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Abstract

The spin axes of the mantle, fluid core and solid inner core of the Moon precess at frequency $\Omega p=2\pi/18.6$ yr$ˆ{-1}$
though with different orientations, leading to viscous friction at the core-mantle boundary (CMB) and inner core boundary

(ICB). Here, we use a rotational model of the Moon with a range of inner core and outer core radii to investigate the relative

importance of viscous dissipation at the CMB and ICB, and to show how this dissipation is connected to the phase lead angle

($\phi p$) of the mantle ahead of its Cassini state. We show that when the inner core radius is $>80$ km and the free inner

core nutation frequency $\Omega {ficn}$ approaches $\Omega p$, viscous dissipation at the ICB can be comparable to that

at the CMB, and in the most extreme cases exceed it by as much as a factor 10. If so, the viscous dissipation in the lunar core

projected back in time depends on how $\Omega {ficn}$ has evolved relative to $\Omega p$. We further show that constraints

on the CMB and ICB radii of the lunar core can in principle be extracted by matching the observed phase lead of $\phi p=0.27$
arcsec; this requires an improved estimate of tidal dissipation and an accurate model of the turbulent viscous torque. Lastly,

when our rotational model is constrained to match $\phi p=0.27$ arcsec, our results suggest that the viscous dissipation at the

ICB is likely insufficient to have ever been above the threshold to power a thermally driven dynamo.
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Key Points:

• The misaligned spin axes of the lunar mantle, fluid core and inner core induce viscous

friction at the boundaries of the fluid core.

• For an inner core radius > 80 km and a free inner core nutation period close to 18.6 yr,

friction at the inner core boundary dominates.

• Viscous dissipation at the ICB is likely insufficient to have ever been above the thresh-

old to power a thermally driven dynamo.
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Abstract

The spin axes of the mantle, fluid core and solid inner core of the Moon precess at frequency

Ωp = 2π/18.6 yr−1 though with different orientations, leading to viscous friction at the core-

mantle boundary (CMB) and inner core boundary (ICB). Here, we use a rotational model of

the Moon with a range of inner core and outer core radii to investigate the relative importance

of viscous dissipation at the CMB and ICB, and to show how this dissipation is connected to

the phase lead angle (φp) of the mantle ahead of its Cassini state. We show that when the in-

ner core radius is > 80 km and the free inner core nutation frequency Ωficn approaches Ωp,

viscous dissipation at the ICB can be comparable to that at the CMB, and in the most extreme

cases exceed it by as much as a factor 10. If so, the viscous dissipation in the lunar core pro-

jected back in time depends on how Ωficn has evolved relative to Ωp. We further show that con-

straints on the CMB and ICB radii of the lunar core can in principle be extracted by match-

ing the observed phase lead of φp = 0.27 arcsec; this requires an improved estimate of tidal

dissipation and an accurate model of the turbulent viscous torque. Lastly, when our rotational

model is constrained to match φp = 0.27 arcsec, our results suggest that the viscous dissipa-

tion at the ICB is likely insufficient to have ever been above the threshold to power a thermally

driven dynamo.

Plain language summary: Just like a spinning top, the spin axis of the Moon is precessing

in space at period of 18.6 yr. The spin axes of its fluid core and, if present, its solid inner core

precess at the same rate but with different orientations. Here, we calculate the viscous friction

at the core-mantle boundary (CMB) and inner core boundary (ICB) induced by this differen-

tial rotation for a range of inner core and outer core radii. We show that when the inner core

is > 80 km, viscous friction at the ICB can be large while that at the CMB is significantly re-

duced for some lunar models. Although the exact radii of the solid inner core and fluid core

of the Moon are not known, we show how additional information about the core geometry can

in principle be extracted by ensuring that the total dissipation is consistent with the observed

orientation of the lunar rotation axis in space. Lastly, our results suggest that convective flows

in the liquid core that may be driven by the heat released by viscous friction at the ICB are

likely not sufficiently vigorous to generate a magnetic field today, or at any point in the lunar

past.

1 Introduction

Tracking of the position and orientation of the Moon by Lunar Laser Ranging (LLR) has

revealed a wealth of knowledge on its orbit and rotation (e.g. Dickey et al., 1994), thereby pro-

viding important constraints on its interior structure (e.g. Williams et al., 2014). The orbit nor-

–2–



manuscript submitted to JGR: Planets

mal is inclined by an angle I = 5.145◦ with respect to the ecliptic normal. The spin-symmetry

axis is tilted by an angle θp = 1.543◦, also with respect to the ecliptic normal, in the same plane

as that formed by the orbit and ecliptic normals, but in the reverse direction, such that the lu-

nar obliquity is I+θp = 6.688◦. The orbit normal and spin-symmetry axis are both precess-

ing about the ecliptic normal, in the retrograde sense, with a common frequency Ωp = 2π/18.6

yr−1, such that they remain coplanar. This configuration describes a Cassini state (Colombo,

1966; Peale, 1969).

It is convenient to refer to the plane that contains the orbit and ecliptic normals as the

Cassini plane. LLR observations have shown that the spin-symmetry axis does not lie exactly

in the Cassini plane, but leads ahead of it by a small angle of φp = 0.27 arcsec. This phase

lead is indicative of rotational energy dissipation. Sources of dissipation include viscoelastic tidal

deformation (Yoder, 1979; Cappallo et al., 1981), viscous relaxation within a possible solid in-

ner core (Organowski & Dumberry, 2020, henceforth referred-to as OD21) and viscous friction

at the core-mantle boundary (CMB) (Yoder, 1981; Williams et al., 2001). Here, we focus on

the latter.

The tilt angle θp = 1.543◦ characterizes the orientation of the spin-symmetry vector of

the solid outer shell of the Moon comprised of its mantle and crust. The rotation vector of the

fluid core is also precessing at frequency Ωp, although its tilt angle is different than that of the

mantle because the ellipticity of the lunar CMB is too small to provide an inertial coupling suf-

ficiently strong to bring them into alignment (Goldreich, 1967). No direct observation on the

orientation of the spin vector of the fluid core is available, but it should remain close to, though

not exactly aligned with, the ecliptic normal (Williams et al., 2001; Meyer & Wisdom, 2011;

Dumberry & Wieczorek, 2016; Stys & Dumberry, 2018, the latter two studies are henceforth

referred to as DW16 and SD18, respectively). The differential rotation of the mantle and fluid

core leads to viscous friction at the CMB, dissipating rotational energy.

A fit between LLR observations and a model of lunar deformation and rotation allows to

separate the relative contributions of the total dissipation from tidal deformation and CMB fric-

tion (Williams et al., 2001; Williams & Boggs, 2015). Tidal deformation contributes approx-

imately 0.15 arcsec to the observed 0.27 arcsec phase lead (e.g. OD20). The rotational model

used in LLR studies does not include an inner core, so the remaining 0.12 arcsec is entirely ab-

sorbed by viscous friction at the CMB. If a solid inner core is present, viscous friction also takes

place at the inner core boundary (ICB) and contributes to the non-tidal part of the dissipation.

The estimate of the present-day dissipation at the CMB, Qcmb, retrieved from LLR anal-

yses provides an anchor point for how Qcmb has changed through time, and is thus a crucial

parameter for reconstructions of the evolution of the lunar orbit and Earth rotation (e.g. Williams
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et al., 2001; Ćuk et al., 2016, 2019). Since the lunar rotation was faster in the past, and the mis-

alignment between the spin vectors of the mantle and core also larger, Qcmb was larger in the

past, possibly sufficiently large to power an ancient lunar dynamo (Williams et al., 2001; Dwyer

et al., 2011; Cébron et al., 2019). If a part of the present-day dissipation is due instead to vis-

cous friction at the ICB, this may impact the conclusions of these studies, and opens the pos-

sibility that the frictional heat released at the ICB may have driven convective flows with suf-

ficient vigour to generate a dynamo (Stys & Dumberry, 2020).

The goal of our study is to investigate the relative contributions from friction at the CMB

and ICB to the observed rotational energy dissipation of the Moon. Whether the Moon has a

solid inner core remains unknown, although its presence is expected from thermal evolution mod-

els (e.g. Laneuville et al., 2014; Zhang et al., 2013; Scheinberg et al., 2015) and has been sug-

gested from seismic data (Weber et al., 2011) and inversions of geodetic observations (e.g. Mat-

sumoto et al., 2015; Matsuyama et al., 2016). Viscous friction at the ICB depends on the mis-

alignment between the spin axes of the fluid core and inner core. The tilt angle of the spin-symmetry

axis of the inner core is set by the frequency of the free inner core nutation (FICN) (DW16,

SD18). Because the FICN frequency is expected to be close to the precession frequency Ωp, the

Cassini state of the Moon may feature a relatively large inner core tilt as a result of resonant

amplification (DW16, SD18). The differential angular velocity at the ICB may then be larger

than at the CMB. The FICN frequency, in turn, depends on the interior density structure. The

relative contributions from friction at the ICB and CMB thus depend on the choice of lunar

interior model. Here, we sweep through a range of possible interior models parameterized in

terms of inner core and outer core radii.

An additional motivation for our study is to revisit the suggestion made in Stys and Dumb-

erry (2020) that an ancient lunar dynamo may have been powered by thermal convection from

the heat released by viscous friction at the ICB. In Stys and Dumberry (2020), the differential

velocities at the CMB and ICB were computed from a rotational model that did not include

dissipation. While the amplitude of the viscous coupling at the CMB was constrained to match

its amplitude inferred by LLR, viscous coupling at the ICB was not; it was instead predicted

based on a similar coupling parametrization than at the CMB but involving the differential ve-

locity at the ICB. This simple approach, however, does not ensure that the added dissipation

at the ICB remains consistent with the total rotational dissipation observed through the phase

lead of φp = 0.27 arecsec. In contrast, here we seek to determine the viscous friction at both

the CMB and ICB while enforcing that the observed phase lead is matched. As we will show,

adopting this self-consistent approach reduces the prediction of the viscous heating at the ICB

by a few orders of magnitude.
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2 Method

2.1 Interior structure

We adopt a simple model of the lunar interior that consists of four layers of uniform den-

sity: a solid inner core, a fluid outer core, a solid mantle, and a thin crust. We set the lunar

mass to M = 7.3463 × 1022 kg and its mean outer radius to R = 1737.151 km. We chose a

crustal thickness of 38.5 km with a density of 2,550 kg m−3 (Wieczorek et al., 2013). The in-

ner core density is fixed at 7,700 kg m−3 (e.g. Matsuyama et al., 2016). To cover a range of pos-

sible interior models, we sweep through an array of possible ICB and CMB radii. We follow the

procedure detailed in section 3 of OD20; for each combination of ICB and CMB radii, the den-

sity of the mantle is determined by matching the moment of inertia of the solid shell Ism =

0.393112·MR2 and the density of the fluid core is then determined by matching the lunar mass.

Each layer is triaxial in shape. We assume that the ICB and CMB are both at hydrostatic

equilibrium with the imposed gravitational potential from the triaxial shapes of the exterior

surface and crust-mantle boundary. The global triaxial shape is set so that it matches the de-

gree 2 gravitational potential coefficients J2 and C22 and the observed polar (εr) and equato-

rial (ξr) flattenings of the exterior surface. The triaxial shape at each interior boundary is found

by the procedure detailed in section 3.1 of SD18. The numerical values for J2, C22, εr and ξr

are taken as those given in Table 1 of OD20.

2.2 Rotational model of the Cassini state

To capture the Cassini state of the Moon, we use the rotational model described in de-

tail in OD20 and summarized here. This model is a refined version of that presented in DW16.

It consists of a system of five equations and five unknowns. The five unknowns are rotational

variables. They are: the angle of tilt of the lunar figure axis (or, equivalently, the axial sym-

metry axis) with respect to the ecliptic normal (p̃); the misalignment angle of the spin axis of

the solid outer shell (comprised of the mantle and crust) with respect to the figure axis (m̃);

the misalignment angles of the spin axes of the fluid core (m̃f ) and inner core (m̃s) with re-

spect to m̃; and the tilt angle of the inner core figure with respect to the lunar figure axis (ñs).

Neglecting small amplitude librations, these angles are fixed when viewed in a frame at-

tached to the Cassini plane. Figure 2 of OD20 shows a graphical representation of these an-

gles (with labels θp, θm, θf , θs and θn corresponding respectively to p̃, m̃, m̃f , m̃s and ñs). Forced

by the precession of the lunar orbit, the orientation of the Cassini plane is rotating in a retro-

grade direction in inertial space at frequency Ωp = 2π/18.6 year−1. The equations of the ro-

tation model of OD20 are developed in a frame attached to the mantle and crust rotating at

sidereal frequency Ωo = 2π/27.322 day−1. Viewed in the mantle frame, the Cassini plane is
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then rotating in a retrograde direction at frequency ωΩo = −2π/27.212 day−1, where ω, ex-

pressed in cycles per lunar day, is equal to

ω = −1− δω . (1)

The factor δω = Ωp/Ωo = 4.022 × 10−3 is the Poincaré number, expressing the ratio of the

forced precession to sidereal rotation frequencies. The frequency ωΩo captures the time it takes

for the Moon to return to the same nodal point in its orbit. It is the forcing frequency asso-

ciated with the Cassini state when viewed in the rotating lunar frame, and the leading order

tidal frequency acting on the Moon.

The tilde notation used for the rotational variables expresses a complex amplitude, with

the real and imaginary parts capturing respectively the tilt angle components that are paral-

lel and orthogonal to the Cassini plane. Out-of-plane (imaginary) components result from dis-

sipation mechanisms. As they are fixed to the Cassini plane, when viewed in the mantle frame,

the rotational variables execute a retrograde precession at frequency ωΩo. Their time-dependent

part is expressed by exp[iωΩot], where i =
√
−1 is the imaginary number.

The five equations of the model are given in Equation (54) of OD20. The first three cap-

ture the rate of change of the angular momenta of the whole Moon, the fluid core, and the in-

ner core, respectively. These include the external gravitational torque from the Earth acting

on the figures of the moon and its inner core, the gravitational and pressure torques between

each regions, and the torques from viscous friction at the CMB and ICB. The last two equa-

tions of the model are kinematic relations, one to express the change in the orientation of the

inner core figure resulting from its own rotation and a second describing the invariance of the

ecliptic normal as seen in the mantle frame. Each of these equations are developed under the

assumption that the five unknown angles are small, and the system of equations can be expressed

in a compact form as

M · x = y , (2)

with solution vector x = [m̃, m̃f , m̃s, ñs, p̃]
T . The elements of the matrix M and right-hand

side vector y are given in Appendix A of OD20.

For a given interior density structure and triaxial figure of the Moon, the rotational model

captures the angular momentum response of the Moon when submitted to the external grav-

itational torque and tidal deformation by Earth at frequency ωΩo. The solution, the mutual

alignment of the five rotational variables, is the Cassini state of the Moon. To match observa-

tions, a successful model of the Cassini state should then predict a tilt of the figure axis of θp =

–6–
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1.543◦ (i.e. Re[p̃] = 1.543◦) and a phase lead of φp = 0.27 arcsec (i.e. Im[p̃] = −φp = −0.27

arcsec; note the negative sign, a phase lead corresponds to a negative imaginary part.)

The objective of OD20 was to investigate the possible contribution from viscous relax-

ation within the inner core to the rotational dissipation. Viscous friction at the CMB and ICB,

though included as part of the model construction, were turned off. Here, we proceed in reverse:

we assume no viscous relaxation within the inner core, and explore how viscous friction at both

the CMB and ICB are connected to the observed φp. The model of viscous friction at the CMB

and ICB is presented in section 2.4.

One important aspect of the model to note is that although the triaxial shape of the Moon

is used in the prescription of the gravitational torque from Earth, the angular momentum re-

sponse is based on an axisymmetric body. To first order this is correct as the rotational response

is determined by the resonant amplification of three free modes of rotation (the free precession,

the free core nutation (FCN) and the FICN) which are quasi-circular motions even for a tri-

axial body (e.g. Peale, 2005; Van Hoolst & Dehant, 2002). The convenience of adopting such

a framework is that, for each region, the two equatorial angular momentum equations can be

combined into a single equation.

Also note that the flow motion in the fluid core is oversimplified in our model. The only

flow component that is explicitly tracked is its solid body rotation. The justification validat-

ing this approach are presented in Mathews et al. (1991) from which the model of OD20 is adapted.

Nevertheless, this implies that possible dynamical contributions may be missing in our model,

including inertial waves, which can interact with and alter the FCN and FICN precession modes

(e.g. Rogister & Valette, 2009; Triana et al., 2019; Rékier et al., 2020). Likewise, our model does

not take into account possible non-linear interactions between core waves that may have a feed-

back on its rotation at monthly period.

2.3 Viscoelastic deformations from solid body tides

Viscoelastic deformations in the rotational model of OD20 are captured by perturbations

in the moments of inertia of the inner core, fluid core and the whole Moon. These perturba-

tions, in turn, are parameterized by a set of compliances Sij . The perturbations are split into

an internal contribution – from the changes in the centrifugal and gravitational potentials in-

duced by the misaligned orientations of each layer – and an external contribution – from the

gravitational potential of Earth. The latter results in solid body tides of harmonic degree 2.

The part of the lunar deformation that is in-phase with the imposed external potential (the elas-

tic part of the deformation) is captured by the tidal Love number k2. The out-of-phase com-

ponent, indicative of viscous or anelastic deformation and tied to dissipation, is captured by
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a quality factor Q, with Q−1 representing the fraction of the total energy that is dissipated over

one cycle. A low (high) Q value indicates a high (low) dissipation. These are connected to the

compliance S11 through

Re[S11] = k2
R5Ω2

0

3GĀ
, Im[S11] =

k2
Q

R5Ω2
0

3GĀ
, (3)

where G is the gravitational constant, and Ā is the mean equatorial moment of inertia of the

whole Moon.

Note that k2 and Q (and thus S11) capture the bulk deformation of the Moon, without

giving direct information on where in its interior deformations may be maximized. At the monthly

tidal period of 27.212 days, recent observations suggest k2 = 0.02422± 0.00022 (Williams et

al., 2014) and k2/Q = (6.4±1.5)×10−4 (Williams & Boggs, 2015) corresponding to a monthly

Q-value of 37.8. Interior models that include a low viscosity zone in the lowermost mantle (e.g.

OD20, Harada et al., 2014, 2016), possibly featuring partial melt (e.g. Khan et al., 2014), are

consistent with these k2 and Q values. If this is correct, tidal dissipation is concentrated in the

lowermost region of the mantle.

To a very good approximation, the tidal contribution to the phase lead φp in the rota-

tional model of OD20 is determined by the imaginary part of S11. Hence, we set all compliances

to zero, except S11. We do not compute S11 from a model of seismic parameters and viscos-

ity within each layer, as was done in OD20, but instead we constrain it to match the central

values of k2 = 0.02422 and k2/Q = 6.4 × 10−4 quoted above through Equation (3). With

these choices, tides contribute approximately 0.15 arcsec of the observed φp (see section 4.2 of

OD20 and our results below), with a weak dependence on the choice of inner core and outer

core radii. The remaining ∼ 0.12 arcsec required to match the observed φp must then be ac-

commodated by viscous friction at the CMB and ICB.

2.4 Viscous torque at the CMB and ICB

The torques from viscous friction at the CMB (Γ̃cmb) and ICB (Γ̃icb) are parameterized

as products between dimensionless complex coupling constants (Kcmb and Kicb) and the dif-

ferential angular velocities at each boundary. In the complex notation used in OD20, they are

given by their Equation (52),

Γ̃cmb = iΩ2
oĀfKcmb m̃f , (4a)

Γ̃icb = iΩ2
oĀsKicb(m̃f − m̃s) , (4b)
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where Āf and Ās are the mean equatorial moments of inertia of the fluid core and inner core,

respectively. Expressions for Kcmb and Kicb depend on whether the flow in the viscous bound-

ary layer (Ekman layer) remains stable (i.e. laminar) or not (turbulent).

At the CMB of the Moon (radius rf ), the differential velocity between the mantle and fluid

core, U = rfΩo| sin(m̃f )|, is sufficiently large to induce instabilities (Toomre, 1966; Yoder, 1981;

Williams et al., 2001; Cébron et al., 2019). The stability of the Ekman layer is determined by

the local Reynolds number Re = Uδ/ν, where ν is the kinematic viscosity and δ =
√
ν/Ωo

is the Ekman layer thickness. For an oscillating differential velocity, the boundary layer is ex-

pected to be in a turbulent regime when Re > 500 (e.g. Buffett, 2021). With Ωo = 2.6617×

10−6 s−1, and taking rf = 380 km (e.g. Viswanathan et al., 2019) and m̃f = −1.6◦ (e.g. SD18)

gives U = 2.82 cm s−1. The kinematic viscosity of liquid iron in planetary cores is expected

to be of the order of 10−6 m2 s−1 (e.g. Alfè et al., 2000; M. Rutter et al., 2002; M. D. Rutter

et al., 2002), which gives δ = 61.3 cm and Re = 1.73 × 104. This is far above the thresh-

old Re > 500 and the flow in the Ekman layer at the CMB is expected to be in a turbulent

regime.

Likewise, the flow in the Ekman layer at the ICB is also likely in a turbulent regime. The

misalignment between the rotation vectors of the fluid and solid cores is highly sensitive to the

choice of interior model (DW16, SD18), but taking |m̃f − m̃s| = 4◦ as a representative mea-

sure (see our results below), the differential velocity at the ICB (radius rs), U = rsΩo| sin(m̃f−

m̃s)|, is sufficiently large that Re is above the threshold of 500 as long as the for an inner core

radius is larger than 4.4 km.

For a turbulent flow, the viscous shear stress on the solid boundary is written as τ = κρf |u|u,

where ρf is the fluid core density, u is the flow velocity outside the boundary layer and κ is a

drag coefficient that depends on viscosity, rotation, |u| and surface roughness (e.g. Sous et al.,

2013). Integrating r× τ over the spherical surfaces of the CMB and ICB, where r is the ra-

dial vector, and assuming κ is uniform, we can write the viscous torques in the form of Equa-

tions (4) with the coupling constants Kcmb and Kicb given by

Kcmb = −i3π
2

4
κcmb |m̃f | , (5a)

Kicb = −i3π
2

4

ρf
ρs
κicb |m̃s − m̃f | , (5b)

where κcmb and κicb denote the drag coefficients at the CMB and ICB, respectively. The fac-

tor ρf/ρs in Kicb accounts for the fact that it is the density of the fluid core which is involved

in the viscous stress at the ICB. Our expression for Kcmb matches that used by Williams et al.

(2001) and Cébron et al. (2019).

–9–



manuscript submitted to JGR: Planets

The numerical values of the drag coefficients κcmb and κicb are a priori unknown. We can

either prescribe specific values and monitor the consequence of these choices on the solution of

our rotational model. We proceed in this manner for the results that are presented in Figure

1 and described in Section 3. The alternative is to search for a set of κcmb and κicb that allows

us to match φp = 0.27 arcsec and therefore be consistent with the observed dissipation. This

is the approach that we take for the results presented in Figures 2 and 3. For simplicity, we as-

sume in all our calculations that κcmb = κicb.

Before closing this section, let us add a quick note on the computation of our solutions.

Kcmb and Kicb enter some elements of matrix M in Equation (2) (see Appendix A of OD20).

With the turbulent model parametrization of Equation (5), Kcmb and Kicb depend on m̃f and

m̃s, and so the rotational model is no longer linear in the rotational variables (i.e. the matrix

M is itself dependent on m̃f and m̃s). For a given choice of κcmb (= κicb), solutions are found

by a fixed-point iteration method, though when convergence has not been reached after a few

iterations we switch to a multi-directional Newton method. For the cases that involve search-

ing for the numerical value of the κcmb (= κicb) that matches the observed φp = 0.27 arcsec,

we use a one-dimensional Newton method. When the FICN frequency is very close to Ωp, this

strategy fails in some cases; when this occurs, we find κcmb either by a bisection method or by

interpolation.

2.5 Periodic gravity signal induced by a tilted inner core

In the Cassini state equilibrium, the spin-symmetry axis of the inner core is misaligned

from that of the mantle (DW16, SD18). Viewed in the reference frame of the rotating mantle,

a tilted inner core undergoes a retrograde precession with a period of 27.212 day. This induces

a periodic variation in the degree 2, order 1 coefficients of gravity (Williams, 2007). However,

such a gravity signal has not been detected to date (e.g. Williams et al., 2015). We use this lack

of detection as an additional constraint on our rotational and interior structure models.

The periodic change in the degree 2, order 1 component of the gravity field is captured

by perturbations in Stokes coefficients C21 and S21, and we denote their amplitudes by |∆C21|

and |∆S21|. For an axially symmetric inner core,

|∆C21| = |∆S21| =
Āsα3es
MR2

cos(|ñs|) sin(|ñs|) , (6)

where α3 = 1−ρf/ρs, es is the dynamical ellipticity of the inner core (Equation 6 of OD20)

and |ñs| is the magnitude of the tilt of the inner core with respect to the mantle symmetry axis.

The amplitude of the periodic degree 2, order 1 gravity coefficient possibly attributable to an

inner core based on GRAIL data is the range of 4−8×10−11, but deviations of the order of
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the uncertainties (∼ 5−7×10−11) of their central values are necessary in order to match pre-

dictions (Williams et al., 2015). The absence of a clear periodic signal emerging above the noise

level indicates that |∆C21| must be below a detection baseline, which we take to be 5×10−11.

Viscoelastic deformations in response to a tilted inner core and from the precessing spin

vector of the fluid core, alter the prediction of Equation (6). Furthermore, a triaxial inner core

introduces a difference between |∆C21| and |∆S21| (see Williams, 2007). Equation (6) is the

mean of these two amplitudes and gives a simple first order guideline for the amplitude of in-

ner core gravity signal. We use |∆C21| ≤ 5 × 10−11 to delimit the range of acceptable lunar

models.

3 Results

Let us first show examples of solutions from our rotational model for fixed choices of the

drag coefficient κcmb (=κicb). Figure 1 shows the real and imaginary parts of m̃s, m̃f and p̃ for

a range of outer core radii (rf between 320 and 420 km), two different choices of inner core ra-

dius (rs = 60 km and 140 km) and two different choices of κcmb (4 × 10−4 and 8 × 10−4).

The form of the solutions for m̃ (not shown) is identical to that of p̃ since they are connected

by m̃ = −(1+ω)p̃ = δω p̃ (see Equation 54e of OD21), though m̃ has a much smaller magni-

tude. The solutions for ñs are virtually identical to those of m̃s since ñs = −m̃s/ω = m̃s/(1+

δω) ≈ m̃s (see Equation 54d of OD21); the figure and spin axes of the inner core are aligned

in the Cassini state.

The transition in Re[m̃s] from negative to positive values at rf ∼ 360 km (Figure 1a)

accompanied by a peak in Im[m̃s] (Figure 1b) marks the location in parameter space where

the frequency of the FICN (Ωficn) is close to the orbital precession frequency Ωp = 2π/18.6

yr−1. The FICN is a free precession of the inner core with respect to other regions of the Moon,

so when Ωficn approaches Ωp, a resonant amplification of the inner core tilt occurs (DW16, SD18).

The frequency of the FICN depends on the interior density structure, notably on the density

contrast at the ICB. In the way that our interior models are constructed, a change in CMB ra-

dius alters the density of the fluid core (in order to conserve mass), so Ωficn changes with rf

in the plots of Figure 1. For small rf , Ωficn < Ωp, while for large rf , Ωficn > Ωp. The spe-

cific value of rf at which Ωficn = Ωp depends on the inner core size, as the choice of the lat-

ter affects the fluid core density in our interior models.

Without viscous friction at the ICB, Re[m̃s] would diverge to ±∞ on either side of the

resonance crossing (see for example Fig 3 of SD18) and Im[m̃s] would be identically zero. Adding

viscous drag at the ICB keeps Re[m̃s] finite and introduces a non-zero Im[m̃s]. The latter has

a positive sign, so the spin axis of the inner core lags behind the Cassini plane. The larger the
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drag coefficient κicb, the higher the viscous friction at the ICB and the more attenuated is the

response of the inner core. This is observed on Figure 1ab: the amplitude of m̃s is smaller for

the largest choice of κicb.

The solutions of m̃f (Figure 1cd) show how the orientation of the spin axis of the fluid

core is affected by viscous coupling at both the CMB and ICB. Re[m̃f ] is contained between

-1.65◦ and -1.62◦, and is dominantly controlled by the pressure torque at the CMB caused by

the misalignment between the fluid core spin axis and the elliptical shape of the CMB. The torque

from viscous friction is much smaller in magnitude. It leads to a small modification of Re[m̃f ]

and to a positive Im[m̃f ] (the spin axis of the fluid core lags behind the Cassini plane), the lat-

ter increasing in magnitude with a larger κcmb. For a small inner core, the FICN resonance does

not have a visible effect on m̃f . This is because the viscous torque acting on the fluid core at

the ICB is proportional to the moment of inertia of the inner core (see Equation 4) and thus

to r5s ; for a small rs, this torque is then much weaker than the viscous torque at the CMB. For

a large inner core, the viscous torque at the ICB is no longer negligible, and m̃f is altered by

the FICN resonance. Furthermore, the inner core and mantle are coupled by a gravitational

torque, with an amplitude also proportional to the moment of inertia of the inner core. For a

large inner core, the orientation of the mantle figure is then affected by the FICN resonance

through this gravitational torque, and in turn, this affects the spin axis of the fluid core through

viscous coupling at the CMB.

The change in mantle orientation caused by the FICN resonance is visible on the plot of

Re[p̃] for rs = 140 km (Figure 1e), though it represents a very small perturbation of the or-

der of 0.0001◦. Re[p̃] – the tilt of the mantle figure with respect to the ecliptic normal – is dom-

inantly controlled by the external gravitational torque from Earth. Note that for all cases shown,

our solution for Re[p̃] is approximately equal to 1.544◦, so our model recovers to within 0.001◦

the observed tilt of θp = 1.543◦. This is an adequate fit given the simplifications that enter

our rotational model (axial symmetry, small angles, linearization, etc.).

Finally, Figure 1f shows the prediction of the phase lead angle φp of the mantle ahead of

the Cassini plane. A good approximation of φp predicted by our rotational model is (see Ap-

pendix A)

φp =

(
1

δω(1 + e+ δω)− βΦ2

)[(
k2
Q

)
R5 Ω2

o Φt

3GĀ
+δω

(
Āf

Ā
Im[m̃f ] +

Ās

Ā
Im[m̃s]

)
− Ās

Ā
α3βsΦ2Im[ñs]

]
,

(7)

where Φ2 = 1.4646 and Φt = 0.5453 are parameters involved in the gravitational torque from

Earth and where e, β and βs are dynamical ellipticities defined by Equations (6) and (31) of

OD20. The first term in the square bracket captures the contribution from tidal dissipation.

–12–



manuscript submitted to JGR: Planets

With the choice of k2/Q = 6.4× 10−4, tidal dissipation accounts for 0.1483 arcsec of the to-

tal φp (with a very weak dependence on rf and rs, variations are of the order of 10−4). The

second term (proportional to δω) involves the angular momentum components of the fluid core

and inner core perpendicular to the Cassini plane. These result from viscous coupling at the

ICB and CMB, so this second term captures the contribution to φp from viscous dissipation

within the core. The third and last term is a small additional correction to φp. It captures the

analog of a tidal dissipation associated with the tilted figure of the inner core; although the in-

ner core in our models does not deform, the non-zero Im[ñs] induced by the viscous torque at

the ICB mimics a delayed tidal deformation on which the gravitational torque from Earth acts.

Equation (7) is based on an angular momentum balance, so it does not contain any direct in-

formation on the nature of the torques acting on the mantle and causing its phase lead. The

torque by the fluid core is from viscous friction at the CMB; the torque by the inner core is from

gravitational coupling.

For the small inner core cases shown in Figure 1, Ās � Āf and the contribution to φp

from the terms that involve m̃s and ñs in Equation (7) is negligible. In other words, with a small

inner core, dissipation in the core is dominated by viscous friction at the CMB. The amplitude

of the CMB viscous torque, and thus φp, increases with κcmb and with CMB radius. With the

combination of κcmb = 0.0004, rs = 60 km and rf = 360 km, the sum of tidal and viscous

dissipation at the CMB reproduces the observed phase lead of φp = 0.27 arcsec. For a large

inner core, the terms involving m̃s and ñs are no longer negligible in Equation (7). The am-

plitude of φp increases in the vicinity of the FICN resonance, mirroring the bump observed in

Im[m̃s].

Figure 1f illustrates how, for a large inner core, the added dissipation from viscous fric-

tion at the ICB can increase the phase lead angle φp. The increase in φp is not a simple func-

tion of inner core size; rather, it is maximized when Ωficn approaches Ωp. With the added dis-

sipation at the ICB, the value of the drag coefficient κcmb (=κicb) that allows to match the ob-

served phase lead of φp = 0.27 arcsec must be reduced, the more so the closer Ωficn is to Ωp.

Figure 1f further illustrates how, in principle, constraints on the CMB and ICB radii can

be extracted from the observed φp = 0.27 arcsec. This requires an accurate theoretical model

of the turbulent viscous torque, including how the drag coefficient depends on the differential

precession velocity at each boundaries. Provided such a model is available, we can illustrate

how this may work. Let us suppose that the form of the turbulent viscous torque in Equations

(4-5) is correct and that a theoretical model would predict a drag coefficient of κcmb = 0.0004.

If the inner core is small (rs < 60 km), then based on Figure 1f, the radius of the CMB would

then be approximately 360 km. For rs = 140 km (and assuming κicb = κcmb), the radius of

the CMB would be slightly smaller, approximately 340 km. The error on these estimates de-
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Figure 1. (a) Re[m̃s], (b) Im[m̃s], (c) Re[m̃f ], (d) Im[m̃f ], (e) Re[p̃] and (f) φp = −Im[p̃] as a

function of outer core radii for two different choices of inner core radius (60 km and 140 km) and two

different choices of drag coefficient κcmb = κicb (4 × 10−4 and 8 × 10−4). The horizontal black line in (f)

shows the observed phase lead of φp = 0.27 arcsec.
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pends on the combination of the uncertainties on κcmb, κicb and k2/Q (which sets the amount

of tidal dissipation). At present, these errors remain too large to extract meaningful constraints

on rf and rs. To illustrate this, the k2/Q parameter inferred from LLR is (6.4±1.5)×10−4,

so taking its error into account, it maps to a tidal contribution to φp of 0.1483± 0.0348 arc-

sec. For rs = 60 km and κcmb = 0.0004, matching φp = 0.27 arcsec with the addition of vis-

cous coupling maps to a range of possible CMB radii between 334 and 390 km. Hence, even

if κcmb could be accurately predicted (which is not the case, a point we return to in the dis-

cussion), the current error on k2/Q is too large to significantly narrow down the range of pos-

sible interior lunar models.

With a given choice of κcmb, only specific combinations of ICB and CMB radii can match

the observed phase lead of φp = 0.27 arcsec. Conversely then, for a given combination of ICB

and CMB radii, only a specific value of κcmb permits to match φp = 0.27 arcsec. Figure 2a

shows how κcmb must be adjusted as a function of rs and rf such that the combination of tidal

dissipation and viscous friction at both the ICB and CMB results in a phase lead of φp = 0.27

arcsec. Figure 2b shows the fractional change of κcmb compared to that computed in the ab-

sence of an inner core. κcmb must be smaller than 0.0001 if the inner core radius is larger than

approximately 85 km and when the Ωficn approaches Ωp (the combination of rf -rs for which

Ωficn = Ωp is indicated by the white dashed line).

If a theoretical model of κcmb predicts a specific value, (say 0.0004, to continue the ex-

ample above), then this contour line on Figure 2a delineates the combinations of ICB and CMB

radii that are compatible with the observed dissipation (and under the assumption that k2/Q =

6.4×10−4). Multiple combinations of ICB and CMB radii remain possible, but Figure 2a il-

lustrates nevertheless how in principle the core geometry could be further constrained. For ex-

ample, for a specific CMB radius, the range of possible ICB values on Figure 2a should be re-

stricted to those that fall within the range of κcmb values that are consistent with theoretical

predictions. Redoing this exercise for the upper and lower bounds of k2/Q allowed by its er-

ror bar would provide the complete range of possible ICB radii.

Figure 2c shows the magnitude of the inner core tilt angle (|ñs|) with respect to the man-

tle symmetry axis for the same set of solutions. When |ñs| is larger than approximately 15◦ (marked

by the black dashed contour line on all panels of Figure 2), the small angle assumption of our

rotational model is no longer valid and the results are no longer accurate. As shown in SD18

with a rotational model that is not limited to small angles (though without dissipation), the

component of the inner core tilt in the Cassini plane is restricted to the range [−33◦,+17◦]. Pre-

dictions from our linear model that significantly exceed this are then unrealistically large. By

inspection of Figure 2a, the lunar models for which κcmb approaches zero correspond to cases

with unrealistically large inner core tilts in excess of 20◦; vanishingly small values of κcmb are
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then an artefact due to the limitation of our rotational model. The solutions associated with

the |ñs| = 15◦ contour line, though not accurate, give a reasonable indication of the solutions

that can be expected in a more accurate model.

The prediction of the degree 2, order 1 gravity signal |∆C21| is shown in Figure 2d. The

red contour line marks the detection baseline |∆C21| = 5 × 10−11 above which the periodic

gravity signal associated with the inner core tilt should have been detected. This contour line

is also drawn on the other panels of Figure 2. Lunar models that have |∆C21| > 5 × 10−11

are inconsistent with the non-detection of this gravity signal. Acceptable lunar models are re-

stricted to those with an inner core size which falls below this demarcation line.

The overall picture that emerges from Figure 2 is that, for models compatible with |∆C21| <

5×10−11, in a section of the rf−rs parameter space where the FICN frequency Ωficn is close

to Ωp (to within 30%) and the inner core radius is larger than 80 km, the drag coefficient κcmb

must be substantially reduced (by as much as a factor 10) in order to match φp = 0.27 arc-

sec. The reason is because of the added contribution to the dissipation by viscous friction at

the ICB; without a reduction κcmb, φp exceeds 0.27 arcsec. If the inner core is smaller than 80

km, of if Ωficn departs sufficiently from Ωp, κcmb is not substantially smaller than its value for

a small or no inner core.

Figure 3 shows the amplitude of the viscous dissipation at the CMB (Qcmb) and ICB (Qicb)

for the solutions shown in Figure 2. These are computed from

Qcmb = κcmb
3π2

4
IfΩ3

o

∣∣m̃f

∣∣3 , (8a)

Qicb = κcmb
3π2

4

ρf
ρs
IsΩ3

o

∣∣m̃s − m̃f

∣∣3 , (8b)

where Is = (8π/15)ρsr
5
s and If = (8π/15)ρfr

5
f are the mean moments of inertia of the solid

inner core and an entirely fluid core, respectively. For a small inner core, Qcmb is approximately

equal to 8.18 × 107 W. For models that obey |∆C21| ≤ 5 × 10−11, Qcmb is not substantially

reduced and Qicb is typically smaller than 107 W in the section of the parameter space where

friction at the CMB still dominates. However, when rs > 80 km and Ωficn ≈ Ωp, Qcmb can

be reduced to below 107 W and Qicb can reach values as high as 7.70× 107 W. Note that in

the section of parameter space where Qicb is high, the sum of Qcmb and Qicb is lower than 8.18×

107 W, the total dissipation within the core in the absence of an inner core. The latter is con-

served for all models and is equal to 8.18×107 W; the missing part is due to the tidal-like dis-

sipation associated with the tilted inner core. This latter part never accounts for more than 10%

of the total dissipation in the core, so in regions of the parameter space where Qcmb is reduced,

it is dominantly because Qicb is increased.
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Figure 2. (a) The numerical value of the drag coefficient κcmb, (b) the ratio of κcmb with vs without

an inner core, (c) the magnitude of the inner core tilt |ñs| with respect to the mantle, and (d) the am-

plitude of the periodic degree 2 order 1 gravity signal |∆C21| associated with a precessing inner core, as

a function of outer core and inner core radii such that φp = 0.27 arcsec. The white dashed line marks

where the FICN frequency is equal to the orbital precession frequency. The solid red contour line corre-

sponds to |∆C21| = 5 × 10−11. The black dashed contour line indicates where |ñs| = 15◦. The colour

contours in (c) and (d) are saturated at 45◦ and 2× 10−11, respectively.
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Figure 3. The viscous dissipation (in Watts) at the (a) CMB and (b) ICB, as a function of outer

core and inner core radii such that φp = 0.27 arcsec. These corresponds to the same model solutions

shown in Figure 2. The white dashed line marks where the FICN frequency is equal to the orbital pre-

cession frequency. The solid red contour line corresponds to |∆C21| = 5 × 10−11. The black dashed

contour line indicates where |ñs| = 15◦.

Lastly, we reiterate a point made in OD20, that all results presented in Figures 1-3 are

tied to the choices we have made for the density and thickness of the crust. These influence the

densities of the mantle and fluid core in the way that we constrain our interior lunar models.

In turn, this affects the frequency of the FICN for a given combination of rs and rf . With dif-

ferent assumptions about the crust, the location of the FICN resonance would be shifted and

so would the lines and contours of each quantities plotted on Figures 1-3. The general trends

as a function of rs and rf would remain unaltered, but one should be careful in extracting a

specific numerical values for a choice of rs and rf from each of these Figures.

4 Discussion and Conclusions

Predictions of the amplitude of the periodic degree 2, order 1 gravity signal induced by

a precessing inner core were presented in Williams (2007) and Williams et al. (2015), although

only for a few specific cases. Figure 2d complement these predictions for a range of ICB and

CMB radii. We recall that our predictions correspond to the mean of the amplitudes of the pe-

riodic gravity coefficients C21 and S21, or equivalently the predictions based on an axially sym-

metric inner core. The non-detection of this gravity signal in the data collected by the GRAIL

satellite mission (e.g. Williams et al., 2015) offers then a constraint on plausible lunar interior

models, in particular the size of the inner core. Based on a detection baseline set at 5×10−11,
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the inner core must be smaller than ∼ 200 km if Ωficn > Ωp (i.e. to the right of the white

dashed lines on Figures 2-3). A larger maximum inner core radius is possible if the CMB ra-

dius is at the small end of our range (and thus if Ωficn < Ωp). The closer Ωficn is to being

in resonance with Ωp, the smaller is the maximum inner core radius; for Ωficn = Ωp, it is ap-

proximately ∼ 130 km. The maximum inner core size allowed in Figure 2d is slightly more re-

strictive than that inferred from matching the lunar mass and the moment of inertia of the solid

part of the Moon, which gives an upper bound of approximately 280 km (Williams et al., 2014).

As our results further illustrate, additional constraints on the CMB and ICB radii can pos-

sibly be extracted from the requirement that the combination of tidal and viscous dissipation

must reproduce the observed phase lead of φp = 0.27 arcsec. This requires an accurate de-

termination of the tidal dissipation (through the parameter k2/Q) and an accurate theoreti-

cal model of the turbulent viscous torque at the fluid core boundaries. At present, the error on

k2/Q remains too large to extract useful constraints on the core geometry. Likewise, predic-

tions of the turbulent viscous torque remain imprecise. To illustrate this last point, the most

recent theoretical model of the drag coefficient κcmb appropriate for the lunar precession is that

given in the study of Cébron et al. (2019). The present-day CMB viscous dissipation based on

their model is approximately a factor 2 larger than that deduced from LLR (see their Figure

24). Although their model of κcmb succeeds in recovering approximately the correct viscous dis-

sipation in a turbulent regime, it remains not sufficiently accurate for the purpose of narrow-

ing down the combinations of ICB and CMB radii that are compatible with the observed dis-

sipation. If models of the turbulent viscous torque improve, and provided the error bar on k2/Q

can be reduced, matching the observed φp in a rotational model like the one we have developed

can yield constraints on the lunar core.

If we restrict possible lunar models to those for which |∆C21| ≤ 5 × 10−11, our results

show that it is only when the ICB radius rs is larger than 80 km and when Ωficn is close to

Ωp (approximately within 30%), that viscous dissipation at the ICB (Qicb) becomes compara-

ble (and may even surpass) viscous dissipation at the CMB (Qcmb). In such cases, Qcmb can

be reduced by as much as a factor 10 compared to a lunar model without an inner core, and

Qicb can reach values as high as 7.7×107 W. For rs < 80 km or if Ωficn departs from Ωp by

more than 30%, Qcmb is reduced by no more than approximately 10% compared to a lunar model

without an inner core and Qicb is weaker than 107 W.

A caveat on all of these points of discussion is that rotational instabilities may be excited

in the whole of the fluid core by the differentially precessing mantle and inner core (e.g. Tilgner,

2015; Le Bars et al., 2015). Viscous dissipation may then occur in the volume of the fluid core

in addition to that from friction at its solid boundaries. If so, this would contribute a part to

the observed φp, and our estimates of Qcmb and Qicb would be reduced. Likewise, viscous re-
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laxation can also occur within the solid inner core. As shown in OD20, this requires that sig-

nificant relaxation takes place over a timescale of one month, and in turn, this requires inner

core viscosities in the range of 1013−1015 Pa s. If this is the case, the deformed inner core shape

keeps a greater alignment with the mantle, reducing the amplitude of the periodic gravity sig-

nal induced by the inner core. A lunar model with a large but viscously deforming inner core

may then not generate a |∆C21| in excess of 5×10−11 and would not be excluded. However,

this would also imply that viscous relaxation within the inner core is taking a substantial share

of the non-tidal part of the total dissipation and this also implies that Qcmb and Qicb would

be reduced.

The estimate of the present-day dissipation in the core provides an anchor point to pre-

dict how it may have changed when projected back in time. For instance, Qcmb was larger in

the past because the rotation rate was faster and because the offset between the spin vectors

of the mantle and fluid core was also larger. Previous reconstructions show that Qcmb was pos-

sibly sufficiently large in the past to power a lunar dynamo (Williams et al., 2001; Dwyer et

al., 2011; Cébron et al., 2019). These reconstructions assume that the non-tidal part of the dis-

sipation in the present-day Moon is solely due to viscous friction at the CMB. If an important

fraction of the viscous dissipation occurs at the ICB, the total viscous dissipation projected back

in time could be either enhanced or reduced (compared to model with Qicb = 0) depending

on how Ωficn has evolved relative to Ωp. An episode of enhanced dissipation would result if a

crossing of the FICN resonance took place. Viscous dissipation would be reduced prior to the

nucleation of the inner core. Such changes in past viscous dissipation would affect reconstruc-

tions of the power available to drive a lunar dynamo through time. Furthermore, they would

also influence the evolution of the lunar orbit inclination and therefore have an impact on re-

constructions of the evolution of the Earth-Moon system (e.g. Williams et al., 2001; Ćuk et al.,

2016, 2019).

The maximum present-day dissipation at the ICB that we find, approximately 7.7×107

W, is much weaker than the values computed in Stys and Dumberry (2020). Their results sug-

gest that Qicb in the present-day Moon could be in excess of 1011 W in the vicinity of the FICN

resonance and for a large inner core (see for instance their Figure 6e). The manner by which

Qicb is built in Stys and Dumberry (2020) is by, first, inferring a friction parameter at the CMB

fcmb (which is equal to 0.75π2κcmb in our notation) compatible with LLR observations, and sec-

ond by assuming the same numerical value for ficb. This yields fcmb = ficb in the range of 0.002-

0.005 depending on the CMB radius (corresponding to κcmb in the range of 0.00027 to 0.00068).

However, as we demonstrate in Figure 1f, for a large inner core such a procedure leads to a phase

lead which is largely in excess of the observed φp = 0.27 arcsec. In other words, the method

used in Stys and Dumberry (2020) is inconsistent with the present-day rotational dissipation
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observed through φp. As we show here, when the dissipation is constrained to match the ob-

served φp, κcmb must be reduced with increasing inner core size, the more so when Ωficn is close

to Ωp. This adjustment, in turn, leads to a much smaller dissipation at the ICB. In short, the

total dissipation in the core is constrained by φp, so Qicb cannot exceed the numerical value of

Qcmb inferred in the absence of an inner core, which is approximately equal to 8.18×107 W.

The significantly reduced upper bound in the present-day Qicb, by 3 to 4 orders of magnitude,

implies that its projection back in time must be decreased by a similar factor. Consequently,

in contrast to the suggestion made in Stys and Dumberry (2020), viscous dissipation at the ICB

is unlikely to have ever been above the threshold to power a thermally driven lunar dynamo.

This, however, does not exclude the possibility that the mechanical stirring of core flows by a

differentially precessing inner core may be capable of generating dynamo action.

A limitation of our rotational model is that it is built under the assumption of small an-

gles of tilt. It becomes largely inaccurate when the the FICN frequency approaches the orbital

precession frequency and the inner core tilt is resonantly amplified to large angles. An improve-

ment would be to include tidal and viscous dissipation in a rotational model valid for all an-

gles of tilt, for instance similar to that presented in SD18. In such a model, the maximum in-

ner core tilt would remain bound when Ωficn ≈ Ωp and predictions of viscous dissipation at

the ICB close to the FICN resonance would be improved.

Appendix A Prediction of the phase lead angle

We show here how the prediction for the phase lead angle φp given by Equation (7) is con-

structed. It is based on the angular momentum equation for the whole Moon, given by the first

row of Equation (A3) of OD20. By using ω = −1− δω and m̃ = δωp̃ (row 5 of Equation A3

of OD20), we can write this equation as

(δωM11 +M15)p̃+M12m̃f +M13m̃s +M14ñs = y1 . (A1)

The mathematical expressions for the different matrix elements M1j and the right-hand side

y1 are given in Appendix A of OD20.

We can simplify the expressions for each of the M1j and of y1, first by setting all com-

pliances Sij equal to zero except for S11, as appropriate for the rotational model that we use

in the present study. This gives
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M11 = −1− δω − e+ S11(−δω + Φ2) (A2a)

M12 = − Āf

Ā
δω , (A2b)

M13 = − Ās

Ā
δω , (A2c)

M14 =
Ās

Ā
αs

(
− δωes + βsΦ2

)
, (A2d)

M15 = Φ2

(
β + δωS11 − 3MRe[S11]

)
− iIm[S11]Φt

2 , (A2e)

y1 = −Φ1

(
β + δωS11 − 3MRe[S11]

)
+ iIm[S11]Φt

1 . (A2f)

The definition of each variable is given in OD20. Note that the Poincaré number (δω = 4.022×

10−3), and the parameters involved in the gravitational torque from Earth (M = 0.9878, Φ1 =

0.1329, Φ2 = 1.4646, Φt
1 = 0.4190 and Φt

2 = 4.6895) are independent of the interior lunar

model. The dynamical ellipticities of the whole Moon (e, β) and of the inner core (es, βs) de-

pend on the choice of interior model, and are of the order of 10−4. The factor α3 = 1−ρf/ρs
also varies with the interior model through the densities of the fluid (ρf ) and solid (ρs) cores,

and is between 0 and 1. The numerical value of the complex compliance S11 is set by the choices

of k2 and Q (see Equation 3). With k2 = 0.02422 and k2/Q = 6.4×10−4, this gives Re[S11] =

1.55× 10−7 and Im[S11] = 4.11× 10−9.

Neglecting small terms, but keeping the largest terms involving Im[S11], and inserting each

of the expressions in Equation (A2) in Equation (A1), we obtain

(
− δω(1 + δω + e) + βΦ2 − iIm[S11]Φt

2

)
p̃ =

δω

(
Āf

Ā
m̃f +

Ās

Ā
m̃s

)
− Ās

Ā
α3βsΦ2ñs − βΦ1 − iIm(S11)Φt

1 . (A3)

Taking the imaginary part of this equation, with φp = −Im[p̃], substituting Im[S11] with its

expression in terms of k2/Q given by Equation (3), and writing Φt = Φt
1+Φt

2Re[p̃] ≈ 0.5453,

one obtains a prediction for φp given by

φp =

(
1

δω(1 + e+ δω)− βΦ2

)[(
k2
Q

)
R5 Ω2

o Φt

3GĀ
+δω

(
Āf

Ā
Im[m̃f ] +

Ās

Ā
Im[m̃s]

)
− Ās

Ā
α3βsΦ2Im[ñs]

]
.

(A4)

The value of φp from this approximate expression differs by less than 1 part in 103 from that

computed by our rotational model.
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Alfè, D., Kresse, G., & Gillan, M. (2000). Structure and dynamics of liquid iron under core

conditions. Phys. Rev., B61 , 132–142.

Buffett, B. A. (2021). Conditions for turbulent Ekman layers in precessionally driven flow.

Geophys. J. Int., 226 , 56–65.

Cappallo, R. J., Counselman, C. C., King, R. W., & Shapiro, I. I. (1981). Tidal dissipation

in the Moon. J. Geophys. Res., 86 , 7180–7184.

Cébron, D., Laguerre, R., Noir, J., & Schaeffer, N. (2019). Precessing spherical shells:

flows, dissipation, dynamo and the lunar core. Geophys. J. Int., 219 (Supplement 1),

S34–S57. doi: 10.1093/gji/ggz037

Colombo, G. (1966). Cassini’s second and third laws. Astron. J., 71 , 891–896.
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Rékier, J., Triana, S. A., Trinh, A., & Dehant, V. (2020). Inertial modes of a freely rotat-

ing ellipsoidal planet and their relation to nutations. Planetary Science Journal , 1 (1),

20.

Rogister, Y., & Valette, B. (2009). Influence of liquid core dynamics on rotational modes.

Geophys. J. Int., 176 , 368–388.

Rutter, M., Secco, R., Uchida, T., Liu, H., Wang, Y., Rivers, M., & Sutton, S. (2002).

Towards evaluating the viscosity of the Earth’s outer core: an experimental high

pressure study of liquid Fe-S (8.5 wt. per cent S). Geophys. Res. Lett., 29 , 080000-1.

Rutter, M. D., Secco, R. A., Liu, H., Uchida, T., Rivers, M., Sutton, S., & Wang, Y.

(2002). Viscosity of liquid Fe at high pressure. Phys. Rev. B , 66 , 060102.

(doi:10.1029/2001GL014392)

Scheinberg, A. L., Soderlund, K. M., & Schubert, G. (2015). Magnetic field generation

in the lunar core: The role of inner core growth. Icarus, 254 , 62-71. doi: 10.1016/j

.icarus.2015.03.013

–24–



manuscript submitted to JGR: Planets

Sous, D., Sommeria, J., & Boyer, D. (2013). Friction law and turbulent properties in a lab-

oratory Ekman boundary layer. Phys. Fluids, 25 , 046602.

Stys, C., & Dumberry, M. (2018). The cassini state of the Moon’s inner core. J. Geophys.

Res. Planets, 123 , 1–25. (doi:10.1029/2018JE005607)

Stys, C., & Dumberry, M. (2020). A past lunar dynamo thermally driven by the

precession of its inner core. J. Geophys. Res. Planets, 125 , e2020JE006396.

(https://doi.org/10.1029/2020JE006396)

Tilgner, A. (2015). Rotational dynamics of the core. In G. Schubert & P. Olson (Eds.),

Treatise on geophysics (Vol. 8, pp. 183–212). Elsevier, Oxford.

Toomre, A. (1966). On the coupling of the Earth’s core and mantle during the 26 000 yr

precession. In B. G. Marsden & A. G. W. Cameron (Eds.), The Earth-Moon system

(pp. 33–45). New York: Plenum Press.
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