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Abstract

The role of individual and collective human action is increasingly recognized as a prominent and arguably paramount determinant

in shaping the behavior, trajectory, and vulnerability of multisector systems. This human influence operates at multiple scales:

from short-term (hourly to daily) to long-term (annually to centennial) timescales, and from the local to the global, pushing

systems towards either desirable or undesirable outcomes. However, the effort to represent human systems in multisector models

has been fragmented across philosophical, methodological, and disciplinary lines. To cohere insights across diverse modeling

approaches, we present a new typology for classifying how human actors are represented in the broad suite of coupled human-

natural system models that are applied in MultiSector Dynamics (MSD) research. The typology conceptualizes a “sector” as a

system-of-systems that includes a diverse group of human actors, defined across individual to collective social levels, involved

in governing, provisioning, and utilizing products, goods, or services towards some human end. We trace the salient features

of modeled representations of human systems by organizing the typology around three key questions: 1) Who are the actors

in MSD systems? 2) What are their actions? 3) How and for what purpose are these actors and actions operationalized in

a computational model? We use this typology to critically examine existing models and chart the frontier of human systems

modeling for MSD research.
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Abstract 25 

The role of individual and collective human action is increasingly recognized as a 26 

prominent and arguably paramount determinant in shaping the behavior, trajectory, and 27 

vulnerability of multisector systems. This human influence operates at multiple scales: from 28 

short-term (hourly to daily) to long-term (annually to centennial) timescales, and from the local 29 

to the global, pushing systems towards either desirable or undesirable outcomes. However, the 30 

effort to represent human systems in multisector models has been fragmented across 31 

philosophical, methodological, and disciplinary lines. To cohere insights across diverse modeling 32 

approaches, we present a new typology for classifying how human actors are represented in the 33 

broad suite of coupled human-natural system models that are applied in MultiSector Dynamics 34 

(MSD) research. The typology conceptualizes a “sector” as a system-of-systems that includes a 35 

diverse group of human actors, defined across individual to collective social levels, involved in 36 

governing, provisioning, and utilizing products, goods, or services towards some human end. We 37 

trace the salient features of modeled representations of human systems by organizing the 38 

typology around three key questions: 1) Who are the actors in MSD systems? 2) What are their 39 

actions? 3) How and for what purpose are these actors and actions operationalized in a 40 

computational model? We use this typology to critically examine existing models and chart the 41 

frontier of human systems modeling for MSD research. 42 

1 Introduction – Modeling the Complexity of MultiSector Dynamics 43 

In modern society, sectors delivering services critical to economic productivity, 44 

environmental protection, and human wellbeing are inextricably linked through a network of 45 

interdependencies. The societal importance of cross-sectoral interactions is made especially 46 

apparent during periods of failure, manifested either abruptly or gradually, which can result in 47 

major economic loss, disrupted communities, environmental impact, and human casualties 48 

(Helbing, 2013). During Hurricanes Katrina and Sandy, for example, sudden failures in flood 49 

protection, energy and food provision, and communications cascaded into an impairment of 50 

critical services including healthcare provision, ultimately leading to the loss of human life 51 

(Franco, et al., 2006; Romero-Lankao et al., 2018). In 2021, Winter Storm Uri caused a major 52 

cold snap in Texas (Doss-Gollin et al., 2021) that impaired energy infrastructure, leaving over 53 

4.5 million individuals in the state without power, with cascading impacts on drinking water and 54 

medical treatment services (Busby et al., 2021). Cross-sectoral failures also emerge more 55 

insidiously and at larger scales, as with the recent, slow-building impairment of the marine 56 

transportation sector due to COVID-19 (March et al., 2021), yielding detrimental impacts on all 57 

downstream sectors dependent on the global supply chain (Notteboom et al., 2021). 58 

While adequate provision of services between sectors often underpins the final provision 59 

of any sector-specific service for society, efforts to evaluate sectoral risk exhibit “single-sector 60 

myopia,” or the tendency to assess a single sector independently from that of all others. In such 61 

analysis, the adequate provision of services from external sectors is often presumed, a reliable 62 

boundary input to a single sector of interest with potential interdependencies between sectors 63 

ignored. Advocates of a cross-sectoral approach have argued that myopic focus on individual 64 

sectors can lead to pronounced misdiagnosis of risk given the interconnectedness of modern 65 

systems (Helbing et al., 2013) and critical infrastructure (Rinaldi et al., 2001). For example, 66 

insufficient cross-sector planning between the electricity and fire protection sectors has resulted 67 

in exacerbated fire risk across the Western United States (Mitchell, 2013; Syphard and Keeley, 68 
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2015). Considering longer time scales, myopic focus on renewable bioenergy production for the 69 

purposes of greenhouse gas reduction ignores potential impacts on the water supply sector 70 

(Gerbens-Leenes et al., 2009; Hejazi et al., 2015). 71 

To address interdependencies between sectors, multisector dynamics (MSD) frames the 72 

study of interacting sectors as that of a “systems of systems,” acknowledging that the 73 

vulnerability, risk, and resilience of any given sector is nearly always intertwined with that of 74 

many others (Haimes, 2018). Such a view of sectors and their interactions calls for a complex 75 

adaptive systems approach for the understanding of cross-sectoral interactions and the role of 76 

humans therein (Moss et al., 2016). Computational modeling has emerged as an essential tool for 77 

capturing complexity, supporting quantitative analyses of interacting components of multisector 78 

systems, with dynamic representation of human components heralded as the next frontier of 79 

MSD research (Moss et al., 2016).  Given the significance of human action in shaping 80 

multisector system risk, vulnerability, and evolution, several scientific communities have 81 

focused on representing human systems in multisector models including engineers working on 82 

infrastructure system planning (Harou, 2009; Reed,  et. al., 2013; Brown et al., 2015), global 83 

change scientists examining energy-water-land futures amidst climate and socioeconomic change 84 

(Nordhaus, 1994; Fisher-Vanden and Weyant, 2020; Wilson et al., 2021), and ecologists 85 

interested in the resilience of social-ecological systems (Gunderson, 2002; Walker, 2004; Folke 86 

2006; Biggs 2015).  87 

In the following, we characterize general trends in human systems modeling for 88 

multisector research, inventory existing approaches, and propose a common typology for 89 

characterizing, diagnosing, and designing such representation in both existing and new models. 90 

Section 2 describes general trends in human systems modeling and an inventory of existing 91 

approaches. Section 3 presents the new human systems modeling typology. Discussion and 92 

conclusions are provided in Section 4. 93 

2 The State of Human Systems Modeling for Multisector Research 94 

2.1 Human Action as Paramount Driver of System Behavior 95 

The role of individual and collective human action is a prominent and arguably 96 

paramount determinant of interacting human-natural system behavior, trajectory, and risk (Liu et 97 

al., 2007; Bai et al., 2016, Beckage et al., 2018; Elsawah et al., 2020;  Simpson et al., 2021). This 98 

human influence operates at both short-term (hourly to daily) to long-term (annually to 99 

centennially) timescales, and can both mitigate and exacerbate risk and vulnerability (Zhou et al. 100 

2018, Romero-Lankao et al 2018). For instance, poor communities in Buenos Aires engage in 101 

short-term responses to floods such as moving belongings to the second floor, while local 102 

authorities have subsidized elevated houses, a longer term action aimed at helping poor families 103 

withstand storm-surges. However, these houses are very small with children often occupying the 104 

first floor due to lack of adequate space, thereby exacerbating vulnerability for the poor. 105 

In the context of sudden catastrophes, Helbing (2013) argues that global-scale systemic 106 

failures are largely due to the networked risks that humans themselves have created through the 107 

development of interconnected systems, often unintentionally or unforeseen (Rinaldi et al., 108 

2001). For example, the disruption of New York’s food supply during Hurricane Sandy was in 109 

part due to human-initiated reforms in the 1980s, during which New York restructured its food 110 

storage and distribution systems shifting towards increased reliance on imported sources from 111 
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outside the state and country (Romero-Lankao et al., 2018). In view of the paramount role of 112 

human action in multisector systems, new paradigms for risk evaluation have emerged to account 113 

for human response as a key determinant in defining overall system risk (Simpson et al., 2021).  114 

In multisector systems, human actions also operate at multiple social levels. Individual 115 

social units (e.g., individual persons, households, businesses, etc.) make frequent “micro-116 

decisions” such as where and how to commute, whether to irrigate a field, how long to run an air 117 

conditioning unit, to evacuate during a flood or fire, and so forth. These micro-decisions coalesce 118 

into wider sectoral utilization patterns and operational responses, manifesting as traffic patterns 119 

across a transportation network, water flows in a piped water supply network, occupancy rates of 120 

hospitals, or loads in an electrical grid. Beyond actions directly related to consumption and 121 

production of sectoral goods and services, human actions also interface with multisector systems 122 

in less direct, though equally influential ways. Individuals adopt new practices and technologies, 123 

decide where to settle, share information, advocate for causes, vote in elections, and choose 124 

service providers. While the impact of such actions on multisector systems is perhaps less 125 

immediate than those directly pertaining to production and consumption, they nonetheless 126 

strongly shape the long-term evolution of multisector systems. 127 

One category of these indirect human actions that particularly contributes to the 128 

complexity of multisector systems is the emergence of human institutions that structure human 129 

interactions (Bai et al., 2016; Romero-Lankao et al., 2018b). Following Voigt (2013), which 130 

attempts to reconcile earlier descriptions by North (1990) and Ostrom (1986), institutions can be 131 

defined as “commonly known rules used to structure recurrent interaction situations that are 132 

endowed with a sanctioning mechanism,” where the sanctioning mechanisms can range from the 133 

self-enforcement of conventions to group or government enforcement. Scott (2013) further 134 

describes institutions as “social structures that have attained a high degree of resilience,” 135 

distinguishing between cultural-cognitive, normative, and regulative institutions. Under such a 136 

conceptualization, individual and collective values, opinions, and actions intertwine and 137 

amalgamate to shape and be shaped by the broader institutional landscape, including the formal 138 

governing laws and rules of society as well as the informal norms and values that influence 139 

social interactions and practices (Mongruel, 2011; Johnson, 2016).  140 

These institutions commonly (and imperfectly) function to constrain individual human 141 

action in the service of broader societal objectives such as justice, environmental protection, and 142 

economic productivity, further evolving to meet individual and collective needs in a perpetual, 143 

contested cycle of change. Based on this view, the institutional arrangements that define the 144 

“rules of the game” (North, 1990) in multisector systems via regulations (e.g., zoning 145 

restrictions), market types (e.g., free market versus nationalized), legal rulings (e.g., species 146 

protection), and norms (e.g., informal cooperation between community members) are themselves 147 

dynamic properties of the system that are malleable in the face of environmental, socioeconomic, 148 

cultural, and political change and that, therefore, would ideally be captured in dynamic 149 

representations of human systems within multisector models. 150 

2.2 The Fragmentation of Human Systems Modeling Efforts 151 

While many engineering, economic, ecological, and social science communities have 152 

recognized the salience of human action in driving interacting human-natural system outcomes 153 

and have embraced computational modeling as a useful means to represent human systems, 154 

others have contested the viability of translating theories and concepts from the social sciences 155 
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into computational models of human behavior. At the philosophical level, varying views on the 156 

relationship between science and the nature of reality have fractured research efforts, with 157 

physical science communities largely embracing a positivist framing of reality and its 158 

relationship to the scientific enterprise (Geels, et al., 2016), while some social science 159 

communities have advocated alternative philosophies (e.g., post-positivism, constructivism, and 160 

relativism) that arguably preclude the integration of social science insights into modeling 161 

frameworks (Castree et al., 2014). Faced with such fundamental differences, some researchers 162 

have argued that the creation of common modeling frameworks to bridge approaches and 163 

perspectives is possible and useful (Geels, et al., 2016; Trutnevyte, 2019), while others have 164 

suggested that modeling efforts and social sciences are incommensurable and should be applied 165 

in an independent and pluralist manner due to the philosophical, methodological, and normative 166 

diversity across disciplines (Castree et al., 2014). 167 

Among researchers embracing computational modeling as a fundamental and useful tool 168 

for multisector research, major differences have nonetheless emerged between modeling 169 

communities adopting divergent approaches to representing human systems, ranging from agent-170 

based to computable general equilibrium to system dynamics models, to name only a few. Each 171 

of these modeling approaches adopts a unique structural conception of human systems, such as 172 

those that represent human action in the form of an abstracted, centralized decision maker versus 173 

those focusing on the distributed actions of heterogeneous actors. Divergence on underlying 174 

theories of human behavior have been equally stark, reflecting the wide range of social science 175 

theories that exist for describing or modeling human behavior, many of which are inconsistent or 176 

competing (Watts, 2017). Modeling efforts examining these inconsistencies, such as those 177 

comparing rational versus bounded-rational theories of human behavior, indicate that the choice 178 

of underlying behavioral theory strongly drives model outcomes (de Koning et. al., 2017). These 179 

differences have fractured the broader human systems modeling enterprise and the community’s 180 

ability to draw coherent insight across diverse modeling efforts. 181 

2.3 Exploratory Modeling Approach and Common Typology  182 

In the face of this philosophical and methodological diversity, a pluralistic and 183 

exploratory modeling approach offers a promising path forward for the treatment of human 184 

action in multisector models (Bankes, 1993; Walker et al, 2003; Marchau, 2019; Moallemi et al, 185 

2020). Exploratory modeling is distinguished from consolidative modeling (see Bankes, 1993). 186 

In the latter, a model is typically viewed as an integration of data, theory, and process-187 

understanding that attempts a consolidative representation of a knowable reality. From this 188 

vantage point, models are only limited for want of better data and improved representation of the 189 

underlying processes that drive system outcomes. In contrast, an exploratory modeling approach 190 

focuses on inherent epistemic limitations, for example due to underlying deep uncertainties 191 

(Lempert, 2002; Walker, 2003; Lempert et. al., 2006) that are assumed to severely limit the 192 

ability to model the system in consolidative fashion. Exploratory modelers accordingly view a 193 

modeling experiment as a single plausible conception of reality among the many, commonly 194 

deploying large ensembles of models that vary parametrically, theoretically, and structurally to 195 

explore, rather than predict, a wide range of potential system responses and futures.  196 

We argue that the exploratory approach is especially appropriate for contending with the 197 

complexity of multisector systems and the actions of humans therein, in which the epistemic and 198 

aleatoric uncertainties of the system and the volitional nature of human behavior can 199 
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considerably confound attempts at consolidative analysis. An exploratory modeling approach 200 

creates a bridge between computational modeling and social science fields that diverge from the 201 

traditional positivist physical science orientation; a model is no longer viewed as the single 202 

authoritative representation of reality, but rather one plausible conception of reality subject to the 203 

knowledge limitations, values, and biases of the modeler (Funtowicz, 1993; Saltelli, 2020) who 204 

must contend with the multifarious and wicked nature (Rittel and Webber, 1973; Reed and 205 

Kasprzyk, 2009) of the social and environmental reality to be explored. 206 

Under an exploratory modeling approach, a shared framework for describing and 207 

comparing models is essential to cohere insights across diverse modeling efforts. Such a 208 

framework can allow the broad multisector community engaged in human systems modeling to 209 

describe models using common terminology and to promote constructive dialogue around 210 

questions such as: How are groups and categories of human actors conceived in models? How 211 

are they defined across spatial and social scales? What are the represented actions and across 212 

what temporal and spatial scales are they considered? How does the actor/action 213 

conceptualization influence the types of science and analytical questions that can be addressed? 214 

What are the theoretical and empirical bases of assumed actor behavior? How do these models 215 

embed the values and biases of the modelers and what does this entail for interpretation of model 216 

results? 217 

2.4 General Trends in Human Systems Modeling Research 218 

In the following section, we review general trends in human systems modeling research 219 

and inventory illustrative existing modeling approaches for multisector analysis. While not 220 

intended as an exhaustive review, the inventory is meant to capture a variety of existing 221 

modeling approaches with an eye towards the development of a modeling typology that can 222 

accommodate a diversity of modeling paradigms. Some prominent modeling communities 223 

relevant to multisector research focusing on representing human systems include integrated 224 

assessment, social-ecological systems, agent-based, bioeconomic, and engineering planning 225 

modelers. A high-level distinction that can be drawn between modeling efforts is between those 226 

that offer a stylized representation of a system, attempting to generate insight from a prototypical 227 

analysis that can be extrapolated to other systems sharing similar characteristics, versus those 228 

that offer a place or case-specific representation of a modeled system, typically attempting to 229 

address a specific scientific or analytic question that is often guided by stakeholder interests.  230 

The various modeling approaches are deployed over a wide range of spatial scales from 231 

the highly local (e.g., individual communities, towns, watersheds, jurisdictions, etc.) to regional 232 

and global contexts (e.g., countries, agro-ecological zones, etc.). Likewise, there are applications 233 

across an equally wide range of time scales, ranging from the short-term (e.g., daily to monthly) 234 

to the long-term (e.g., annual to centennial). As such, multisector models vary widely as to the 235 

system features and processes that are included, and the detail and fidelity to which they are 236 

represented. For example, global-scale integrated assessment models (IAMs) represent large-237 

scale features of the global economy and typically exclude detailed representation of local-scale 238 

infrastructure and institutions given computational demands and data limitations (Gambhir et al., 239 

2019). In contrast, local water and energy systems models typically aim to resolve resource 240 

flows, physical infrastructure, and local institutions to a high degree of fidelity, while physical 241 

and socioeconomic conditions outside the domain of interest are treated as exogenously imposed 242 

boundary conditions (Yoon et al., 2021). 243 
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Three pertinent trends are noted in the representation of human systems in multisector 244 

models. The first is that many of the preferred modeling approaches have emerged out of the 245 

engineering and physical science communities, and as such are designed around representing 246 

physical system processes. For example, water and energy engineering planning models 247 

(Zagona, 2001; Sieber, 2006; Georgilakis, 2015) largely focus on simulating the availability, 248 

movement, and depletion of the physical water or energy resources and/or the infrastructure 249 

involved in processing, treatment, and transmission of that resource for human use. In contrast, 250 

the human component of these models is handled far more simplistically, with human actors 251 

commonly represented in the form of exogenously imposed resource “demands,” which the 252 

models then attempt to satisfy through the aforementioned physical mechanisms.  253 

Secondly, to the extent that models endogenize human action, they lean on the 254 

assumption that human behavior reasonably approximates rationality, even if in some 255 

formulations rationality is bounded by lack of information or by cognitive processes or values 256 

that could violate assumptions of rational behavior (Simon, 1957). Approaches that adopt 257 

neoclassical economic methods typically assume rational economic actors operating at several 258 

layers of society: 1) consumers that are utility maximizing users of resources, 2) firms that are 259 

profit maximizing suppliers of a resource or service and, 3) markets that are economically 260 

efficient in brokering transactions. Prominent examples include IAMs simulating regional-to-261 

global scale land, energy, and water use patterns as the outcome of a global market process 262 

(Nordhaus, 1994; Fisher-Vanden and Weyant, 2020; Wilson et al., 2021), water systems analysis 263 

framed as cost-based optimization problems (Harou et al., 2009; Giuliani et al., 2021), 264 

agricultural models that assume farmer profit maximization (Howitt, 1995; Berger, 2001), urban 265 

development models that deploy housing actors maximizing utility for a housing good under 266 

budget constraints (Filatova et al., 2009), and energy system models that assume a central 267 

planner attempting to minimize cost (Oikonomou, 2022).  268 

A third trend, which largely emerges from the first two, is that conventional modeling 269 

approaches have omitted the role of different levels of agency and power to drive and respond to 270 

environmental change, minimizing individual and collective potential for inventiveness, 271 

technology, vision, and power in moving multisectoral systems to different, though not always 272 

desirable states. Such approaches omit key questions around social and spatial equity by failing 273 

to ask for whom, when, and where mitigation and adaptation will be promoted (Romero-Lankao 274 

and Gnatz 2016). Under the rational actor paradigm for example, social collective behavior 275 

emerges from individuals or organizations maximizing utility functions, while the influence of 276 

structural factors that constrain individual behavior such as cultural values and inequality in 277 

access to goods, services, and assets (e.g., housing) are often omitted, leading to potential biases 278 

in the representation of causal mechanisms (Bonabeau, 2002). 279 

2.5 Categories of Models 280 

In the following, we describe key categories of models that are pertinent to multisector 281 

research. We note here that the categories are organized around loose communities of modelers 282 

focused on shared domains or topics of interest rather than strict methodological distinctions 283 

between approaches to modeling human systems. As such, the modeling categories regularly 284 

overlap (e.g., agent-based modeling techniques have been used in social-ecological systems and 285 

engineering decision support analysis, social network models commonly overlap with agent-286 
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based modeling approaches, etc.), though we present them as distinct categories here for 287 

purposes of discussion. 288 

2.5.1 Integrated Assessment Models 289 

Climate change IAMs were developed as tools to project energy and land use emissions of 290 

greenhouse gases, initially as inputs to climate models (Edmonds and Reilly, 1983; Nordhaus, 291 

1994; Fisher-Vanden and Weyant, 2020; Wilson et al., 2021). Subsequently they have evolved to 292 

incorporate detailed representation of emissions and impacts in sectors such as energy, industry, 293 

transportation, agriculture, and water resources and have been used as inputs to national and 294 

international climate change policymaking. In contrast to detailed, sector-specific models, IAMs 295 

focus broadly on the linkages between energy, economic, land, water, and climate systems across 296 

regions globally. Due to the need to represent the allocation of natural and human resources 297 

across different sectors, activities, and regions, IAMs represent the economic behavior of 298 

characteristic agents (producers, consumers, government institutions, etc.). In the aggregate, 299 

these agents behave rationally and demand or supply goods and services as a function of their 300 

prices.  301 

These models typically do not endogenously represent key processes in human systems 302 

such as population growth, changes in values and institutions, or innovation in technology. 303 

Instead they rely upon exogenous scenarios such as the Shared Socio-economic Pathways 304 

(SSPs). These socioeconomic scenarios represent diverse socioeconomic futures, including 305 

institutions and human values, which might pose different levels of emissions intensity and 306 

associated difficulty in mitigating and adapting to climate change (O’Neill et al. 2010, 2014). 307 

Kriegler et al., 2015 and Riahi et al., 2015 use exogenous scenarios to model imperfect 308 

implementations of policies (e.g. regionally fragmented delays), thereby moving away from 309 

rational decision-making. Recently, there have been calls for, and visions of, advances for IAMs 310 

in representing heterogeneous actors and decision making, especially through greater 311 

engagement with the social sciences (e.g. Trutnevyte et al., 2019;  De Cian et al., 2020, Jafino et 312 

al., 2021). 313 

2.5.2 Agent-Based Models 314 

Originating from the artificial intelligence community, an agent-based model (ABM) is a 315 

distributed, bottom-up simulation approach for understanding human impacts on system 316 

functioning. An “agent” in an ABM describes a programmed object that interacts with other 317 

agents and one or more systems of interest (e.g., virtual environments such as process-based 318 

hydrologic models, power grid models, or markets). Agents are autonomous (i.e., they have 319 

control over their actions), have different and potentially conflicting goals, and make decisions 320 

according to behavioral rules, with their actions and interactions shaped by and affecting their 321 

common virtual environment(s) (Sycara, 1998; Dooley and Corman, 2002). ABMs have been 322 

used for the study of several topics relevant to multisector research including land use change 323 

(Izquierdo et al., 2003; Waddell, 2002; Evans and Kelley, 2004; Liu et al., 2006; Parker and 324 

Filatova, 2008; Groeneveld et al., 2017), agricultural systems (Berger, 2001; Schreinemachers et 325 

al., 2009; Schreinemachers and Berger, 2011), electricity production and markets (Atkins et al., 326 

2004; Chappin and Dijkema, 2007; Miksis, 2010; Chassin et al., 2014), the food-water nexus 327 

(Magliocca, 2020), water resources management (Yang et al., 2009; Ng et al., 2011; Berglund, 328 
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2015; Al-Amin et al., 2018; Yoon et al., 2021), and transportation (Sinha-Ray et al., 2003; Jin 329 

and Jie, 2012; Bazzan and Klugl, 2014; Hajinasab et al., 2015; Colon et al., 2021).  While ABMs 330 

can accommodate any number of underlying behavior theories, some commonly used theories to 331 

quantify agent behavioral rules include expected utility theory (Herstein and Milnor, 1953), the 332 

theory of planned behavior (Ajzen, 1991), prospect theory (Kahneman & Tversky, 2013), and 333 

the theory of satisficing (Simon, 1972).  334 

However, ABMs can be opaque in their assumptions (Heppenstall et al. 2019) and 335 

challenging to calibrate and diagnose given their complexity (Srikrishnan and Keller, 2021). 336 

Crooks, Castle, and Batty (2008) further demonstrate that results derived from ABMs can be 337 

relatively arbitrary depending on the model, its components, and the underlying theories that 338 

inform it. The use of ABMs also potentially introduces a bias towards methodological 339 

individualism (e.g., neoclassic-economics, game theories, rational choice theories) in 340 

representing social behavior, practices, and structures (O’Sullivan and Haklay, 2000). While 341 

ABMs have the potential to represent bounded rationality and institutional complexity, the 342 

majority of models still use traditional rationality assumptions (Groeneveld et al., 2017), with far 343 

fewer examples of models capturing bounded rationality (Manson and Evans, 2007; de Koning 344 

and Filatova, 2020) and institutions (Srinivasan et al., 2010, Yoon et al., 2021). 345 

2.5.3. Social Network Modeling 346 

Social network modeling is another approach that inherently integrates the viewpoint of the 347 

individual with that of the collective to describe and understand human behavior (Will et al., 348 

2020, Sayles et al., 2019, Kluger et al., 2020). Relationships are paramount in the social network 349 

modeling approach. Networks consist of a set of nodes, typically representing some unit of social 350 

organization, whether an individual or a collective such as an organization or community. Ties 351 

represent the links between nodes and take the form of friendship, information-sharing, kinship, 352 

and other types of relationship. Networks can be used to define or constrain which social entities 353 

in a model can interact with which other entities and how information flows between actors 354 

(Watts et al., 2019). A given network structure could be imposed exogenously on the social 355 

entities in a model (whether individuals or collectives) and the structure of this network might 356 

take an idealized form that represents real-world human social networks in certain ways (Sayles 357 

and Baggio, 2017), or might be explicitly parameterized using data from a real world network 358 

(Matous and Todo, 2015). Alternatively, network formation and structure can be endogenous to 359 

the model, whereby individuals or collectives make choices about how to affiliate as a function 360 

of various model states, attributes, or processes (Taschereau-Dumouchel, 2020). Networks can 361 

further be multi-level (whereby individuals are connected to other individuals but also 362 

aggregated into collectives that are also connected to each other) or multiplex, in which case the 363 

nodes are connected by more than one type of relationship (Locatelli et al., 2020). We finally 364 

note that social networks may also offer a means to model informal institutions such as norms 365 

through the shared values, beliefs, preferences between connected actors. 366 

2.5.4 Social-Ecological Systems Models 367 

Socio-ecological systems (SES) are a broad category of dynamic systems that have been 368 

used to study the interactions between humans and the environment, largely in the field of 369 

natural resource management and more recently in the field of urban systems. Conceptual 370 

frameworks used to describe SESs have been formalized (McGinnis and Ostrom, 2014; 371 
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Partelow, 2018) and applied in several case studies. Simulation modeling of SESs was prominent 372 

in the early development of the concept of resilience (Holling, 1973), and is still used in research 373 

on understanding multiple stable states in ecosystems and regime shifts (Biggs et al. 2009, 374 

Scheffer et al., 2009, Hughes et al., 2017, Voisin et al. 2019). SES modeling draws upon several 375 

existing modeling traditions from related fields, e.g. systems dynamics and agent-based 376 

modeling (Kelly et al., 2013), and thus incorporates a variety of representations of human 377 

behavior (Schluter et al., 2017). Some SES research has focused on in-depth, contextual case 378 

studies (Schluter et al., 2019), while other sub-fields, such as those following the tradition of 379 

dynamical systems modeling, offer highly stylized representations of prototypical systems. In 380 

doing so, these models elucidate general insights on concepts important in understanding social 381 

organization, such as cooperation, self-governance, power asymmetries, and equity (e.g. 382 

Muneepeerakul et al., 2017; Molla et al., 2021). Notably for multisector research, calls have been 383 

made to link analysis of local SESs with the global system in a multi-scale, multi-level fashion 384 

(Anderies et al., 2013).  385 

2.5.5 Engineering Decision Support Models 386 

Engineering decision support models encompass a broad class of models that are used for 387 

the design, planning, and operations of physical infrastructure systems including water supply 388 

(e.g., Herman et al., 2020; Giuliani et al., 2021), energy (e.g., Oikonomou, 2022), and 389 

transportation (e.g., Shepherd, 2014) systems. These models vary widely in terms of formulation, 390 

and usually deploy some combination of systems dynamics, optimization, and physics-based 391 

modeling to represent the key features of an infrastructure system. Often, engineering decision 392 

support models are designed around a physical node-link network, with the nodes in models 393 

representing sources and demands for a resource, and links between nodes representing 394 

connections that are enabled by the infrastructure system of concern (e.g., a water pipeline, 395 

electric transmission line, or road). In most engineering decision support models, human 396 

resource demands are exogenously defined based upon the population characteristics of the 397 

location under consideration. Some engineering models institute a more dynamic, endogenous 398 

representation of demand, such as through willingness to pay curves in which demand responds 399 

to changes in prices (Harou et al., 2009; Loucks and van Beek, 2017). Human management of 400 

the infrastructure systems are typically treated in prescriptive fashion, assuming some centralized 401 

manager of the system attempting to optimize a particular metric (e.g., minimize costs or supply-402 

demand deficits). Agent-based approaches have also been adopted for engineering decision 403 

support models, for example to simulate the mobility of travelers in a transportation network 404 

(Martinez, 2017). 405 

3 A Typology for Representing Human Action in MSD Models 406 

Here, we present a new typology for representing human action in multisector systems 407 

that is designed to handle a wide range of modeling approaches towards representing human 408 

systems such as those covered in Section 2. We adopt an operational definition of a “sector” 409 

which allows us to specify and differentiate categories of actors based upon the role(s) that they 410 

play within and among sectors. Specifically, we define a sector as a system-of-systems that 411 

consists of a diverse group of human actors, defined across individual to collective social levels, 412 

involved in the governing, provisioning, and utilizing of products, goods, or services towards 413 

some human ends. These goods and services are defined broadly, ranging from traditional 414 
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physical goods such as energy, water, and food to other less tangible services such as healthcare, 415 

media and communications, and environmental amenities. 416 

In attempting to trace the salient features of human systems within broader multisector 417 

systems, we break the typology into three key components, prefaced by a consideration of model 418 

participants and human values. Each of the three typology components corresponds to a basic 419 

question: 1) Who are the actors in multisector systems? 2) What are their actions? 3) How are 420 

these actors and actions operationalized in a computational model?  421 

We note that the typology components can generally be used in two forms. The first form 422 

is to identify the salient actors, actions, and interactions as they are perceived by model 423 

developers and users to exist in the real world and would therefore ideally be incorporated in a 424 

computational model. The second form is to identify the subset and abstractions of these actors, 425 

actions, and interactions that are actually incorporated in a model, serving as a means to clarify 426 

the nature of model abstractions relative to the “real world” conceptualization, compare these 427 

abstractions across models, and identify strengths and weaknesses across approaches given 428 

modeled outcomes of interest. The sub-sections to follow describe the typology components in 429 

further detail.  430 

3.1 Preface: Model Participants and Human Values 431 

We suggest that any assessment of human system representation in a multisector model 432 

begin with a critical reflection on the role human values play in the modeling process. Reflecting 433 

on the role human values play in a modeling endeavor can clarify the relationship between model 434 

developer, model user, and modeled actor, and identify potential biases that are inherent to the 435 

modeling process. Humans generally interface with models from three distinct vantages, 1) 436 

humans as users of the models, 2) humans as creators of models, and 3) humans as actors 437 

represented in the models. In each of these modes of interface, human values strongly shape the 438 

modeling effort (see, for example, Mayer et al, 2017; Vezer et al, 2017; Tuana, 2017; Tuana 439 

2020, and Keller et al, 2021). 440 

 In the first mode, the values of the decision-makers or users of the models can drive the 441 

choice of objectives and influence the behaviors and the system dynamics that are represented. 442 

As a simple example, consider a modeling analysis on whether or not to elevate a house to 443 

manage flood risks (Xian et al, 2017, Zarekarizi et al, 2021). A decision-maker considering the 444 

“classic” value of economic efficiency represented by the objective to minimize the expected 445 

discounted total costs may choose a different strategy than one who additionally considers the 446 

value of robustness in the face of deep uncertainty (Ellsberg, 1961). More broadly, values play a 447 

crucial role in analyzing questions such as: (i) How to navigate the trade-offs and synergies 448 

between objectives such as efficiency, equity, reliability, robustness, and sustainability? (ii) 449 

What to sustain? (iii) What is an acceptable (e.g., procedurally fair) process? (iv) What are 450 

acceptable (e.g., distributionally fair) outcomes? (v) What are robust strategies given potential 451 

future changes in the stakeholders’ and decision-makers’ values? (vi) For whom, where, and 452 

when should these synergies be pursued? 453 

In the second mode as creators of the models, the values of the analysts can drive the 454 

design of the analytical framework and the results. For example, analysts may choose a simpler 455 

model to enable a more careful uncertainty analysis (typically at the cost of decreased model 456 

realism) (Helgeson et al, 2021) or they may choose to limit the number of considered objectives 457 
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in a decision-analysis (Vezér et al, 2018). More broadly, values are important for the design of 458 

MSD research to address questions such as: (i) What processes, actions, and drivers to include? 459 

(ii) Which uncertainties to consider? (iii) How to navigate the trade-off between increasing 460 

model complexity and improving the representation of uncertainties? (iv) Which decision-461 

making objectives to consider, and for whom, when, and where? 462 

In the third mode, the values of the modeled actors enter the MSD modeling enterprise in 463 

the form of assumptions regarding human behavior that potentially drive the dynamics and 464 

outcomes of the models themselves. For example, a modeled household in an agent-based model 465 

might be treated as a rational entity attempting to maximize expected long-term utility or as a 466 

family-caring entity with short term responses such as providing shelter for family members that 467 

constrain more effective long-term response to flood hazards. Each of these formulations assume 468 

a unique set of underlying values driving the modeled actors’ behavior and action, with 469 

potentially significant impact on the conclusions that are drawn from the modeling analyses (de 470 

Koning et al., 2017). 471 

A consideration of the relation between model creator, model user, and modeled actor 472 

and how human values influence the modeling process across these three modes of human-model 473 

interface is a crucial component of representing human systems in a multisector model.  474 

3.2 Typology Component #1 – Who are the actors? 475 

The first component of the typology addresses the question: Who are the actors in 476 

multisector systems? As mentioned above, we adopt an operational definition of a “sector” 477 

which allows us to specify and differentiate categories of actors based upon the role(s) that they 478 

play within and among sectors. Specifically, actors are defined across three categories of roles: 479 

1) governing actors, 2) provisioning actors, and 3) utilizing actors. The actor groups are 480 

identified along the vertical axis in Fig. 1, with each actor role category extending across any 481 

number of sectors included in a model. 482 
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 483 

Figure 1 - A general conceptualization of actors in multisector systems. We conceive of three categories of 484 
actors defined across categories of actor roles: 1) governing actors, 2) provisioning actors, and 3) utilizing actors. 485 
Cross-sector relationships are conceptualized through cross-sector interactions and cross-sector actor role 486 
crossovers. Cross-sector interactions (lines with arrows between actor categories) involve a direct exchange of 487 
information or services between different sectors. Actor role crossovers (hashed connectors between actor 488 
categories) entail an actor that simultaneously appears in multiple sectors, playing a unique role in each. For 489 
example, a farmer could simultaneously be defined as a producer in the agricultural sector and a consumer in the 490 
water sector. For interaction types, we differentiate between hard (solid arrows) and soft (dashed arrows) 491 
interactions, the former entailing those interactions resulting in some direct change in the physical or built 492 
environment and the latter involving an exchange of information rather than a physical exchange or modification. 493 
The strength of an interaction is illustrated through the thickness of the line between two actors. Here, we 494 
specifically define strength as the level to which an action has the potential to influence or steer subsequent actions. 495 

Actors involved in the role of governing define the institutions through which other 496 

sector actors are legislated, financed, regulated, monitored, insured, subsidized, compensated, 497 

penalized, and so forth. The governing actors define the institutional environment for a sector, 498 

the so called “rules of the game” (North, 1990). For example, a legislative body that establishes 499 

carbon emission limits that other sectoral actors are required to comply with, plays the role of a 500 

governing actor. The second category of actors entails those involved in the actual provisioning 501 

of a sectoral product, good, or service. The provisioning category include those actors 502 

responsible for the delivery of a service (e.g., an energy utility providing electrical service for a 503 

city), but also extend to those actors that indirectly participate in provisioning through attempting 504 
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to influence the form of the service, technological means of production and delivery, and so on. 505 

Examples of the latter include companies that develop new technologies (e.g., solar panels) that 506 

are potentially adopted by direct service providers, civil society organizations advocating and 507 

imposing pressure on a utility to implement a specific type of infrastructure, and financial 508 

brokers coordinating exchanges of a service on the market.  Finally, we have those actors 509 

involved in utilizing, the act of receiving the product, good, or service that is made available by 510 

provisioning actors and applying it for some human end use, whether that be direct consumption 511 

to sustain livelihood (such as in the physical consumption of water) or used as an input into some 512 

other human activity. Within each of the actor role categories (governing, provisioning, 513 

utilizing), we can further specify actors at varying levels of social aggregation (i.e., actors can be 514 

individuals or organizations).  515 

The categorization of actors based upon differentiated sectoral role(s) allows for the 516 

identification of interactions between actors, visualized via the lines that connect actor groups in 517 

Fig. 1. Interactions can occur between actors within a sector (intra-sector interactions) as well as 518 

between actors across sectors (inter-sector interactions). The typology highlights two prominent 519 

forms of inter-sector interactions. The first involves an exchange of service, product, or 520 

information between actors across sectors. Such an interaction typically operates between actors 521 

at the provisioning level, such as an energy utility relying on water deliveries from a water utility 522 

for power plant cooling, while the water utility relies on energy delivery from the energy utility 523 

for powering water production, treatment, and distribution operations. The second form of inter-524 

sector interaction entails an actor role crossover, indicated by wide hashed connectors between 525 

actors in Fig 1. We specifically define an actor role crossover as a situation in which an actor 526 

simultaneously appears in multiple sectors and/or across actor role categories, playing a unique 527 

role in each.  528 

The actor role crossover is a central feature of our conceptualization of actors in 529 

multisector systems, operationalizing the notion of actors that can “wear multiple hats” and take 530 

on different roles, depending upon the specific sectoral vantage from which that actor is viewed. 531 

Consider again an energy utility, which is perhaps most commonly viewed as a provisioning 532 

actor of energy services. However, singularly defining an energy utility as such adopts a myopic 533 

view of the actor, neglecting other secondary roles that the energy utility plays from the vantage 534 

of other sectoral actors (e.g., a utilizing actor in the water sector). Actor role crossovers in multi-535 

sector systems take on many additional forms. Governing actors commonly have jurisdiction 536 

over multiple sectors, so can be viewed as governing actors from the vantage of multiple sectors. 537 

Take for instance a federal environmental agency that possesses regulatory authority over 538 

multiple sectors and coordinates their regulations based upon the joint environmental impact of 539 

activities across these sectors.  540 

Actor role crossovers are also ubiquitous on an intra-sectoral level, instances in which 541 

actors “wear multiple hats” within a single sector. For example, any individual governing or 542 

provisioning actor (e.g., a politician, utility employee, etc.) also relies on critical resources such 543 

as water, energy, and transportation for their personal physical sustenance, and thus by definition 544 

are also utilizing actors across numerous critical sectors. Subtler forms of actor role crossovers 545 

can also occur within a single sector. Consider the emergence of in-home solar and battery 546 

technology. In this case, households may primarily play the role of utilizing actors in the energy 547 

sector largely relying on an external utility for energy service, but may also play the secondary 548 

role of a provisioning actor within the same sector as they generate energy for both self-549 
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consumption and provision back to the grid. Such households may further participate in civil 550 

society organizations advocating for policy change in energy services at the provisioning or 551 

governing level (e.g., advocating for policies that promote increased compensation for net 552 

metering). Such a household can at once be viewed as a utilizing, provisioning, and governing 553 

actor in the energy sector. Considering this particular example, we reiterate that the typology is 554 

intended to identify those actor roles, interactions, and role crossovers that are deemed salient for 555 

modeling outcomes of interest. While in reality a household actor can play hundreds, if not 556 

thousands of roles across role categories and between sectors, modeling constructs that aim for 557 

parsimony typically only capture a few of these roles that are most relevant to the topic of 558 

inquiry.  559 

Before proceeding to the second typology component, we note that additional dimensions 560 

of actor categorizations can also be applied within the primary governing, provisioning, and 561 

utilizing actor role categories set forth in the typology. For example, sustainability transitions 562 

research commonly frames actor relations in terms of power dynamics between regime and niche 563 

actors (Avelino and Wittmayer, 2016). Many other categorizations of actors could be 564 

conceptualized: public versus private, formal versus informal, profit versus non-profit. While the 565 

typology does not explicitly focus on these sub-categorizations, we suggest that they can be 566 

accommodated as sub-categorizations within the primary actor role categories. 567 

3.3 Typology Component #2 – What are their actions? 568 

The second component of the typology addresses the question: What are the actions 569 

considered? While the actor topology from the first component already touches upon this 570 

question in the form of interactions between actor groups (each of which arises out of an action), 571 

the second component hones in on it through the conceptualization of a human action “canvas” 572 

which organizes human actions across 3 dimensions: 1) the actor role categorizations (governing, 573 

provisioning, utilizing) set forth in the first component, 2) timescales of action ranging from 574 

hourly to centennially in multisector systems, and 3) the type of action distinguished between 575 

hard actions that result in a physical change in the environment versus soft actions which involve 576 

an exchange of information rather than a physical exchange or alteration of the environment. An 577 

example canvas is presented in Fig. 2 with generic actions (non-sector or domain specific) as an 578 

illustration of the concept. Following the topology of human actors (Fig. 1), categories of actor 579 

roles are identified along the vertical axis of the action space. 580 
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 581 

Figure 2 – A canvas mapping out actions that influence multisector systems. The canvas organizes human 582 
actions across 3 dimensions: 1) the actor role categorizations (governing, provisioning, utilizing) set forth in the first 583 
component of typology, 2) timescales of action ranging from hourly to centennially in multisector systems, and 3) 584 
the type of action distinguished between hard actions that result in a physical change in the environment versus soft 585 
actions which involve an exchange of information rather than a physical exchange or alteration of the environment. 586 

Along the horizontal axis of the action space, actions are organized based on their 587 

timescales of action, with the timescale defined as the approximate frequency at which an action 588 

is undertaken by an associated actor. Three general timescales of action are identified: near-term 589 

(those actions undertaken by an actor at hourly to daily frequency), mid-term (those taken at 590 

monthly to annual frequency), and long-term (those taken at annual to centennial frequency). 591 

Considering these timescales of action, a utilizing actor such as a household might install 592 

sandbags, clear debris from drainage, or move their children to safe location as a near-term 593 

response to an impending flood, thus constituting a hard action located in the lower left portion 594 

of the canvass (utilizing / near-term / hard), while also contacting their neighbors to do the same 595 

(utilizing / near-term / soft.) This same household may also take the action of raising its home 596 

every 5-10 years, constituting an action located in the lower right portion of the canvass 597 

(utilizing / long-term / hard). Similar distinctions between timescales of action apply across the 598 

provisioning and governing actor role categories. A provisioning actor such as a utility might 599 

make daily decisions in regards to the operation of existing infrastructure (provisioning / near-600 

term / hard), while taking action to construct new infrastructure (provisioning / long-term / hard)  601 

or overhaul customer pricing structures (provisioning / long-term / soft) far less frequently. 602 

Likewise, governing actors can enforce regulations on a daily basis (governing / near-term / 603 

soft), while typically enacting new legislation or setting a new legal precedent far less frequently 604 

(governing / long-term / soft).  605 

We note that the conceptualization is not only useful for identifying and characterizing 606 

actions that are included in models, but just as significantly to identify those actions that are not 607 

included in models (or implicit given exogenous model assumptions). We envision the canvas 608 

being utilized as part of a rigorous, transparent process for assessing the treatment of human 609 

actions in multisector models. At the onset of a modeling endeavor, a team of researchers might 610 

initiate a canvas exercise independent of a quantitative model, identifying those actions across 611 
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actor role categories and over time that are assumed to significantly influence outcomes of 612 

interest. The resulting canvas of actions can subsequently be used to identify key actions to 613 

include in a model under design or compared against actions incorporated in existing models, 614 

identifying whether the represented actions are appropriately aligned with the inquiry at hand. 615 

3.4 Typology Component #3 – How are the actors/action operationalized in a model? 616 

The last component of the typology addresses the question: How are the actors and 617 

actions operationalized in a model?  The third component of the typology sets forth 8 “axes” of 618 

model characteristics to address this final question, which are presented on Fig. 3. Each of the 619 

axes provide a spectrum on which to identify general differences for operationalizing human 620 

actors and actions in MSD models. The first three axes (a-c) are applied at the level of actor 621 

groups, i.e., applied to each of the actor groups that have been identified using the first 622 

component of the typology. The last five axes and sub-axes (d-f) are applied at the level of 623 

actions, i.e., to each of the actions that are mapped out using the second component of the 624 

typology and included for representation in the model. Each of the axes is described in further 625 

detail below. 626 

 627 

Figure 3 – Axes of human system representation in multisector models. Each of the axes provide a spectrum on 628 
which to identify general differences for operationalizing human actors and actions in MSD models. In general, the 629 
axes can either be applied generally to an entire model or applied to individual actor categories within a model for 630 
higher specificity. Axis a indicates whether a normative/prescriptive or positive/descriptive modeling approach is 631 
applied to the actor category of interest. Axis b provides the level of actor aggregation for each represented actor 632 
category. Axis c describes the level of interaction between modeled actors, which can be applied generally across 633 
the model or to specific actor-actor relationships. Axis d indicates whether the action is treated exogenously or 634 
endogenously. Axis e indicates the level of adaptability for each actor category represented endogenously in the 635 
model (c). Short-term / operational adaptation is differentiated from long-term / strategic. The various axes in f 636 
describe the behavioral model applied to the actor/action, such as whether the actors are treated as rational, bounded-637 
rational, or non-rational entities 638 

1a. Modeling Approach – Differentiates the general modeling approach through which an 639 

actor is treated along a normative/prescriptive versus positive/descriptive spectrum. Under a 640 
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normative/prescriptive treatment, modeled actors are idealized assuming that they have a specific 641 

set of objectives under pursuit and optimize their actions to achieve those objectives. Prescriptive 642 

approaches are often optimization-based models deployed for decision support (Harou et al., 643 

2009; Oikonomou, 2022; Herman et al., 2020). On the other side of the spectrum, a 644 

positive/descriptive treatment attempts to represent an actor or actor group as they actually 645 

behave in real world systems, attempting to replicate observed behavior (Manson and Evans, 646 

2007; de Koning and Filatova, 2020; Yoon et al., 2021). Descriptive approaches can include 647 

agent-based models, econometrics, and heuristic or rule-based representations of human 648 

decision-making strategies, and may draw from sociological, behavioral, or microeconomic 649 

perspectives. Hybrid approaches are also possible, such as when computer-aided decision 650 

support is employed in real world decision making and prescriptive modeling becomes a 651 

descriptive element of how humans determine action. The modeling approach selected for any 652 

actor group is closely tied to the operationalization of their decision making model (axes 1f) . 653 

1b. Actor Aggregation - Characterizes models based on the level of aggregation of human 654 

actors, which can range widely from a single representative decision making entity to highly 655 

disaggregated decision making via distributed model agents. For example, many integrated 656 

assessment models aimed at addressing global-scale energy, water, and land dynamics aggregate 657 

actors at the level of countries or large regions (Fisher-Vanden and Weyant, 2020). Locale and 658 

sector-specific models in contrast might represent a single individual or household as the basic 659 

modeled unit of analysis, such as transportation ABMs that simulate individual vehicles and their 660 

passengers (Bazzan and Klugl, 2014). Actor aggregation can also be applied to provisioning and 661 

governing actors. For example, management of a system might be abstracted into a single 662 

centralized authority as in the case of many hydroeconomic models (Harou et al, 2009), or 663 

distributed among governing bodies that map onto real world organizations (Yoon et al., 2021).   664 

1c. Social Interaction - Characterizes the level of actor-actor interaction represented in 665 

the model, ranging from no interaction (e.g., node-link engineering planning models that 666 

represent human activity in the form of independent demand nodes), indirect interaction such as 667 

through shared utilization of a common pool resource (Castilla-Rho et al.., 2015), or direct 668 

interaction that involves actor-actor knowledge or resource transfer. Direct interactions could be 669 

further subdivided based on the degree of social networking, which include random networks 670 

(i.e., agents interact with each other randomly), theoretically-based networks (Sayles and Baggio, 671 

2017), and empirically derived networks (Matous and Todo, 2015). The social network topology 672 

itself can also be endogenous, with the existence and nature of connections between actors 673 

emerging over time, potentially in response to environmental factors in the model (Will et al., 674 

2020). Social networks can also be modeled across scales (multi-level, Lomi et al., 2015), and 675 

can have multiple ties between actors (multi-plex, Locatelli et al., 2020). In addition to 676 

describing the general network topology, the axis can also be used to distinguish the nature of the 677 

social connections between actors, such as whether relationships are coordinative/cooperative 678 

versus conflictive, whether they entail an exchange of information or of a physical good, and so 679 

forth. 680 

1d. Endogeneity – Indicates whether the action under consideration is treated 681 

exogenously or endogenously in the model. In an exogenous case, the action is represented in the 682 

model but is imposed by the modeler externally. In other words, an exogenously imposed model 683 

action is one that is undertaken by a modeled actor regardless of the dynamic states simulated by 684 

the model, as is often the case in engineering planning models that impose human demands on 685 
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the system. In contrast, endogenous actions are those in which a modeled actor takes an action in 686 

dynamic response to the modeled state of the system. In such an instance, a behavioral model is 687 

assumed to drive an actor’s decision/action, with the behavioral model a function of modeled 688 

states of the system (Tsekeris et al., 2011, Balbi et al., 2013, Rai & Henry, 2016). We further 689 

note here that actions are often linked in models, with endogenous actions ultimately traced 690 

upstream to an exogenous assumption. For example, adoption of household technologies may be 691 

identified as an endogenous action in a model, though further inspection of a model might reveal 692 

that the behavioral model underlying this adoption is a simple table that relates exogenously 693 

imposed income classes with assumed household technologies. While the endogeneity axis 694 

provides a first-order indication of which actions are treated in dynamic fashion in a model, 695 

further interrogation of an action based on the underlying behavioral model can be made using 696 

the various sub-axes in 1f.  697 

1e. Adaptivity -  Differentiates models based on the adaptive capacity that actors are 698 

endowed with, ranging from no adaptation to strategic adaptation. Two modes of adaptation, 699 

operational and strategic, are further distinguished, with the former involving “fine-tuning” of a 700 

fixed rule, strategy, or optimization while the latter involves the potential for structural change in 701 

the agent’s behavior. An example of the former might entail an actor that is assumed to 702 

maximize some objective functions that is dependent on modeled states of the model but with a 703 

structural form that remains fixed over time, as is commonly the case in optimization-based 704 

models. In such an instance, the actor’s goal (e.g., maximize profits) does not change over time, 705 

though the specific action that the actor takes in any model time period might change in pursuit 706 

of that goal in response to system states. The latter might involve alteration of the drivers 707 

influencing actor behavior such as the influence of their social network (Mungovan et al., 2011) 708 

or change in actor risk profile.  Actors that exhibit strategic adaptation are those that can 709 

fundamentally reshape their strategies as they learn about the system over time or alter their 710 

goals in response to system perturbations. For example, an actor might be modeled with the 711 

capacity to switch from a utility maximization to a risk avoidance behavioral model in response 712 

to a damaging event. The axes can further be used to indicate whether actors are state-aware, the 713 

degree of this awareness, and their associated ability to learn about and adapt to the system over 714 

time such as through the selective and dynamic use of state information through reinforcement 715 

learning (Bertoni et al., 2020; Hung and Yang, 2021). 716 

1f. Decision Making Model 717 

 Empiricism - Distinguishes whether the behavioral model of the actor is rooted in the 718 

theory of a specific discipline (e.g., economic utility maximization) or developed in an empirical 719 

fashion relying on real-world information (observed data, surveys, etc., Janssen and Ostrom, 720 

2006). Considering housing sector models for example, household actors seeking a housing good 721 

may be treated using traditional expected utility theory (Parker and Filatova, 2008) or 722 

operationalized based on direct survey results (Brown and Robinson, 2006). The two might also 723 

be applied in hybrid fashion, with surveys and data used to parameterize a specific theoretical 724 

approach (e.g., de Koning et al., 2020). 725 

Rationality - Defines the extent to which actors are rational (e.g. optimizing a specific 726 

objective, Chappin and Dijkema 2007) or act in accordance to bounded rationality (Malawska, 727 

2016), or other social science theories of human behavior that incorporate heterogeneous 728 

preferences, social influences, and risk aversion (Brown and Robinson, 2006, Xianyu, 2010, 729 
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Kaiser et al., 2020). Some modeling experiments have been intentionally designed to compare 730 

contending theories of human behavior across the rationality spectrum (de Koning et al., 2017).  731 

Knowledge - Defines the knowledge endowment of actors, ranging from perfect 732 

knowledge and foresight of environmental/socioeconomic conditions and of other agent actions, 733 

to limited knowledge and foresight. For example, IAMs often assume actors that have complete 734 

information of future conditions across the model time horizon though some have attempted 735 

alternative formulations (Wilkerson et al., 2015). The level of actor foresight is a prominent 736 

consideration in water reservoir operations models, with actors endowed with no foresight, 737 

limited foresight, or perfect foresight of future inflows into the reservoir of concern (Turner et 738 

al., 2020). Accounting for incomplete information of actors is increasingly common in game 739 

theory (Shafie-Khan and Catalao, 2015) and fuzzy logic (Baloglu and Demir, 2017) modeling 740 

applications.  741 

3.5 Applying the Typology 742 

Lastly, we demonstrate applying the typology in practice. The typology can either be 743 

applied to a model in its entirety or to specific human actor categories represented in models, in 744 

large part influenced by the type of model under consideration. For example, the typology might 745 

be applied to a model as a whole if the human system representation is generally consistent 746 

across actor categories (e.g., global macroeconomy models typically fall in this category). For 747 

models that contain multiple actor categories (e.g. households, farmers, governing authorities, 748 

etc.) such as multisector ABMs, the typology may need to be applied to each actor category 749 

separately, as the treatment of each could differ in the model implementation (e.g., farmers may 750 

be represented as bounded-rational, risk averse firms while governing authorities are modeled as 751 

welfare maximizers). Additionally, only specific components of the typology may be pertinent 752 
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depending on the details of the model. Fig. 4 lays out a general workflow for applying the 753 

typology to a specific multisector model, segmented across the 3 typology components. 754 

 755 

Figure 4 – Workflow for applying the human systems typology components to a multisector system model. The 756 
actor topology is first applied to all actors across sectors represented in the model (steps 1-3). Action canvases are 757 
subsequently developed for each actor category identified in step 2 (steps 4-5). Finally, the axes of human system 758 
representation are applied for each action identified in step 5 (steps 6-8).  759 

The workflow is generalizable across the diverse examples of models relevant to 760 

multisector research described earlier. For models with high levels of actor aggregation such as 761 

IAMs, only a few relevant actor categories might be identified in step 2, such as an abstracted 762 

governing actor(s) that brokers trades through global commodity market alongside 763 

provisioning/utilizing actor(s) representing national-scale resource supply and consumption 764 

behavior. When applied to models with highly distributed actor representation, such as an agent-765 

based model of a multisector system, a multitude of actor categories might be identified across 766 

role categories including national governments, regulatory authorities, utility providers, informal 767 

suppliers, households, famers, and so on. For each of the actor categories identified across 768 
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modeling examples, the workflow can subsequently be used (step 4-8) to identify the actions 769 

associated with each of the actor categories and how those actions are represented in the model. 770 

4 Discussion and Conclusions 771 

Considering the central role of humans in modern sectoral systems, the adequate 772 

representation of human action in multisector models is essential for capturing co-evolutionary 773 

human-natural dynamics in the face of short-term shocks and long-term change. However, 774 

multisector modeling efforts have typically adopted simplistic and divergent representations of 775 

human systems, thus limiting the ability to draw deep and coherent insight across diverse 776 

modeling efforts with inconsistent treatment of human actors. We advocate for a pluralistic, 777 

exploratory modeling approach for dealing with the complexity of multisector systems, the 778 

divergent structural conceptualizations of human systems therein, and the multiple contending 779 

theories on the volitional nature of human behavior. The embrace of such an exploratory 780 

approach nonetheless calls for a common framework for describing the representation of human 781 

systems in multisector models, providing researchers a shared language for comparing models 782 

and promoting the cohesion of insights across diverse modeling efforts. 783 

Towards this end, we present a new typology for representing human action in 784 

multisector models to serve as one such framework. The typology allows a model creator, user, 785 

or stakeholder to interrogate an existing model or design a new model using three simple 786 

questions as guideposts: 1) Who are the actors in MSD systems?, 2) What are their actions?, and 787 

3) How and for what purpose are these actors and actions operationalized in a computational 788 

model? The typology is intended as a tool for both the diagnosis and design of human systems in 789 

multisector models. In the diagnostic form, the typology can be used to assess the representation 790 

of human actors in existing models, particularly serving as a mechanism to identify differences 791 

in representation between models and critically assesses whether the mode of human system 792 

representation is appropriate for the science or analytic questions at hand. 793 

In design form, the typology can be used to guide the development of new models that 794 

are fit for purpose in addressing science and analytic questions of interest. In this regard, we 795 

suggest four promising arenas of MSD research for which the typology can support the design of 796 

coordinated modeling experiments: 1) applying uncertainty quantification to the representation 797 

human systems, 2) utilizing artificial intelligence and machine learning for the representation of 798 

human systems, 3) designing models that adequately address decision-relevant issues such as 799 

equality, equity, and justice in multisector systems and 4) synthesizing and integrating insights 800 

across diverse modeling approaches.  801 

In the first arena, the typology can be used to design ensemble-based, multi-model 802 

experiments that explore divergent structural conceptualizations of human systems as well as the 803 

underlying behavioral models and their parameterizations used to represent human actions. For 804 

example, the decision making model axes could be used to identify behavioral models of human 805 

decision making that intentionally diverge in regards to the underlying theory of human behavior 806 

(e.g., rational versus non-rational, all-knowing versus myopic, etc.) and their structural 807 

representation of actor categories and aggregation (e.g., a bioeconomic model that assumes 808 

centralized decision making versus an agent-based model with distributed, heterogeneous 809 

actors). The various representations would be strategically and intentionally deployed to evaluate 810 
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the sensitivity of a specific outcome of interest (e.g., flood risk and vulnerability in a coastal 811 

zone) to the model representation.  812 

The increasing prevalence of artificial intelligence and machine learning (AI/ML)  813 

methods in MSD models presents a second arena of research that can be supported and organized 814 

by the typology. For example, AI/ML techniques can be used in both descriptive and prescriptive 815 

forms (axis 1a), either to mimic human actors as they behave in the real world based on observed 816 

data or to simulate actors as they might ideally behave given a specific goal as they respond to 817 

their environment and adapt to change over time. In the former descriptive mode, AI/ML 818 

methods could be deployed alongside big social data (Lazer, 2009), for the realistic 819 

representation of human actors in multisector systems such as mimicking mobility patterns 820 

through a city (Moro et al., 2021) or to infer real-world management practices (Ekblad and 821 

Herman, 2021). In prescriptive form, modeled actors could be simulated using AI/ML techniques 822 

as state-aware agents that selectively and dynamically react to system states via reinforcement 823 

learning (e.g., see model free policy approximation methods in Powell, 2019 and Bertsekas, 824 

2019; and food-energy-water examples in Giuliani et al., 2021, Zaniolo et al., 2021, Cohen and 825 

Herman, 2021). In each of these endeavors, the typology can be used to properly orient and 826 

communicate the relationship between AI/ML methods and the modeled representation of human 827 

systems. 828 

In the third arena, the typology can be used to align the representation of human systems 829 

in multisector models with the science or analytic question at hand, promoting decision-relevant 830 

science, a core tenet of MSD research. For example, the typology could be used to design a 831 

modeling experiment that focuses on the equity implications of energy transitions, systematically 832 

guiding model developers and users through a set of questions such as: 1) which actor categories 833 

are most salient for adequately capturing transition dynamics (e.g., are general actor categories of 834 

provisioners and utilizers adequate or are sub-categories that represent actor power differentials 835 

crucial)?, 2) what particular model structures and aggregations enable or preclude effective 836 

equity analysis? and 3) how are the various modes in which values are entering the model 837 

analysis supporting or hindering an equitable analysis?  838 

Finally, the typology can be used to integrate and synthesize diverse modeling 839 

approaches, identifying the advantages and disadvantages of each approach and points of 840 

connection between them. For example, a large scale IAM and a sector-specific engineering 841 

planning model might be deployed in synergistic fashion, with the IAM used to simulate global 842 

economic activity and feeding physical and socioeconomic boundary conditions into the sector-843 

specific engineering model, which in turn sends local constraints back to the IAM in two-way 844 

iterative fashion (e.g., Basheer et al., 2021). Apart from direct coupling, the typology can be used 845 

to design independent but coordinated modeling experiments. A stylized and aggregated model 846 

of a system might initially be deployed to widely explore system sensitivities and uncertainties 847 

using deep uncertainty methods in a computationally tractable fashion, in turn guiding the actor 848 

categories, processes, and relationships that are included in a more detailed agent-based model of 849 

the system. In each of these cases, the typology can be used to distinguish models and identify 850 

points of potential integration or synergism between efforts. 851 

Through enabling the critical examination and design of models, the typology provides a 852 

framework through which to cohere human systems modeling efforts and strategically coordinate 853 
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the enhancement of human systems representation in advanced, coupled human-natural-854 

engineered models. Orienting diverse multisector modeling approaches using the typology can 855 

provide a roadmap for human systems modeling in MSD, charting new frontiers of complex 856 

human-Earth systems research that judiciously, coherently, and equitably represent human actors 857 

in multisector models. 858 
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