 to 100,000 times speedup

over GECKO-A, making it computationally usable in a chemistry-climate model. To train the ML emulator, we generated

thousands of GECKO-A box simulations sampled from a broad range of initial environmental conditions, and focused on

the chemistry of three representative SOA precursors: the oxidation by OH of two anthropogenic (toluene, dodecane), and one

biogenic VOC (alpha-pinene). We compare fully-connected and recurrent neural network methods and use an ensemble approach

to quantify their underlying uncertainty and robustness. The SOA predictions generally remain stable over a simulation period

of 5 days with an approximate error of 2-8\%.
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Abstract19

Secondary organic aerosols (SOA) are formed from oxidation of hundreds of volatile or-20

ganic compounds (VOCs) emitted from anthropogenic and natural sources. Accurate pre-21

dictions of this chemistry are key for air quality and climate studies due to the large con-22

tribution of organic aerosols to submicron aerosol mass. Currently, only explicit mod-23

els, such as the Generator for Explicit Chemistry and Kinetics of Organics in the Atmo-24

sphere (GECKO-A), can fully represent the chemical processing of thousands of organic25

species. However, their extreme computational cost prohibits their use in current chemistry-26

climate models, which rely on simplified empirical parameterizations to predict SOA con-27

centrations. Recent applications of atmospheric chemistry emulation with machine learn-28

ing (ML) applied to the simpler chemical mechanisms of tropospheric ozone have shown29

its ability to produce realistic predictions and significantly reduce the computational cost.30

This study proves that ML can accurately emulate SOA formation from an explicit chem-31

istry model for several precursors with 100 to 100,000 times speedup over GECKO-A,32

making it computationally usable in a chemistry-climate model. To train the ML em-33

ulator, we generated thousands of GECKO-A box simulations sampled from a broad range34

of initial environmental conditions, and focused on the chemistry of three representative35

SOA precursors: the oxidation by OH of two anthropogenic (toluene, dodecane), and one36

biogenic VOC (alpha-pinene). We compare fully-connected and recurrent neural network37

methods and use an ensemble approach to quantify their underlying uncertainty and ro-38

bustness. The SOA predictions generally remain stable over a simulation period of 5 days39

with an approximate error of 2-8%.40

Plain Language Summary41

Detailed and accurate representation of organic aerosol chemistry is needed to pre-42

dict the effect of atmospheric aerosols formed from natural and anthropogenic sources43

on both human health and climate. Ideally, these complex representations of chemistry44

would be directly included within state-of-the-art weather and climate models to get a45

fully coupled system with meteorological and climatological feedback all over the globe.46

However, we are many years away from having the computational power needed to run47

such fully coupled large-scale simulations due to the complexity of organic chemistry, which48

involves hundreds of thousands of organic gaseous and particle species and chemical re-49

actions. As a potential solution, we test an approach that uses a neural network to mimic50
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the solution of an explicit representation of organic chemistry which would be compu-51

tationally feasible to link with current air quality and climate models.52

1 Introduction53

Secondary organic aerosols (SOA) have been an active area of research in the past54

decade with the goal of improving their representation in air quality and climate mod-55

els (Tsigaridis et al., 2014; Hodzic et al., 2016), which is essential for predicting their ef-56

fect on human health (Mauderly & Chow, 2008) and their contribution to radiative forc-57

ing in the climate system (Boucher et al., 2013). The misrepresentation of SOA forma-58

tion pathways in 3D models has led to a long-standing discrepancy between observed and59

modeled organic aerosol concentrations that has been reported from urban to remote re-60

gions (de Gouw, 2005; Hodzic et al., 2020). Unlike sulfate and other inorganic aerosols,61

which are made from a few dominant chemical pathways, SOAs result from the conden-62

sation of a very large number of partly oxidized gases. These gases are generated from63

the multi-generational oxidation of volatile organic compounds (VOCs) emitted from an-64

thropogenic and natural sources. This complexity is not included in current 3D mod-65

els that rely on simplified SOA parameterizations that have been developed and opti-66

mized based on laboratory measurements or ambient aircraft data (Ng et al., 2007; Hodzic67

& Jimenez, 2011). This empirical approach does not include the mechanistic understand-68

ing of processes leading to SOA formation, and the adequate sensitivity to environmen-69

tal variables modulating SOA concentration.70

Detailed chemistry models such as the widely used near-explicit Master Chemical71

Mechanism (MCM) (Jenkin et al., 2003) or the ”fully-explicit” Generator of Explicit Chem-72

istry and Kinetics of Organics in the Atmosphere (GECKO-A) (Aumont et al., 2005; Cam-73

redon et al., 2007) provide a mechanistic representation of the organic aerosol chemistry74

and relevant process, and lead to an improved agreement with ambient SOA measure-75

ments (Lee-Taylor et al., 2011; Mouchel-Vallon et al., 2020). Chemical mechanisms gen-76

erated by GECKO-A typically include millions to tens of millions of reactions, and hun-77

dreds of thousands intermediate species (Aumont et al., 2005). MCM mechanisms are78

handwritten and much smaller than GECKO-A ones as they represent only 2-3 first gen-79

erations of chemistry. Due to the remarkable computational cost, no air quality mod-80

els or chemistry-climate models can afford to run with GECKO-A included in the fore-81

seeable future. To our knowledge, only the study by (Li et al., 2015) attempted to in-82
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clude the MCM organic chemistry mechanism into a regional 3D model and faced com-83

putational challenges.84

Recent years have seen quite a few inspiring applications in developing machine learn-85

ing emulators using explicit/process-level models and implementing the trained emula-86

tors into large-scale models (Brenowitz & Bretherton, 2018; Beucler et al., 2020; Get-87

telman et al., 2021). Replacing complex processes with ML emulators have potential ad-88

vantages by learning non-linear relationships that can represent underlying physical or89

chemical processes not captured in simple empirical characterizations, as well as mul-90

tiple orders of magnitude speedups in computation when compared to fully coupled process-91

based models. However, maintaining both an acceptable level of accuracy and a system92

that remains numerically stable through an adequate amount of time with emulators re-93

mains challenging.94

Current efforts in atmospheric chemistry emulation with machine learning (ML)95

have focused on inorganic gas-phase chemistry, such as ozone within GEOS-Chem (Kelp96

et al., 2018; Keller & Evans, 2019). Using random forest regression and neural network97

models they were able to reproduce the hourly concentration of 77 gaseous species pre-98

dicted by the GEOS-Chem chemical mechanism, with a significantly reduced computa-99

tional expense (250 times). However, the emulator for gas-phase chemistry was subject100

to runaway errors and numerical instability, as well as performance degradation on out-101

of-domain inputs. In a follow-up study, (Kelp et al., 2020) used a neural network with102

a recurrent training approach, where a multi-time step loss function was used in conjunc-103

tion with dimensionality reduction of the chemical system, that resulted in observed re-104

duced error accumulation and provided greater stability. The use of recurrent neural net-105

works was not reported in any of these studies.106

Our primary aim in this work is to extend atmospheric chemistry emulation to or-107

ganic aerosols for which current climate models do not currently account for. Addition-108

ally, this proof of concept study evaluates two different types of neural network archi-109

tectures: (1) a feed-forward, fully-connected network and (2) a recurrent neural network110

(RNN). Both models were designed to be feasibly integrated into current 3D transport111

models, that can provide fast and accurate predictions for organic aerosol concentrations.112

The RNN was chosen to determine if it could help to overcome numerical stability prob-113

lems, as observed by others using fully-connected model architectures (Brenowitz & Brether-114
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ton, 2018; Kelp et al., 2020), as they come equipped with feedback connections that can115

store information about previous events in the form of a latent vector, e.g. RNNs pos-116

sess memory (Hochreiter, 1991). As these architectures were developed to learn repre-117

sentations of sequential data to solve temporal problems, they offer the ability to use multi-118

length inputs. However, incorporating multi-length inputs into 3D models would require119

us to dissociate chemistry production from other processes (e.g. transport, removal). We120

address this with the development of a novel ”1-step” RNN that only requires a single121

time step of input, but relies on a separate simple neural network to initialize the hid-122

den state vector for the very first time-step.123

The paper is organized as follows: Section 2 outlines the data generation, train-124

ing, hyperparameter tuning, and evaluation procedures for the reference model and both125

neural network types. In Section 3, we characterize the two models performance rela-126

tive to the GECKO-A data sets for different precursor species, and compared to each127

other to assess the overall strengths and weaknesses of each model architecture. Both128

model types are also tested on data sets that help assess the ability of the models to gen-129

eralize into new domains. Sections 4 and 5 provide a brief discussion about the pros and130

cons of these different model architectures and the ongoing challenges regarding numer-131

ical stability, computational cost, and interpretability for emulating SOA production with132

ML.133

2 Methods134

2.1 Description of the reference model135

To provide reference chemical mechanisms, we used the GECKO-A chemical gen-136

erator (Aumont et al., 2005; Camredon et al., 2007), which describes in great details the137

chemical oxidation of organic compounds in the atmosphere. The resulting chemical mech-138

anisms for each SOA precursor species are complete (down to the ultimate products CO2139

and H2O), and explicit by preserving knowledge of the molecular structures of all the140

intermediate compounds. Compared to other widely used semi-explicit chemical mod-141

els such as MCM, GECKO-A can consider many generations of oxidative chemistry i.e.,142

20 generations are considered here (Lee-Taylor et al., 2011). This has important impli-143

cations for the formation of organic aerosols as SOA formation arises from a multitude144

of partly oxidized compounds, rather than from a few dominant molecules. In addition,145
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the SOA formation timescale varies greatly for different precursors. For example, at am-146

bient conditions, it takes only a few hours to form SOA from dodecane vs. several days147

to form SOA from toluene (Hodzic et al., 2014). For the gas-particle partitioning of or-148

ganic molecules, dynamic partitioning is used. It is reasonable to consider GECKO-A149

simulations as a benchmark for building an emulator for SOA chemistry given its rea-150

sonable agreement with observations shown for both comparisons with chamber mea-151

surements e.g. for alkanes and alkenes compounds (La et al., 2016) and ambient mea-152

surements e.g. during MIRAGE, BEACHON and Go-AMAZON, (Lee-Taylor et al., 2011,153

2015; Mouchel-Vallon et al., 2020).154

2.2 GECKO-A generated training datasets155

We ran the GECKO-A model with systematically varied input parameters to gen-156

erate the dataset used to train the machine learning emulator. At this stage we focus157

on three representative SOA precursors: toluene, dodecane, and α-pinene. Toluene and158

dodecane are emitted from a wide range of anthropogenic sources, while α-pinene is one159

of the major SOA precursors emitted by vegetation. These compounds together contribute160

substantially to the global SOA burden. We generate chemical mechanisms and corre-161

sponding datasets for these precursors including the OH oxidation mechanisms of toluene,162

dodecane and α-pinene. For each oxidation mechanism, the reactions of the precursor163

with oxidants other than OH were not considered. Thus, the considered chemistry is mostly164

representative of daytime conditions.165

Based on our current understanding of atmospheric chemistry and the common chemistry-166

climate modeling frameworks, we identified the following six variables that are key to167

predicting SOA formation from VOC oxidation under tropospheric conditions: (1) tem-168

perature, (2) solar zenith angle, (3) pre-existing aerosol mass, (4) ozone concentrations,169

(5) nitrogen oxides (NOx) concentrations, and (6) OH radical concentrations. The range170

of variability considered for these parameters and the associated sampling scheme is sum-171

marized in Table 1 and illustrated in Figure 1. Additionally, a diurnal variation in tem-172

perature of an average 5 degrees amplitude is used. In each training data set, we use the173

Latin Hypercube sampling approach to obtain two-thousand environmental input com-174

binations. Temperature, solar zenith angle, ozone, and OH were all sampled uniformly,175

whereas pre-existing aerosol concentrations and NOx were sampled as a logarithmic dis-176

tribution. The combination of these ranges is relevant for a wide range of tropospheric177
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Temperature 240 - 320 K Uniform

Solar zenith angle (SZA) 0-90 degrees Uniform

Pre-existing aerosols 0.01-10 µg/m3 Logarithmic

Ozone 1 - 150 ppb Uniform

NOx 0.01-10 ppb Logarithmic

OH 101–106 molecules/cm3 Uniform

Table 1. Environmental parameter ranges used in GECKO-A simulations.

conditions, from remote to moderately polluted environments. These environmental vari-178

ables, with the exception of temperature, are held constant in a given 5-day GECKO-179

A box model simulation in an attempt to coerce the ML models to generalize better and180

be more robust to over fitting.181

In each dataset, the initial concentrations of a given SOA precursor were set to an182

arbitrary low value of 10 ppt similar to previous studies (Lannuque et al., 2018; Hodzic183

et al., 2014, 2015). Although the tropospheric concentrations of the precursor can be higher184

in polluted regions, this low value is representative of the remote atmosphere, and was185

chosen so that the amount of aerosol produced from the given precursor is small com-186

pared to preexisting OA and will not impact the gas/particle partitioning, nor the over-187

all photochemical reactivity. Precursor spans several orders of magnitude in our 5-day188

GECKO-A simulations as it decays exponentially and is effectively consumed before the189

end of each simulation leading to the production of thousands of intermediate organic190

gases. As shown on Figure 1, complexities of the organic chemistry are illustrated by the191

wide variation of produced SOA mass with respect to each environmental variable. For192

example, significantly higher SOA mass concentrations are produced at colder temper-193

atures.194

As the precursor mass is exponentially distributed, before using the precursor data195

as input to the ML model, we transform the precursor values by taking the base-10 log-196

arithm to avoid any stiffness in the system. Next, each input variable Xj in the train-197

ing data, including chemical concentrations and environmental variables, were standard-198

ized independently into z-scores according to the formula Xj = (Xj − u)(Xj − s)−1,199

where u and s are the mean and standard deviation of Xj . Standardization was chosen200
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Figure 1. Training distributions (mean value through 5-days) of targets (rows) vs. environ-

mental variables (columns).

over other common transformations because many features are not normally distributed201

in the data sets for the three species. Hence the transformation recasts the values of the202

input and output channels into a format where the values of each variable are centered203

and have similar spread. This is especially important when computing the error on the204

model predictions against the training data values when the weights in the model are205

being updated, for example, to prevent the model from over-fitting on the quantities hav-206

ing the largest spread.207

A total of 2,000 experiments were run in GECKO-A for each precursor species, and208

output every five minutes over the course of five days. Thus, a total of 2,880,000 sam-209

ples were generated per species. However, as the target variables are a subset of the in-210

put feature variables at the previous time step, we removed the first (final) time step of211

the output (input) variables from each experiment leaving a total of 2,878,000 samples.212

These simulations were then split into three subsets: training (80%), validation (10%),213

and testing (10%). The training set is used to optimize the weights of an ML model, while214

the validation set is used to select the hyperparameters, or meta-settings describing the215
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ML model architecture, such as the number of neurons in the hidden layer, that result216

in the best-performing model across the space of possible models (see below). The final217

testing set is not used to train or adjust the machine learning models and is only used218

in the final evaluations described herein.219

2.3 Neural network models220
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Figure 2. Model architectures showing the (a) MLP (multi-layer perceptron) and (b) GRU

(Gated Recurrent Unit) models for predicting concentrations, and (c) the model for the initializa-

tion of the recurrent hidden state given an initial condition as input. In all three models, inputs

at time ti are colored blue (precursor, gas, and aerosol, and the environmental variables). The

inputs are concatenated into a vector as illustrated by the cross-marked blue dot. The model

outputs at time ti+1 are colored red in (a) and (b) for precursor, gas, and aerosol, and orange in

(b) and (c) for the hidden state. In (a) and (b) when the models are used in box simulations, the

black arrow represent using the output prediction from the model along with the environmental

variables as input to the model for the next time step prediction.

Figure 2 shows several neural network models that we consider here as emulators221

for GECKO-A. In Figure 2(a), a multi-layer perceptron (MLP) architecture is shown (re-222

ferred to as the “MLP model”). The MLP model accepts as input the scaled values of223

the precursor, gas, aerosol, and environmental variables at time ti (blue boxes in the fig-224
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ure). These quantities are concatenated into a vector, and denoted X(ti) ≡ (P (ti), G(ti), A(ti), E(ti)).225

The model outputs the precursor, gas, and aerosol values at time ti+1 = ti+δt (red boxes226

in the figure), denoted Y (ti+1) ≡ (P (ti + δt), G(ti + δt), A(ti + δt)), where δt here is227

300 seconds. The MLP is an artificial neural network that contains, in addition to in-228

put and output layers, at least one hidden layer (horizontal red block in Figure 2(a)),229

and is the simplest neural network architecture available. Each hidden layer contains a230

set of perceptrons, which mathematically are linear regressions on the outputs of the pre-231

vious layer followed by a non-linear transformation called the activation function. For232

our MLP, we use the Rectified Linear Unit (ReLU) activation function, which sets neg-233

ative values to 0 and allows positive values to pass through unchanged. The final hid-234

den layer is connected to the output layer, which is a linear regression on the hidden layer235

outputs. We tested using multiple hidden layers but found that a single hidden layer pro-236

duced the lowest validation set error. The MLP model for each of the precursor species237

make future predictions for the values of the chemical quantities of interest, using only238

the current chemical state of the atmosphere. As such, any MLP model satisfies the Marko-239

vian condition, and possesses no memory about atmospheric chemical states visited in240

the past beyond the previous timestep.241

As GECKO-A generates sequential trajectories describing the evolution of species’242

concentrations over time, we have also applied a recurrent neural network (RNN) model243

to investigate whether it may have an advantage over the MLP model due to its abil-244

ity to utilize its memory about the past at {ti−n, ..., ti−1} to make the next prediction245

at ti. As such, a temporal model may be better equipped compared to the state-less MLP246

model to describe the changes occurring to the quantities over time, in addition to lim-247

iting and/or preventing runaway error propagation. The input to an RNN is a sequence248

and a hidden state. The sequence elements could be scalars, vectors, or other higher-dimensional249

tensors. The first (or last) element in the sequence is ingested by the RNN along with250

a starting hidden state, producing an encoding of the element and a hidden state for the251

current encoding. The next element in the sequence is then used as input along with the252

current hidden state, which produces an encoding of the second element and another hid-253

den state. This encoding represents not just the second element, but the elements that254

came before it, due to the fact that the model leverages its feedback connections to pro-255

duce the encoding. This process continues until all of the elements in the sequence have256
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been seen by the model, which produces a final encoding of the entire sequence, as well257

as a hidden state.258

Figure 2(b) illustrates a model architecture that combines an RNN layer type called259

a Gated Recurrent Unit (GRU) (Chung et al., 2014b) with a fully-connected layer to make260

chemical concentration predictions. We refer to this model as the GRU model. The GRU261

layer performs three key operations: filtering the contents of the hidden vector from the262

previous time, calculating a new hidden state from a combination of the filtered hidden263

state and new inputs, and finally calculating a new output. The GRU is similar to the264

well-known long-short term memory (LSTM) model (Hochreiter & Schmidhuber, 1997)265

but has fewer parameters to learn. Even so, the GRU often performs comparably to the266

LSTM in language modelling tasks (Chung et al., 2014a).267

Similar to the MLP, the GRU model shown in Figure 2(b) illustrates the model at

the ti time step such that ti−1 came before it, accepting as input (P (ti), G(ti), A(ti), E(ti))

at time ti and hidden state h(ti−1). The GRU layer produces an encoded representation

of the input X(ti) denoted Y ∗(ti), and a hidden state h(ti) for the current time, which

has the same dimension as h(ti−1). The GRU layer avoids the vanishing gradient prob-

lem by computing these quantities according to

z(ti) = σ (Wzh(ti−1) + UzX(ti) + bz)

r(ti) = σ (Wrh(ti−1) + UrX(ti) + br)

c(ti) = tanh (Wc (rc � h(ti−1)) + UcX(ti) + bc)

h(ti) = z(ti)� h(ti−1) + (1− z(ti))� c(ti)

Y ∗(ti) = softmax (Wyh(ti) + by)

where the sigmoid function σ(x) = (1 + exp−x)−1 projects input values to be within268

[0, 1]. The softmax function for a K-component z is exp (zk) /
∑K

j=1 exp (zj). The ten-269

sors W∗ and U∗, and bias terms b∗, contain the fit parameters that are updated through270

back-propagation during training. The � symbol refers to element-wise multiplication.271

The quantity z(ti) is the update gate, and r(ti) is the reset gate, which determines272

how much information over past time steps to forget. The quantity c(ti) represents the273

current memory content in the layer and utilizes the reset gate to store information from274

the past. The equation for the current hidden state h(ti) uses the update gate to deter-275

mine how much information from the current time step to collect and how much to col-276
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lect from past time steps. The encoded information at the current time step, Y ∗(ti), is277

computed using the current hidden state. Then, as Figure 2(b) illustrates, it is passed278

through a ReLU activation function (black arrow), and then through a fully-connected279

layer (tall red box), which outputs the scalar precursor, gas, and aerosol values at the280

time ti+1.281

It is common that the input sequence to an RNN is longer than length one, in which282

case a hidden state can be immediately informed by the sequence (trajectory) to make283

the next prediction. Applied to GECKO-A trajectories, we are free to choose the length284

of the input sequence, which does not have to be fixed. Indeed, in our GECKO-A box285

model simulations concentrations of organic species are only undergoing chemistry pro-286

cessing, whereas in 3D models other processes (e.g., transport, dry and wet removal) are287

included. Thus, we must also consider the added complexity of incorporating RNNs into288

3D transport models. For a RNN that uses a sequence for input, each chemical variable289

needs to be transported and stored for the number of time steps needed as input, which290

could be memory intensive and programmatically challenging.291

Here we describe a “1-step” approach, which means that when incorporated into292

a 3D climate simulation, the RNN is similar to the MLP in that only a single time step293

of input is required. The only difference being that a single hidden state is also input294

to the RNN, which can be understood mainly as a larger input compared to the MLP.295

Unlike the MLP, the RNN hidden state vector needs to be stored at every model grid296

cell to inform the calculation of the next time step. Depending on the size of the hid-297

den state, this could create a large memory burden on the simulation but would be less298

disruptive to simulation codes than creating and managing multiple copies in time of ev-299

ery model field.300

When there is no initial hidden state available, the initial condition X(t0) is passed301

through a separate MLP, referred to as the hidden-state model, to obtain h(t−1). Fig-302

ure 2(c) illustrates that this model’s architecture accepts as input values at some t0 for303

precursor, gas, aerosol, and the environmental variables (P (t0), G(t0), A(t0), E(t0)), and304

outputs a hidden state h(t−1). The hidden-state model contains one fully-connected layer305

with a linear activation. The input size is equal to the length of X(t0) while the output306

size is equal to the length of the hidden state used by the GRU.307
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2.4 Training procedure308

Each MLP model is trained by first initializing an architecture and the trainable309

weights. The training data split is randomly shuffled removing the time sequence in the310

data. A fixed number of training data points is selected from the training data, called311

a batch, and then passed through the model to obtain a prediction for each point in the312

batch. The mean-absolute error (MAE), the training loss, is computed for the batch from313

the prediction. Using the loss, the weights of the model are updated accordingly using314

gradient descent with back-propagation, (Rumelhart et al., 1986) and a pre-specified learn-315

ing rate to reduce the error. This process is repeated until all of the training samples are316

passed through the model once, and is referred to as one epoch of model training. At317

the end of every epoch, the training data is randomly shuffled. This procedure is repeated318

for a prescribed number of epochs.319

In order to train the GRU model and the hidden-state model, the input and out-320

put data for each experiment needs to be ordered by time, thus it is not shuffled along321

this coordinate, as is done with the MLP. The training procedure is then similar to how322

the model would be used in evaluation, and starts by setting the initial condition for an323

experiment along with the environmental variables as the initial input, X0 to the model.324

As there is no hidden state available at the beginning of a box simulation, X(t0) is passed325

through the hidden state model to produce h(t0), then (X(t0), h(t−1)) is passed through326

the GRU model to obtain the prediction Y (t1) and h(t0). For the GRU model, we use327

the Huber formula as the loss function for the predicted chemical concentrations, which328

computes the mean-squared difference between the predicted output Y (t1) and the known329

values produced by GECKO-A, when the difference is greater than a fixed cutoff value,330

and computes the MAE otherwise.331

Next, the predicted output Y (t1) is concatenated with the environmental variables332

one time step into the future to create the input to the model X(t1). This quantity is333

passed through the hidden state model to obtain h∗(t0), where the ∗ notation is used334

to distinguish this hidden state prediction from the one that the GRU model predicted.335

The mean absolute difference between h(t0) and h∗(t0) is computed. The total loss for336

the time step adds this quantity, multiplied by a loss weight, to the loss contributions337

computed for the chemical quantities. The loss weight is left as a parameter to be op-338

timized (see below). The total loss for the time step is then used with a given learning339
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rate value to update the adjustable parameters of both the GRU and the hidden state340

models in tandem. This procedure is repeated until the second-to-last time step in an341

experiment trajectory is used as input to the model.342

During training of the GRU model, we select random experiments to create batches343

of data when computing the total loss at each time step. One epoch is defined as all train-344

ing experiment trajectories passing through the model once, so the same data as with345

training the MLP model, except that the data is ordered by time (and randomized by346

experiment). At the end of every epoch, the model is put into evaluation mode and used347

to predict the trajectories for the validation experiments. The MAE is then computed348

between the model predictions and the validation experiments. After each epoch the val-349

idation MAE is used to measure improvement of the model predictions in two ways: (1)350

to anneal the learning rate if the models performance does not improve after some num-351

ber of epochs, e.g. it “over-fits” on the validation experiments, and (2) to stop the train-352

ing entirely once the model does not improve on the validation experiments after some353

number of epochs. We chose 3 and 7 epochs in (1) and (2) respectively.354

2.5 Evaluation Procedure355

The ability of MLP and GRU-based models to predict the time evolution of pre-356

cursor, gas, and aerosol mass concentrations is evaluated by comparing the box model357

predictions against the benchmark values as produced by the GECKO-A model. Here358

each model is placed into evaluation mode, which disables any stochastic components359

such as the recurrent dropout used when training the GRU, and is used to make pre-360

dictions on the hold-out validation set of data that was not used during the training to361

influence the weight updates in each model. For each validation experiment, a starting362

amount of precursor, gas, aerosol, and environmental variables at time t0 is passed through363

the MLP network to obtain the predicted quantities at the first time step t1, where t1 =364

t0+δt. These predictions are then used along with the environmental variables at the365

next time step as the next input to the model, and so forth for the length of the exper-366

iment (see Fig. 2(b)).367
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2.5.1 Ensembles368

Machine learning models must be stochastically initialized with random weights,369

as gradient descent requires variation amongst the weights to perform an initial adjust-370

ment that is not uniform across the weights. As a result, two models trained with the371

exact same basic architecture (without setting a random seed for initialization) will yield372

a different set of weights and biases, and thus can have a different result during evalu-373

ation. Generally, if a model has sufficient data and ample time for training, identical mod-374

els will converge to similar values, and differences in performance may be small and/or375

negligible resulting in a robust model. However, for transport or propagation problems376

that require the input from a prior model prediction in order to make a future predic-377

tion, these small differences may accumulate through time and quickly become non-negligible.378

To further evaluate the robustness or sensitivity to the initialization process, we trained379

and evaluated 30 ensemble members for each precursor model.380

2.6 Hyperparameter optimization381

At different stages in training an emulator model, from data post-processing to se-382

lecting an architecture, there are hyper parameters that need to be set that can affect383

the performance outcome of a trained model. They may include, for example, the learn-384

ing rate used to update the model weights during training, or the size and number of the385

hidden layers in an MLP or GRU model. As the main objective is to minimize the dif-386

ference between the model predictions and the test experiments in box simulations, we387

want to understand how the models performance depends on the hyper parameter choices.388

From such an understanding, an informed choice can be made in selecting potentially389

optimal parameter values.390

To estimate such a dependency, we use the package Earth Computing Hyperpa-391

rameter Optimization (ECHO) developed by the authors at NCAR (Schreck & Gagne,392

2021), and perform hyper parameter optimization given an objective metric for the three393

species for both MLP and GRU models. The objective metric for both the MLP and GRU394

models is the box MAE on the validation holdout set. With the MLP model, a box sim-395

ulation begins with the initial precursor concentration at t0, while for the GRU model396

the MAE for box simulations is computed for a set of starting times {t0, ti, · · · , tj} and397

added together, to also test the hidden-state model on different initial precursor amounts.398
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MLP and GRU models were optimized with ECHO for the three species, with the399

outcomes described in appendix Appendix B. Tables C1 and C2 list the best hyperpa-400

rameters found in each optimization study for the two models. Using the best hyperpa-401

rameter set, an ensemble of 30 models were trained, where each model had a different402

random weight initialization. See appendix Appendix C for more details.403

Although it is rather trivial to train a model to output realistic predictions one time404

step ahead from the truth (primarily due to high auto-correlation), limiting cumbersome405

error accumulation when propagated through time is highly sensitive to model param-406

eters in complex problems such as this. We found that efficient hyperparameter searches407

were crucial for finding models that could successfully stabilize and limit error accumu-408

lation through the length of the simulation. See appendix Appendix B for further de-409

tails.410

3 Results411

3.1 Performance of trained MLP and GRU models412

Table 2 lists the bulk validation performance metrics for the MLP and GRU mod-413

els for toluene, dodecane and α-pinene. The metrics are the Pearson coefficient and the414

Hellinger distance computed for each prediction task, and the number of unstable or run-415

away experiments observed. Here, an experiment is considered as unstable when predicted416

values exceed 1 µg/m3 which corresponds to an unrealistic formation yield from 10 ppt417

of initial precursor. Unstable experiments were not used in the computed metrics reported418

below.419

Figures 3 and 4 illustrate the MLP and GRU models’ performance on reproduc-420

ing the experimental data for three experiments selected from the test set of toluene ex-421

periments. Overall, they show that both the MLP and GRU models can predict exper-422

iment trajectories that resemble the GECKO-A ones within a factor of two. The pre-423

dicted ensemble mean matched closely with the GECKO-A trajectories for the three pre-424

diction tasks, for both models. For toluene, Table 2 shows that all of the model predic-425

tion tasks led to Pearson coefficients greater than 0.97. Additionally, the Hellinger dis-426

tances for each task are all low for both MLP and GRU models, indicating that the tem-427

poral distributions predicted for different initial conditions matched closely with those428

generated by GECKO-A.429
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MLP precursor 0.989 0.0008 0 0.950 0.0002 0.01 0.556 0.0015 0.0005

MLP gas 0.977 0.0045 0 0.952 0.0033 0.01 0.971 0.0028 0.0005

MLP aerosol 0.927 0.0150 0 0.894 0.0161 0.01 0.939 0.0153 0.0005

GRU precursor 0.993 0.0018 0 0.950 0.0023 0 0.867 0.0025 0

GRU gas 0.990 0.0012 0 0.984 0.0020 0 0.991 0.0007 0

GRU aerosol 0.975 0.0105 0 0.961 0.0083 0 0.976 0.0091 0

Table 2. Table of computed metrics for MLP and GRU models, for each of toluene, dodecane,

and α-pinene. The average Pearson coefficient and Hellinger distance are listed for the precur-

sor, gas, and aerosol prediction tasks. The fraction of experiments that went unstable is listed

for each model and task. All reported metrics for both models were computed using the testing

hold-out set of experiments.

For the other precursor species, each model degraded in performance in different430

ways. The GRU model mainly did not perform as well at predicting precursor. For ex-431

ample, the Pearson coefficient was 0.886 for α-pinene compared with 0.992 for toluene.432

The Hellinger distance for the other two species also modestly increased compared to433

that for toluene. On gas and aerosol predictions, Table 2 indicates that the GRU per-434

formed about the same for all three species according to these two metrics, and that none435

of the predicted numerical values became unstable during the box simulations.436

Table 2 shows the MLP model performance on precursor prediction was the best437

for toluene and then α-pinene, which had Pearson values of 0.989 and 0.950, respectively.438

However, the MLP struggled by comparison for dodecane, where the Pearson value was439

0.556. On the gas and aerosol predictions, the MLP model was mostly consistent for the440

three species, with gas prediction performing better by comparison to aerosol prediction.441

Furthermore, out of 200 experiments that went unstable during a box simulation there442

were 13 for dodecane and 2 for α-pinene, despite the fact that the Pearson score for do-443

decane remained high across the prediction tasks.444
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Figure 3. Three toluene sample experiment trajectories for the MLP model. Solid (thick)

lines show the mean GECKO-A trajectories from 30 ensemble members, dashed lines show the

reference GECKO-A trajectory, and the thin lines show each of the 30 ensemble member predic-

tions.

3.2 Quantification of model variances445

Figure 3 shows that the predicted aerosol quantities for the ensemble suite begins446

to diverge as the simulation time progresses, whereas the GRU variation (see Figure 4)447

appears to be roughly constant or improving as time progresses. In order to capture how448

well the models are predicting time-dependent quantities, we also computed the boot-449

strapped continuously-ranked probability score (CRPS) in Figure 5 and the mean stan-450

dard deviation (Figure 6) between the different species across all 30 ensemble members.451

Figure 5 shows the CRPS (lines) and the 95% bootstrap confidence interval (shaded ar-452

eas) changing in time for the two model types. For the three species, the MLP model453

has a lower CRPS on all predictions at early times, then the GRU at later times. Fig-454

ure 5 shows the two models’ CRPS values for precursor crossing typically within one sim-455

ulation day, with the CRPS for the GRU starting out relatively high compared to the456

MLP, but then quickly declining. Except at the earliest simulation times, the GRU had457

a lower CRPS as well as a smaller confidence interval on the gas and aerosol prediction458

tasks and stayed flat or declined.459
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Figure 4. Three toluene sample experiment trajectories for the GRU model. Solid (thick)

lines show the mean GECKO-A trajectories from 30 ensemble members, dashed lines show the

reference GECKO-A trajectory, and the thin lines show each of the 30 ensemble member predic-

tions.

Figure 6 shows a notable difference in the variation among ensemble members be-460

tween the MLP and GRU, specifically the slope of the gas and aerosol trajectories. The461

steep positive slope of the MLP demonstrates the inherent growing uncertainty in the462

model itself as it progresses further from the starting condition, which is also seen in the463

ensemble spread on figure 3. The GRU has a much flatter trajectory, especially in the464

later time steps due to the short-term memory of the trajectory being encoded into the465

hidden state, which could potentially make it much more suitable for maintaining sta-466

bility in much longer running simulations. Additionally, if it is computationally feasi-467

ble, one could choose to run the ensemble suite and take the mean to increase accuracy.468

With this approach, the mean absolute percentage errors for the GRU are less than 2%469

for the gas and aerosol partitions, and approximately 3-8% for the MLP.470

3.3 Performance dependency on initial conditions471

Next the models’ performance dependency on different initial conditions was probed472

by selecting initial values X(tN ) for some tN in a GECKO-A experiment trajectory as473
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Figure 5. Ensemble bootstrapped CRPS through time. MLP (solid) and GRU (dashed) with

the shaded regions representing the 95% confidence interval.

the initial starting point in a box simulation. For the GRU model, X(tN ) is initially passed474

through the hidden-state model to obtained a starting hidden state. As the experiments475

contain 1440 total time steps, box simulations were left to run for 1440 - N time steps476

once the initial time was selected. As the instabilities observed in the MLP model dis-477

cussed above occurred at a range of different time steps after the box simulation was first478

started, we wanted to check each models’ stability over as many possible time steps as479

there was data available. This means that box simulations started at earlier times in ex-480

periments will run for more time steps compared to those which started at later times481

in the experiments. Figure 7 shows the average ensemble Pearson coefficient for MLP482

and GRU models versus the initial box simulation start time. A similar plot for the Hellinger483

distance is shown in Figure D1.484

Figure 7 illustrates the broad variation in GRU and MLP model performance at485

predicting precursor versus initial simulation start time. The variation is more signif-486

icant in dodecane and α-pinene, compared to toluene. For example, the lowest Pearson487

values are observed when the MLP box simulation is started about 2-3 days into the GECKO-488
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Figure 6. Mean ensemble standard deviation across all validation experiments as a function

of simulation hour.

A experiment and runs for a similar amount of time. Then, some recovery is observed489

for the MLP model as observed by increasing Pearson coefficients at later start times for490

the prediction tasks, in particular on days 4 and 5, for the shorter box simulations. For491

α-pinene in particular, the GRU was also observed to go unstable at earlier start times.492

However, by comparison to the MLP model for all initial starting times, the total num-493

ber of experiments having gone unstable was significantly less.494

On the gas prediction task, the GRU model typically performed better than the495

MLP at earlier start times (longer box simulations), while at the later start times (shorter496

box simulations) the MLP had higher Pearson scores for precursor and gas prediction.497

We observed in some experiments the GRU struggling at later start times to reproduce498

the GECKO-A predicted gas values as accurately as the MLP, in particular, when those499

concentration values were very small compared to the initial experiment precursor amount,500

but the model predictions remained stable at these times.501
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Figure 7. The mean Pearson coefficient versus the initial box simulation start time for all

validation experiments.

3.4 Stabilization through fewer prediction targets502

The results above indicate that predicting the evolution of the precursor’s concen-503

trations is the most difficult task of the three that we considered, especially for the MLP504

models. As both MLP and GRU models always have to predict finite quantities of pre-505

cursor at early times before mass moves into the other two phases at later times, small506

precursor prediction inaccuracies can lead to numerically inaccurate predictions for gas507

and aerosol quantities, as well as lead to the observed experiments having gone unsta-508

ble, as reported above.509

In the reference model, the precursor decays exponentially from its initial concen-510

trations, at different rates depending on the environmental conditions and the species,511

and could be estimated using other heuristic models (such as a linear regression model),512

or directly calculated within the chemical model. Thus, we consider MLP and GRU mod-513

els that only perform gas and aerosol prediction, and not precursor, to probe whether514

reducing the total number of prediction targets will improve model performance on gas515

and aerosol predictions. The inputs to the model and all other architecture choices re-516

mains the same, just that the output layer size is size 2 rather than 3. Both model types517

were optimized using ECHO, and 30 ensemble members were trained using the param-518

eters from the best study. Table 3 shows the same metrics as in Table 2 for the MLP and519

GRU models tasked with gas and aerosol predictions only. The Pearson coefficients and520

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Toluene Dodecane α-pinene
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MLP gas 0.980 0.0034 0 0.911 0.0093 0 0.957 0.0050 0

MLP aerosol 0.957 0.0095 0 0.908 0.0248 0 0.918 0.0321 0

GRU gas 0.989 0.0012 0 0.991 0.0014 0 0.990 0.0010 0

GRU aerosol 0.985 0.0148 0 0.990 0.0097 0 0.986 0.0105 0

Table 3. Table of computed metrics for MLP and GRU models which are tasked with pre-

diction of gas and aerosol for each of toluene, dodecane, and α-pinene. The average Pearson

coefficient and average Hellinger distance are listed for the two prediction tasks. The fraction of

experiments that went unstable is listed for each model and task. All reported metrics for both

models were computed using the testing set of experiments.

Hellinger distances are comparable for both model types and architectures. An overall521

improvement in scores is seen when predicting the precursor concentrations was not a522

target, but the most notable difference is that all model runs remained stable.523

3.5 GECKO-A emulator evaluation with external datasets524

The performance abilities of both MLP and GRU models were tested by expand-525

ing the data sets to include additional simulations, (1) for 10 times (X10, = 100 ppt) and526

100 times (X100, = 1 ppb) higher initial concentrations of the precursor, which are more527

representative of somewhat polluted atmospheric conditions, and (2) for simulating the528

diurnal variation in the precursor levels, that was not present in the original data sets529

which did not include the daily variability on the emissions, and removal of the precur-530

sor.531

3.5.1 Model performance on increased precursor concentrations532

The simulations performed to create X10 and X100 data sets were carried out iden-533

tically compared with the reference simulations starting at 10 ppt precursor concentra-534

tions, except that the initial precursor concentrations were increases by a factor of 10535
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Figure 8. Scatter plots comparing the GECKO-A value (y-axis) against the GRU predicted

value (x-axis) for models trained on X1 data and applied to test sets with 10X and 100X higher

initial concentrations. The dashed orange line shows y = x, while the solid black line shows the

linear relationship for models trained on the respective X* data set.

(X10) and 100 (X100). The new data sets were then split into train, validation, and test536

data sets just as before, then transformed using the fitted scaling transformations on the537

original data sets. Then, the X10 and X100 test data sets were passed through MLP and538

GRU models that were trained on the original data set containing the smaller initial value539

of the precursor.540

Figure 8 shows the predictions of the GRU model on the reference test set of ex-541

periments (left column), and the expanded X10 and X100 test data sets (middle and right542

columns, respectively). The Pearson coefficient and MAE for each prediction task are543

listed in the sub-panels. The figure shows that the GRU trained on the smaller initial544

precursor concentrations made predictions on the X10 and X100 data sets that corre-545

lated strongly with the true values for precursor, gas, and aerosol, as is seen by high val-546

ues of the Pearson coefficients for the different prediction tasks, but the MAE for each547

task increased by orders of magnitude with larger starting precursor concentrations.548
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The figure also clearly indicates that the GRU model under-predicted the true val-549

ues for gas and aerosol by approximately 1 and 2 orders of magnitude for the X10 and550

X100 data sets, respectively. For the precursor prediction task, the predicted decay times551

were significantly shorter compared to that observed in the GECKO-A experiments. Over-552

all, similar performance declines were observed for the MLP model (results not shown).553

Models which did not have the precursor prediction task did better by comparison but554

overall performance still declined. These results indicate that the neural models cannot555

be extrapolated outside of the training data sets. This poses a real challenge for 3D model556

applications given the wide range of precursor’s concentrations in the atmosphere go-557

ing from very clean conditions in the remote regions, and upper troposphere to polluted558

conditions found i.e., in urban or fire plumes.559

3.5.2 Evaluation with varying environmental conditions560
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Figure 9. Examples of GRU box simulations where select environmental variables were al-

lowed to vary with time.

Lastly, the models’ performance was tested on 36 experiments run for toluene that561

simulated daily varying conditions for five days. Like for the training data set, the pre-562

cursor’s initial concentration was set to 10 ppt. Initial temperature, pre-existing aerosol563
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Figure 10. The average Pearson coefficient versus the initial box simulation start time com-

puted from 36 experiments for toluene. (a) The results for the three-task MLP and GRU models

are shown in (i) and (ii), respectively. (b) The same quantities as in (a) except for the two-task

MLP and GRU models. All box simulations ran for 24 hours.

seed, ozone and NOx were randomly selected in the same ranges as the training data set564

(Tab. 1). CO mixing ratio was initialized to 100 ppb. Relative humidity was held con-565

stant to a random value picked in the 50-80 % range. The latitude was also randomly566

selected in the 80S-80N range. Contrary to the training data set, after initialization, all567

chemical concentrations were free to evolve with the diurnal cycle to simulate a realis-568

tic atmospheric degradation of toluene and the subsequent organic aerosol formation.569

Because the experiments simulated a diurnal cycle and started at midnight, box570

simulations were performed with MLP and GRU models at different starting times in571

the experiments to assess the impact of training the models on daytime oxidation only.572

Three example experiment trajectories are shown in Figure 9 for the 3-task GRU model,573

for the full 5-day box simulations which all began at midnight (the same examples for574

the MLP model are shown in Figure D4). The simulations performed at other starting575

times covered a shorter 1-day window. Figure 10 shows the average Pearson coefficient576

for these shorter simulations for both the 3- and 2-task MLP and GRU models.577

Figure 9 shows the predicted curves for simulations starting at midnight are no-578

tably different compared with those in Figure 4. In particular, the GRU model seems579

to have captured some of the diurnal changes, where oxidation appears to proceed dur-580

ing the day, but not at night. Drastic changes in the predicted precursor amounts are581
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observed during day-night transition periods. However, the predicted concentration val-582

ues are clearly not in agreement with the true values. Although it is less obvious, close583

inspection of the MLP predicted precursor values in Figure D4 shows that it too responded584

to the diurnal variation in the extended experiments, but with poor numerical accuracy.585

Both MLP and GRU models predicted that all experiments remained stable at all sim-586

ulation times.587

Figure 10(a) shows that over a 1-day simulation window, the performance still dropped588

relative to the experiments where the environmental variables were held constant for toluene.589

The MLP model had comparably high Pearson score for precursor prediction across the590

start times, but gas and aerosol performance was lower by comparison. The periodic re-591

sponse of the GRU to the diurnal signal in Figure 10(a)(ii) is indicated by the sign-change592

in the average Pearson value for predicted precursor, which goes negative when box sim-593

ulations were started during day-time hours, while those started overnight stayed pos-594

itive. The GRUs performance on gas and aerosol prediction also peaked for simulations595

that started during the middle of the day-time, and was poorest by comparison for those596

started late at night. Figure 10(b) shows that MLP and GRU models, which were only597

tasked with predicting gas and aerosol, performed mostly similar to the 3-task models,598

with notable gas performance improvement for the 2-task GRU.599

3.6 Computational performance of emulator models and GECKO-A600

In addition to being able to reproduce reasonably well the evolution of concentra-601

tions of organic compounds on the test data sets for the three species, the MLP and GRU602

emulators also led to significant computational gains. Table A1 lists estimates for the603

time required by GECKO-A, MLP, and GRU models to advance one time step, e.g. five604

minutes of simulation time, for the three precursor species. For toluene, GECKO-A re-605

quires 0.9 seconds and is about 78 and 244 times faster than dodecane and α-pinene, re-606

spectively. By comparison, both MLP and GRU models require about the same time for607

the three precursor species on the CPU, typically a few microseconds, with the MLP faster608

than the GRU by up to a factor of five. Thus, for toluene both neural network models609

could be expected to perform hundreds of times faster, while for α-pinene the expected610

speed-up could be up to 4-6 orders of magnitude faster than the explicit model.611
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4 Discussion612

In general, the comparative differences seen between the MLP and novel 1-step GRU613

applications show the advantages of a recurrent neural network emulator in a few key614

areas. First, its overall accuracy, especially at integrated time steps further away from615

its starting conditions, is notably higher than the MLP model. Furthermore, the encod-616

ing of a hidden state which can represent the trajectory of each input, the key feature617

of a recurrent network architecture, appears to help constrain model uncertainty and ul-618

timately, numerical stability. Most neural network applications for atmospheric chem-619

istry have not yet begun to examine such model uncertainties. Our use of training a suite620

of ensemble members using the exact same architecture for each model, and only initial-621

izing the weights differently prior to training, provides some evidence that model uncer-622

tainty can be sensitive to, and better constrained by, certain model types. Related, we623

also note that our recurrent model remains numerically stable for all species and for most624

starting initial conditions, which is not true for a small percentage of MLP member /625

experiment combinations. This insight may not have been detected without the inspec-626

tion of an ensemble suite, as most of the MLP models remained stable.627

Maintaining numerical stability with the use of emulators for atmospheric chem-628

istry and other atmospheric parameterizations is a known issue and initial steps have been629

taken to address it (Brenowitz & Bretherton, 2018; Kelp et al., 2020, 2021). These re-630

cent studies found some performance improvements by using a “recurrent training” scheme,631

where a model was rolled out in time for n time steps during training, and a loss was632

calculated on the sum of n time steps, instead of a single time step. However, the mod-633

els used in these studies were not recurrent neural networks, as the network architectures634

were that of an MLP (Brenowitz & Bretherton, 2018) and an encoder/decoder frame-635

work (Kelp et al., 2020, 2021), which only utilized feed-forward connections. Rather, train-636

ing these models relied on the multi-time step loss function as a means to update the637

model weights using a sequence instead of a single length input. Our GRU model pro-638

vides an alternative approach, by rolling out the model to the end of the training exper-639

iment and calculating the loss at successive single time steps, the feedback connections’640

memory of the trajectory through t−1 is simply used as input at t along side the cur-641

rent values of the precursor, gas and aerosol.642
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Recurrent neural networks have not yet been thoroughly explored in 3D atmospheric643

modeling, although there have been applications in other earth systems areas including644

hydrology (Kratzert et al., 2018; Ardabili et al., 2019), earthquake magnitude predic-645

tion (Mousavi & Beroza, 2020), rain-runoff (Boulmaiz et al., 2020) and wind velocity fore-646

casting (Irrgang et al., 2020), as well as vegetation growth estimation (Reddy & Prasad,647

2018). One reason for this might be the lower dimensional nature of many of these mod-648

els, which would be computationally less burdensome to put into production as opposed649

to integrating a model that requires multiple time steps of input into a full 3D climate650

or weather model. For this reason, we have developed a method that still only requires651

one time step of input but maintains the advantage of having an encoded memory of past652

time steps. A small disadvantage of our framework is that it does require an additional653

model to predict the initial hidden state prior to running the GRU. However, if the com-654

munity ultimately finds that it is computationally and programmatically feasible to cou-655

ple large recurrent networks into full 3D transport models, investigation of training re-656

current models with multiple time steps of input would be a recommended pathway.657

Although there are clear benefits demonstrated from use of a recurrent network,658

there are computational limitations. The hidden state increases the input needed for each659

prediction from 9 for the MLP model to 1000 for the GRU. This is not problematic for660

1D validation efforts, but would become too memory intensive if this model were inte-661

grated into 3D simulations. A smaller GRU hidden state is possible but may result in662

drops in performance. If directly shrinking the vector is not feasible, lossy compression663

of the vector with principal component analysis or an autoencoder may balance a smaller664

performance loss with slightly more computation. For this reason, despite the lower per-665

formance metrics, we still find value in simplified neural networks such as the MLP if666

they can still approximate a solution within the given tolerance. Additionally, some per-667

formance could be sacrificed for a smaller GRU model (see Figure B3).668

Our results demonstrate some ML generalization challenges involving the selection669

and training of neural networks on experiments with both small initial precursor con-670

centrations and select static environmental variables. For example, low precursor con-671

centrations of 10 ppt were chosen primarily to limit the influence of a single precursor672

on the photochemical reactivity, and gas/particle partitioning in GECKO-A. However,673

this had a large impact on the generalizability outside the training range (Fig 8). If we674

were to implement our models into a 3D climate model, they would need to be trained675
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on a larger range of precursor values that are also representative of more polluted at-676

mospheric conditions. Additionally, environmental variables outside of temperature were677

held constant in an effort to help the models generalize better, but this was not success-678

ful. While there did not appear to be any direct evidence of over-fitting to the training679

data, an open question remains of how to properly configure the reference box models680

to provide data to best capture the physical relationships in a complex chemical system.681

One speculation is that the GRU could generalize more effectively than observed here682

by having varying environmental fields within an experiment, to better parameterize the683

models feedback connections. Many other generalization questions also remain, such as684

the inclusion of night chemistry (oxidation with O3 and NO3), as well as reactions be-685

tween species originated from various precursors.686

To our knowledge, this is the first neural network emulation of organic atmospheric687

chemistry. As a result, there are many areas that warrant further exploration: (1) cou-688

pling both the MLP and GRU models to a 3D chemistry-climate model, such as WRF-689

or GEOS-Chem, to better understand their successes and shortcomings, (2) further quan-690

tification of the underlying uncertainties in model predictions to determine whether the691

error sources originate from the data or the model architecture choices, or both, (3) test-692

ing of different data sets, training regimes, and model architectures to better general-693

ize across different chemical regimes (such as daytime vs. nighttime chemistry), (4) ap-694

plication of transfer learning for domain adaption (Kouw & Loog, 2018), and for poten-695

tially managing the cumbersome production of data sets, (5) incorporating physical con-696

straints into the model architecture or training procedure as a means for constraining697

model outputs, for example the total mass or the number of C atoms needs to be con-698

served, and (6) utilizing explainable and interpretable methodologies to better under-699

stand what the model has learned, and what it is using to drive its predictions.700

5 Conclusions701

In summary, the neural network emulators proposed here, especially the GRU model,702

appear to provide fast and accurate representations of complex chemical processes. As703

such they may be incorporated into 3D models to potentially provide insight into im-704

portant chemical processes currently absent climate models. The recurrent neural net-705

work considered contained feedback connections, and was generally more stable over longer706

box simulations and maintained higher numerical accuracy with the GECKO-A data sets,707
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as compared to the MLP architectures, which did not possess any memory capabilities708

by way of feedback connections. Additionally, models with only two output tasks for pre-709

dicting gas and aerosol quantities and not precursor led to further performance and sta-710

bility improvements in both models. Furthermore, extensive hyper-parameter search was711

a crucial step in finding the best models in each case. The novelty of our recurrent neu-712

ral network that only requires one time step of input data allows for a similar ease of trans-713

fer compared to those already explored such as random forests and MLPs. This approach714

does not depend on the specific data set used for training and validation, and was de-715

signed so that a recurrent model can be integrated into current 3D models without adding716

additional transport complexity. Thus, this “1-step” approach could be applied in other717

areas where emulators are being used for the prediction of time-ordered quantities.718

Appendix A Average time step comparison719

Model Toluene Dodecane α-pinene

GECKO-A 0.9 s 1 71 s 1 220 s 1

MLP CPU 2.1 µs 430 0.8 µs 8.88× 104 1.6 µs 1.38× 105

MLP GPU 0.08 µs 11250 0.07 µs 1.01× 106 0.08 µs 2.75× 106

GRU CPU 3.1 µs 290 3.2 µs 2.22× 104 3.3 µs 6.67× 104

GRU GPU 0.38 µs 2368 0.38 µs 1.87× 105 0.38 µs 5.79× 105

Table A1. The average time each model required to advance 300 seconds of simulation time.

For each species, the first column shows the time step in seconds while the second column shows

the ratio of the GECKO-A time step to each model time step.

Table A1 compares the average speed in which GECKO-A and MLP and GRU mod-720

els take to advance 300 seconds of simulation time. The neural network models were eval-721

uated on NCAR’s casper supercomputer, on a node that contained an 18-core 2.3-GHz722

Intel Xeon Gold 6140 processors (CPU) and a NVIDIA Tesla V100 32GB graphics cards723

(GPU). The GECKO-A simulations were performed on NCARs cheyenne supercomputer,724

on a node that contained a 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processor (CPU).725
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Appendix B Hyperparameter optimization726

The ECHO package is based on Optuna (Akiba et al., 2019), and facilitates opti-727

mization using the high-performance computing clusters available at NCAR. The opti-728

mization procedure begins by initiating a “study” and performing the first “trial” where729

values are selected for a set of hyper parameters within specified ranges, the model is trained,730

and its performance measured in box simulations. The outcome of the trial is saved to731

the study along with other metadata. For the current objective, any trial is independent732

from any other trial. Trials are ran until the optimization converges or the number of733

trials saved to a study reaches a predetermined number. Upon the completion of a study734

the relative importance of each hyper parameter on model performance may be estimated.735

To sample hyper-parameters, we selected the Tree-structured Parzen Estimator (TPE)736

(Bergstra et al., 2011) for this task. For each hyper parameter, the TPE method fits a737

Gaussian Mixture model (GMM) l(x) to the set of parameter values associated with the738

best MAE, for all of the trials that have been carried out to completion. TPE addition-739

ally fits a second GMM to the leftover parameter values, and then chooses the next pa-740

rameter value that maximizes l(x) / g(x). We initially delay using the TPE sampler and741

use random sampling instead. We have observed for the present models that this initial742

step helps to inform the TPE sampler by initially supplying observations that the GMM743

models may leverage to make better informed parameter selections. For additional de-744

tails about hyper parameter optimization, see the supporting information.745

Once a study is complete, the parameters sampled in each trial along with the box-746

MAEs are used to compute the relative parameter importance. There are a variety of747

approaches for such estimation, including mean decrease impurity evaluation (MDI) (Louppe748

et al., 2013) and functional analysis of variance (functional ANOVA, or fANOVA hence-749

forth) (Hutter et al., 2014). Both approaches utilize tree-based ensemble methods to es-750

timate the relationship between the values of a set of hyperparameters used to train a751

model, and the optimization objective value that resulted. The MDI estimation of a hy-752

perparameter is zero when it depends only on the relevant variables, hence it is irrele-753

vant to making a prediction. The most relevant hyperparameter has the largest estima-754

tion value. Similarly, in fANOVA when the estimated variance between input xi and out-755

put yj is low or zero, it is not an important input feature, and vice versa.756
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We also compute the partial dependence plot for each parameter, which estimates757

the marginal effect one (or more) features have on the predicted outcome of a machine758

learning model (Friedman, 2001). A partial dependence plot can show whether the re-759

lationship between the box-MAE and an input feature is linear, monotonic or more com-760

plex. For example, when applied to a linear regression model, partial dependence plots761

always show a linear relationship.762

MLP and GRU model optimization for the three species was performed and the763

best model parameterization was selected from each optimization study. Figure B1(a)764

plots the optimization objective for GRU model to the toluene data set versus number765

of optimization trials. Figure B1(b) illustrates partial dependence curves for the GRU766

layer size for the three species. Figures B2 and B3 illustrate partial dependence curves767

for each hyper parameter varied by ECHO for MLP and GRU models respectively. Ta-768

bles B1 and B2 list the hyperparameter importance as measured by MDI and fANOVA.769
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Figure B1. (a) The optimization history for the GRU model trained. on the α-pinene data

set. (b) Partial dependence versus GRU layer size.

The blue dots in Figure B1(a) show outcomes of trails. A red dot indicates when770

a set of hyperparameters is the best performing one in a study. The horizontal line in-771

dicates the two stages of the algorithm. To the left, random sampling was used to se-772

lect a set of hyperparmeters. To the right, TPE sampling was used. As the figure shows,773

the optimization procedure mostly converges to better performing models in the second774

stage, but no improvement in the study was observed after about 300 trial attempts in775

this example.776
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Figure B1(b) shows how the optimization metric depends on changes to values of777

hyperparmeters, referred to as the partial dependence. In the figure, the partial depen-778

dence shows how the GRU model MAE summed over 1439 time steps depends on the779

GRU model layer size, and a random seed in python 3.7 of 1000. The best layer size for780

each species is the one that leads to the most negative value of the partial dependence,781

and is at a curve’s global minimum. In this example, toluene and dodecane are more sen-782

sitive to the value of the GRU layer size relative to α-pinene, especially for layer sizes783

that are near the best value. Table B2 additionally shows that the computed MDI and784

fAVONA values for the hidden size of the GRU are larger than that for α-pinene. The785

curve for α-pinene is also more flat in appearance and encompasses a smaller range of786

values of the partial dependence compared to toluene and dodecane. Overall, the most787

important hyperparameters in the optimization studies for the three species were the loss788

weight for hidden state model, the initial learning rate, and the GRU layer size. For do-789

decane, the aerosol loss weight and the batch size were also estimated to be important790

training parameters. For the MLP models, Table B1 shows that both MDI and fANOVA791

score the learning rate as the most important training parameter for all three species,792

with the batch size the second most important.793

Figures B2 and B3 illustrate partial dependence curves for hyper parameters used794

in each optimization study, for MLP and GRU models, respectively. Tables B1 and B2795

list the hyperparameter importance value estimations using the MDI and fANOVA meth-796

ods, for MLP and GRU models, respectively.797

Appendix C Model and training parameters798

Tables C1 and C2 list the best hyperparameter values in optimization studies for799

the MLP and GRU models respectively. The parameters listed in these tables were used800

to train ensembles of models that were then used to produce the results shown in the801

figures in the main text. Figure C1 shows the CRPS for MLP and GRU models which802

are tasked with gas and aerosol prediction only.803

Appendix D Additional results804

Figure D1 shows the average Hellinger distance for MLP and GRU models tasked805

with predicting precursor, gas, and aerosol, versus the start time of the box simulation.806

Figures D2 and D3 show the average Pearson coefficient and the average Hellinger dis-807
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MLP Toluene Dodecane α-pinene

Parameter fANOVA MDI fANOVA MDI fANOVA MDI

Learning rate 0.969 0.945 0.759 0.540 0.759 0.618

Batch size - - 0.107 0.179 0.169 0.134

Hidden layer size 0.022 0.034 0.063 0.076 0.017 0.068

Epochs 0.006 0.013 0.055 0.124 0.037 0.120

L2 penalty 0.002 0.004 0.003 0.041 0.018 0.044

L1 penalty 0.001 0.001 0.013 0.039 0.001 0.016

Table B1. Hyperparameter importance values for optimization studies of a MLP model

trained on toluene, dodecane, and α-pinene GECKO-A experiment trajectories. The maximum

number of trees used and the maximum depth was set to 1000 in all estimations. The batch size

was fixed at 8192 for toluene.

GRU Toluene Dodecane α-pinene

Parameter fANOVA MDI fANOVA MDI fANOVA MDI

Hidden loss weight 0.310 0.386 0.040 0.020 0.393 0.518

GRU hidden size 0.200 0.140 0.198 0.112 0.186 0.046

Learning rate 0.118 0.205 0.152 0.297 0.315 0.194

Precursor loss weight 0.101 0.052 0.054 0.024 0.026 0.081

Batch size 0.079 0.052 0.165 0.053 0.025 0.032

Aerosol loss weight 0.072 0.042 0.184 0.363 0.017 0.022

Gas loss weight 0.060 0.043 0.057 0.019 0.017 0.039

GRU dropout 0.045 0.042 0.112 0.023 0.013 0.032

L2 penalty 0.013 0.038 0.039 0.088 0.008 0.034

Table B2. Hyperparameter importance values for optimization studies of a GRU model

trained on toluene, dodecane, and α-pinene GECKO-A experiment trajectories. The maximum

number of trees used and the maximum depth was set to 1000 in all estimations.
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Parameter Toluene Dodecane α-pinene

Learning rate 1.39× 10−5 4.41× 10−6 6.39× 10−6

Batch size 8192 2538 6907

Hidden layer size 4902 2655 4049

Epochs 841 907 1450

L2 penalty 3.49× 10−4 2.60× 10−3 6.61× 10−5

L1 penalty 1.39× 10−5 1.22× 10−11 1.76× 10−5

Table C1. The values of the best hyperparameters in the optimization studies for the MLP

models for the three species. The batch size for toluene was fixed at 8192. The leaky ReLU

activation function was used after the hidden layer.

Parameter Toluene Dodecane α-pinene

Hidden loss weight 0.161 0.980 1.896

GRU hidden size 1215 1253 1850

Learning rate 6.926× 10−5 5.275× 10−5 2.474× 10−5

Precursor loss weight 0.812 0.537 0.805

Batch size 1426 980 767

Aerosol loss weight 0.421 0.911 0.894

Gas loss weight 0.151 0.962 0.621

GRU dropout 0.122 0.137 0.415

L2 penalty 2.269× 10−8 4.138× 10−8 1.171× 10−8

Table C2. The values of the best hyperparameters in the optimization studies for the GRU

models for the three species. Other fixed parameters used were an early stopping patience of 6

and the learning rate annealing patience of the 2.
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Figure B2. A partial dependence plot for each parameter varied by ECHO for the MLP

model for toluene.

tance for MLP and GRU models tasked with predicting gas and aerosol, versus the start808

time of the box simulation. In these three figures, a box simulation began at the start809

time and continued until no more time steps were available to compare with the GECKO-810

A trajectories.811

Three example experiment trajectories are shown in Figure D4 for the 3-task MLP812

model, for the full 5-day box simulations which all began at midnight (the same exam-813

ples for the GRU model are shown in Figure 9). The simulations performed at other start-814

ing times covered a longer 4-day window compared to the 1-day simulations shown in815

the main text in Figure 10. Figure D5 shows the average Pearson coefficient for these816

4-day simulations for both the 3- and 2-task MLP and GRU models.817
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Figure B3. A partial dependence plot for each parameter varied by ECHO for the GRU

model for toluene.
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Figure C1. Computed CRPS versus simulation time for toluene, dodecane and α-pinene, for

MLP and GRU models (solid and dashed lines, respectively) predicting gas and aerosol but not

precursor. The precursor value at some time is still used as input to both models. The shaded

regions show the 95% confidence interval.
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Figure D1. The average Hellinger distance versus the initial box simulation start time, com-

puted from the 200 test experiments for the three species considered. The MLP and GRU results

are shown in panels on the left and right, respectively.
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predicted precursor. The MLP and GRU results are shown in panels on the left and right, respec-
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Figure D3. The average Hellinger distance versus the initial box simulation start time, com-

puted from the 200 test experiments for the three species considered. Both model types were

tasked with gas and aerosol prediction only, but otherwise were the same as the versions which

predicted precursor. The MLP and GRU results are shown in panels on the left and right, respec-

tively.
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Figure 13.
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Figure 14.
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Figure 15.
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Figure 16.
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Figure 17.
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Figure 18.
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Figure 19.
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