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Abstract

This paper documents the third version of the GFDL cloud microphysics scheme (GFDL MP v3) used in the System for

High-resolution prediction on Earth-to-Local Domains (SHiELD) model. Compared to the GFDL MP v2, the GFDL MP

v3 is entirely reorganized, optimized, and modularized by functions. In addition, the particle size distribution (PSD) of all

cloud categories is redefined to mimic the latest observations, and the cloud condensation nuclei (CCNs) are calculated from

the MERRA2 aerosol data. The GFDL MP has been redesigned so all processes use the redefined PSD to ensure overall

consistency and easily permit introductions of new PSDs and microphysical processes. Analyses gathered from simulations by

SHiELD with selected configurations are examined. Compared to the GFDL MP v2, the GFDL MP v3 significantly improves

the predictions of geopotential height, air temperature, and specific humidity in the Troposphere, as well as the high, middle

and total cloud fractions and the liquid water path. With the more realistic PSD implemented in GFDL MP v3, the predictions

of geopotential height in the Troposphere, low and total cloud fractions are further improved. Furthermore, using climatological

aerosol data to calculate CCNs leads to even better predictions of geopotential height, air temperature, and specific humidity

in the Troposphere, high and middle cloud fractions, as well as the liquid and ice water paths. However, the upgrade of the

GFDL MP shows little impact on the precipitation prediction. Degradation due to the scheme upgrade is also addressed and

discussed to guide the future GFDL MP development.
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Key Points:9

• The GFDL cloud microphysics scheme has been re-written for greater physical con-10

sistency.11

• The upgrade of the GFDL MP significantly improves weather prediction within12
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• The changes of PSD and CCNs in the GFDL MP show significant impacts on tem-14

perature, humidity, and cloud predictions.15
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Abstract16

This paper documents the third version of the GFDL cloud microphysics scheme (GFDL17

MP v3) used in the System for High-resolution prediction on Earth-to-Local Domains18

(SHiELD) model. Compared to the GFDL MP v2, the GFDL MP v3 is entirely reor-19

ganized, optimized, and modularized by functions. In addition, the particle size distri-20

bution (PSD) of all cloud categories is redefined to mimic the latest observations, and21

the cloud condensation nuclei (CCNs) are calculated from the MERRA2 aerosol data.22

The GFDL MP has been redesigned so all processes use the redefined PSD to ensure over-23

all consistency and easily permit introductions of new PSDs and microphysical processes.24

Analyses gathered from simulations by SHiELD with selected configurations are25

examined. Compared to the GFDL MP v2, the GFDL MP v3 significantly improves the26

predictions of geopotential height, air temperature, and specific humidity in the Tropo-27

sphere, as well as the high, middle and total cloud fractions and the liquid water path.28

With the more realistic PSD implemented in GFDL MP v3, the predictions of geopo-29

tential height in the Troposphere, low and total cloud fractions are further improved. Fur-30

thermore, using climatological aerosol data to calculate CCNs leads to even better pre-31

dictions of geopotential height, air temperature, and specific humidity in the Troposphere,32

high and middle cloud fractions, as well as the liquid and ice water paths. However, the33

upgrade of the GFDL MP shows little impact on the precipitation prediction. Degra-34

dation due to the scheme upgrade is also addressed and discussed to guide the future GFDL35

MP development.36

Plain Language Summary37

The Geophysical Fluid Dynamics Laboratory (GFDL) cloud microphysics (MP)38

scheme has been recently upgraded to improve the code’s structure and flexibility, and39

overall consistency, include more realistic cloud particle size distribution (PSD), and use40

the climatological aerosol to calculate cloud condensation nuclei (CCNs). The primary41

purpose of the GFDL MP upgrade is to improve global weather prediction, which includes42

geopotential height, temperature, specific humidity, cloud, and precipitation predictions.43

The implementation of the upgraded GFDL MP significantly improves the weather pre-44

diction of many key fields. Especially, the use of the more realistic cloud PSD and cli-45

matological aerosol for CCNs can further improve the prediction skill of the model to46

some extent.47

1 Introduction48

Clouds play critical roles in our daily weather and in the global energy and water49

budgets that regulate the climate of the Earth (Houze, 2014; Lamb & Verlinde, 2011).50

The formation and evolution of clouds have significant impacts on precipitation forecasts51

in numerical weather prediction (Baldauf et al., 2011; Bauer et al., 2015; Morrison & Grabowski,52

2008; Seifert & Beheng, 2005). Clouds and their impacts on solar and thermal radiation53

are among the most challenging aspects of climate prediction (Stephens et al., 2012; Tren-54

berth et al., 2009; Wild et al., 2019). Therefore, the representation of clouds in atmo-55

spheric models deserves particular attention. Since numerical models ranging from large-56

eddy simulations to climate predictions still cannot depict the cloud processes explicitly,57

the parameterization of cloud microphysics is needed (Kogan, 2013; Morrison & Gettel-58

man, 2008; Nogherotto et al., 2016).59

The national operational forecast system, Global Forecast System (GFS) at the Na-60

tional Centers for Environmental Prediction (NCEP), used the prognostic cloud micro-61

physics scheme developed by Zhao and Carr (1997) from 1995 to 2019. Different from62

the simple large-scale saturation adjustment scheme (Hoke et al., 1989) used in the early63

versions of GFS, this prognostic cloud microphysics scheme explicitly calculates the com-64
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bined cloud water and cloud ice category in the large-scale condensation component of65

the model (Zhao et al., 1997). The cloud water/ice mass mixing ratio is the only vari-66

able predicted in the Zhao and Carr (1997) scheme for both cloud water and cloud ice.67

This treatment saves the model computational time and storage and has been used ex-68

clusively since 1995. According to Zhao et al. (1997), forecasts using the Zhao and Carr69

(1997) scheme improved the forecast skill of precipitation as measured by the equitable70

threat score and bias score and reduced root-mean-square errors of forecast specific hu-71

midity at all pressure levels below 800 hPa and above 500 hPa during test periods over72

those of forecasts that only used diagnostic clouds.73

There is an apparent deficiency in the Zhao and Carr (1997) scheme. The oversim-74

plified treatment of cloud water and cloud ice inevitably excludes the interaction between75

cloud water and cloud ice, such as freezing and melting. As computational resources rapidly76

expand in recent decades, more sophisticated cloud microphysics schemes have been de-77

veloped and used in weather and climate models. For example, the European Centre for78

Medium-Range Weather Forecasts replaced the ancient Tiedtke (1993) scheme with the79

advanced Forbes and Tompkins (2011); Forbes et al. (2011) prognostic scheme for the80

Integrated Forecast System in 2010. The National Center for Atmospheric Research up-81

graded the Rasch and Kristjánsson (1998) prognostic condensate and precipitation scheme82

to the well-known Morrison and Gettelman (2008) scheme for the Community Atmosphere83

Model version 5 in 2012. Much research has shown that by using a more comprehensive84

cloud microphysics scheme, one can achieve better weather prediction and climate sim-85

ulation (Khain et al. (2015); Guo et al. (2021) and references therein). After extensive86

examinations with comprehensive verification, NCEP chose to replace the Zhao and Carr87

(1997) cloud microphysics scheme with the Geophysical Fluid Dynamics Laboratory (GFDL)88

cloud microphysics (MP) scheme (J. H. Chen & Lin, 2013; Zhou et al., 2019) in the GFS89

upgrade of June 2019, aiming to better represent the interaction between each cloud cat-90

egory to improve weather prediction.91

The GFDL MP is a six-category, single-moment bulk microphysics scheme. Besides92

the water vapor category, there are two liquid categories (cloud water and rain) and three93

ice categories (cloud ice, snow, and graupel or hail). Zhou et al. (2019) and L. Harris,94

Zhou, Lin, et al. (2020) have described key features of the GFDL cloud microphysics scheme,95

including thermodynamic consistency with the dynamical core, fast and stable sedimen-96

tation processes, and tight coupling between dynamics and physics. The GFDL cloud97

microphysics scheme has been used as the default scheme in the operational GFS ver-98

sion 15 and 16 (Tong et al., 2020; Huang et al., 2021; Patel et al., 2021) and several other99

weather and climate models, including the GFDL radiative-convective equilibrium (RCE)100

simulations within a limited domain (Jeevanjee, 2017), the GFDL High-resolution At-101

mosphere Model (HiRAM) (J. H. Chen & Lin, 2011, 2013; L. M. Harris et al., 2016; Gao102

et al., 2017, 2019), the GFDL System for High-resolution prediction on Earth-to-Local103

Domains (SHiELD) (L. Harris, Zhou, Lin, et al., 2020), the National Oceanic and At-104

mospheric Administration’s Hurricane Analysis and Forecast System (HAFS) (Dong et105

al., 2020; A. Hazelton et al., 2021), the Chinese Academy of Sciences Flexible Global Ocean-106

Atmosphere-Land System Model (Zhou et al., 2015; Li et al., 2019; He et al., 2019), and107

the National Aeronautics and Space Administration Goddard Earth Observing System108

(GEOS) version 5 (Arnold et al., 2020).109

Notably, the GFDL cloud microphysics scheme is now mainly developed within SHiELD110

at GFDL. Although the performance of SHiELD has gradually improved over the years111

with the continuous upgrades of the GFDL MP, cloud, precipitation, and radiation pre-112

dictions are still challenging. For example, ice cloud fraction is under-predicted and so113

the long-wave radiation at the top of the atmosphere is significantly over-estimated. Liq-114

uid cloud fraction is also largely under-predicted over the global ocean area. SHiELD115

tends to predict excessive light and extreme precipitation and under-predict medium pre-116

cipitation according to the analyses in L. Harris, Zhou, Lin, et al. (2020). The variable-117
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resolution SHiELD with the GFDL MP is still struggling in predicting the strength and118

location of the convective-scale precipitation over the contiguous United States (Zhou119

et al., 2019). Leighton et al. (2020) pointed out that an unrealistic representation of the120

particle size distribution of cloud condensates in cloud microphysics schemes leads to the121

limited representation of the cloud variability and degradation of tropical cyclone pre-122

diction. Fan et al. (2016) pointed out that aerosol-cloud interaction is essential and has123

significant impacts on radiative forcing, precipitation, extreme weather, and large-scale124

circulation in their review paper.125

This paper aims to document the most recent upgrade of the GFDL cloud micro-126

physics scheme and understand the impacts of the more realistic particle size distribu-127

tion and the use of climatological aerosol for cloud condensation nuclei on the global tem-128

perature, humidity, cloud, and precipitation predictions, and serves as a reference for fu-129

ture development. This paper is organized as follows. Section 2 briefly introduces the130

model used in this study. Section 3 documents the upgrade of the GFDL cloud micro-131

physics scheme in detail. Section 4 presents the upgraded GFDL MP’s impacts on weather132

prediction via detailed verification. Section 5 demonstrates the effects of the realistic par-133

ticle size distribution and the use of climatological aerosol for cloud condensation nuclei134

on weather prediction. Finally, we end up with a summary and discussion in section 6.135

2 Model Description136

The model used in this study is the System for High-resolution prediction on Earth-137

to-Local Domains (SHiELD). SHiELD, previously called fvGFS (finite-volume Global138

Forecast System) (A. T. Hazelton et al., 2018; Zhou et al., 2019; J. Chen et al., 2019;139

J. H. Chen et al., 2019), was developed as a prototype of the Next-Generation Global140

Prediction System of the National Weather Service and the broader Unified Forecast Sys-141

tem (UFS) (L. Harris, Zhou, Lin, et al., 2020). SHiELD can be used for applications on142

a broad range of time scales but has been designed with a particular focus on weather143

(up to 10 days) (L. M. Harris et al., 2019) and subseasonal-to-seasonal (S2S; between144

two weeks and one season) (L. Harris, Zhou, Lin, et al., 2020) predictions. Notably, ad-145

vances in SHiELD have migrated into UFS models slated for operational implementa-146

tions at NCEP, including the GFS version 15 and version 16.147

In this study, all SHiELD simulations use the non-hydrostatic solver within the Finite-148

Volume Cubed-Sphere Dynamical Core (FV3) developed at GFDL (L. M. Harris & Lin,149

2013; S.-J. Lin, 2004; Putman & Lin, 2007; L. Harris, Zhou, Chen, & Chen, 2020; L. Har-150

ris, Chen, et al., 2020). The physical parameterization suite in SHiELD originated from151

that in GFS version 14 (J. Chen et al., 2019), but contains substantial updates in the152

following processes: the microphysics scheme of Zhao and Carr (1997) and cloud frac-153

tion scheme of Xu and Randall (1996) are replaced by the inline GFDL cloud microphysics154

parameterizations (Zhou et al., 2019; L. Harris, Zhou, Lin, et al., 2020). The cloud-radiation155

interaction was redesigned to combine the cloud microphysics processes and cloud ra-156

diative properties. To incorporate atmosphere-ocean interaction, we have implemented157

a mixed layer ocean module based on Pollard et al. (1973). This simple ocean model com-158

putes the mixed layer depth and temperature within that mixed layer as prognostic vari-159

ables, driven by surface wind stress and heat fluxes from the atmosphere together with160

a nudging toward climatology applied to the mixed layer temperature and mixed-layer161

depth (L. Harris, Zhou, Lin, et al., 2020). In the latest version of SHiELD that is used162

in this paper, the convection schemes (J. G. Han et al., 2017), planetary boundary layer163

scheme (J. Han & Bretherton, 2019), and land surface model (Ek et al., 2003) are all up-164

dated to synchronize the current operational GFS version 16.165
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3 Cloud Microphysics Parameterization166

The first version of the GFDL cloud microphysics scheme (GFDL MP v1, Zhou et167

al. (2019)) originated from J. H. Chen and Lin (2013), was mainly developed for fvGFS168

to support the upgrade of operational GFS version 15. It was a split cloud microphysics169

scheme in which the saturation adjustment processes were built inside the FV3 dynam-170

ical core. This version, with some minor upgrades, is still in use in the operational GFS171

version 16. Later the second version of the GFDL cloud microphysics scheme (GFDL172

MP v2, L. Harris, Zhou, Lin, et al. (2020)) was developed entirely inside the FV3 dy-173

namical core in SHiELD. We call this the ”inline GFDL MP”. Recently, the GFDL MP174

in SHiELD has been dramatically updated. We call this the third version of the GFDL175

MP as it is significantly different from the second version. Compared with the GFDL176

MP v2, the code of the GFDL MP v3 is entirely reorganized, optimized, and modular-177

ized by functions for the first time. All scientific updates are described in Appendix A.178

The improvements from the GFDL MP v3 in weather prediction are demonstrated in179

the following sections.180

Among all the updates in the GFDL MP v3, the update of particle size distribu-181

tion and the overall consistency are essential and significant. First, the particle size dis-182

tributions for all six cloud categories are redefined as a gamma distribution to mimic the183

latest observations. As a result, the cloud water and cloud ice are no longer mono-dispersed184

as in the GFDL MP v2. The large cloud categories, e.g., rain, snow, and graupel, or hail,185

still follow the exponential distribution as suggested by most observations and literature186

(Khain et al. (2015) and references therein), and which is a special case of the gamma187

distribution. Along with the particle size distribution upgrade, microphysical processes,188

e.g., accretion, evaporation, sublimation/deposition, and freezing/melting, have been re-189

formatted and overhauled accordingly. This ensures an overall microphysical consistency190

and easily permits introductions of new particle size distributions, microphysical pro-191

cesses, and multi-moment distributions. Details of these updates are described in the fol-192

lowing subsections. Due to the introduction of the more realistic particle size distribu-193

tion and reformation of many microphysical processes, the computational runtime of the194

microphysics scheme increases by about 20%, but it is negligible (about 2%) compared195

to the total model runtime in SHiELD.196

3.1 Particle Size Distribution197

The particle size distribution (PSD) describes the microstructure of a cloud cat-198

egory in each grid box. By definition, the concentration of a cloud particle is a function199

of the particle size. In general, the PSD functions can be mono-dispersed, exponential,200

gamma, or log-normal distribution. These distributions are normalizable and integrat-201

able over complete size distributions of diameter from zero to infinity, or partial distri-202

butions from diameter of zero to D1 or D2 to infinity or even D1 to D2 (Straka, 2009).203

All cloud properties and cloud processes can then be parameterized based on the PSD204

functions. In the GFDL MP v3, the PSD of each cloud category is parameterized with205

gamma distribution containing three parameters:206

n (D) = n0D
µ−1 exp (−λD) , (1)207

where n0 (unit: m−3−µ) is called the intercept parameter, µ (unit: 1) is called the spec-208

tral shape parameter, λ (unit: m−1) is called the slope parameter, and D (unit: m) is209

the particle’s diameter. When the spectral shape parameter µ equals to 1, it becomes210

an exponential distribution. In a single-moment bulk cloud microphysics scheme with211

prognostic mass mixing ratio q (unit: kg kg−1), the intercept parameter n0 and spec-212

tra shape parameter µ are predefined, while the slope parameter λ can be derived from213

n0, µ, and q. The values of n0 and µ for each cloud category of the GFDL MP v3 are214

listed in Table 1. Those parameters for cloud water, cloud ice, rain, snow, and graupel215

or hail are derived based on Martin et al. (1994), Fu (1996), Marshall and Palmer (1948),216
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Table 1. The intercept parameter (n0, unit: m−3−µ), spectral shape parameter (µ, unit: 1),

density of cloud category (ρ0, unit: kg m−3), parameter α (unit: m1−β s−1) and β for each cloud

category of the GFDL MP v3.

Cloud Water Cloud Ice Rain Snow Graupel Hail

n0 1.2× 1066 1.0× 1010 8× 106 3× 106 4× 106 4× 104

µ 11 1 1 1 1 1
ρ0 1× 103 9.17× 102 1× 103 1× 102 4× 102 9.17× 102

α 3× 107 11.72 842 4.8 1 1
β 2 0.41 0.8 0.25 0.5 0.5

Gunn and Marshall (1958), and Houze et al. (1979) or Federer and Waldvogel (1975),217

respectively.218

The particle size distribution (PSD) is not simply a function of diameter (D), as219

shown in Equation (1). It also depends on cloud content (ρq) or the mass mixing ratio220

of cloud (q) because the slope parameter (λ, defined below) is a function of q. Figure 1221

shows that cloud water droplet number follows gamma distribution while all other cloud222

categories follow exponential distribution at a specified cloud content. The particle num-223

ber of cloud categories increases when cloud content increases. As shown in Figure 1a,b,224

most cloud water droplets have sizes between 6 µm and 40 µm, with a peak particle num-225

ber at around 20 µm. Cloud water droplet number is three orders of magnitude less when226

the cloud water content drops from 10 g m−3 to 10−4 g m−3. Different from cloud wa-227

ter, cloud ice particle number monotonically decreases as particle size increases (Figure228

1c,d). As shown in Figure 1e-l, the distributions of rain, snow, graupel, and hail parti-229

cle numbers are similar, except that rain has the highest particle number while hail has230

the lowest particle number because rain (hail) has the highest (lowest) intercept param-231

eter (n0). Rain, snow, graupel, and hail particle sizes approach zero at radii between 2000232

µm to 6000 µm, depending on the particular species and the water content. Higher wa-233

ter content is needed to produce non-negligible numbers of the largest particles. In the234

GFDL MP v3, cloud ice particle number still follows the exponential distribution as Fu235

(1996). The same PSD assumption is applied to the calculation of cloud ice radiative prop-236

erty. Recent studies, e.g., McFarquhar et al. (2015), used new observations to show cloud237

ice should follow the gamma distribution. As the PSD of cloud ice is written in gamma238

distribution format, we can change its PSD in the future.239

3.2 Quantities Characterizing Cloud Parameters240

Once the PSD is defined, we can derive the particle concentration (N , unit: m−3),241

effective diameter (Deff , unit: m), optical extinction (β, unit: m−1), mass mixing ratio242

(q, unit: kg kg−1), and radar reflectivity factor (Z, unit: m3) by integrating the PSD243

over all diameters:244

N =

∫ ∞
0

n (D) dD =
n0Γ (µ)

λµ
, (2)245

Deff =

∫∞
0
D3n (D) dD∫∞

0
D2n (D) dD

=
µ+ 2

λ
, (3)246

β =
π

2

∫ ∞
0

D2n (D) dD =
πn0Γ (µ+ 2)

2λµ+2
, (4)247

q =
π

6

ρ0

ρ

∫ ∞
0

D3n (D) dD =
πρ0n0Γ (µ+ 3)

6ρλµ+3
, (5)248
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Figure 1. (a, c, e, g, i, k) Particle size distribution (PSD, n, unit: m−3 µm−1) as a function

of diameter (D, unit: µm) and cloud content (ρq, unit: g m−3). (b, d, f, h, j, l) PSD as a func-

tion of diameter at three selected cloud water content amounts. (a) and (b) are cloud water (qw),

(c) and (d) are cloud ice (qi), (e) and (f) are rain (qr), (g) and (h) are snow (qs), (i) and (j) are

graupel (qg), and (k) and (l) are hail (qh).
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Figure 2. From left to right are the the (a) slope parameter (λ, unit: m−1), (b) particle con-

centration (N , unit: cm−3), (c) effective diameter (Deff , unit: µm), (d) optical extinction (β,

unit: m−1), and (e) radar reflectivity factor (Z, unit: m3) for each cloud category as a function

of cloud content (ρq, unit: g m−3). Blue, orange, green, red, purple, and brown lines are the

quantities of cloud water (qw), cloud ice (qi), rain (qr), snow (qs), graupel (qg), and hail (qh).

Z =

∫ ∞
0

D6n (D) dD =
n0Γ (µ+ 6)

λµ+6
. (6)249

The density (ρ0) of each cloud category is listed in Table 1. ρ is the density of air. In250

the single-moment case where the mass mixing ratio (q) is a prognostic variable, the slope251

parameter (λ) can be derived from Equation (5):252

λ =

[
πρ0n0Γ (µ+ 3)

6ρq

]1/(µ+3)

. (7)253

By definition, and apparent from Figure 2, the slope parameter (λ), particle con-254

centration (N), effective diameter (Deff), optical extinction (β), and radar reflectivity255

factor (Z) are all a power function of cloud content (ρq). As shown in Figure 2b, assum-256

ing the same cloud content, the particle concentration of cloud water is an order of mag-257

nitude larger than cloud ice and two orders of magnitude larger than rain, snow, and grau-258

pel. Hail is an order of magnitude less than graupel. The increment of cloud water par-259

ticle concentration regarding cloud water content is about two orders larger than other260

cloud categories. As shown in Figure 2c, the effective diameter of cloud water is about261

10 µm to 20 µm, and cloud ice is about 20 µm to 400 µm. The effective diameters of262

rain, graupel, snow, and hail are close, with the latter larger than the former. As shown263

in Figure 2d, the optical extinction of all cloud categories is quite close and similar to264

each other in tendency. Optical extinction is the largest for cloud water and the small-265

est for hail, with two orders of difference. As shown in Figure 2e, cloud water has the266

smallest radar reflectivity factor, but snow and hail have the largest.267

We briefly describe how this method can be easily extended to a double-moment268

(DM) scheme, in which both the particle concentration (N) and mass mixing ratio (q)269

are prognostic variables. The intercept parameter (nDM0 ) and slope parameter (λDM )270

can be derived from the combination of Equation (2) and (5):271

nDM0 =
N1+µ/3

Γ (µ)

[
πρ0Γ (µ+ 3)

6ρqΓ (µ)

]µ/3
, (8)272
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λDM =

[
πρ0NΓ (µ+ 3)

6ρqΓ (µ)

]1/3

. (9)273

In this case, the spectra shape parameter (µ) is the only variable that needs to be pre-274

defined or parameterized. For cloud water, following Morrison and Gettelman (2008),275

it is defined as:276

µDM =
1

(0.000571Nc + 0.2714)
2 . (10)277

Where Nc (unit: cm−3) is the cloud droplet number concentration defined separately in278

different cloud scenario. When Nc equals to 52.827 cm−3, µDM is 11, the one that used279

in the current single-moment scheme. For cloud ice, following Morrison and Milbrandt280

(2015), it is defined as:281

µDM = 0.00191
(
λDM

)0.8 − 2. (11)282

For all other cloud categories, µDM = 1. The double-moment extension of the GFDL283

MP is still under development and is not used in this paper. However as shown here the284

double-moment scheme can be implemented as an extension of the current single-moment285

scheme, and serves as a reference for future GFDL MP development.286

3.3 Terminal Velocity287

Terminal velocity (V ) is generally given as a power-law relationship with respect288

to particle size (Straka, 2009):289

V = αDβ , (12)290

The leading coefficient α and the power β for each cloud categories are listed in Table291

1. The parameters for cloud water, cloud ice, rain, snow, and graupel or hail follow Ikawa292

and Saito (1991), McFarquhar et al. (2015), Liu and Orville (1969), Straka (2009), and293

Pruppacher and Klett (2010), respectively. The terminal velocity used in the microphys-294

ical processes can be weighted by number (VN ), mass (VM ), or even reflectivity (VZ) cor-295

responding to each moment (Milbrandt & Yau, 2005). After applying the gamma dis-296

tribution, the terminal velocities can be written as:297

VN =

∫∞
0
V n (D) dD∫∞

0
n (D) dD

=
αΓ (µ+ β)

λβΓ (µ)
, (13)298

VM =

∫∞
0
V D3n (D) dD∫∞

0
D3n (D) dD

=
αΓ (µ+ β + 3)

λβΓ (µ+ 3)
, (14)299

VZ =

∫∞
0
V D6n (D) dD∫∞

0
D6n (D) dD

=
αΓ (µ+ β + 6)

λβΓ (µ+ 6)
. (15)300

Generally, the reflectivity weighted terminal velocity (VZ) is larger than the mass weighted301

terminal velocity (VM ), which is further larger than the number weighted terminal ve-302

locity (VN ) (Milbrandt & Yau, 2005). It can also be seen in Figure 3, the terminal ve-303

locity of cloud water is the smallest (≈ 0.01 m s−1), followed by cloud ice (≈ 0.1−0.7 m s−1),304

snow (≈ 0.5− 2 m s−1), graupel (≈ 0.4− 4 m s−1), rain (≈ 0.4− 10 m s−1), and hail305

(≈ 0.7−20 m s−1). In the GFDL MP, the mass-weighted terminal velocity is used fol-306

lowing Y. L. Lin et al. (1983), because the mass mixing ratio is the only prognostic mo-307

ment. Note that unlike most microphysical schemes, including earlier versions of the GFDL308

MP, the GFDL MP v3 includes sedimentation of cloud water.309

3.4 Microphysical Processes310

Since the PSDs are redefined, many cloud microphysical processes are reformulated311

accordingly to ensure an overall microphysical consistency and easily permit introduc-312

tions of new particle size distributions, microphysical processes, and multi-moment dis-313

tributions. Those cloud microphysical processes include accretion, evaporation, subli-314

mation, deposition, melting, and freezing derived initially based on the PSD.315
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Figure 3. From top to bottom are the number weighted (VN ), mass weighted (VM ), and re-

flectivity weighted (VZ) terminal velocities (unit: m s−1) as a function of water content (ρq, unit:

g m−3). Blue, orange, green, red, purple, and brown lines are the terminal velocities of cloud

water (qw), cloud ice (qi), rain (qr), snow (qs), graupel (qg), and hail (qh).
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Accretion between each two falling cloud categories follows Wisner et al. (1972).316

The accretion rate between cloud x and y (Pxacy, accretion of y by x, unit: kg kg−1 s−1)317

is reformulated after putting the gamma distribution in and integrating the particle size318

from zero to infinity:319

Pxacy =

∫ ∞
0

∫ ∞
0

π2

24
Exy |Vx − Vy|

ρy0

ρ
(Dx +Dy)

2
D3
ynx (Dx)ny (Dy) dDxdDy320

=
π2

24
Exynx0ny0 |Vx − Vy|

ρy0

ρ

[
Γ (µx) Γ (µy + 5)

λµxx λ
µy+5
y

+
Γ (µx + 2) Γ (µy + 3)

λµx+2
x λ

µy+3
y

+
2Γ (µx + 1) Γ (µy + 4)

λµx+1
x λ

µy+4
y

]
, (16)321

where Vx and Vy are the terminal velocities of cloud x and y, respectively. Exy is the col-322

lection efficiency between cloud x and y. Specifically, Erw = 0.35, Eri = 1.0, Esw =323

1.0, Esi = 0.35, Esr = 1.0, Egw/Ehw = 1×10−4, Egi/Ehi = 0.05, Egr/Ehr = 1.0, and324

Egs/Ehs = 0.01. This formula can be simplified when one of the two cloud categories325

(e.g., y) does not fall and is distributed mono-dispersedly as:326

Pxacy =

∫ ∞
0

π

4
ExyqyVxD

2
xnx (Dx) dDx =

πExynx0αxqyΓ (µx + βx + 2)

4λµx+βx+2
, (17)327

The exponential case (µ = 1) of Equation (16) and (17) are widely used in the Y. L. Lin328

et al. (1983) scheme and in early versions of the GFDL MP scheme.329

Evaporation, sublimation and deposition follow Byers (1965). The evaporation /330

sublimation / deposition rate (PESD, unit: kg kg−1 s−1) is reformulated after putting331

the gamma distribution in and integrating the particle size from zero to infinity:332

PESD =

∫ ∞
0

2π (S − 1)

ρ (A+B)
VfDn (D) dD =

2π (S − 1)

ρ (A+B)

n0Γ (µ+ 1)

λµ+1
Vf , (18)333

where S is the ratio between saturated mixing ratio of water vapor (qsat) and water va-334

por mixing ratio (qv), A and B are thermodynamics terms defined as:335

A =
L2

KaRvT 2
, (19)336

B =
1

ρqsatψ
, (20)337

where L is the latent heat coefficient, Ka = 2.36 × 10−2 J m−1 s−1 K−1 is the ther-338

mal conductivity of air, Rv is gas constant of water vapor, T is air temperature, and ψ =339

2.11× 10−5 m2 s−1 is diffusivity of water vapor.340

The ventilation coefficient (Vf ) in Equation (18) is defined followed Beard and Prup-341

pacher (1971). After putting the gamma distribution in and integrating the particle size342

from zero to infinity, Vf is reformatted as:343

Vf = 0.78+0.31S1/3
c ν−1/2

∫∞
0
V 1/2D3/2n (D) dD∫∞
0
Dn (D) dD

= 0.78+0.31S1/3
c ν−1/2

α1/2Γ
(
µ+ β+3

2

)
λµ+ β+3

2

λµ+1

Γ (µ+ 1)
,

(21)344

where ν = 1.259 × 10−5 m2 s−1 is the kinematic viscosity of air and Sc = ν/ψ is the345

Schmidt number.346

The melting process follows Mason (1971). The melting rate (Pmelt, unit: kg kg−1 s−1)347

is reformulated after putting the gamma distribution in and integrating the particle size348

from zero to infinity:349

Pmelt =

∫ ∞
0

2π

ρL
[Ka (T − T0)− Lψρ (qsat − qv)]VfDn (D) dD350

=
2π

ρL
[Ka (T − T0)− Lψρ (qsat − qv)]

n0Γ (µ+ 1)

λµ+1
Vf , (22)351
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where T0 is the freezing temperature.352

At last, the rain freezing process follows Wisner et al. (1972). The freezing rate (Pfr,353

unit: kg kg−1 s−1) is reformulated after putting the gamma distribution in and integrat-354

ing the particle size from zero to infinity:355

Pfr =

∫ ∞
0

π2

36
D6 ρ0

ρ
B′ exp [A′ (T0 − T )− 1]n (D) dD356

=
π2

36
n0
ρ0

ρ
B′ exp [A′ (T0 − T )− 1]

Γ (µ+ 6)

λµ+6
, (23)357

where A′ = 0.66 K−1 and B′ = 100 m−3 s−1 are two constant parameters following358

Bigg (1953).359

The following microphysical processes remain the same from GFDL MP v2: 1) con-360

densation and evaporation of cloud water, 2) deposition and sublimation of cloud ice,361

3) cloud ice freezing and melting, 3) cloud water autoconversion, 5) cloud ice aggrega-362

tion or autoconversion, 6) snow aggregation or autoconversion. Future GFDL MP de-363

velopment will include the particle size distribution to these remaining processes.364

3.5 Cloud Condensation Nuclei365

Among these microphysical processes, cloud water to rain autoconversion follows366

the equation (15) in Rotstayn (1997). In this process, the cloud droplet concentration367

is a key factor. The cloud droplet concentration in the current version of GFDL MP is368

an input parameter which is parameterized as a function of cloud condensation nuclei369

(CCNs). According to equation (15) in Rotstayn (1997), the more CCNs in the cloud,370

the slower is the cloud water to rain autoconversion. For simplicity, the CCNs in the GFDL371

MP v2 used two fixed values over the land and the ocean, respectively. The land value372

of 300 cm−3 is from Tripoli and Cotton (1980), while the ocean value of 100 cm−3 is from373

Rotstayn (1997). Therefore, the aerosol-related microphysical processes and the aerosol-374

cloud interactions may not be properly represented in the GFDL MP v2 due to unre-375

alistic CCNs distribution.376

In the GFDL MP v3 we instead use aerosol data in the Modern-Era Retrospective377

analysis for Research and Applications, version 2 (MERRA2) (Rienecker et al., 2011)378

from the National Aeronautics and Space Administration (NASA) Goddard Earth Sci-379

ence Data Information and Services Center (GES DISC). This aerosol product is one of380

the reanalyses from the Goddard Earth Observing System Model, Version 5 (GEOS-5)381

data assimilation system (Randles et al., 2017; Gelaro et al., 2017). We combined the382

3-hourly aerosol data from 2015 to 2020 to create a 12-month climatological dataset con-383

sisting of 72 vertical levels from the surface to about 1.3 Pa at the top. The horizontal384

resolution is 0.5 by 0.625 degrees. The species of sulfate, which is a subset of MERRA2385

aerosol, is converted to CCNs using Boucher and Lohmann (1995) formula before feed-386

ing in the GFDL MP v3.387

Figures 4a,b show the geographic distribution of surface climatological CCNs de-388

rived from MERRA2 and its difference from the values used in the GFDL MP v2 (300389

and 100 cm−3 over the land and the ocean, respectively). Over most of the land area390

except southeastern China and northern India, the CCNs from MERRA2 is below 300391

cm−3. The CCNs over all of Antarctica is below 100 cm−3. Over most of the ocean area392

except the offshore of Asia and Europe, the east coast of North America, and the north-393

ern Pacific Ocean, the CCNs from MERRA2 is below 100 cm−3. Only the CCNs over394

the offshore of China and India can reach to above 300 cm−3. This comparison indicates395

that the fixed values of CCNs used in the GFDL MP v2 are substantially overestimated396

over most of the global area. Besides the horizontal spatial variability, the CCNs from397

MERRA2 also has vertical variability. Figure 4c shows that the vertical mean distribu-398

tions and ranges decrease with height and are much smaller than the fixed values used399
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Figure 4. Geographic distribution of (a) surface climatological CCNs (cm−3) from MERRA2,

(b) the difference between the CCNs from MERRA2 and the fixed CCNs values used in the

GFDL MP v2. Panel (c) is the vertical profiles of (solid) climatological CCNs from MERRA2

and (dashed) fixed CCNs values used in the GFDL MP v2. Red lines represent CCNs over land,

blue lines represent CCNs over the ocean. The shaded area is its standard deviation. The num-

bers in panels (a) and (b) are the global maximum, minimum, land mean, and ocean mean of

CCNs.

in the GFDL MP v2. The CCN over land is only half of 300 cm−3 near the surface and400

lower than 100 cm−3 above 500 hPa. The CCNs over the ocean is generally half value401

or lower than the fixed value of 100 cm−3.402

4 Model Verification403

In order to demonstrate the impact of the GFDL MP upgrade, 10-day weather pre-404

diction from SHiELD are evaluated. These predictions are initialized from GFS v15 anal-405

yses every five days from June 25, 2019 to March 17, 2021. The ERA5 reanalysis (Hersbach406

et al., 2020) is then used for global weather prediction evaluation. ERA5 is produced us-407

ing 4D-Var data assimilation and model forecasts in CY41R2 of the European Centre408

for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), with409

137 hybrid sigma/pressure (model) levels in the vertical and the top-level at 0.01 hPa.410

Here the 31 km 6 hourly ERA5 datasets at the pressure levels of 100 hPa, 200 hPa, 250411

hPa, 500 hPa, 700 hPa, 850 hPa, and 1000 hPa are used to represent the weather and412

atmospheric condition from Tropopause to the surface. Here we focus on geopotential413

height, air temperature, and specific humidity, which are of the greatest value to large-414

scale weather prediction. All experiments done for this study are listed in Table 2. This415

section compares the GFDL MP v3 (CTRL for short hereafter; this configuration uses416

constant CCNs over the land and ocean respectively and the original PSD for all cloud417
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Table 2. List of experiments in this study.

Experiment Old PSD1 Old CCNs2 New PSD3 New CCNs4 GFDL MP

OLD × × v2
CTRL × × v3
CPSD × × v3
AERO × × v3
CPSD AERO × × v3

1 mono-dispersed for cloud water and cloud ice, exponential distribution for other cloud
categories. 2 300 cm−3 over land and 100 cm−3 over ocean. 3 gamma distribution for all

cloud categories. 4 CCNs are calculated from climatological aerosol.

categories) with the GFDL MP v2 (OLD for short hereafter). In the following section,418

the CTRL is used as a reference to evaluate the weather prediction skill of the GFDL419

MP v3. CTRL is compared against simulations with the more realistic gamma particle420

size distribution of cloud water and cloud ice (CPSD), a time-and-space varying clima-421

tological background aerosol for CCNs calculation (AERO), and simulations with both422

(CPSD AERO).423

Figure 5 shows a straightforward comparison between the OLD and the CTRL us-424

ing a scorecard. The scorecard clearly shows that the CTRL has significantly higher anomaly425

correlation coefficients (ACCs) of geopotential height at most pressure levels up to seven426

days of forecast. The reduction of geopotential height bias from the OLD to the CTRL427

is significant even throughout the ten days of forecast. Although the ACCs of the CTRL428

are lower than those of the OLD after day seventh, this difference is insignificant. The429

above improvement of geopotential height prediction (higher ACC of geopotential height)430

is encouraging for the development of SHiELD because it indicates a general improve-431

ment of the atmospheric circulation and heating in the Troposphere, which is closely re-432

lated to our daily weather. It is also found in Figure 5 that the temperature prediction433

of the CTRL is overall better than the OLD. Still, the ACCs are higher in the first few434

days and lower in the eight to ten-day forecast, while the bias is significantly reduced435

throughout the ten-day forecast. Unfortunately, temperature prediction at 500 hPa and436

1000 hPa are degraded in the CTRL (lower ACC and larger bias). Further analyses on437

the 10-day temperature evolution and its 10-day averaged geographical distribution (see438

supplemental Figures S1, S2) show a globally warm bias at 500 hPa and 1000 hPa. Since439

the CTRL predicts an overall warmer Troposphere than the OLD and the 500 hPa and440

1000 hPa temperature in the OLD already have a positive bias, the additional warm-441

ing further increases the positive bias at these two pressure levels. Specific humidity pre-442

diction is overall better at the upper Troposphere but worse at the lower Troposphere443

comparing the CTRL to the OLD, shown in the scorecard. However, compared to the444

magnitude and variation of specific humidity throughout the ten days of forecasts, their445

difference at the lower Troposphere is small, so that can be negligible (see supplemen-446

tal Figures S1, S2).447

To evaluate the representation of the mean state of cloud prediction, we compare448

the output from COSP (Cloud Feedback Model Intercomparison Project Observation449

Simulator Package, Bodas-Salcedo et al. (2011); Swales et al. (2018)) of SHiELD against450

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, Chepfer451

et al. (2010)) cloud fraction product. The COSP takes the models representation of the452

atmosphere (e.g., cloud water content at model levels) and simulates the retrievals for453

several passive and active sensors (e.g., CALIPSO) (Bodas-Salcedo et al., 2011). The out-454

put from COSP can then be directly compared with satellite observations. Version 2 of455

COSP (Swales et al., 2018), a significant reorganization and modernization of the pre-456
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Figure 5. The scorecard showing the comparisons between the GFDL MP v3 (CTRL) and

the GFDL MP v2 (OLD) in each meteorological field. Improvements (degradation) from the

CTRL are indicated in red (blue) squares, e.g., higher (lower) ACC (anomaly correlation coeffi-

cient) or less (larger) bias. Darker colors mean the difference passes the 95% significance level.

Square boxes in each grid cell from left to right are for the forecasts from day 1 to day 10. The

letters h, t, and q to the left represent geopotential height, temperature, and specific humidity,

respectively, at pressure levels of 100, 200, 250, 500, 700, 850, and 1000 hPa.
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vious generation of COSP, has been recently implemented into SHiELD for comprehen-457

sive cloud evaluation. The CALIPSO data is from the GCM-Oriented CALIPSO Cloud458

Product (CALIPSO-GOCCP) https://climserv.ipsl.polytechnique.fr/cfmip-obs/459

Calipso goccp.html that is designed to evaluate GCM (General Circulation Model) cloudi-460

ness. CALIPSO-GOCCP (Chepfer et al., 2010) contains observational cloud diagnostics461

entirely consistent with the ones simulated by the ensemble ”GCM+lidar simulator” which462

has been built in using the same horizontal and vertical resolutions and the same cloud463

detection thresholds. The lidar simulator is part of COSP. In this study, the total col-464

umn cloud liquid water, rainwater, cloud ice water, and snow water from ERA5 is also465

used to evaluate the liquid and ice water paths predicted in SHiELD. Note that grau-466

pel is not included in ERA5. Here, total column cloud liquid water and rainwater are467

combined as liquid water path, and total column cloud ice water and snow water are com-468

bined as ice water path. Finally, precipitation prediction is evaluated against the Inte-469

grated Multi-satellitE Retrievals for GPM (IMERG) product (Hong et al., 2004), which470

combines information from the Global Precipitation Measurement (GPM) satellite con-471

stellation to estimate precipitation over the majority of the Earth’s surface.472

Figure 6 shows the cloud fraction comparison between model prediction and CALIPSO473

observation. As shown in Figure 6e, the OLD predicts similar geographical distribution474

and magnitude of high cloud fraction as CALIPSO. The predicted global mean high cloud475

fraction is slightly smaller than that of the CALIPSO (with a bias of -0.006). As shown476

in Figure 6i, the global mean bias further reduces to 0.001 (positive) in the CTRL, but477

the root-mean-square error (rmse) remains the same. It can be found in the high cloud478

fraction difference panel (Figure 6m) that a significant difference in high cloud fraction479

is over the tropics ocean area. Different from the high cloud fraction, both middle and480

low cloud fractions are under-predicted in both the OLD and the CTRL (Figure 6f,g,j,k).481

As shown in Figure 6f,j, the predicted middle cloud fraction is consistently lower in the482

model than CALIPSO, with a maximum reduction of cloud fraction over Southern Amer-483

ica. Comparing the OLD and the CTRL, the upgrade of GFDL MP does not improve484

the middle cloud fraction prediction too much. Still, the global mean bias and rmse of485

the predicted middle cloud fraction are both reduced. As shown in Figure 6n, most of486

the significant middle cloud fraction increment is in the middle to high latitude ocean487

area, especially the Southern Ocean. Compared to the middle cloud fraction bias, the488

low cloud fraction bias is even larger (Figure 6g,k). The global mean bias of low cloud489

fraction is -0.194 and -0.197 in the OLD and the CTRL, respectively. As shown in Fig-490

ure 6o, most significant reduction of low cloud fraction in the CTRL is over the high lat-491

itude land area. Due to the under-prediction of middle and low cloud fractions, the to-492

tal cloud fraction is also under-predicted (Figure 6h,i). Still, we can see that the global493

mean bias and rmse of total cloud fraction is reduced because of significant total cloud494

increment over the Southern Ocean (Figure 6p).495

We further evaluate the liquid and ice water paths (compared with ERA5) and pre-496

cipitation (compared with GPM) predictions. As shown in Figure 7a,d,g, SHiELD’s pre-497

dicted liquid water path is quite similar to ERA5 regarding its geographical distribution.498

However, both the OLD and the CTRL over-predict the liquid water path over the extra-499

tropical storm track area. Compared with the OLD, the bias and rmse in the CTRL are500

both notably reduced. As shown in Figure 7j, most of the significant reduction of liq-501

uid water path is at the middle to high latitudes, where the model over-predicts the liq-502

uid water path. Compared with the ERA5, the geographical distributions of the ice wa-503

ter path are well-predicted in both the OLD and the CTRL (Figure 7b,e,h). The bias504

and rmse of the CTRL are only slightly smaller than that of the OLD. Not surprisingly,505

the difference between the OLD and the CTRL is insignificant, shown from the differ-506

ence panel of Figure 7k. Regarding the precipitation forecasts (Figure 7f,i), both the OLD507

and the CTRL can well-predict the massive precipitation rates along the Intertropical508

Convergence Zone (ITCZ) area and in the extra-tropical storm track area. However, both509

the OLD and the CTRL predict slightly more precipitation globally, indicated by their510
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Figure 6. From left to right are the 10-day averaged high, middle, low, and total cloud frac-

tions from (a-d) CALIPSO, (e-h) OLD, (i-l) CTRL, and (m-p) CTRL minus OLD. The numbers

in the title of (a-d) are the global mean of cloud fraction (unit: 1), and (e-l) are the bias and

root-mean-square error compared to CALIPSO. The dotted area in (m-p) is the area with a 95%

significant difference.
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Figure 7. From left to right are the 10-day averaged liquid water path (LWP), ice water path

(IWP), and precipitation rate (PRE) from (a-c) ERA5 or GPM, (d-f) OLD, (g-i) CTRL, and (j-l)

CTRL minus OLD. The numbers in the title of (a-c) are the global mean of liquid water path or

ice water path (unit: g m−2) or precipitation (unit: mm day−1), and (d-i) are the bias and root-

mean-square error to ERA5 or GPM. The dotted area in (j-l) is the area with a 95% significant

difference.

global mean bias. The CTRL’s precipitation prediction has a slightly larger bias and rmse511

than the OLD, but the differences are insignificant (Figure 7l).512

5 Impacts of PSD and CCNs on Weather Prediction513

The previous section demonstrates the results from the GFDL MP upgrade that514

excludes the more realistic particle size distribution (PSD) and new cloud condensation515

nuclei (CCNs). In the CTRL, the PSD of cloud water and cloud ice is still mono-dispersed,516

and the CCNs are constant values over land and ocean separately. CTRL generally im-517

proves the prediction skill of geopotential height and reduces biases in height, temper-518

ature, and liquid water path, but had relatively little change to cloud biases. In this sec-519

tion, three sensitivity experiments(CPSD, AERO, and CPSD AERO) are carried out to520

evaluate the impacts (or effect) of the PSD in the GFDL MP v3, as well as the use of521

time-and-space varying prescribed climatological aerosol to calculate CCNs, on weather522

prediction. Those new experiments are listed in Table 2. Experiment CPSD is designed523
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Figure 8. Similar to Figure 5, but for comparison between (a) CTRL and CPSD, (b) CTRL

and AERO, (c) CTRL and CPSD AERO.

based on the CTRL with a more realistic PSD of cloud water and cloud ice using the524

gamma distribution. Terminal velocity, effective radius, and a number of microphysical525

processes are revised accordingly, as described in Section 3. Experiment AERO is also526

designed based on the CTRL, but with the CCNs replaced with those calculated from527

the MERRA2 climatological aerosol. CCNs are mainly used for cloud water to rainwa-528

ter autoconversion in the GFDL MP. The last experiment is a combination of the CPSD529

and the AERO experiments, called the CPSD AERO. Comparisons between the CTRL530

and each of the three experiments use ERA5, CALIPSO, and GPM mentioned in the531

previous section.532

The scorecards of the comparison between the CTRL and each of the sensitivity533

experiments are in Figure 8. It can be found that the ACCs of geopotential height in the534

CPSD are higher than those in the CTRL in the first five-day forecast. Meanwhile, com-535

pared to the CTRL, the biases of geopotential height prediction are significantly smaller536

throughout the ten-day forecast (Figure 8a). On the other hand, the temperature and537

specific humidity predictions in the CPSD are generally improved at levels lower than538

500 hPa but significantly degraded at 500 hPa and above. The differences of the tem-539

perature ACC between the CPSD and CTRL are hard to quantify in the time evolution540

plots, but their difference of temperature biases are quite clear (see supplemental Fig-541

ure S3). Compared to the CTRL, the predicted temperature in the CPSD is lower at542

200 and 250 hPa, but higher at 500 hPa, and the predicted specific humidity in the CPSD543

is lower at 100, 200, and 250 hPa.544

To understand why the temperature and specific humidity decrease at the middle545

to upper Troposphere (except that temperature at 500 hPa increases) in the CPSD than546

the CTRL, we first examine the cloud fraction prediction (Figure 9). The CPSD pre-547

dicted a similar amount of high cloud fraction to the CTRL (Figure 9e). The high cloud548

fraction prediction bias is very close between the CPSD and the CTRL. The rmse of the549

high cloud fraction prediction in the CPSD is slightly larger than that of the CTRL through-550

out the ten-day forecast (Figure 9a). In contrast, there is a much more significant in-551

crement of the rmse of middle cloud fraction prediction from the CTRL to the CPSD552

(Figure 9b). Comparing the bias of middle cloud fraction prediction shown in Figure 9f,553

we can see the predicted middle cloud fraction is significantly more in the CPSD than554

the CTRL. It implies that more water vapor deposited to cloud ice to form middle clouds555

in the CPSD. The associated latent heating warms up the air in the middle Troposphere.556
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Figure 9. From left to right are the 10-day evolution of (a,e) high, (b,f) middle, (c,g) low,

and (d,h) total cloud fractions of (blue) CTRL, (orange) CPSD, (green) AERO, and (red)

CPSD AERO. Top row is root mean square error (unit: 1); bottom row is bias (unit: 1). The

shaded area is the area with a 95% significant difference to the CTRL.

Due to the decrease of the water vapor in the upper Troposphere, the longwave radia-557

tion absorption reduces; meanwhile, the increasing middle cloud fraction enhances the558

cloud top cooling in the above air, the atmospheric temperature is decreased in the CPSD559

compared to the CTRL. These are consistent with what we found in the temperature560

and specific humidity prediction in Figure 8a.561

The increases of the predicted cloud ice in the CPSD are also shown by the ice wa-562

ter path (Figure 10e). The ice water path prediction bias changes from negative to pos-563

itive from the CTRL to the CPSD. The absolute ice water path prediction bias is rel-564

atively smaller in the CPSD compared to the CTRL. However, the rmse of ice water path565

prediction increases significantly (Figure 10b). The predicted ice water path dramati-566

cally increases from the CTRL to the CPSD because of the increases of the cloud ice ter-567

minal fall velocity in the CPSD with the redefinition of cloud ice PSD. As a result, it568

brings more cloud ice sediment to lower levels, while the reduction of cloud ice at higher569

levels causes more deposition of water vapor. The improvement of low cloud fraction pre-570

diction (Figure 9c,g) probably contributes to the improvement of the temperature and571

specific humidity prediction in the lower Troposphere (Figure 8a). The degradation of572

the precipitation prediction is small in CPSD (Figure 10c,f).573

The upgrade of the CCNs calculation in the AERO directly affects the autocon-574

version of cloud water to rainwater. Figure 8b shows that the prediction skill of geopo-575

tential height, temperature, and specific humidity are generally improved. Particularly,576

the ACCs of geopotential height substantially increase with significant bias reductions.577

Due to less produced CCNs in the AERO than the CTRL, it is relatively easier for the578

cloud water to convert to rain and fall to the surface in the AERO than in the CTRL.579

Therefore, the low cloud fraction in the AERO is largely reduced (Figure 9g), and the580

liquid water path is also significantly reduced (Figure 10d). The reduction of cloud frac-581

tion and the resultant reduced cloud albedo lead to a warmer surface. With a stronger582

surface heat exchange, the lower Troposphere is warmed up. Extra heat is transported583

from the lower Troposphere to the air above, inducing a warmer middle to upper Tro-584

posphere. It is relatively harder for the water vapor to condense or deposit in the warmer585
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Figure 10. From left to right are the 10-day evolution of (a,d) liquid water path, (b,e) ice

water path, and (c,f) precipitation of (blue) CTRL, (orange) CPSD, (green) AERO, and (red)

CPSD AERO. Top row is root mean square error (unit: g m−2); bottom row is bias (unit:

g m−2). The shaded area is the area with a 95% significant difference to the CTRL.

air. Therefore, the high and middle cloud fractions (Figure 9e, f) further decrease. Even586

with more cloud water to rain autoconversion in the AERO than the CTRL, the changes587

of precipitation prediction are still minor (Figure 10c,f), which may be related to some588

compensation from the increase of convective precipitation.589

Finally, the impacts of combining the more realistic PSD and the climatological aerosol590

calculated CCNs are evaluated (Exp. of CPSD AERO). Figure 8c shows that the AERO591

can improve the degradation of the forecast skill shown in the CPSD. For example, the592

forecasts of the geopotential height of the CPSD AERO during the first 5 days are sig-593

nificantly improved compared to the CTRL. Moreover, temperature forecasts at 250 and594

500 hPa, and forecasts of specific humidity at 100, 500, and 700 hPa are generally im-595

proved in the CPSD AERO. Generally speaking, there are more improved forecast fields596

than degraded ones in the CPSD AERO than in the CTRL (Figure 8c). It is interest-597

ing to find in Figure 9 that the high cloud fraction prediction in the CPSD AERO is quite598

close to the AERO, but the middle, low, and total cloud fraction prediction in the CPSD AERO599

is in between the CPSD and the AERO. Differently, the prediction of the liquid water600

path of the CPSD AERO is close to the AERO, but the ice water path of the CPSD AERO601

is close to the CPSD. Since the update of the PSD alters many microphysical processes,602

but the update of the CCNs changes the cloud water to rainwater autoconversion only,603

it is difficult to explain these interesting findings. We leave these to further research.604

In all experiments, we find that the change of PSD in the cloud water and the cloud605

ice or the use of climatological aerosol for CCNs calculation only exerts a minor impact606

on the precipitation prediction (Figure 10c,f). It is possibly due to the change of large-607

scale precipitation being small compared to the change of cloud content. In addition, the608

change of the large-scale precipitation could be compensated by an increase in convec-609

tive precipitation. Additionally, precipitation can be influenced by microphysical pro-610

cesses that do not involve the change of PSD and CCNs.611
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6 Summary and Discussion612

This paper documents the third version of the Geophysical Fluid Dynamics Lab-613

oratory cloud microphysics scheme (GFDL MP v3) that is upgraded from the previous614

versions of the GFDL MP used in the Global Forecast System (GFS), the System for615

High-resolution prediction on Earth-to-Local Domains (SHiELD), and a broader com-616

munity through the Unified Forecast System (UFS). Compared with the GFDL MP v2,617

the GFDL MP v3 is featured with the following upgrades: 1) the code has been reor-618

ganized, optimized, and modularized by functions; 2) the particle size distribution used619

in the scheme for all six cloud categories are redefined as gamma distribution; 3) par-620

ticle concentration, effective diameter, optical extinction, mass mixing ratio, radar re-621

flectivity factor, and terminal velocity are all redefined based on the gamma distribu-622

tion; 4) accretion, evaporation, sublimation, deposition, melting, and freezing microphys-623

ical processes are all reformulated based on the gamma distribution; 5) replacing uni-624

form cloud condensation nuclei (CCNs) with climatological aerosols calculated from Modern-625

Era Retrospective analysis for Research and Applications, version 2 (MERRA2). The626

GFDL MP v3 ensures an overall microphysical consistency and easily permits the fu-627

ture introduction of new particle size distributions, microphysical processes, and multi-628

moment distributions.629

The impacts of the GFDL MP upgrade item 1) on global weather, cloud, and pre-630

cipitation predictions in SHiELD are comprehensively evaluated. The comparisons be-631

tween the two sets of experiments show that GFDL MP v3 significantly improves the632

geopotential height prediction up to seven days on anomaly correlation coefficient (ACC)633

and throughout ten-day forecast on the bias. Improvement of geopotential height pre-634

diction indicates general improvement of the atmospheric circulation and heating in the635

Troposphere. The temperature prediction is overall better in GFDL MP v3 than in GFDL636

MP v2. The specific humidity prediction is overall better in GFDL MP v3 than GFDL637

MP v2 in the upper Troposphere but worse in the lower Troposphere. High, middle, and638

total cloud fractions predictions are improved in GFDL MP v3. Low cloud fraction pre-639

diction degrades in GFDL MP v3, but liquid water path prediction improves substan-640

tially. There is a minor change in the ice water path and precipitation prediction from641

GFDL MP v2 and GFDL MP v3. It is believed that the noticed degradation could be642

improved with further model development.643

Furthermore, the impacts of the GFDL MP upgrade items 2) to 5) are evaluated644

using the base GFDL MP v3 as a reference. The use of more realistic PSD and clima-645

tological aerosol calculated CCNs significantly improves the geopotential height predic-646

tion compared with the original PSD and constant CCNs. Temperature and specific hu-647

midity predictions at the upper Troposphere significantly degrade with the PSD upgrade,648

but are mixed with improvement and degradation with the CCNs upgrade. Among all649

upgrades, the PSD upgrade shows the best prediction of low and total cloud fractions650

but the worst prediction of high and middle cloud fractions, while the CCNs upgrade651

shows the best prediction of high and middle cloud fractions but the worst prediction652

of low and total cloud fractions. The combination of the PSD and the CCNs upgrades653

is generally excellent in cloud fraction prediction. The combination of the PSD and the654

CCNs upgrades shows the best liquid water path prediction with the lowest rmse, but655

with a very large negative bias. The PSD upgrade shows the largest rmse of liquid wa-656

ter path prediction, although its bias is the smallest. In contrast, the combination of the657

PSD and the CCNs upgrades shows the smallest bias in ice water path prediction but658

a larger rmse of the ice water path prediction. These results indicate that the global mean659

liquid and ice water paths are very different between the ERA5 and SHiELD. Note that660

we use ERA5 to evaluate liquid water path and ice water path prediction because this661

is the only reliable validation dataset available for the entire forecast time period. More662

reliable direct observations will be used for this purpose in the future.663
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There are some caveats for the GFDL MP v3. For example, the prediction of 500664

hPa temperature tends to be worse (lower ACC and larger warm bias) than the GFDL665

MP v2. This bias has been identified in SHiELD for a long time. A possible reason is666

that the convective heating of the middle Troposphere is too strong, and radiative cool-667

ing is not enough to compensate. Further investigation is still needed to alleviate this668

bias. Middle, low, and total cloud fractions are under-predicted in SHiELD regardless669

of the version of the GFDL MP used. We plan to extend our cloud fraction diagnosis670

in the GFDL MP to include sub-grid terrain and static energy to better represent sub-671

grid variability especially over complex terrain. We are also working on a more physically-672

motivated definition of parameters in the particle size distribution using observations from673

flights and to incorporate the effects of temperature, wind, and pressure on the PSD. This674

aims to create a more realistic relationship between meteorological fields and particle size675

distribution from observational data, and to resolve the degradation of upper-tropospheric676

biases in temperature and humidity. We also plan to eliminate the low bias in low-to-677

middle latitudes, and high bias in high latitudes, of liquid water path, and to improve678

the seamlessness of the GFDL MP across space and time scales, as appropriate for the679

wide range of applications of SHiELD, GFS, and UFS from convective-scale to seasonal680

prediction. We also will consider a double-moment extension of the GFDL MP if it im-681

proves the model’s prediction skill.682

Appendix A The GFDL Cloud Microphysics Version 3683

The third version of the GFDL cloud microphysics scheme (GFDL MP) was de-684

veloped from version 1 (Zhou et al., 2019) and version 2 (L. Harris, Zhou, Lin, et al., 2020).685

This new version of the GFDL MP features with three major upgrades: 1) the code is686

entirely reorganized, optimized, and modularized by functions, 2) there are various sci-687

entific modifications to the microphysical processes, and 3) several optional definitions688

and microphysical processes are added. The scientific modifications are summarized as689

below:690

• Redefine the supersaturation in ice processes using the complete saturation tables691

(it is advance and ensures consistency);692

• Allow cloud water autoconversion in a larger temperature range (it is consistent693

with the temperature range of cloud water);694

• Split rain evaporation and accretion more physically and consistently (it more phys-695

ically handles the relation between rain evaporation and accretion);696

• Turn off the redundant cloud ice melting before falling (the same process is already697

in the ice microphysics section);698

• Fix and revise the cloud ice melting processes during sedimentation (a bug was699

found in these processes, not used by default);700

• Remove several unnecessary temperature limits and add necessary mass limits (some701

temperature limits are reasonably defined; mass limits prevent negative cloud mass)702

• Use the same minimum value for all hydrometeors (to be consistent);703

• Recalculate the parameters for terminal fall (for better precision and ease for fu-704

ture development);705

• Allow zero fall speed (instead of a small value; it is more physical);706

• Remove time step splitting between fast saturation adjustment and full microphysics707

(it is more reasonable in the current structure);708

• Combine snow and graupel for snow effective radius diagnosis (to include the ra-709

diative effect of graupel);710

• When it is cloud water saturation adjustment, do it completely (by design).711

There are also many options added to the GFDL MP that can be used in other appli-712

cations of SHiELD (T-SHiELD, C-SHiELD, and S-SHiELD), toward unified modeling713
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in which there is a single modeling system with one code, one executable, and one work-714

flow (L. Harris, Zhou, Lin, et al., 2020). Those new options include:715

• New cloud fraction diagnostic schemes;716

• New cloud ice nucleation schemes;717

• New cloud ice generation schemes;718

• New cloud ice fall velocity diagnostic schemes;719

• New cloud water and cloud ice effective radii diagnostic schemes;720

• New radar reflectivity diagnostic schemes;721

• Wegener-Bergeron-Findeisen process;722

• New particle size distribution options;723

• New cloud condensation nuclei calculation.724

Data Availability Statement725

The source codes of SHiELD are available at https://doi.org/10.5281/zenodo726

.5800223. The corresponding data is available at https://doi.org/10.5281/zenodo727

.5800259. The COSP2 software package can be accessed from https://github.com/728

CFMIP/COSPv2.0.729

The MERRA2 data can be obtained from https://goldsmr5.gesdisc.eosdis.nasa730

.gov/data. The ERA5 data can be obtained from https://cds.climate.copernicus731

.eu/#!/search?text=ERA5&type=dataset. The CALIPSO-GOCCP data can be ob-732

tained from https://climserv.ipsl.polytechnique.fr/cfmip-obs/Calipso goccp733

.html. The GPM data can be obtained from https://disc.gsfc.nasa.gov/datasets/734

GPM 3IMERGHH 06/summary?keywords=gpm%20imerg.735
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1. Figure S1. 10-day anomaly correlation coefficient (ACC) and bias evolution of (1st

and 2nd columns) geopotential height (units: m), (3rd and 4th columns) temperature

(units: K), and (5th and 6th columns) specific humidity (units: (g kg−1)) at (from top

row to bottom row) 100, 200, 250, 500, 700, 850, and 1000 hPa pressure levels. Blue line

is OLD (original GFDL MP), orange line is CTRL (new GFDL MP).

2. Figure S2. 10-day averaged geographical distribution of the biases of (1st to 3rd

columns) geopotential height (units: m), (4th to 6th columns) temperature (units: K),

and (7th to 9th columns) specific humidity (units: g kg−1) at (from top row to bottom

row) 100, 200, 250, 500, 700, 850, and 1000 hPa pressure levels. For each variables, from

the first to the third panels are OLD (original GFDL MP), CTRL (new GFDL MP), and
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CTRL minus OLD. The numbers in the title of each panel are the bias and root mean

square error.

3. Figure S3. Similar to Figure S1, but for (blue) CTRL, (orange) CPSD, (green)

AERO, and (red) CPSD AERO.

Introduction This supporting document includes additional figures to support the

weather prediction evaluation in the main paper.
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Figure S1. 10-day anomaly correlation coefficient (ACC) and bias evolution of (1st and 2nd

columns) geopotential height (units: m), (3rd and 4th columns) temperature (units: K), and

(5th and 6th columns) specific humidity (units: g kg−1) at (from top row to bottom row) 100,

200, 250, 500, 700, 850, and 1000 hPa pressure levels. Blue line is OLD (original GFDL MP),

orange line is CTRL (new GFDL MP).
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Figure S2. 10-day averaged geographical distribution of the biases of (1st to 3rd columns)

geopotential height (units: m), (4th to 6th columns) temperature (units: K), and (7th to 9th

columns) specific humidity (units: g kg−1) at (from top row to bottom row) 100, 200, 250, 500,

700, 850, and 1000 hPa pressure levels. For each variables, from the first to the third panels are

OLD (original GFDL MP), CTRL (new GFDL MP), and CTRL minus OLD. The numbers in

the title of each panel are the bias and root mean square error.
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Figure S3. Similar to Figure S1, but for (blue) CTRL, (orange) CPSD, (green) AERO, and

(red) CPSD AERO.
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